16-Bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90470 Series

MB90473/474/477/478/F474L/F474H

■ DESCRIPTIONS

The FUJITSU MB90470 Series is a 16-bit general-purpose microcontroller designed for consumer products and other process control applications requiring high-speed and real-time processing.
The $\mathrm{F}^{2} \mathrm{MC}$-16LX CPU core instruction set retains the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{* 1}$ family, with additional instructions for use with high-level languages, expanded addressing mode, enhanced multiply and divide instructions, and full bit processing. Also included is a built-in 32-bit accumulator for long-word processing.
Peripheral resources built into the MB90470 series include 8/16-bit PPG, expanded I/O serial interface, UART, 10 -bit A/D converter, 16 -bit input-output timer, 8/16-bit up-counter, PWC timer, $I^{2} \mathrm{C}^{* 2}$ interface, DTP/external interrupt, chip select, and 16-bit reload timer.
*1 : F ${ }^{2}$ MC is an abbreviation for FUJITSU Flexible Microcontroller, and is a registered trademark of FUJITSU, Ltd.
*2 : ${ }^{2} \mathrm{C}$ license :
This product includes licensing of Philips $I^{2} \mathrm{C}$ patents if used by the customer in an $I^{2} \mathrm{C}$ system subject to the $I^{2} \mathrm{C}$ standard specifications established by Philips.

PACKAGES

100-pin plastic QFP
(FPT-100P-M06)
(FPT-100P-M05)

MB90470 Series

FEATURES

- Clocks

Minimum instruction execution time :
50.0 ns at 5 MHz base oscillation with $4 \times$ multiplier (internal operation at $20 \mathrm{MHz} / 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$)
62.5 ns at 4 MHz base oscillation with $4 \times$ multiplier (internal operation at $16 \mathrm{MHz} / 3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$)

Uses PLL clock multiplier.

- Maximum memory size

16 Mbytes

- Instruction set optimized for control applications

Handles bit, byte, word, long-word data
23 standard addressing modes
32-bit accumulator for enhanced high-precision calculation
Signed multiply-divide and expanded RETI instructions

- Instruction system compatible with high-level language (C) multitasking

System stack pointer
Instruction set correlation and barrel shift instructions

- Non-multi bus or multi-bus compatible
- Program patch function (for two address pointers)
- Improved execution speed 4-byte queue
- Powerful interrupt functions 8 external interrupt functions with 8-level programmable priority
- Data transfer functions ($\mu \mathrm{DMA}$ or Extended intelligent I/O service)

16 channels maximum
μ DMA maximum assured operation frequency: 16 MHz
Extended intelligent I/O service maximum assured operation frequency : 20 MHz

- Built-in ROM

Flash versions : 256 KB, Mask ROM versions : 128 KB/256 KB

- Built-in RAM

10 KB/16 KB

- General purpose ports

84 ports maximum
(includes 16 ports with input pull-up resistance setting, 14 ports with output open drain setting)

- A/D converter

RC sequential comparator type, 8 channels
10 -bit resolution, conversion time $4.65 \mu \mathrm{~s}$ (at 20 MHz operation)

- ${ }^{2} \mathrm{C}$ interface

1 channel

- $\mu \mathrm{PG}$

1 channel

- UART

1 channel

- I/O expansion serial interface (SIO)

2 channels

- 8/16-bit up/down timer

1 channel

- 16-bit PWC

3 channels (including 2-channel input comparison function)

MB90470 Series

(Continued)

- 16-bit reload timer 1 channel (8 -bit $\times 2$-channel, 16 -bit $\times 1$-channel mode switching function provided)
- 16-bit input-output timer

2-channel input capture, 6-channel output compare, 1-channel free run timer

- 2 built-in clock generator systems
- Low power modes

Stop, sleep, CPU intermittent mode, watch mode, etc.

- Package options QFP100/LQFP100
- Process

CMOS technology

- Supply voltage

Can operate on 3 V single supply systems (with 5 V interface provided by some pins with $3 / 5 \mathrm{~V}$ dual-supply capability)

MB90470 Series

PRODUCT LINEUP

Parameter \quad Part number		MB90F474L	MB90F474H	MB90473	MB90474
ROM capacity		FLASH 256 KB	FLASH 256 KB	$\begin{gathered} \hline \text { MASKROM } \\ 128 \mathrm{~KB} \end{gathered}$	$\begin{gathered} \hline \text { MASKROM } \\ 256 \mathrm{~KB} \end{gathered}$
RAM capacity		16 KB	16 KB	10 KB	16 KB
CPU functions		Basic instructions $: 351$ Instruction bit length $: 8$-bit, 16 -bit Instruction length $: 1$ byte to 7 bytes Data bit length $: 1$-bit, 8 -bit, 16 -bit Minimum instruction execution time $: 62.5 \mathrm{~ns}$ (with 16 MHz machine clock)			
Ports		General purpose input/output ports : 84 Max General purpose input/output ports (CMOS output) General purpose input/output ports (built-in pull-up resistance) General purpose input/output ports (N-ch open drain)			
UART		Stop-start synchronized : 1 channel			
8/16-bit PPG timer		8-bit 6-channel/16-bit 3-channel			
8/16-bit up-down counter/timer		Two 8-bit up-down counters with 6 event input pins Two 8-bit reload/compare registers			
16-bit input/ output timers	16-bit free-run timer	Channel : 1 Overflow interrupt			
	Output compare (OCU)	Channels: 6 Pin input source : from compare register match signal			
	Input capture (ICU)	Channels : 2 Register rewritten from pin input (rising/falling/both edges)			
DTP/external interrupt circuit		External interrupt pins : 8 channels (set to edge or level correlation)			
I/O expansion serial interface		2-channel, built-in			
${ }^{12} \mathrm{C}$ interface		1-channel, built-in			
Time base timer		18-bit counter Interrupt cycle : $1.0 \mathrm{~ms}, 4.1 \mathrm{~ms}, 16.4 \mathrm{~ms}, 131.1 \mathrm{~ms}$ (minimum times, at base oscillator frequency 4 MHz)			
A/D converter		Conversion accuracy : 8/10-bit switchable Single conversion mode (converts selected channel 1 time only) Scan conversion mode (converts multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (converts selected channels continuously) Stop conversion mode (converts selected channel, stops and repeats)			
Watchdog timer		Reset interval : $3.58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 458.75 \mathrm{~ms}$ (minimum times, at base oscillator frequency 4 MHz)			
Low power (standby) modes		Sleep, stop, CPU intermittent, watch mode			
Process		CMOS			
Notes		Flash model, low voltage version ($\mathrm{f}=10 \mathrm{MHz}$ or less at $\mathrm{V}_{\mathrm{cc}}=2.4 \mathrm{~V}$)	Flash model, high voltage version ($\mathrm{f}=20 \mathrm{MHz}$)	Mask version	Mask version
Emulator dedicated power supply		-	-	-	-

(Continued)

MB90470 Series

(Continued)

Parameter \quad Part number		MB90477	MB90478	MB90V470B
ROM capacity		$\begin{gathered} \hline \text { MASKROM } \\ 256 \mathrm{~KB} \end{gathered}$	$\begin{gathered} \text { MASKROM } \\ 256 \mathrm{~KB} \end{gathered}$	-
RAM capacity		8 KB	8 KB	16 KB
CPU functions		Basic instructions Instruction bit length Instruction length Data bit length Minimum instruction	ution time	it, 16-bit yte to 7 bytes bit, 8-bit, 16-bit ns (with 20 MHz achine clock)
Ports		General purpose inpu General purpose inpu General purpose inpu General purpose inpu	tput ports : 84 Max tput ports (CMOS outp tput ports (built-in pull-up tput ports (N -ch open	istance)
UART		Stop-start synchroniz	1 channel	
8/16-bit PPG timer		8-bit 6-channel/16-bit	channel	
8/16-bit up-down counter/timer		Two 8-bit up-down c Two 8-bit reload/com	ers with 6 event input p registers	
16-bit input/ output timers	16-bit free-run timer	Channel: 1 Overflow interrupt		
	Output compare (OCU)	Channels: 6 Pin input source : from	mpare register match	
	Input capture (ICU)	Channels : 2 Register rewritten fr	in input (rising/falling/bo	
DTP/external interrupt circuit		External interrupt pin	channels (set to edge	e correlation)
I/O expansion serial interface		2-channel, built-in		
$1^{2} \mathrm{C}$ interface		1-channel, built-in		
Time base timer		18-bit counter Interrupt cycle : 1.0 m (minimum times, at	$.1 \mathrm{~ms}, 16.4 \mathrm{~ms}, 131.1$ oscillator frequency 4	
A/D converter		Conversion accuracy Single conversion mode Scan conversion mod (converts multiple co Continuous conversio Stop conversion mod	10-bit switchable converts selected chan cutive channels, progra mode (converts selected converts selected chann	time only) le up to 8 channels) els continuously) ps and repeats)
Watchdog timer		Reset interval : 3.58 (minimum times, at b	$14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 45$ oscillator frequency 4	
Low power (standby) modes		Sleep, stop, CPU inte	tent, watch mode	
Process		CMOS		
Notes		Mask version	Mask version without ${ }^{12} \mathrm{C}$ built-in interface	EVA function User pin
Emulator dedicated power supply		-	-	Included

MB90470 Series

PIN ASSIGNMENTS

(TOP VIEW)

MB90470 Series

(TOP VIEW)

(FPT-100P-M05)

MB90470 Series

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Description
LQFP	QFP			
80	82	X0	A	Oscillator pin
81	83	X1	A	Oscillator pin
78	80	X0A	A	32 kHz oscillator pin
77	79	X1A	A	32 kHz oscillator pin
75	77	$\overline{\text { RST }}$	B	Reset input pin
83 to 90	85 to 92	P00 to P07	$\begin{gathered} \text { C } \\ \text { (CMOS) } \end{gathered}$	General purpose input/output ports. Set the pull-up resistance setting register (RDRO) to add pull-up resistance (RD00-RD07 = "1") . (Not valid when set for output)
		AD00 to AD07		In multiplex mode, these pins function as external address/ data bus lower input/output pins.
		D00 to D07		In non-multiplex mode, these pins function as external data bus lower output pins.
91 to 98	$\begin{gathered} 93 \text { to } \\ 100 \end{gathered}$	P10 to P17	$\begin{gathered} \text { C } \\ \text { (CMOS) } \end{gathered}$	General purpose input/output ports. Set the pull-up resistance setting register (RDR1) to add pull-up resistance (RD10-RD17 = "1") . (Not valid when set for output)
		AD08 to AD15		In multiplex mode, these pins function as external address/ data bus higher input/output pins.
		D08 to D15		In non-multiplex mode, these pins function as external data bus higher output pins.
$\begin{gathered} 99 \\ 100 \\ 1 \\ 2 \end{gathered}$	1 to 4	P20 to P23	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output ports. In external bus mode, pins for which the corresponding bit in the external address output control register (HACR) is " 1 " function as the general purpose input/output ports.
		A16 to A19		In multiplex mode, pins for which the corresponding bit in the external address output control register (HACR) is " 0 " function as the upper address output pins (A16 to A19).
		A16 to A19		In non-multiplex mode, pins for which the corresponding bit in the external address output control register (HACR) is " 0 " function as the upper address output pins (A16 to A19) .
3 to 6	5 to 8	P24 to P27	$\begin{gathered} \text { E } \\ \text { (CMOS/H) } \end{gathered}$	General purpose input/output ports. In external bus mode, pins for which the corresponding bit in the external address output control register (HACR) is " 1 " function as the general purpose input/output ports.
		A20 to A23		In multiplex mode, pins for which the corresponding bit in the external address output control register (HACR) is "0" function as the upper address output pins (A20 to A23).
		A20 to A23		In non-multiplex mode, pins for which the corresponding bit in the external address output control register (HACR) is " 0 " function as the upper address output pins (A20 to A23).
		PPG0 to PPG3		PPG timer output pins.

(Continued)
LQFP : FPT-100P-M05 package
QFP : FPT-100P-M06 package

MB90470 Series

Pin no.		Pin name	Circuit type	Description
LQFP	QFP			
7	9	P30	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		A00		In non-multibus bus mode, this pin functions as an external address pin.
		AINO		8/16-bit up-down timer input pin. (ch0)
8	10	P31	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General purpose input/output port.
		A01		In non-multibus bus mode, this pin functions as an external address pin.
		BINO		8/16-bit up-down timer input pin. (ch0)
10	12	P32	$\begin{gathered} \text { E } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		A02		In non-multibus bus mode, this pin functions as an external address pin.
		ZIN0		8/16-bit up-down timer input pin. (ch0)
11	13	P33	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		A03		In non-multibus bus mode, this pin functions as an external address pin.
		AIN1		8/16-bit up-down timer input pin. (ch1)
12	14	P34		General purpose input/output port.
		A04		In non-multibus bus mode, this pin functions as an external address pin.
		BIN1		8/16-bit up-down timer input pin. (ch1)
13	15	P35	$\underset{\text { EMOS/H) }}{\text { E }}$	General purpose input/output port.
		A05		In non-multibus bus mode, this pin functions as an external address pin.
		ZIN1		8/16-bit up-down timer input pin. (ch1)
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	P36, P37	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output ports.
		A06, A07		In non-multibus bus mode, this pin functions as an external address pin.
		PWC0, PWC1		Functions as PWC input pin.
16	18	P40	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		A08		In non-multibus bus mode, this pin functions as an external address pin.
		SIN2		Single serial I/O input pin
17	19	P41	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose input/output port.
		A09		In non-multibus bus mode, this pin functions as an external address pin.
		SOT2		Single serial I/O output pin

(Continued)
LQFP : FPT-100P-M05 package
QFP : FPT-100P-M06 package

MB90470 Series

Pin no.		Pin name	Circuit type	Description
LQFP	QFP			
18	20	P42	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		A10		In non-multibus bus mode, this pin functions as an external address pin.
		SCK2		Single serial I/O clock input/output pin
$\begin{aligned} & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	P43, P44	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose input/output ports.
		A11, A12		In non-multibus bus mode, this pin functions as an external address pin.
		MT00, MT01		$\mu \mathrm{PG}$ input pins
22	24	P45	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output ports.
		A13		In non-multibus bus mode, this pin functions as an external address pin.
		EXTC		$\mu \mathrm{PG}$ input pin
$\begin{aligned} & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	P46, P47	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose input/output ports.
		A14, A15		In non-multibus bus mode, this pin functions as an external address pin.
		OUT4/OUT5		Output compare event output pins
68	70	P50	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	General purpose input/output port. In external bus mode, this pin functions as the ALE pin
		ALE		In external bus mode, this pin functions as the address load enable signal (ALE) pin
69	71	P51	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	General purpose input/output port. In external bus mode, this pin functions as the RD pin.
		$\overline{\mathrm{RD}}$		In external bus mode, this pin functions as the read strobe output ($\overline{\mathrm{RD}})$ pin.
70	72	P52	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose input/output port. In external bus mode, this pin functions as the WRL pin when the WRE bit in the EPCR register is set to " 1 ".
		$\overline{\text { WRL }}$		In external bus mode, this pin functions as the lower data write strobe output (WRL) pin. When the WRE bit in the EPCR register is set to " 0 ",this pin functions as a general purpose input/output port.
71	73	P53	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	General purpose input/output port. In external bus mode with 16 -bit bus width, this pin functions as the $\overline{\text { WRH }}$ pin when the WRE bit in the EPCR register is set to " 1 ".
		WRH		In external bus mode with 16 -bit bus width, this pin functions as the higher data write strobe output (WRH) pin. When the WRE bit in the EPCR register is set to " 0 ",this pin functions as a general purpose input/output port.

(Continued)
LQFP : FPT-100P-M05 package
QFP : FPT-100P-M06 package

MB90470 Series

Pin no.		Pin name	Circuit type	Description
LQFP	QFP			
72	74	P54	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	General purpose input/output port. In external bus mode, this pin functions as the HRQ pin when the HDE bit in the EPCR register is set to "1".
		HRQ		In external bus mode, this pin functions as the hold request input (HRQ) pin. When the HDE bit in the EPCR register is set to " 0 ",this pin functions as a general purpose input/output port.
73	75	P55	$\begin{gathered} \mathrm{D} \\ \text { (CMOS) } \end{gathered}$	General purpose input/output port. In external bus mode, this pin functions as the HAK pin when the HDE bit in the EPCR register is set to "1".
		$\overline{\text { HAK }}$		In external bus mode, this pin functions as the hold acknowledge output (HAK) pin. When the HDE bit in the EPCR register is set to " 0 ",this pin functions as a general purpose input/output port.
74	76	P56	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	General purpose input/output port. In external bus mode, this pin functions as the DRY pin when the RYE bit in the EPCR register is set to " 1 ".
		RDY		In external bus mode, this pin functions as the external ready input (RDY) pin. When the RYE bit in the EPCR register is set to " 0 ",this pin functions as a general purpose input/output port.
76	78	P57	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	General purpose input/output port. In external bus mode, this pin functions as the CLK pin when the CKE bit in the EPCR register is set to " 1 ".
		CLK		In external bus mode, this pin functions as the machine cycle clock output (CLK) pin. When the CKE bit in the EPCR register is set to " 0 ",this pin functions as a general purpose input/output port.
36 to 39	38 to 41	P60 to P63	H(CMOS)	General purpose input/output ports.
		AN0 to AN3		Analog input pins.
41 to 44	43 to 46	P64 to P67		General purpose input/output ports.
		AN4 to AN7		Analog input pins.
25	27	P70	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		SIN0		UART data input pin.
26	28	P71	(CMOS)	General purpose input/output port.
		SOT0		UART data output pin.
27	29	P72	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		SCK0		UART clock input pin.
28	30	P73	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		TIN0		16-bit reload timer event input pin.
29	31	P74	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose input/output port.
		TOT0		16-bit reload timer output pin.

(Continued)
LQFP : FPT-100P-M05 package
QFP : FPT-100P-M06 package

MB90470 Series

Pin no.		Pin name	Circuit type	Description
LQFP	QFP			
30	32	P75	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		PWC2		PWC input pin.
31	33	P76	$\begin{gathered} 1 \\ \text { (NMOS/H) } \end{gathered}$	General purpose input/output port.
		SCL		${ }^{2} \mathrm{C}$ interface data input/output pin. During $\mathrm{I}^{2} \mathrm{C}$ interface operation, the port output should be set to High-Z level.
32	34	P77	$\begin{gathered} \text { I } \\ \text { (NMOS/H) } \end{gathered}$	General purpose input/output port.
		SDA		${ }^{2} \mathrm{C}$ interface clock input/output pin. During $\mathrm{I}^{2} \mathrm{C}$ interface operation, the port output should be set to High-Z level.
$\begin{aligned} & 45 \\ & 46 \end{aligned}$	$\begin{aligned} & 47 \\ & 48 \end{aligned}$	P80, P81	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output ports.
		IRQ0, IRQ1		External interrupt input pins.
50 to 55	52 to 57	P82 to P87	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output ports.
		IRQ2 to IRQ7		External interrupt input pins.
56	58	P90	$\begin{gathered} E \\ (C M O S / H) \end{gathered}$	General purpose input/output port.
		SIN1		Single serial I/O data input pin.
		CSO		Chip select 0 .
57	59	P91	$\begin{gathered} \text { D } \\ \text { (CMOS) } \end{gathered}$	General purpose input/output port.
		SOT1		Single serial I/O data output pin.
		CS1		Chip select 1.
58	60	P92	$\begin{gathered} E \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		SCK1		Single serial I/O clock input/output pin.
		CS2		Chip select 2.
59	61	P93	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		FRCK		In free run timer operation, this pin functions as the external clock input pin.
		ADTG		In A/D converter operation, this pin functions as the external trigger input pin.
		CS3		Chip select 3.
60	62	P94	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose input/output port.
		PPG4		PPG timer output pin.
61	63	P95	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS}) \end{gathered}$	General purpose input/output port.
		PPG5		PPG timer output pin.
62	64	P96	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		IN0		Functions as input capture ch 0 trigger input.

(Continued)

LQFP : FPT-100P-M05 package

QFP : FPT-100P-M06 package

MB90470 Series

(Continued)

Pin no.		Pin name	Circuit type	Description
LQFP	QFP			
63	65	P97	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General purpose input/output port.
		IN1		Functions as input capture ch 1 trigger input.
64 to 67	66 to 69	PA0 to PA3	D (CMOS)	General purpose input/output ports.
		OUT0 to OUT3		Output compare event output pins.
33	35	AVcc	-	A/D converter power supply pin.
34	36	AVRH	-	A/D converter external reference power pin.
35	37	AVss	-	A/D converter power supply pin.
47 to 49	49 to 51	MD0 to MD2	$\begin{gathered} \mathrm{J} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	Input pins for specifying operating mode.
82	84	Vcc3	-	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ power supply pin (V cc 3$)$.
21	23	Vcc5	-	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} / 5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ dual power supply pin (Vcc5) .
$\begin{gathered} 9 \\ 40 \\ 79 \end{gathered}$	$\begin{aligned} & 11 \\ & 42 \\ & 81 \\ & \hline \end{aligned}$	Vss	-	Power supply input pins (GND)

LQFP : FPT-100P-M05 package
QFP : FPT-100P-M06 package
Notes : • For use as a 3.3 V single supply device, apply the same voltage to the $\mathrm{V}_{\mathrm{c}} 3$ and $\mathrm{V} c \mathrm{c} 5$ power supply pins.

- For use with a dual power supply, apply the respective voltages to the $\mathrm{V}_{\mathrm{c} c} 3$ and $\mathrm{V}_{\mathrm{cc}} 5$ power supply pins.
- In use with a dual power supply, a total of 32 pins (P20/A16 to P27/A23/PPG3, P30/A00/AIN0 to P37/ A07/PWC1, P40/A08/SIN2 to P47/A15/OUT5 and P70/SIN0 to P77/SDA) can be used in a 5 V interface. Note that all other pins must be used in 3 V interface.
- In use with a dual power supply, it is not possible to turn on only the 5 V or the 3 V power supply independently. Always turn on both power supplies simultaneously. (It is recommended that the 3 V power to the MB90470 series be turned on first.)

MB90470 Series

I/O CIRCUIT TYPES

Type	Circuit	Remarks
A		Oscillator feedback resistance : $\mathrm{X} 1, \mathrm{X0} \quad 1 \mathrm{M} \Omega$ approx. X1A, X0A $10 \mathrm{M} \Omega$ approx. Includes standby control
B		Hysteresis with pull-up resistance Input resistance $50 \mathrm{k} \Omega$ approx.
C		Includes input pull-up resistance control CMOS level input/output Resistance : $50 \mathrm{k} \Omega$ approx.
D		CMOS level input/output
E		Hysteresis input CMOS level input/output

(Continued)

MB90470 Series

(Continued)

Type	Circuit	Remarks
F		CMOS level input/output Includes open drain control
G		CMOS level output Hysteresis input Includes open drain control
H		CMOS level input/output Analog input
1		Hysteresis input N -ch open drain output
J	(Flash model)	Flash model CMOS level input Includes high voltage control for FLASH test
	(Mask version)	Mask version Hysteresis input port

MB90470 Series

HANDLING DEVICES

(1) Strictly observe maximum rated voltages (prevent latchup)

When CMOS integrated circuit devices are subjected to applied voltages higher than V_{cc} at input and output pins other than medium- and high-withstand voltage pins, or to voltages lower than Vss, or when voltages in excess of rated levels are applied between V_{cc} and V ss, a phenomenon known as latchup can occur. In a latchup condition, supply current can increase dramatically and may destroy semiconductor elements. In using semiconductor devices, always take sufficient care to avoid exceeding maximum ratings.
Also care must be taken when power to analog systems is switched on or off, to ensure that the analog power supply ($\mathrm{AVcc}, \mathrm{AVRH}$) and analog input do not exceed the digital power supply ($\mathrm{V} c \mathrm{cc}^{\mathrm{c}}$).

(2) Treatment of unused pins

If unused input pins are left open, abnormal operation or latchup may cause permanent damage to the semiconductor. Any such pins should be pulled up or pulled down through resistance of at least $2 \mathrm{k} \Omega$.
Also any unused input/output pins should be left open in output status, or if set to input status should be treated in the same way as input pins.

(3) Precautions for use of external clock signals

Even when an external clock is used, a stabilization period is required following a power-on reset or release from sub clock mode or stop mode. Also, when an external clock is used 20 MHz should be used as a guideline for an upper frequency limit.
The following figure shows a sample use of external clock signals.

(4) Power supply pins

When using multiple $\mathrm{V}_{\mathrm{cc}} / \mathrm{V}$ ss sources, always make sure to design devices with external connections of all power supply pins to supply or ground elements, in order to prevent latchup, reduce unwanted radiation, and prevent abnormal strobe signal operation due to rise in ground level, as well as to maintain total rated output current. In addition, care must be given to connecting the $\mathrm{V}_{c c}$ and $\mathrm{V}_{s s}$ pins of this device to a current source with as little impedance as possible. It is recommended that a bypass capacitor of $1.0 \mu \mathrm{~F}$ be connected between V cc and Vss as close to the pins as possible.

(5) Crystal oscillator circuits

Abnormal operation of this device can result from noise in the proximity of the $\mathrm{X} 0 / \mathrm{X} 1$ and $\mathrm{X} 0 \mathrm{~A} / \mathrm{X} 1 \mathrm{~A}$ pins. For stable operation, it is strongly recommended that the printed circuit artwork provide capacitors placed as close as possible between the X0/X1, X0A/X1A and crystal oscillator (or ceramic oscillator) as well as ground, and be wired so as to avoid crossing other wiring wherever possible.

MB90470 Series

(6) Precautions for use of external oscillators (crystals)

The target value for the upper limit of oscillator (crystals) frequencies should be 20 MHz . Also, when operating at internal frequencies of 16 MHz , the PLL multiplier should be used.

(7) Proper power-on/off sequence

The A/D converter power (AVcc, AVRH) and analog input (ANO to AN7) must be turned on after the digital power supply (Vcc) is turned on. The A / D converter power ($\mathrm{AVcc}, \mathrm{AVRH}$) and analog input (ANO to AN7) must be shut off before the digital power supply (Vcc) is shut off. Care should be taken that AVRH does not exceed AV cc. Even when pins used as analog input pins are doubled as input ports, be sure that the input voltage does not exceed AV cc.
Note : $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

(8) Treatment of A / D converter power supply pins

Even if the A / D converter is not used, pins should be connected so that $A V c c=A V R H=V c c$, and $A V s s=V_{s s}$.

(9) Power-on procedures

In order to prevent abnormal operation of the internal built-in step-down circuits, voltage rise during power-on should be attained within $50 \mu \mathrm{~s}(0.2 \mathrm{~V}$ to 2.7 V$)$.

(10) Stable power supply

Even within the operating range of the V_{cc} supply voltage, rapid changes in supply voltage may cause abnormal operation. As a basis for stable operation, it is recommended that voltage variation be restricted in order to limit Vcc ripple fluctuations (P-P values) to 10% at commercial frequencies of 50 Hz to 60 Hz , and transient fluctuations to $0.1 \mathrm{~V} / \mathrm{ms}$ at instantaneous points such as power switching.
(11) Precautions for use of two power supplies

The MB90470 series usually uses the 3-V power supply as the main power source. With $\mathrm{Vcc} 3=3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{cc}} 5=5 \mathrm{~V}$, however, it can interface with P20/A16 to P27/A23/PPG3, P30/A00/AIN0 to P37/A07/PWC1, P40/A08/SIN2 to P47/A15/OUT5, P70/SIN0 to P77/SDA for the 5-V power supply separetely from the 3-V power supply at all operation mode.
(Caution) The analog power supply for the A / D converter ($\mathrm{AV} \mathrm{Vc}, \mathrm{AV}$ ss etc.) can only operate with the 3 V system.
(12) Crystal oscillator circuits during power-saving operation

When the power supply is lower than 2.0 V , the external crystal oscillator may not operate even when power is on. For this reason, the use of an external clock signal is recommended.
(13) Caution : low-voltage flash models (2.4 V to 3.6 V/10 MHz) do not have security functions
(14) Treatment of unused input pins
N.C. (internally connected) pins should always be left open.
(15) When the dual-supply MB90470 series is used as a 1-supply device, use connections so that $\mathrm{XOA}=\mathrm{V}$ ss, and $\mathrm{X} 1 \mathrm{~A}=$ Open.

MB90470 Series

(16) For serial writing to flash memory, always make sure that the operating voltage Vcc is between 3.13 V and 3.6 V .
For normal writing to flash memory, always make sure that the operating voltage Vcc is between 3.0 V and 3.6 V .
(17) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

MB90470 Series

BLOCK DIAGRAM

P00 to P07 (8 pins) : Input pull-up resistance setting register provided.
P10 to P17 (8 pins) : Input pull-up resistance setting register provided.
P40 to P47 (8 pins) : Open drain setting register provided.
P70 to P75 (6 pins) : Open drain setting register provided.
P76, P77 (2 pins) : Open drain
Note : In the above diagram, I/O ports are shown sharing pin numbers with the built-in function blocks. However pins may not be used as I/O ports when they are in use as pins for build-in function modules.

MB90470 Series

MEMORY MAP

*: In models where address $2 \#$ coincides with 004000н, there is no external area.

Model	Address 1\#	Address 2\#
MB90473	FE0000	002900^{H}
MB90474	FC0000	004000_{H}
MB90477/478	FC0000	002100_{H}
MB90F474	FC0000	004000_{H}
MB90V470	(FC0000	004000_{H}

The image of FF bank ROM is reflected in the top of the 00 bank, for greater efficiency in using the C compiler for small models. The lower 16 -bit address on the FF bank is the same as the lower 16-bit address on the 00 bank, so that it is possible to reference tables in ROM without using the pointer for a far specification.
For example, when accessing 00 COOO н, it is actually the content of ROM at FFCOOOH that is accessed. Here, because the ROM area on the FF bank exceeds 48 KB , it is not possible to view the entire area in the image on the 00 bank. Therefore, the image from FF4000н to FFFFFFн і is visible on the 00 bank, and FF0000н to FF3FFFн is visible only on the FF bank.

MB90470 Series

F²MC-16L CPU PROGRAMMING MODEL

- Special purpose registers

- General purpose registers

- Processor status

MB90470 Series

I/O MAP

Address	Register name	Symbol	Access	Resource name	Default
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX
04	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX
05	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXX
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
07\%	Port 7 data register	PDR7	R/W	Port 7	11 XXXXXX
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
ОАн	Port A data register	PDRA	R/W	Port A	- - XXXX
0Вн	Port 3 timer input enable register	UDRE	R/W	Up/down timer input control	XX 000000
$0 \mathrm{CH}_{\mathrm{H}}$	Interrupt/DTP enable register	ENIR	R/W		00000000
ODH	Interrupt/DTP enable register	EIRR	R/W	DTP/external	00000000
ОЕн	Demand level setting register	ELVR	R/W		00000000
OF\%	Demand level setting register	LVR	R/W		00000000
10н	Port 0 direction register	DDR0	R/W	Port 0	00000000
11н	Port 1 direction register	DDR1	R/W	Port 1	00000000
12н	Port 2 direction register	DDR2	R/W	Port 2	00000000
13н	Port 3 direction register	DDR3	R/W	Port 3	00000000
14 H	Port 4 direction register	DDR4	R/W	Port 4	00000000
15 н	Port 5 direction register	DDR5	R/W	Port 5	00000000
16н	Port 6 direction register	DDR6	R/W	Port 6	00000000
17\%	Port 7 direction register	DDR7	R/W	Port 7	-200000
18н	Port 8 direction register	DDR8	R/W	Port 8	00000000
19н	Port 9 direction register	DDR9	R/W	Port 9	00000000
1 Ан $^{\text {¢ }}$	Port A direction register	DDRA	R/W	Port A	--0000
1Вн	Port 4 pin register	ODR4	R/W	Port 4 (OD control)	00000000
1 CH	Port 0 resistance register	RDR0	R/W	Port 0 (pull-up)	0000000
1D	Port 1 resistance register	RDR1	R/W	Port 1 (pull-up)	00000000
1 Ен $^{\text {¢ }}$	Port 7 pin register	ODR7	R/W	Port 7 (OD control)	--000000
1 FH	Analog input enable register	ADER	R/W	Port 5, A/D	11111111

(Continued)

MB90470 Series

Address	Register name	Symbol	Access	Resource name	Default
20н	Serial mode register 0	SMR0	R/W	UART0	00000×00
21H	Serial control register 0	SCR0	R/W		00000100
22н	Serial input register/ serial output register	$\begin{aligned} & \text { SIDR/ } \\ & \text { SODRO } \end{aligned}$	R/W		XXXXXXXX
23н	Serial status register	SSR0	R/W		00001000
24 +	Reserved				
25 +	Clock divider control register	CDCR	R/W	Communication prescaler (UART)	00--0000
26н	Serial mode control status register 0	SMCS0	R/W	SCI1 (ch0)	---0000
27	Serial mode control status register 0	SMCS0	R/W		00000010
28н	Serial data register	SDR0	R/W		XXXXXXXX
29н	Clock divider control register	SDCR0	R/W	Communication prescaler (SCIO)	0---0000
2 Ан	Serial mode control status register 1	SMCS1	R/W	SCl2 (ch1)	---0000
2Вн	Serial mode control status register 1	SMCS1	R/W		00000010
2 CH	Serial data register	SDR1	R/W		XXXXXXXX
2Dн	Clock divider control register	SDCR1	R/W	Communication prescaler (SCl1)	0---0000
2Ен	PPG reload register L (ch0)	PRLLO	R/W	$\begin{aligned} & \text { 8/16-bit PPG } \\ & \text { (ch0-ch5) } \end{aligned}$	XXXXXXXX
$2 \mathrm{~F}_{\mathrm{H}}$	PPG reload register H (ch0)	PRLH0	R/W		XXXXXXXX
30н	PPG reload register L (ch1)	PRLL1	R/W		XXXXXXXX
31н	PPG reload register H (ch1)	PRLH1	R/W		XXXXXXXX
32н	PPG reload register L (ch2)	PRLL2	R/W		XXXXXXXX
33н	PPG reload register H (ch2)	PRLH2	R/W		XXXXXXXX
34	PPG reload register L (ch3)	PRLL3	R/W		XXXXXXXX
35н	PPG reload register H (ch3)	PRLH3	R/W		XXXXXXXX
36н	PPG reload register L (ch4)	PRLL4	R/W		XXXXXXXX
37	PPG reload register H (ch4)	PRLH4	R/W		XXXXXXXX
38н	PPG reload register L (ch5)	PRLL5	R/W		XXXXXXXX
39н	PPG reload register H (ch5)	PRLH5	R/W		XXXXXXXX
ЗАн	PPG0 operating mode control register	PPGC0	R/W		0 X 000 XX 1
ЗВн	PPG1 operating mode control register	PPGC1	R/W		0X000001
3Сн	PPG2 operating mode control register	PPGC2	R/W		$0 \times 000 \times \mathrm{x} 1$
3D	PPG3 operating mode control register	PPGC3	R/W		0X000001
ЗЕн	PPG4 operating mode control register	PPGC4	R/W		$0 \times 000 \times \mathrm{x} 1$
$3 \mathrm{~F}_{\mathrm{H}}$	PPG5 operating mode control register	PPGC5	R/W		0×000001
40	PPG0, 1 output control register	PPG01	R/W	8/16-bit PPG	00000000

(Continued)

Address	Register name	Symbol	Access	Resource name	Default
41H	Reserved				
42н	PPG2, 3 output control register	PPG23	R/W	8/16-bit PPG	0000000
43н	Reserved				
44	PPG4, 5 output control register	PPG45	R/W	8/16-bit PPG	0000000
45	Reserved				
46н	Control status register	ADCS1	R/W	A/D converter	00000000
47		ADCS2	R/W		00000000
48н	Data register	ADCR1	R		XXXXXXXX
49н		ADCR2	R		00000 XXX
	Output compare register (ch0) low	OCCPO	R/W	16-bit output timer output compare (ch0-ch5)	XXXXXXXX
4Вн	Output compare register (ch0) high				XXXXXXXX
4 CH	Output compare register (ch1) low	OCCP1	R/W		XXXXXXXX
4D	Output compare register (ch1) high				XXXXXXXX
4Ен	Output compare register (ch2) low	OCCP2	R/W		XXXXXXXX
4Fн	Output compare register (ch2) high				XXXXXXXX
50н	Output compare register (ch3) low	OCCP3	R/W		XXXXXXXX
51н	Output compare register (ch3) high				XXXXXXXX
52н	Output compare register (ch4) low	OCCP4	R/W		XXXXXXXX
53н	Output compare register (ch4) high				XXXXXXXX
54	Output compare register (ch5) low	OCCP5	R/W		XXXXXXXX
55	Output compare register (ch5) high				XXXXXXXX
56н	Output compare control register (ch0)	OCSO	R/W		0000-000
57\%	Output compare control register (ch1)	OCS1	R/W		--00000
58н	Output compare control register (ch2)	OCS2	R/W		0000-00
59н	Output compare control register (ch3)	OCS3	R/W	-	-- 00000
5 Ан	Output compare control register (ch4)	OCS4	R/W	16-bit output timer OCU (ch4, 5)	0000-00
5Вн	Output compare control register (ch5)	OCS5	R/W		-- 00000
$5 \mathrm{CH}_{\boldsymbol{H}}$	Input capture register (ch0) low	IPCP0	R	16-bit output timer Input capture (ch0, 1)	XXXXXXXX
5D	Input capture register (ch0) high		R		XXXXXXXX
$5 \mathrm{E}^{\text {¢ }}$	Input capture register (ch1) low	IPCP1	R		XXXXXXXX
5F	Input capture register (ch1) high		R		XXXXXXXX
60н	Input capture control register	ICS01	R/W		00000000
61н	Reserved				

(Continued)

MB90470 Series

Address	Register name	Symbol	Access	Resource name	Default
62н	Timer data register low	TCDT	R/W	16-bit output timer Free run timer	00000000
63н	Timer data register high	TCDT	R/W		00000000
64	Timer control status register	TCCS	R/W		00000000
65 н	Timer control status register	TCCS	R/W		0--00000
66	Compare clear register low	CPCLR	R/W		XXXXXXXX
67\%	Compare clear register high				XXXXXXXX
68н	Up down count register ch0	UDCR0	R	8/16-bit up-down timer-counter	00000000
69н	Up down count register ch1	UDCR1	R		00000000
6Ан	Reload compare register ch0	RCR0	W		00000000
6Вн	Reload compare register ch1	RCR1	W		00000000
6 CH	Counter control register low ch0	CCRLO	R/W		0×00×000
6D	Counter control register high ch0	CCRH0	R/W		00000000
6Ен	Reserved				
6F\%	ROM mirror function select register	ROMM	W	ROM mirror function	- 1
70н	Counter control register low ch1	CCRL1	R/W	8/16-bit up-down timer-counter	$0 \times 00 \times 000$
71н	Counter control register high ch1	CCRH1	R/W		-0000000
72н	Count status register ch0	CSR0	R/W		00000000
73н	Reserved				
74	Count status register ch1	CSR1	R/W	8/16-bit UDC	00000000
75н	Reserved				
76н	PWC0 control status register	PWCSR0	R/W	16-bit PWC timer (ch0)	00000000
77					0000000 X
78	PWC0 data buffer register	PWCR0	R/W		00000000
79н					00000000
7 7н $^{\text {仡 }}$	PWC1 control status register	PWCSR1	R/W	16-bit PWC timer (ch1)	00000000
7Вн					0000000 x
7 CH	PWC1 data buffer register	PWCR1	R/W		00000000
7D					00000000
7Ен	PWC2 control status register	PWCSR2	R/W	16-bit PWC timer (ch2)	00000000
7 F					0000000 X
80н	PWC2 data buffer register	PWCR2	R/W		00000000
81н					0000000
82н	PWCO division ratio register	DIVR0	R/W	PWC (ch0)	---- 00
83н	Reserved				
84н	PWC1 division ratio register	DIVR1	R/W	PWC (ch1)	-----00
85	Reserved				

(Continued)

Address	Register name	Symbol	Access	Resource name	Default
86н	PWC2 division ratio register	DIVR2	R/W	PWC (ch2)	-----00
87	Reserved				
88н	$1^{2} \mathrm{C}$ bus status register	IBSR	R	${ }^{2} \mathrm{C}$ C functions	00000000
89н	${ }^{12} \mathrm{C}$ bus control register	IBCR	R/W		00000000
8Ан	${ }^{2} \mathrm{C}$ bus clock select register	ICCR	R/W		- -0XXXXX
8Вн	${ }^{2} \mathrm{C}$ bus address register	IADR	R/W		- XXXXXXX
8Сн	$1^{2} \mathrm{C}$ bus data register	IDAR	R/W		XXXXXXXX
8D	Reserved				
8Ен	$\mu \mathrm{PG}$ control register	PGCSR	R/W	$\mu \mathrm{PG}$	00000---
8F to 9Bн	Prohibited				
9Сн	μ DMA status register	DSRL	R/W	$\mu \mathrm{DMA}$	00000000
9Dн	μ DMA status register	DSRH	R/W	$\mu \mathrm{DMA}$	00000000
9Ен	Program address detection control status resister	PACSR	R/W	Address Match Detection Function	00000000
9F\%	Delay interrupt source generate/ release register	DIRR	R/W	Delay interrupt generator module	------- 0
$\mathrm{AOH}^{\text {}}$	Low power mode register	LPMCR	R/W	Low power modes	00011000
A1H	Clock select register	CKSCR	R/W	Low power modes	11111100
А2н, АЗн	Reserved				
A4 ${ }^{\text {H}}$	μ DMA stop status register	DSSR	R/W	μ DMA	0000000
А5	Auto ready function select register	ARSR	W	External pins	0011--00
A6н	External address output control register	HACR	W	External pins	00000000
A7 ${ }_{\text {H }}$	Bus control signal control register	EPCR	W	External pins	1000*10-
A8H	Watchdog control register	WDTC	R/W	Watchdog timer	XXXXX 111
А9н	Time base timer control register	TBTC	R/W	Time base timer	$1 \times \times 00100$
ААн	Watch timer control register	WTC	R/W	Watch timer	10001000
ABH	Reserved				
$\mathrm{ACH}^{\text {}}$	$\mu \mathrm{DMA}$ control register	DERL	R/W	$\mu \mathrm{DMA}$	00000000
AD ${ }_{\text {H }}$	$\mu \mathrm{DMA}$ control register	DERH	R/W	$\mu \mathrm{DMA}$	00000000
АЕн	Flash memory control status register	FMCR	R/W	Flash memory interface	000×0000
AFH	Prohibited				
B0н	Interrupt control register 00	ICR00	R/W	-	XXXX 0111
B1н	Interrupt control register 01	ICR01	R/W	-	XXXX 0111
В2н	Interrupt control register 02	ICR02	R/W	-	XXXX 0111
В3н	Interrupt control register 03	ICR03	R/W	-	XXXX 0111

(Continued)

MB90470 Series

Address	Register name	Symbol	Access	Resource name	Default
B4	Interrupt control register 04	ICR04	R/W	-	XXXX 0111
B5 ${ }^{\text {}}$	Interrupt control register 05	ICR05	R/W	-	XXXX 0111
B6\%	Interrupt control register 06	ICR06	R/W	-	XXXX 0111
B7	Interrupt control register 07	ICR07	R/W	-	XXXX 0111
В8н	Interrupt control register 08	ICR08	R/W	-	XXXX 0111
B9н	Interrupt control register 09	ICR09	R/W	-	XXXX 0111
ВАн	Interrupt control register 10	ICR10	R/W	-	XXXX 0111
ВВн	Interrupt control register 11	ICR11	R/W	-	XXXX 0111
BCH	Interrupt control register 12	ICR12	R/W	-	XXXX 0111
BD	Interrupt control register 13	ICR13	R/W	-	XXXX 0111
ВЕн	Interrupt control register 14	ICR14	R/W	-	XXXX 0111
BF_{H}	Interrupt control register 15	ICR15	R/W	-	XXXX 0111
COH	Chip select MASK register 0	CMR0	R/W	Chip select functions	00001111
C1н	Chip select area register 0	CAR0	R/W	-	11111111
С2н	Chip select MASK register 1	CMR1	R/W	-	00001111
СЗн	Chip select area register 1	CAR1	R/W	-	11111111
С4н	Chip select MASK register 2	CMR2	R/W	-	00001111
C_{H}	Chip select area register 2	CAR2	R/W	-	11111111
С6н	Chip select MASK register 3	CMR3	R/W	-	00001111
C7\%	Chip select area register 3	CAR3	R/W	-	11111111
С8н	Chip select control register	CSCR	R/W	-	---000*
С9н	Chip select control active level register	CALR	R/W	-	$---0000$
САн	Timer control status registers	TMCSR	R/W	16-bit reload timer	0000000
СВн					---0000
ССН	16-bit timer register 16-bit reload register	TMR/	R/W		XXXXXXXX
СD		TMRLR			
СЕн, СF\%	Reserved				
D0н to $\mathrm{FFH}^{\text {¢ }}$	External area				
100 H to \# н	RAM area				
1FF0	Program address detection resister0 (Low order address)	PADR0	R/W	Address Match Detection Function	XXXXXXXX
1FF1	Program address detection resister0 (Middle order address)				
1FF2	Program address detection resister0 (High order address)				

(Continued)

MB90470 Series

(Continued)

Address	Register name	Symbol	Access	Resource name	Default
1FF3	Program address detection resister1 (Low order address)				
1FF4	Program address detection resister1 (Middle order address)	PADR1	R/W	Address Match Detection Function	XXXXXXXX
1FF5	Program address detection resister1 (High order address)				

Interrupt symbols :
R/W : Read/write enabled
R : Read only
W : Write only
Default value symbols :
0 : This bit initialized to " 0 "
1 : This bit initialized to " 1 "

* : This bit initialized to " 0 " or " 1 "
X : Default value undefined
- : This bit is not used.

MB90470 Series

■ INTERRUPT SOURCES, INTERRUPT VECTORS \& INTERRUPT CONTROL REGISTERS

Interrupt source	$\mathrm{El}^{2} \mathrm{OS}$ support	μ DMA channel no.	Interrupt vector		Interrupt control register	
			No.	Address	No.	Address
Reset	-	-	\#08	FFFFDCH	-	-
INT9 instruction	-	-	\#09	FFFFD8н	-	-
Exception	-	-	\#10	FFFFD4н	-	-
INT0	\bigcirc	0	\#11	FFFFD0н	ICR00	0000B0н
INT1	\bigcirc	\times	\#12	FFFFCCH		
INT2	\bigcirc	\times	\#13	FFFFC8	ICR01	0000B1н
INT3	\bigcirc	\times	\#14	FFFFC4		
INT4	\bigcirc	\times	\#15	FFFFC0H	ICR02	0000B2н
INT5	\bigcirc	\times	\#16	FFFFBCH		
INT6	\bigcirc	\times	\#17	FFFFB8	ICR03	0000B3н
INT7	\bigcirc	\times	\#18	FFFFB4		
PWC1	\bigcirc	\times	\#19	FFFFB0н	ICR04	0000B4 ${ }_{\text {H }}$
PWC2	\bigcirc	\times	\#20	FFFFACH		
PWC0	\bigcirc	1	\#21	FFFFA8H	ICR05	0000B5
PPG0/PPG1 counter borrow	\bigcirc	2	\#22	FFFFA4		
PPG2/PPG3 counter borrow	\bigcirc	3	\#23	FFFFA0н	ICR06	0000B6н
PPG4/PPG5 counter borrow	\bigcirc	4	\#24	FFFF9C ${ }_{\text {н }}$		
8/16-bit up/down counter timer compare/ underflow /overflow/ amp down inversion (ch0, 1)	\bigcirc	\times	\#25	FFFF98	ICR07	0000B7н
Input capture (ch0) load	\bigcirc	5	\#26	FFFF94 ${ }_{\text {¢ }}$		
Input capture (ch1) load	\bigcirc	6	\#27	FFFF90н	ICR08	0000B8H
Output compare (ch0) match	\bigcirc	8	\#28	FFFF8C ${ }_{\text {H }}$		
Output compare (ch1) match	\bigcirc	9	\#29	FFFF88	ICR09	0000B9н
Output compare (ch2) match	\bigcirc	10	\#30	FFFF84 ${ }_{\text {¢ }}$		
Output compare (ch3) match	\bigcirc	\times	\#31	FFFF80н	ICR10	0000ВАн
Output compare (ch4) match	\bigcirc	\times	\#32	FFFF7C ${ }_{\text {н }}$		
Output compare (ch5) match	\bigcirc	\times	\#33	FFFF78н	ICR11	0000BBн
UART send end	\bigcirc	11	\#34	FFFF74		
16-bit free run timer/ 16-bit reload timer overflow	\bigcirc	12	\#35	FFFF70н	ICR12	0000 BC H
UART receive end	©	7	\#36	FFFF6C ${ }_{\text {H }}$		

(Continued)

MB90470 Series

(Continued)

Interrupt source	EI2OS support	$\mu \mathrm{DMA}$ channel no.	Interrupt vector		Interrupt control register	
			No.	Address	No.	Address
SIO1	\bigcirc	13	\#37	FFFF68 ${ }^{\text {H }}$	ICR13	0000BDн
SIO2	\bigcirc	14	\#38	FFFF64		
${ }^{12} \mathrm{C}$ interface	\times	\times	\#39	FFFF60 ${ }_{\text {H }}$	ICR14	0000ВЕн
A/D	\bigcirc	15	\#40	FFFF5CH		
Flash write/erase, time base timer, watch timer*	\times	\times	\#41	FFFF58 ${ }_{\text {H }}$	ICR15	0000BFн
Delay interrupt generator module	\times	\times	\#42	FFFF54 ${ }_{\text {H }}$		

© : Interrupt request flag cleared by the interrupt clear signal. The stop request is available.
O : Interrupt request flag cleared by the interrupt clear signal.
\times : Interrupt request flag not cleared by the interrupt clear signal.

* : Note that flash write/erase cannot be used at the same time as the time base timer or watch timer.

Note : • If two or more interrupt sources have the same interrupt number, the resource will clear both interrupt request flags at the $\mathrm{El}^{2} \mathrm{OS} / D \mathrm{DAC}$ interrupt clear signal. Thus when $\mathrm{El}^{2} \mathrm{OS} / \mu \mathrm{DMA}$ function of two sources is used, the other interrupt function cannot be used. The interrupt request enable bit of the corresponding resource should be set to " 0 " for software polling processing.

- Maximum assured operation frequency of $\mu \mathrm{DMA}$ is 16 MHz .

MB90470 Series

■ PERIPHERAL RESOURCES

1. I/O Ports

The I/O ports output data from the CPU to the I/O pins, and also load signals input at the I/O pins into the CPU, according to the port register (PDR) . The ports can also control the input/output direction of the l/O pins in bit units according to the port direction register (DDR) .
The MB90470 series has 82 input/output pins and two open drain output pins. Ports 0 through A are input/output ports, and port 76, and 77 are the open drain ports.
(1) Port Registers

PDR0	7	6	5	4	3	2	1	0	Default value	Access
Address : 000000H	P07	P06	P05	P04	P03	P02	P01	P00	Undefined	R/W*
PDR1	7	6	5	4	3	2	1	0		
Address : 000001н	P17	P16	P15	P14	P13	P12	P11	P10	Undefined	R/W*
PDR2	7	6	5	4	3	2	1	0		
Address : 000002н	P27	P26	P25	P24	P23	P22	P21	P20	Undefined	R/W*
PDR3	7	6	5	4	3	2	1	0		
Address : 000003H	P37	P36	P35	P34	P33	P32	P31	P30	Undefined	R/W*
PDR4	7	6	5	4	3	2	1	0		
Address : 000004H	P47	P46	P45	P44	P43	P42	P41	P40	Undefined	R/W*
PDR5	7	6	5	4	3	2	1	0		
Address : 000005H	P57	P56	P55	P54	P53	P52	P51	P50	Undefined	R/W*
PDR6	7	6	5	4	3	2	1	0		
Address : 000006н	P67	P66	P65	P64	P63	P62	P61	P60	Undefined	R/W*
PDR7	7	6	5	4	3	2	1	0		
Address : 000007H	P77	P76	P75	P74	P73	P72	P71	P70	$11 \times X X X X X$	R/W*
PDR8	7	6	5	4	3	2	1	0		
Address : 000008H	P87	P86	P85	P84	P83	P82	P81	P80	Undefined	R/W*
PDR9	7	6	5	4	3	2	1	0		
Address : 000009н	P97	P96	P95	P94	P93	P92	P91	P90	Undefined	R/W*
PDRA	7	6	5	4	3	2	1	0		
Address : 00000Ан	-	-	-	-	PA3	PA2	PA1	PAO	Undefined	R/W*

* : Input/output port read/write operations are somewhat different than reading and writing to memory, and operate as follows.
- Input mode

Read: Reads the signal level of the corresponding pin.
Write : Writes to the output latch.

- Output mode

Read: Reads the value of the data register latch.
Write : Value is output to the corresponding pin.

MB90470 Series

(2) Port Direction Registers

DDR0	7	6	5	4	3	2	1	0	Default value	Access
Address: 000010н	D07	D06	D05	D04	D03	D02	D01	D 00	00000000	R/W
DDR1	7	6	5	4	3	2	1	0	00000000	R/W
Address: 000011H	D17	D16	D15	D14	D13	D12	D11	D10		
DDR2	7	6	5	4	3	2	1	0	00000000	R/W
Address : 000012н	D27	D26	D25	D24	D23	D22	D21	D20		
DDR3	7	6	5	4	3	2	1	0	00000000	R/W
Address: 000013н	D37	D36	D35	D34	D33	D32	D31	D30		
DDR4	7	6	5	4	3	2	1	0	00000000	R/W
Address: 000014	D47	D46	D45	D44	D43	D42	D41	D40		
DDR5	7	6	5	4	3	2	1	0	00000000	R/W
Address : 000015H	D57	D56	D55	D54	D53	D52	D51	D50		
DDR6	7	6	5	4	3	2	1	0	00000000	R/W
Address: 000016H	D67	D66	D65	D64	D63	D62	D61	D60		
DDR7	7	6	5	4	3	2	1	0	00000000	R/W
Address : 000017 ${ }^{\text {H }}$	-	-	D75	D74	D73	D72	D71	D70		
DDR8	7	6	5	4	3	2	1	0	00000000	R/W
Address : 000018H	D87	D86	D85	D84	D83	D82	D81	D80		
DDR9	7	6	5	4	3	2	1	0	00000000	R/W
Address: 000019H	D97	D96	D95	D94	D93	D92	D91	D90		
DDRA	7	6	5	4	3	2	1	0	-- - 0000	R/W
Address: 00001Ан	-	-	-	-	DA3	DA2	DA1	DAO		

- When a pin is functioning as a port, the corresponding pin control setting is as follows :

0 : Input mode
1 : Output mode The register value is " 0 " at reset.

- Port 76, 77

These ports do not have DDR registers. Data at these pins is always valid, so that when P76, P77 are used as $I^{2} C$ pins the PDR value should be " 1 ". (The $I^{2} C$ functions should be stopped, when these pins are used as P76,P77.)
These ports have open drain configuration. If they are used as input ports, the output transistor is turned off, so that the output data register must be set to "1" and pull-up resistance applied.
Note: If these registers are accessed using read-modify-write instructions (such as bit set instructions), the bit that is the object of the instruction will be set to the specified value but for other bits the value of the corresponding output register will be rewritten to the input value of the pin at that time. For this reason when a pin used for input is switched to output, first write the desired value to the PDR register, then set the DDR register to switch the pin direction.

MB90470 Series

(3) Input Resistance Registers

RDR0	7	6	5	4	3	2	1	0	Default value	Access
Address : 00001CH	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	00000000	R/W
RDR1	7	6	5	4	3	2	1	0		
Address: 00001Dн	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	00000000	R/W

These registers control pull-up resistance in input mode.
0 : No pull-up resistance in input mode.
1 : Pull-up resistance applied in input mode.
In output mode, the setting has no significance (no pull-up resistance). The direction registers (DDR) control switching between input and output modes.
In stop mode (SPL = 1) pull-up resistance is removed (high impedance). When an external bus is used, this function is prohibited and no values should be written to this register.

(4) Output Pin Registers

ODR7	7	6	5	4	3	2	1	0	Default value 00000000	Access R/W
Address : 00001Ен	-	-	OD75	OD74	OD73	OD72	OD71	OD70		
ODR4	7	6	5	4	3	2	1	0		
Address: 00001B	OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	00000000	R/W

These registers control open drain operation in output mode.
0 : Operates as standard output port in output mode.
1 : Operates as open drain port in output mode.
In input mode, the setting has no significance (High-Z output). The direction registers (DDR) control switching between input and output modes. When an external bus is used, this function is prohibited and no values should be written to this register.
(5) Analog Input Enable Register

ADER	7	6	5	4	3	2	1	0	Default value	Access
Address : 00001FH	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	11111111	R/W

This register controls the port 6 pins as follows.
0 : Port input/output mode.
1 : Analog input mode. The register value is " 1 " at reset.
(6) Up-down Timer Input Enable Mode

UDER	7	6	5	4	3	2	1	0	Default value	Access
Address : 00000В н $^{\text {¢ }}$	-	-	UDE5	UDE4	UDE3	UDE2	UDE1	UDE0	XX000000	R/W

This register controls the port 3 pins as follows.

0 : Port input mode

1 : Up-down timer input mode. The register value is " 0 " at reset.
In the MB90470 series, the pin functions are as follows : UDE0 : P30/AINO, UDE1: P31/BIN0, UDE2 : P32/ ZIN0, UDE3 : P33/AIN1, UDE4 : P34/BIN1, UDE5 : P35/ZIN1

MB90470 Series

2. UART

The UART is a serial I/O port for asynchronous (start-stop synchronized) communication or CLK synchronized communication.

- Full duplex double buffer
- Asynchronous (start-stop synchronized) and CLK synchronized (no start bit or stop bit) operation
- Supports multi-processor modes
- Built-in dedicated baud rate generator

Asynchronous operation : 76923/38461/19230/9615/500 K/250 Kbps
CLK synchronized : $16 \mathrm{M} / 8 \mathrm{M} / 4 \mathrm{M} / 2 \mathrm{M} / 1 \mathrm{M} / 500 \mathrm{~K}$

- Baud rate can be set independently from external clock
- Can use internal clock feed from PPG1.
- Data length : 7 bits (asynchronous normal mode only) or 8 bits
- Master-slave communication functions (in multi-processor mode) : allows 1 (master) -to-n (slave) communications
- Error detection functions (parity, framing, overrun)
- NRZ-encoded transfer signal
- DMAC support (receiving/sending)

MB90470 Series

(1) Register List

15	7
CDCR	-
SCR	SMR
SSR	SIDR (R)/SODR (W)
$~ 8$ bit $\longrightarrow 8$ bit \longrightarrow	

Serial mode register (SMR)

	7	6	5	4	3	2	1	0
Address : 000020н	MD1	MDO	CS2	CS1	Cso	Reserved	SCKE	SOE
		(RW)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)

$\begin{array}{lllllll}(0) & (0) & (0) & (0) & (0) & (X) & (0) \\ (0)\end{array}$
Serial control register (SCR)

Address: 000021H

15	14	13	12	11	10	9	8
PEN	P	SBL	CL	A/D	REC	RXE	TXE
(R/W)	$(\mathrm{R} / \mathrm{W})$	$(\mathrm{R} / \mathrm{W})$	(R/W)	(R/W)	(W)	$(\mathrm{R} / \mathrm{W})$	$(\mathrm{R} / \mathrm{W})$
(0)	(0)	(0)	(0)	(0)	(1)	(0)	(0)

Default value
Serial input/output register (SIDR/SODR)

Address : 000022н	7	6	5	4	3	2	1	0
	D7	D6	D5	D4	D3	D2	D1	D0
	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$

Default value
Serial data register (SSR)

Address: 000023H

15	14	13	12	11	10	9	8
PE	ORE	FRE	RDRF	TDRE	BDS	RIE	TIE
(R)	(R)	(R)	(R)	(R)	$(\mathrm{R} / \mathrm{W})$	$(\mathrm{R} / \mathrm{W})$	$(\mathrm{R} / \mathrm{W})$
(0)	(0)	(0)	(0)	(1)	(0)	(0)	(0)

Default value
Communication prescaler control register (CDCR)

Address: 000025H

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MD | SRST | - | - | DIV3 | DIV2 | DIV1 | DIV0 |

Default value

MB90470 Series

(2) Block Diagram

MB90470 Series

3. Expanded I/O Serial Interface

The expended I/O serial interface is a serial I/O interface in 8 -bit $\times 1$ channel configuration allowing clock synchronized data transmission.

The interface has two serial I/O operating modes.

- Internal shift clock mode : Data transfer is synchronized with an internal clock.
- External shift clock mode : Data transfer is synchronized with a clock input from an external pin (SCK) . This mode allows the external clock pin (SCK) to be shared with a general purpose port that can transfer data according to CPU instructions.

(1) Register List

Serial mode control status register (SMCS)

Serial data register (SDR)

Communication prescaler control register (SDCR0, SDCR1)
Address : ${ }_{0}^{0000029 \text { н }}$

15	14	13	12	11	10	9	8
MD	-	-	-	DIV3	DIV2	DIV1	DIV0
(R/W)	$(-)$	$(-)$	$(-)$	$($ R/W $)$	(R / W)	(R / W)	(R / W)

Initial value
0-- 0000в

MB90470 Series

(2) Block Diagram

MB90470 Series

4. 8/10-bit A/D Converter

The A/D converter converts analog input voltages into digital values, and provides the following features :

- Conversion time : minimum $4.9 \mu \mathrm{~s}$ per channel (at 98 machine cycles/machine clock 20 MHz , including sampling time)
- Sampling time : minimum $3.0 \mu \mathrm{~s}$ per channel (at 60 machine cycles/machine clock 20 MHz)
- Uses RC sequential comparison conversion with sample \& hold circuit.
- Selection of 8 - or 10 -bit resolution
- Analog input from 8 channels, by program selection Single conversion mode : Convert 1 selected channel Scan conversion mode : Convert multiple consecutive channels. Select up to 8 channels by program selection. Continuous conversion mode : Convert specified channel continuously.
Stop conversion mode : Convert one channel, pause and stand by until the next start. (Simultaneous conversion start available.)
- At the end of A/D conversion, an A/D conversion end interrupt request can be sent to the CPU. This interrupt request can start the $\mu \mathrm{DMA}$ and transfer the conversion data to memory, making it ideal for continuous processing.
- Start sources include selection of software, external trigger (falling edge), or timer (rising edge) .

(1) Register List

ADCS2, ADCS1 (Control status registers)

ADCS1		7	6	5	4	3	2	1	0	\leftarrow Default value \leftarrow Bit attributes
Address	: 000046н	MD1	MDO	ANS2	ANS1	ANSO	ANE2	ANE1	ANEO	
		$\stackrel{0}{\text { R/W }}$	$\stackrel{0}{\mathrm{R}} \mathrm{~W}$	$\stackrel{0}{\text { R/W }}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\stackrel{0}{0}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\stackrel{0}{R^{2}}$	$\stackrel{0}{\mathrm{R} W}$	
ADCS2	bit	15	14	13	12	11	10	9	8	\leftarrow Default value \leftarrow Bit attributes
Address : 000047H		BUSY	INT	INTE	PAUS	STS1	STSO	STRT	Reserved	
		$\stackrel{0}{\text { R/W }}$	$\stackrel{0}{R^{0}}$	$\stackrel{0}{\text { R/W }}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	$\begin{gathered} 0 \\ \text { w } \end{gathered}$	$\begin{gathered} 0 \\ \text { R/W } \end{gathered}$	

ADCR2, ADCR1 (Data registers)

ADCR1 bit	7	6	5	4	3	2	1	0	
Address : 000048H	D7	D6	D5	D4	D3	D2	D1	D0	\leftarrow Default value\leftarrow Bit attributes
	X	X	X	X	X	X	X	X	
	R	R	R	R	R	R	R	R	

ADCR2	bit	15	14	13	12	11	10	9	8	\leftarrow Default value \leftarrow Bit attributes
Address	: 000049н	S10	ST1	ST0	CT1	CTO	-	D9	D8	
		$\stackrel{0}{\text { R/W }}$	$\stackrel{0}{\mathrm{w}}$	$\stackrel{0}{\mathrm{w}}$	$\begin{gathered} 0 \\ \mathrm{w} \end{gathered}$	-	X	X	X	

MB90470 Series

(2) Block Diagram

MB90470 Series

5. 8/16-bit PPG

The 8/16-bit PPG is an 8-bit reload timer module that produces a PPG output in the form of a pulse for timer operation. The hardware configuration includes six 8 -bit down counters, twelve 8 -bit reload timers, three 16 -bit control registers, six external pulse output pins, and six interrupt outputs. The MB90470 provides six 8 -bit PPG channels, which can also operate as three 16 -bit PPG channels in the combination PPG0 + PPG1, PPG2 + PPG3, PPG4 + PPG5. The following is an overview of the functions of the PPG.

- Six-channel independent 8-bit PPG output mode : Provides PPG output operation independently on six channels.
- 16-bit PPG output operation mode: Provides 16-bit PPG output operation on three channels, using the combination PPG0 + PPG1, PPG2 + PPG3, PPG4 + PPG5.
- $8+8$-bit PPG output operation mode : Uses the PPG0 (PPG2/PPG4) output as the PPG1 (PPG3/PPG5) clock input, to enable 8-bit PPG output with any desired period.
- PPG output operation :

Outputs pulse waves at a specified period and duty ratio.
Can be also used with an external circuit as a D/A converter.

MB90470 Series

(1) Register List

PPGC0 (PPGO/2/4 operating mode control register)

	7	6	5	4	3	2	1	0
00003Сн	PENO	-	PE00	PIE0	PUFO	-	-	Reserved
00003Ен	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(\bar{x})	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(\bar{x})	(\bar{x})	$(-)$

Read/write
Default value
PPGC1 (PPG1/3/5 operating mode control register)

	15	14	13	12	11	10	9	8
00003D ${ }_{\text {н }}$	PEN1	-	PE10	PIE1	PUF1	MD1	MD0	Reserved
00003Fн	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	(\bar{X})	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$(-)$

Read/write Default value

PPG01/PPG23/PPG45 (PPG0-PPG5 output control register)

	7	6	5	4	3	2	1	0
000042н	PCS2	PCS1	PCSO	PCM2	PCM1	PCM0	Reserved	Reserved
000044н	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$

Read/write Default value

PPLL0 to PPLL5 (Reload register L)
00002Ен
000030н
000032н
000034н
000036н

7	6	5	4	3	2	1	0
D07	D06	D05	D04	D03	D02	D01	D00
$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$

Read/write 000038
PPLH0 to PPLH5 (Reload register H)
00002Fн
000031н
000033н
000035
000037 ${ }^{\text {H }}$

15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D09	D08

Read/write 000039н

MB90470 Series

(2) Block Diagram

- 8-bit PPG ch 0/2/4 Block Diagram

MB90470 Series

- 8-bit PPG ch $1 / 3 / 5$ Block Diagram

MB90470 Series

6. 8/16-bit Up-down Counter/Timer

This block is an up-down counter/timer configured with six event input pins, two 8-bit up/down counters, two 8 -bit reload/compare registers, and related control circuits.

(1) Principal functions

- 8 -bit count registers for counting in the range 0 to 256 .
(Also operates in 16 -bit $\times 1$ mode for counting in the range 0 to 65535 .)
- Count clock selection provides four count modes.

Count mode
 Time mode Up/down count mode Phase differential count mode ($2 \times$)

- Phase differential count mode ($8 \times$)
- In timer mode, there is a choice of two internal count clocks.

- In up/down count mode, there is a choice of external pin input signal detection edge.

- In phase differential count mode, to provide counts for encoders for motors, etc., the A phase, B phase, and Z phase of the encoder can be input separately for highly precise counts of rotation angle, rotary speed, etc.
- The ZIN pin provides a choice of two functions.

- Compare and reload functions are provided, each available independently or in combination. Both can be started together to provide any desired type of up/down count.

- Individually controllable interrupts at compare, reload (underflow) and overflow events.
- Count direction flag enables detection of immediately preceding count direction.
- Interrupt generation at change of count direction.

MB90470 Series

(2) Register List

87	
UDCR1	UDCR0
RCR1	RCR0
Reserved	CSR0
CCRH0	CCRL0
Reserved	CSR1
CCRH1	CCRL1
-8 bit	-8 bit \longrightarrow

CCRHO (Counter control register high ch.0)
Address : 00006D н

Default value 00000000в

CCRH1 (Counter control register high ch.1)
Address : 000071H

Default value -0000000в

CCRL0/1 (Counter control register low ch.0/1)

Address : 00006CH | 7 |
| :---: |

Default value 0X00X000в

CSR0/1 (Counter status register ch. 0/1)

Default value 00000000в

UDCR0/1 (Up down count register ch. 0/1)

Address : 000069н	15	14	13	12	11	10	9	8
	D17	D16	D15	D14	D13	D12	D11	D10
	R	R	R	R	R	R	R	R

Default value 00000000в

Default value 00000000в

RCR0/1 (Reload/compare register ch. 0/1)

Default value 00000000в
 Default value 00000000в

MB90470 Series

(3) Block Diagram

MB90470 Series

7. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F2MC-16L CPU. The DTP receives DMA request from external peripherals and passes the requests to the $\mathrm{F}^{2} \mathrm{MC}$-16L CPU to activate the extended $\mu \mathrm{DMA}$ or interrupt processing.

(1) Register Descriptions

Interrupt/DTP enable register (ENIR : Enable Interrupt Request Register)

ENIR	7	6	5	4	3	2	1	0	Default value$00000000 \text { в }$
Address : 00000CH	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	
	R/W								

Interrupt/DTP source register (EIRR : External Interrupt Request Register)

EIRR	15	14	13	12	11	10	9	8	Default value
Address : 00000D	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	00000000в
	R/W	(note that both registers relate to different interrupts)							

Request level setting register (ELVR : External Level Register)

	7	6	5	4	3	2	1	0	Default value 00000000в
Address : 00000Eн	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	
	R/W								
	15	14	13	12	11	10	9	8	Default value 00000000в
Address : 00000FH	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	
	R/W								

(2) Block Diagram

MB90470 Series

8. 16-bit Input Output Timer

The 16-bit input/output timer is composed of one 16 -bit free-run timer module, 6 output compare modules, and 2 input capture modules. These functions can be used to produce output of six independent wave forms based on the 16 -bit free-run timer, with input pulse width measurement and external clock period measurement.

- List of Registers for All Modules

- 16-bit free-run timer

- 16-bit output compare

- 16-bit input capture

$\begin{aligned} & \text { 00005C, 5Eн } \\ & 00005 \mathrm{D}, 5 \mathrm{FH} \end{aligned}$		Compare register
	IPCP0, ICCP1	
000060H	ICS	Control status register

MB90470 Series

- Overall Block Diagram

MB90470 Series

(1) 16-bit Free-run Timer

The 16 -bit free-run timer is composed of a 16-bit up-down counter and control register.

The count value from this timer is used as the base timer for the input capture and output compare modules.

- A selection of 8 clock types for counter operation is available.
- Counter overflow interrupts can be generated.
- By a mode setting, the counter can be initialized when the timer value matches the compare register value for the output compare module.
- Register list

Compare clear register (CPCLR)
000067H

15	14	13	12	11	10	9	8
CL15	CL14	CL13	CL12	CL11	CL10	CL09	CL08
(R / W)							

Default value XXXXXXXX

000066н

Default value ХХХХХХХХв

Timer counter data register (TCDT)

Default value 00000000в

Default value 00000000в

Timer counter control/status register (TCCS)

MB90470 Series

- Block Diagram

MB90470 Series

(2) Output Compare

The output compare module consists of a 16-bit compare register, compare output pin unit, and control register. When the value in the compare register in this module matches the value of the 16-bit free-run timer, the pin output level can be inverted and an interrupt generated.

- There are six compare registers that can operate independently. Module settings can be used to use the two compare registers to control the output.
- The interrupt can be set by a compare match.

- Register List

Compare register (OCCP0 to OCCP5)

	15	14	13	12	11	10	9	8	Default value
00004Вн	C15	C14	C13	C12	C11	C10	C09	C08	XXXXXXXX
$\mathrm{0}_{00004 \mathrm{D}}^{\text {00004F }}$	(R/W)								
000051н									
000053н									
000055									

	6	5	4	3	2	1	0		Default value
00004Ан	C07	C06	C05	C04	C 03	C02	C01	C00	XXXXXXXX
00004Сн 00004Ен	(R/W)								
000050н									
000052н									
000054н									

Control register (OCS1/3/5)

000057H 000059н 00005Вн

Default value
---00000в

Control register (OCS0/2/4)

000056н
000058н
00005Ан

Default value 0000--00в

MB90470 Series

- Block Diagram

MB90470 Series

(3) Input Capture

The input capture module detects the rising edge, falling edge, or both edges of an input signal and saves the value of the 1 -bit free-run timer at that moment in a register. This module can also generate an interrupt when an edge is detected.
The input capture module is composed of input capture registers and a control register. Each of the input captures has a corresponding external input pin.

- Selection of three valid edges for external input :

Rising edge/falling edge/both edges

- An interrupt can be generated when the valid edge is detected.

- Register List

Input capture data registers (IPCP0, IPCP1)

$00005 \mathrm{C}_{\text {н }}$ 00005Ен

7	6	5	4	3			2
1	1	0					
CP07	CP06	CP05	CP04	CP03	CP02	CP01	CP00
(R)	(R)						

Default value XXXXXXXX

Control status register (ICS0, ICS1)

Default value
00000000в

- Block Diagram

MB90470 Series

9. $I^{2} \mathrm{C}$ Interface

The $I^{2} \mathrm{C}$ interface is a serial I/O port supporting Inter IC bus operation, and operates as a master/slave device on the $I^{2} \mathrm{C}$ bus. The following features are provided.

- Master/slave sending and receiving
- Arbitration functions
- Clock synchronization functions
- Slave address/general call address detection functions
- Transfer direction detection function
- Start condition repeat generator and detection function
- Bus error detection function

(1) Register List

IBSR (bus status register)

	7	6	5	4	3	2	1	0
Address : 000088H	BB	RSC	AL	LRB	TRX	AAS	GCA	FBT
Read/write Default value	(R) (0)	(R)						

IBCR (bus control register)

ICCR (clock control register)

IADR (address register)

IDAR (data register)

MB90470 Series

(2) Block Diagram

MB90470 Series

10. 16-bit reload timer

The 16-bit reload timer provides a choice of two functions, one is an internal clock countdown synchronized with any of 3 types of internal clock, and the other is an event count mode that counts down at detection of a given edge of a pulse input externally. This timer defines an underflow as a transition of the count value from 0000 H to FFFFн. Therefore, an underflow will occur at the count value "reload register setting count +1 ". The count operation includes a choice of reload mode in which the count set value is reloaded at each underflow event, and one-shot mode in which the count stops at an underflow event. An interrupt can be generated when the counter reaches an underflow, and the timer is DTC compatible.

(1) Register List

- TMCSR (Timer control status registers)

Timer control status register (high)

Timer control status register (low)
0000 CA н

7	6	5	4	3		2	1
0							
MODO	OUTE	OUTL	RELD	INTE	UF	CNTE	TRG
(R/W)	$($ R/W $)$	$($ R/W $)$	(R/W $)$	(R/W)	$($ R/W $)$	$($ R/W $)$	$($ R/W $)$
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)

Read/write
Default value

- 16-bit timer register/16-bit reload register

TMR/TMRLR (high)

	15	14	13	12	11	10	9	8
0000CD ${ }_{\text {н }}$	D15	D14	D13	D12	D11	D10	D09	D08
	(R/W)							
	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)

Read/write
Default value
TMR/TMRLR (low)

	7	6	5	4	3	2	1	0
0000ССн	D07	D06	D05	D04	D03	D02	D01	D00
	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{aligned} & (\mathrm{R} / \mathrm{W}) \\ & (\mathrm{X}) \end{aligned}$	$\begin{aligned} & (\mathrm{R} W) \\ & (\mathrm{X}) \end{aligned}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{aligned} & (\mathrm{R} / \mathrm{W}) \\ & (\mathrm{X}) \end{aligned}$

Read/write Default value

MB90470 Series

(2) Block Diagram

MB90470 Series

11. μ PG Timer

The $\mu \mathrm{PG}$ timer produces a pulse output according to an external input signal.

(1) Register List

PGCSR (PG control/status register)
Operating mode control register
00008Ен

7	6	5	4	3	2	1	0
PEN0	PE1	PE0	PMT1	PMT0	-	-	-
(R/W)	$($ R/W $)$	$($ R/W $)$	$($ R/W $)$	$($ R/W $)$	$(-)$	$(-)$	$(-)$
(0)	(0)	(0)	(0)	(0)	$(-)$	$(-)$	$(-)$

Default value

(2) Block Diagram

MB90470 Series

12. PWC (Pulse Width Count) Timer

The PWC timer is a 16 -bit multi-function up-count timer with an input signal pulse width measurement function.
The hardware includes a total of three channels, each with one 16-bit up-count timer, one input pulse divider and divider ration control register, one measurement input pin, and one 16-bit control register. The following functions are provided :
Timer functions :
An interrupt can be generated each time a set time interval elapses. A choice of three internal reference clocks is available.
Pulse width measurement functions :
Measures the time between designated events on an externally input pulse signal. The reference clock is selected from three internal clock signals.
Measurement modes : 1) H pulse width (\uparrow to \downarrow) /L pulse width (\uparrow to \downarrow)
2) Rise period (\uparrow to \uparrow) /fall period (\downarrow to \downarrow)
3) Measurement between edges (high or low to low or high)

An 8 -bit input divider can divide the input pulse into $2^{2 n}$ divisions ($n=1,2,3,4$) and measure the divisions. An interrupt can be generated when measurement is ended. Both one-time and continuous measurement are enabled.

MB90470 Series

(1) Register List

PWC0 to PWC2

(R/W)
(R/W)
(R/W)
PWCSR0 to PWCSR2 (PWC control/status registers)
000077 H
00007 BH
00007 FH

15	14	13	12	11	10	9	8
STRT	STOP	EDIR	EDIE	OVIR	OVIE	ERR	Reserved
(R/W)	$($ R/W $)$	(R)	(R/W)	(R/W)	$($ R/W $)$	(R)	$(-)$
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(X)

Read/write Default value

000076н
00007Ан
00007Ен

7	6	5	4	3	2	1	0
CKS1	CKS0	PIS1	PIS0	S/C	MOD2	MOD1	MOD0
(R/W)	$($ R/W)	(R/W)	(R/W)	(R/W)	$($ R/W $)$	$($ R/W $)$	$($ R/W $)$
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)

Read/write Default value

PWCR0 to PWCR2 (PWC data buffer registers)
000079_{H}
$00007 \mathrm{D}_{\mathrm{H}}$
000081_{H}

15	14	13	12	11	10	9	8
D15	D14	D13	D12	D11	D10	D9	D8

Read/write Default value

000078н

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0

Read/write
Default value
DIVR0 to DIVR2 (Divider control register)
000082н
000084 H
000086 H

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | DIV1 | DIV0 |
| $(\overline{)})$ | $(-)$ | $(-)$ | $(-)$ | $(-)$ | $(-)$ | $($ R/W $)$ | $($ R/W $)$ |
| (X) | (X) | (X) | (X) | (X) | (X) | (0) | (0) |

Read/write
Default value

MB90470 Series

(2) Block Diagram

MB90470 Series

13. Watch Timer

The watch timer is a 15 -bit timer using a sub-clock signal. This timer can generate interval interrupts. Also, by a register setting, it can be used as a clock source for the watchdog timer.

(1) Register List

Watch timer control register (WTC)

0000ААн

7	6	5	4	3	2	1	0
WDCS	SCE	WTIE	WTOF	WTR	WTC2	WTC1	WTC0
(R/W)	(R)	(R/W)	(R/W)	(R/W)	(R/W)	$($ R/W)	(R/W)
(1)	(0)	(0)	(0)	(1)	(0)	(0)	(0)

Default value
(2) Block Diagram

MB90470 Series

14. Watchdog Timer

The watchdog timer is a 2-bit counter that uses a count clock signal output by the timer base timer or watch timer and will reset the CPU unless cleared within a specified period of time.

(1) Register List

Watchdog timer control register (WDTC)

0000A8H

7	6	5	4	3	2	1	0
PONR	Reserved	WRST	ERST	SRST	WTE	WT1	WT0
(R)	(X)	(R)	(R)	(R)	(W)	(W)	(W)
(X)	(X)	(X)	(X)	(X)	(1)	(1)	(1)

Default value
(2)

Block Diagram

HCLK : Oscillator clock
SCLK : Sub-clock

MB90470 Series

15. Time Base Timer

The time base timer is an 18-bit free-run timer that counts up in synchronization with the internal count clock (base oscillator divided by 2). It functions as an interval timer with a selection of four types of time intervals. Other functions of this timer also include output of a timer signal for the oscillator stabilization wait time and an operating clock signal for the watchdog timer.

(1) Register List

Time base timer control register (TBTC)

0000А9н	15	14	13	12	11	10	9	8
	RESV	-	-	TBIE	TBOF	TBR	TBC1	TBCO
	$\begin{gathered} \text { (R/W) } \\ (1) \end{gathered}$	(\bar{x})	(\bar{x})	$\begin{gathered} (R / W) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (W) \\ (1) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$

(2) Block Diagram

- : Not used

OF : Overflow
HCLK : Oscillator clock
*1 : Switches machine clock from main clock or sub-clock to PLL clock.
*2 : Switches machine clock from sub-clock to main clock.

MB90470 Series

16. Clock

The clock generator module controls the operation of the internal clocks that produce the operating clock signals for the CPU and peripheral devices. This internal clock signal is called the machine clock, and one period is called a machine cycle. The clock signal from the base oscillator is called the oscillator clock, and the clock signal generated by the internal PLL module is called the PLL clock.

(1) Register List

Clock select register (CKSCR)

0000A1н

15	14	13	12		11	10	9		8	
SCM	MCM	WS1	WS0	SCS	MCS	CS1	CS0			

MB90470 Series

(2) Block Diagram

MB90470 Series

(3) Clock Signal Supply Map

MB90470 Series

17. Low Power Modes

The MB90470 series uses a selection of operating clock signals and clock operation controls to provide the following CPU operating modes.

- Clock modes
(PLL clock mode, main clock mode, sub-clock mode)
- CPU intermittent operation modes
(PLL clock intermittent operation mode, main clock intermittent operation mode, sub-clock intermittent operation mode)
- Standby mode
(Sleep mode, time base timer mode, stop mode, watch mode)

(1) Register List

Low power mode control register (LPMCR)

0000AOH

7	6	5	4	3	2	1	0
STP	SLP	SPL	RST	TMD	CG1	CG0	Reserved
(W)	(W)	$(\mathrm{R} / \mathrm{W})$	(W)	$($ R/W $)$	$(\mathrm{R} / \mathrm{W})$	$(\mathrm{R} / \mathrm{W})$	$(\mathrm{R} / \mathrm{W})$
(0)	(0)	(0)	(1)	(1)	(0)	(0)	(0)

Default value

MB90470 Series

(2) Block Diagram

MB90470 Series

(3) Status Transition Chart

MB90470 Series

18. Overview of the Chip Select Function

This module issues chip select signals in order to facilitate connection to external memory. There are four chip select output pins, with hardware areas set using a register for each output, so that the select signal is output from the related pin whenever access to an external address is detected.

- Features of the chip select function

The chip select function has two 8 -bit registers for settings for each of the four output pins. One register (CARx) is used to specify the upper 8 bits of the address for match detection, thereby providing memory area detection in 64 KB units. The other register (CMRx) can be set to detect areas larger than 64 KB by masking bits in the match detection value.
Note that the CS output is set to high impedance during a bus hold condition.
(1) Register List

15	8
7	0
CAR0	CMR0
CAR1	CMR1
CAR2	CMR2
CAR3	CMR3
CALR	CSCR

(R/W)

$$
\begin{equation*}
(\mathrm{R} / \mathrm{W}) \tag{R/W}
\end{equation*}
$$

(R/W)
Chip select area MASK register (CMRx)
0000С0н
$0000 \mathrm{C} 2 н$
0000 C 4 н
0000 C 6 н

7	6	5	4	3	2	1	0
M7	M6	M5	M4	M3	M2	M1	M0

Read/write Default value

Chip select area register (CARx)

Chip select control register (CSCR)

$(-)$	$(-)$	$(-)$	$(-)$	(R/W)	(R/W)	(R/W)	(R/W)	Read/write
$(-)$	$(-)$	$(-)$	$(-)$	(0)	(0)	(0)	$(*)$	Default value

Chip selector active level register (CALR)

Default value
(2) Block Diagram

MB90470 Series

19. ROM Mirror Function Select Module

The ROM mirror function select module provides a register selection that allows the FF bank in ROM to be viewed in the 00 bank.
(1) Register List

(2) Block Diagram

Note : Do not access this register during operations to address 004000н to 00FFFFн.

MB90470 Series

20. Interrupt Controller

The interrupt control registers are located in the interrupt controller. An interrupt control register is provided for each I/O with an interrupt function. The registers have the following functions.

- Set the interrupt level of the corresponding peripheral.

(1) Register List

Interrupt control register

Address: IC

Address: ICROO: 0000BOH
ICR02: 0000B2н ICR04: 0000B4н ICR06: 0000B6н ICR08: 0000B8н ICR14: 0000ВЕн
bit

ICR00, 02, 04, 26, 08, 10, 12,

Read/Write $\rightarrow(\mathrm{W}) \quad$ (W) \quad (W) \quad (W) \quad (R/W) $\quad(\mathrm{R} / \mathrm{W}) \quad$ (R/W) \quad (R/W)
Initial value $\rightarrow(0) \quad(0) \quad(0) \quad(0) \quad(0) \quad$ (1) (1)

Note : Do not access these registers using read-modify-write instructions as this can cause misoperation.

(2) Block Diagram

MB90470 Series

21. $\mu \mathrm{DMA}$

μ DMA is the simplified DMA which has the equivalent function to $\mathrm{EI}^{2} \mathrm{OS}$ function $\mu \mathrm{DMA}$ has DMA transfer channel which consists of 16 channels and has the following functions.

- Automatic data transfer between peripheral resources (I/O) and memory.
- CPU program executing stops dring DMA operation.
- Selectable for address transfer increase/decrease .
- DMA transfer control is done at DMA enable register, DMA stop status register, DMA status register and descriptor.
- Stop request stops DMA transfer from resources.
- After DMA transfer, flag is set to bit corresponding to DMA status register transfer stop channel and stop interrupt is output to interrupt controller.
(1) Register List

DMA enable register

DMA enable register

Initial value 0000000 ob

DMA stop status register
bit
DSSR : 0000A4

7	6	5	4	3	2	1	0
STP7	STP6	STP5	STP4	STP3	STP2	STP1	STP0
(R/W)	(R/W)	(R/W)	(R/W)	(R / W)	(R / W)	(R / W)	(R / W)

Initial value
0000000 ob

DMA status register
bit
DSRH: 00009D

Initial value 0000000 0b

DMA status register
DSRL: 00009С ${ }_{\text {н }}$

MB90470 Series

(2) Block Diagram

IOA : Address pointer
BAP : Buffer address pointer
DER : DMA enable register (ENx selection is done.)
DTC : Data counter

MB90470 Series

22. External Bus Pin Control Circuit

The external bus pin control circuit controls the external bus pins used to expand the CPU address/data bus connections to external circuits.

(1) Register List

- Auto ready function select register (ARSR)

Address : 0000А5 ${ }^{\text {H }}$

| bit 15 | bit 14 | bit 13 | bit 12 | bit 11 | bit 10 | bit 9 | bit 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ICR1 | ICR0 | HMR1 | HMR0 | - | - | LMR1 | LMR0 |
| W | W | W | W | - | - | W | W |

Initial value 0011--00в

- External address output control register (HACR)

Address : 0000А6

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
E23	E22	E21	E20	E19	E18	E17	E16
W	W	W	W	W	W	W	W

Initial value $00000000_{\text {B }}$

- Bus control signal select register (EPCR)

Address : 0000A7H

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
CKE	RYE	HDE	ICBS	HMBS	WRE	LMBS	-
W	W	W	W	W	W	W	-

Initial value
$1000 * 10$-в

W : Write only

- : Not used
* : May be either " 1 " or " 0 "
(2) Block Diagram

MB90470 Series

23. Address Match Detection Function

When the address is equal to a value set in the address detection register, the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code (01 H). As a result, when the CPU executes a set instruction, the INT9 instruction is executed. Processing by the INT\#9 interrupt routine allows the program patching function to be implemented.
Two address detection registers are supported. An interrupt enable bit is prepared for each register. If the value set in the address detection register matches an address and if the interrupt enable bit is set at " 1 ", the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code.

(1) Register Configuration

- Program address detection register 0 to 2 (PADRO)

- Program address detection register 3 to 5 (PADR1)

- Program address detection control status register (PACSR)

Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	$\begin{aligned} & \text { Initial value } \\ & 00000000 \mathrm{~B} \end{aligned}$
00009Eн	RESV	RESV	RESV	RESV	AD1E	RESV	AD0E	RESV	
	R/W								

[^0]
MB90470 Series

(2) Block Diagram

MB90470 Series

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Supply voltage	Vcc3	Vss - 0.3	Vss +4.0	V	
	Vcc5	Vss - 0.3	Vss +7.0	V	
	AVcc	Vss - 0.3	Vss +4.0	V	*1
	AVRH	Vss - 0.3	Vss +4.0	V	
Input voltage	V	Vss - 0.3	Vss +4.0	V	*2
		Vss - 0.3	Vss +7.0	V	*2
Output voltage	Vo	Vss - 0.3	Vss +4.0	V	*2
		Vss - 0.3	Vss +7.0	V	*2
Maximum clamp current	Iclamp	-2.0	+ 2.0	mA	* 6
Total maximum clump current	$\Sigma \mid$ Iclamp \|	-	20	mA	*6
"L" level maximum output current	loL	-	10	mA	*3
"L" level average output current	lolav	-	3	mA	*4
"L" level maximum total output current	Elo	-	60	mA	
"L" level average total output current	Elolav	-	30	mA	*5
"H" level maximum output current	Іон	-	- 10	mA	*3
"H" level average output current	lohav	-	- 3	mA	*4
"H" level maximum total output current	Σ Іон	-	-60	mA	
"H" level average total output current	Σ Iohav	-	-30	mA	*5
Power consumption	PD	-	410	mW	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+ 150	${ }^{\circ} \mathrm{C}$	

*1: AVcc and AVRH must not exceed Vcc3. Also, AVRH must not exceed AVcc ,too.
*2: V_{1}, and V o must not exceed Vcc (including $\mathrm{V}_{\mathrm{cc}} 3, \mathrm{~V} \mathrm{cc} 5$) plus 0.3 V .
*3: Maximum output current is defined as the peak value at one corresponding pin.
*4: Average output current is defined as the average current flowing through one corresponding pin in an interval of 100 ms .
*5: Average total output current is defined as the total average current flowing through all corresponding pins in an interval of 100 ms .
*6: - Applicable to pins: General purpose CMOS input port (P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA3)

- Use within recommended operating conditions.
- Use at DC voltage (current)
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.

MB90470 Series

(Continued)

- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the $\mathrm{V}_{\text {cc }}$ pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Sample recommended circuits:
- Input/output equivalent circuits

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90470 Series

2. Recommended Operating Conditions
$(\mathrm{Vss}=\mathrm{AV} s \mathrm{~s}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Supply voltage	Vcc3*	1.8	3.6	V	MASK version
		2.4	3.6	V	Low voltage FLASH version
		3.0	3.6	V	High speed FLASH version
	Vcc5*	1.8	5.5	V	MASK version
		2.4	5.5	V	Low voltage FLASH version
		3.0	5.5	V	High speed FLASH version
	Vcc3	1.8	3.6	V	Hold stop status
	Vcc5	1.8	5.5	V	Hold stop status (MASK version)
		1.8	5.5	V	Hold stop status (FLASH version)
"H" level input voltage	$\mathrm{V}_{\text {H }}$	0.7 Vcc	V cc +0.3	V	All pins other than Vніs, Vінм pins
	$\mathrm{V}_{\text {HS }}$	0.8 Vcc	V cc +0.3	V	Hysteresis input pins
	Vнни	V cc -0.3	$\mathrm{V} \mathrm{cc}+0.3$	V	MD pin input
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	All pins other than VILs, VILM pins
	VILs	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins
	VILM	Vss - 0.3	Vss +0.3	V	MD pin input
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: Pay attention to operating frequency.
Note: When using ${ }^{2} \mathrm{C}$ functions, the voltage should be at least 2.4 V .
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90470 Series

3. DC Characteristics

(MASK version: $\mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) *
(Low voltage FLASH version: $\mathrm{V} \mathrm{Cc}=2.4 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V} s=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) *
(High speed FLASH version : $\mathrm{V} \mathrm{Cc}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) *

Parameter	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level output voltage	Vон	All pins except P76-P77	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V} \\ & \mathrm{loH}=-1.6 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline \text { Vcc3 - } \\ 0.3 \end{gathered}$	-	-	V	
			$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \mathrm{V} c 55- \\ 0.5 \end{gathered}$	-	-	V	Using 5 V system power supply
"L" level output voltage	Vol	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
			$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	Using 5 V system power supply
Input leak current	1.	All pins except P76, P77	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	- 10	-	+ 10	$\mu \mathrm{A}$	
Pull-up resistance	Rpull	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \\ & \text { at } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	20	65	200	k Ω	
Open drain output current	leak	$\begin{aligned} & \text { P40 to P47, } \\ & \text { P70 to P77 } \end{aligned}$	-	-	0.1	10	$\mu \mathrm{A}$	
Supply current	Icc	-	at $\mathrm{Vcc}=3.3 \mathrm{~V}$, at normal internal 20 MHz operation	-	60	80	mA	MASK version
				-	65	85	mA	MASK version (A/D operation)
				-	51	66	mA	FLASH version
				-	56	71.5	mA	FLASH version (A/D operation)
			at $\mathrm{Vcc}=3.3 \mathrm{~V}$, flash write/erase at internal 20 MHz	-	57	71.5	mA	FLASH version
	Icos	-	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$, sleep mode at 20 MHz	-	18	33	mA	
	Iccı	-	at $\mathrm{Vcc}=3.3 \mathrm{~V}$, sub operation, external 32 kHz , internal 8 kHz operation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	-	16	140	$\mu \mathrm{A}$	

*: Pay attention to operating frequency.
(Continued)

MB90470 Series

(Continued)
(MASK version: V cc $=1.8 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) *
(Low voltage FLASH version : $\mathrm{V} \mathrm{cc}=2.4 \mathrm{~V}$ to 3.6 V , $\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) *
(High speed FLASH version : $\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}$ to 3.6 V, Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) *

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Supply current			$\text { at } \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \text {, }$	-	10	40	$\mu \mathrm{A}$	MASK version
	Icct	-	external 32 kHz , internal 8 kHz operation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	-	15	40	$\mu \mathrm{A}$	FLASH version
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$,	-	0.1	20	$\mu \mathrm{A}$	MASK version
	Icch		at $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$	-	0.2	40	$\mu \mathrm{A}$	FLASH version
Input capacitance	Cin	All pins except $A V c c$, AVss, Vcc, Vss	-	-	5	15	pF	

*: Pay attention to operating frequency.
Notes : • Pins P40-P47 and P70-P75 are N-ch open drain pins with controls, and normally used at CMOS level.

- P76 and P77 are N-ch open drain pins.
- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{cc} 3=\mathrm{V} \mathrm{c} 5$.
- When using two power supplies, the 5 V system pins are P20 to P27, P30 to P37, P40 to P47 and P70 to P77. All other pins are 3 V input/output pins.

MB90470 Series

4. AC Characteristics

(1) Clock Timing Ratings
$\left(\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	Fch	X0, X1	-	3	-	20	MHz	for crystal oscillation*2
				3	-	40		for external clock
	FcL	X0A, X1A	-	-	32.768	-	kHz	
Clock cycle time	tc	X0, X1	-	25	-	333	ns	*2
	tcı	X0A, X1A	-	-	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \text { Pw } \end{aligned}$	X0	-	5	-	-	ns	*1
	PwLh Pwll	X0A	-	-	15.2	-	$\mu \mathrm{s}$	*1
Input clock rise, fall time	$\begin{aligned} & \mathrm{t} \text { tor } \\ & \mathrm{t}_{\mathrm{tof}} \end{aligned}$	X0	-	-	-	5	ns	Using external clock
Internal operating clock frequency	fcp	-	-	1.5	-	20	MHz	*2
		-	-	1.5	-	16	MHz	MB90474 only
	$f \mathrm{fPL}$	-	-	-	8.192	-	kHz	
				3	-	20	MHz	MB90F474H
				3	-	12	MHz	MB90F474L
Internal operating clock cycle time	tcp	-	-	50.0	-	666	ns	*2
		-	-	62.5	-	666	ns	MB90474 only
	tcPL	-	-	-	122.1	-	$\mu \mathrm{s}$	

*1: Vcc = Vcc3 = Vcc5
*2 : Observe the operating voltage with care.

MB90470 Series

- X0, X1 clock timing

- X0A, X1A clock timing

MB90470 Series

- PLL warranted operating range

Internal operating clock frequency vs. Supply voltage

Note : Use it at $\mathfrak{f}=16 \mathrm{MHz}$ for MB90474.
When using the high speed flash model at $\mathfrak{f}=20 \mathrm{MHz}$, use supply voltages of 3.13 V to 3.6 V .
For A/D operating frequencies, see the electrical characteristics of the A/D converter module.
Maximum assured operation frequency (f_{cp}) of $\mu \mathrm{DMA}$ is 16 MHz .

Note: Use PLL circuit when using internal clock at 16 MHz or more. It is recommended to use base oscillator clock of up to 20 MHz .

AC characteristics are determined using the following measurement reference voltage values.

- Input signal waveform • Output signal waveform

Hysteresis input pins

Pins other than hysteresis input/MD input pins
0.7 Vcc

Output pins

MB90470 Series

(2) Clock Output Timing

(Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$							
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Cycle time	torc	CLK	-	tcp	-	ns	
CLK $\uparrow \rightarrow$ to CLK \downarrow	tchcL	CLK	$\mathrm{Vcc}=3.0 \mathrm{~V}$ to 3.6 V	tcp / 2 - 15	tcp / $2+15$	ns	at $\mathrm{f}_{\mathrm{cp}}=20 \mathrm{MHz}$
			$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.3 V	tcp / $2-20$	tcp / $2+20$	ns	at $\mathrm{f}_{\mathrm{cp}}=16 \mathrm{MHz}$
			$\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}$ to 3.3 V	tcp / 2-64	tcp / $2+64$	ns	at $\mathrm{f}_{\text {cp }}=5 \mathrm{MHz}$

Notes : • tcp : See (1) Clock Timing Ratings.

- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

MB90470 Series

(3) Reset Input Ratings

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Reset input time	trsti	$\overline{\text { RST }}$	-	16 tcp	-	ns	In normal operation
				Oscillator oscillation $\text { time* }+16 \text { tcp }$	-	ms	In stop mode

*: Oscillator oscillation time is the time to reach 90% amplitude. For a crystal oscillator, this is a few to several dozen ms; for a FAR/ceramic oscillator, this is several hundred μ s to a few ms , and for an external clock this is 0 ms .
Note: tcp : See (1) Clock Timing Ratings.

- Measurement conditions for AC ratings

Cı : Load capacitance applied to pin during testing

CLK, ALE, $\mathrm{Cl}=30 \mathrm{pF}$
AD15 to AD00 (Address, data bus) , $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$,
A23 to A00/D15 to D00 : CL=80 pF

MB90470 Series

(4) Power On Ratings (Power-on reset)

$$
\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Power rise time	t_{R}	Vcc	-	-	30	ms	*
Power cutoff time	toff	Vcc		1	-	ms	For continuous operation

*: Power supply rise time requires $\mathrm{Vcc}<0.2 \mathrm{~V}$.
Notes: \bullet Vcc $=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

- The above ratings are values for power-on reset.
- A power-on reset should be applied by restarting the power supply inside the device.

Extreme variations in supply voltage may activate a power-on reset. As the illustration shows below, when varying supply voltage during operation the use of a smooth voltage rise with suppressed fluctuation is recommended.

MB90470 Series

(5) Bus read timing

Parameter	Sym-bol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
ALE pulse width	tLHLL	ALE	-	tcp / 2 - 15	-	ns	at $\mathrm{f}_{\mathrm{cp}}=20 \mathrm{MHz}$
				tcp / $2-20$	-	ns	at $\mathrm{ffp}=16 \mathrm{MHz}$
				tcp / 2 - 35	-	ns	at $\mathrm{f}_{\text {cp }}=8 \mathrm{MHz}$
Valid address \rightarrow ALE \downarrow time	tavLl	Address pins, ALE	-	tcp / $2-20$	-	ns	
				tcp / 2-40	-	ns	at $\mathrm{ffp}=8 \mathrm{MHz}$
ALE $\downarrow \rightarrow$ address valid time	tılax	ALE, Address pins	-	tcp / 2 - 15	-	ns	
$\begin{aligned} & \text { Valid address } \rightarrow \\ & \frac{\mathrm{RD}}{} \downarrow \text { time } \end{aligned}$	tavkl	$\begin{gathered} \overline{\mathrm{RD},} \\ \text { address } \end{gathered}$	-	tcp - 20	-	ns	
Valid address \rightarrow valid data input	tavov	Address/data	-	-	5 tcp / $2-60$	ns	
				-	$5 \mathrm{tcp} / 2-80$	ns	at $\mathrm{f}_{\mathrm{pp}}=8 \mathrm{MHz}$
$\overline{\mathrm{RD}}$ pulse width	trlRH	$\overline{\mathrm{RD}}$	-	$3 \mathrm{tcp} / 2-25$	-	ns	at $\mathrm{f}_{\mathrm{cp}}=20 \mathrm{MHz}$
				3 tcp / 2 - 20	-	ns	at $\mathrm{f}_{\mathrm{cp}}=16 \mathrm{MHz}$
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input	trLov	$\overline{\mathrm{RD}}$, Data	-	-	3 tcp / $2-60$	ns	
				-	$3 \mathrm{tcp} / 2-80$	ns	at $\mathrm{f}_{\mathrm{p}}=8 \mathrm{MHz}$
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhdx	$\overline{\mathrm{RD}}$, Data	-	0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow \mathrm{ALE} \uparrow$ time	trHLH	$\overline{\mathrm{RD}}$, ALE	-	tcp / 2-15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address valid time	trhax	Address, $\overline{\mathrm{RD}}$	-	tcp / 2 - 10	-	ns	
Valid address \rightarrow CLK \uparrow time	tavch	Address, CLK	-	tcp / 2 - 20	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK \uparrow time	trich	RD, CLK	-	tcp / 2-20	-	ns	
ALE $\downarrow \rightarrow \overline{\mathrm{RD}} \downarrow$ time	tLlRL	RD, ALE	-	tcp / 2 - 15	-	ns	

Notes : • tcp : See (1) Clock Timing Ratings.

- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

MB90470 Series

MB90470 Series

(6) Bus Write Timing
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Sym-	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Valid address $\rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwl	Address pins, WR	-	tcp - 20	-	ns	
$\overline{\mathrm{WR}}$ pulse width	twlwh	$\overline{\text { WRL, }} \overline{\text { WRH }}$	-	3 tcp / 2 - 25	-	ns	at $\mathrm{f}_{\mathrm{cp}}=20 \mathrm{MHz}$
			-	3 tcp / 2-20	-	ns	at $\mathrm{f}_{\mathrm{cp}}=16 \mathrm{MHz}$
Valid data output $\rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovw	Data pins, $\overline{W R}$	-	3 tcp / 2 - 20	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ data hold time	twhdx	$\overline{\mathrm{WR}}$, Data pins	-	15	-	ns	at $\mathrm{f}_{\text {cp }}=20 \mathrm{MHz}$
			-	20	-	ns	at $\mathrm{f}_{\mathrm{fp}}=16 \mathrm{MHz}$
			-	30	-	ns	at $\mathrm{f}_{\text {cp }}=8 \mathrm{MHz}$
$\overline{\mathrm{WR}} \uparrow \rightarrow$ address valid time	twhax	$\overline{\mathrm{WR}}$, Address pins	-	tcp / 2 - 10	-	ns	
	twнLн	$\overline{\mathrm{WR}}$, ALE	-	tcp / 2-15	-	ns	
$\overline{\overline{W R}} \downarrow \rightarrow$ CLK \uparrow time	twLCH	$\overline{\mathrm{WR}}$, CLK	-	tcp / 2-20	-	ns	

Notes : • tcp : See (1) Clock Timing Ratings.

- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

MB90470 Series

MB90470 Series

(7) Ready Input Timing
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
RDY setup time	tryhs	RDY	-	45	-	ns	
			-	70	-	ns	$\mathrm{f}_{\mathrm{pp}}=8 \mathrm{MHz}$
RDY hold time	trүнн		-	0	-	ns	

Notes : • If the RDY setup time is not sufficient, use the auto ready function.

- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$
- If input from the RDY pin, note that the AC ratings must be satisfied so that the chip will not drive recklessly.

(8) Hold Timing
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Pin floating $\rightarrow \overline{\text { HAK }} \downarrow$ time	txhaL	HAK	-	30	tcp	ns	
$\overline{\text { HAK }} \downarrow \rightarrow$ valid data time	thahv	$\overline{\text { HAK }}$		tcp	2 tcp	ns	

Notes : • tcp: See (1) Clock Timing Ratings.

- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V} \mathrm{cc} 5$
- If the HRQ pin is read, at least one cycle is required before the $\overline{\mathrm{HAK}}$ pin changes.

MB90470 Series

(9) UART Timing
$\left(\mathrm{V}\right.$ cc $=2.7 \mathrm{~V}$ to 3.6 V , $\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	-	Internal shift clock mode output pin $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsov	-		-80	+ 80	ns	
				- 120	+ 120	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		100	-	ns	
				200	-	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tsHIX	-		tcp	-	ns	
Serial clock "H" pulse width	tshsL	-	External shift clock mode output pin $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp	-	ns	
Serial clock "L" pulse width	tsısh	-		4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tslov	-		-	150	ns	
				-	200	ns	$\mathrm{fcp}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		60	-	ns	
				120	-	ns	$\mathrm{fcp}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		60	-	ns	
				120	-	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$

Notes: - These AC characteristics are for operation in CLK synchronous mode.

- C_{L} is the load capacitance applied to pins during testing.
- tcp : See (1) Clock Timing Ratings.
- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

MB90470 Series

- Internal Shift Clock Mode

- External Shift Clock Mode

MB90470 Series

(10) I/O Expanded Serial Interface Timing
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pinname	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	-	Internal shift clock mode output pin $C \mathrm{~L}=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tslov	-		-80	+ 80	ns	
				- 120	+ 160	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		100	-	ns	
				200	-	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	-		tcp	-	ns	
Serial clock "H" pulse width	tshsL	-	External shift clock mode output pin $C \mathrm{~L}=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp	-	ns	
Serial clock "L" pulse width	tsLSH	-		4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	-		-	150	ns	
				-	200	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$
Valid SIN \rightarrow SCK \uparrow	tivsh	-		60	-	ns	
				120	-	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$
SCK $\uparrow \rightarrow$ valid SIN hold time	tsHIX	-		60	-	ns	
				120	-	ns	$\mathrm{f}_{\mathrm{cp}}=8 \mathrm{MHz}$

Notes : • These AC ratings are for operation in CLK synchronous mode.

- C_{L} is the load capacitance applied to pins during testing.
- tcp : See (1) Clock Timing Ratings.
- Values shown are target values.
- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

MB90470 Series

- Internal shift clock mode

- External shift clock mode

MB90470 Series

(11) $I^{I} C$ Timing

V cc $=2.7 \mathrm{~V}$ to 3.6 V , $\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	$\begin{array}{\|c} \text { Sym- } \\ \text { bol } \end{array}$	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
SCL clock frequency	fscl	-	-	0	100	kHz	
Bus free time between stop and start	tbus	-		4.7	-	$\mu \mathrm{s}$	
Hold time (resend) start	thdsta	-		4.0	-	$\mu \mathrm{s}$	First clock pulse is generated after this interval.
SCL clock "L" status hold time	tow	-		4.7	-	$\mu \mathrm{s}$	
SCL clock "H" status hold time	tнін	-		4.0	-	$\mu \mathrm{s}$	
Resend start condition setup time	tsusta	-		4.7	-	$\mu \mathrm{s}$	
Data hold time	thdoat	-		0	-	$\mu \mathrm{s}$	
Data setup time	tsudat	-		40	-	ns	
SDA and SCL signal rise time	t_{R}	-		-	1000	ns	
SDA and SCL signal fall time	tF	-		-	300	ns	
Stop condition setup time	tsusto	-		4.0	-	$\mu \mathrm{s}$	

Note : Vcc $=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

MB90470 Series

(12) Timer Input Timing
$\left(\mathrm{V}\right.$ cc $=2.7 \mathrm{~V}$ to 3.6 V , $\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttiwn ttww	TINO, INO, IN1, PWC0 to PWC3	-	4 tcp	-	ns	

Notes : • tcp : See (1) Clock Timing Ratings.

- $\mathrm{Vcc}=\mathrm{Vcc} 3=\mathrm{Vcc5}$

(13) Timer Output Timing
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
CLK $\uparrow \rightarrow$ Tout change time PPG0 to PPG5 change time OUT0 to OUT5 change time	too	TOTO, PPG0 to PPG5, OUT0 to OUT5	80 pF load	30	-	ns	

Note : Vcc $=$ Vcc3 $=\mathrm{V}_{\mathrm{cc}} 5$

CLK

Tout,
PPG0 to PPG5,
OUT0 to OUT5

MB90470 Series

(14) Trigger Input Timing
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttrgh ttrgl	ADTG, IRQ0 to IRQ7	-	5 tcp	-	ns	In normal operation
				1	-	$\mu \mathrm{s}$	Stop mode

Notes : • tcp : See (1) Clock Timing Ratings.

- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

(15) Up/down Counter Timing

Notes : • tcp : See (1) Clock Timing Ratings.

- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{cc} 3=\mathrm{V} c \mathrm{c} 5$

MB90470 Series

MB90470 Series

(16) Chip Select Output Timing

Parameter	Sym-bol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Chip select output valid time $\rightarrow \overline{\mathrm{RD}} \downarrow$	tsvRL	$\mathrm{CSO} \frac{\text { to } \mathrm{CD}}{\mathrm{RD}} \text {, }$	-	tcp / 2 - 10	-	ns	
Chip select output valid time $\rightarrow \overline{\mathrm{WR}} \downarrow$	tsvwL	$\begin{aligned} & \text { CS0 to CS3, } \\ & \hline \text { WRH, } \\ & \hline \end{aligned}$	-	tcp / 2 - 10	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ chip select output valid time	trhsv	$\begin{gathered} \overline{\mathrm{RD},} \\ \text { CS0 to } \mathrm{CS} 3 \end{gathered}$	-	tcp / 2 - 20	-	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow$ chip select output valid time	twhsv	$\overline{\text { WRH, }} \overline{\text { WRL, }}$ CSO to CS3	-	tcp / 2 - 20	-	ns	

Notes : • tcp : See (1) Clock Timing Ratings.

- $\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} 3=\mathrm{V}_{\mathrm{cc}} 5$

Note: The chip select output signal changes at the same time due to the structure of the internal bus, leading to the possibility of a bus fight. AC warranty does not apply between ALE output signals and chip select output signals.

MB90470 Series

5. A/D Converter Electrical Characteristics

$\left(\mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=1.8 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Sym-bol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	$\begin{aligned} & \text { at } \mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Vcc}= \\ & 2.2 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$
					± 4.0	LSB	$\begin{aligned} & \text { at } \mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Vcc}= \\ & 1.8 \mathrm{~V} \text { to } 2.2 \mathrm{~V} \end{aligned}$
Linear error	-	-	-	-	± 2.5	LSB	$\begin{aligned} & \text { at } \mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{Vc}= \\ & 2.2 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$
					± 3.0	LSB	$\begin{aligned} & \text { at } \mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{Vcc}= \\ & 1.8 \mathrm{~V} \text { to } 2.2 \mathrm{~V} \end{aligned}$
Differential linear error	-	-	-	-	± 1.9	LSB	$\begin{aligned} & \text { at } \mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{~V}_{\mathrm{cc}}= \\ & 2.2 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$
					± 2.4	LSB	$\begin{aligned} & \text { at } \mathrm{V}_{\mathrm{cc}}=\mathrm{AV}_{\mathrm{cc}}= \\ & 1.8 \mathrm{~V} \text { to } 2.2 \mathrm{~V} \end{aligned}$
Zero transition voltage	Vot	AN0 to AN7	AVss - 1.5 LSB	AV ss + 0.5 LSB	AV ss + 2.5 LSB	mV	$\begin{aligned} & \text { at } \mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{Vc}= \\ & 2.2 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$
			AVss - 2.0 LSB	AV ss +0.5 LSB	AV ss + 3.0 LSB	mV	$\begin{aligned} & \text { at } \mathrm{V} \mathrm{cc}=\mathrm{AV}_{\mathrm{cc}}= \\ & 1.8 \mathrm{~V} \text { to } 2.2 \mathrm{~V} \end{aligned}$
Full scale transition voltage	Vfst	AN0 to AN7	AVRH - 3.5 LSB	AVRH - 1.5 LSB	AVRH + 0.5 LSB	mV	$\begin{aligned} & \text { at } \mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{Vc}= \\ & 2.2 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$
			AVRH - 4.0 LSB	AVRH - 1.5 LSB	AVRH + 1.0 LSB	mV	$\begin{aligned} & \text { at } \mathrm{V}_{\mathrm{cc}}=\mathrm{AV}_{\mathrm{cc}}= \\ & 1.8 \mathrm{~V} \text { to } 2.2 \mathrm{~V} \end{aligned}$
Conversion time	-	-	5.8125*1	-	-	$\mu \mathrm{s}$	at $\mathrm{AVRH} \geq 2.7 \mathrm{~V}$
Analog port input current	Ialn	AN0 to AN7	-	0.1	10	$\mu \mathrm{A}$	
Analog input voltage	$V_{\text {AIN }}$	AN0 to AN7	AVss	-	AVRH	V	
Reference voltage	-	AVRH	AV ss +2.2	-	AVcc	V	$\begin{aligned} & \text { at } \mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Vcc}= \\ & 2.2 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$
			$A V \mathrm{ss}+1.8$	-	AVcc	V	$\begin{aligned} & \text { at } \mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{Vc}= \\ & 1.8 \mathrm{~V} \text { to } 2.2 \mathrm{~V} \end{aligned}$
Supply current	I_{A}	AVcc	-	1.2	4.4	mA	
	IAH	AVcc	-	-	5*2	$\mu \mathrm{A}$	
Reference voltage supply current	IR	AVRH	-	95	170	$\mu \mathrm{A}$	
	IRH	AVRH	-	-	$5^{* 2}$	$\mu \mathrm{A}$	
Inter-channel variation	-	AN0 to AN7	-	-	4	LSB	

*1 : At machine clock frequency 16 MHz .
*2 : Current with A/D converter not operating, and CPU in stop mode $(\mathrm{V} c \mathrm{c}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=3.0 \mathrm{~V})$

MB90470 Series

Notes : • Vcc = Vcc3 = Vcc5

- The relative error increases as |AVRH - AV ss| is reduced.
- Observe the following conditions in applying output impedance on the external circuits of the analog input.
Output impedance on the external circuit is recommended to be $6 \mathrm{k} \Omega$ or less.
If external capacitance is used, it is recommended that this be several thousand times the level of internal capacitors in view of the effects of voltage division between the external capacitor and the interior of the chip.
- If the output impedance of the external circuits is too high, the analog voltage sampling time may be insufficient.
(sampling time $=3.00 \mu \mathrm{~s}$ at machine clock frequency 20 MHz).

< Reference Data >

- Analog Input Circuit

- Model analog input circuit

Note : Values shown here are intended as guidelines.

- A/D Operating Frequency Restrictions

Supply voltage	A/D conversion time $[\mu \mathbf{s}]$	Machine clock frequency
$3.6 \mathrm{~V} \geq \mathrm{AVcc} \geq 3.0 \mathrm{~V}$	4.650	20 MHz
$3.6 \mathrm{~V} \geq \mathrm{AVcc} \geq 2.7 \mathrm{~V}$	5.813	16 MHz
$2.7 \mathrm{~V}>\mathrm{AVcc} \geq 2.6 \mathrm{~V}$	6.643	14 MHz
$2.6 \mathrm{~V}>\mathrm{AVcc} \geq 2.5 \mathrm{~V}$	7.750	12 MHz
$2.5 \mathrm{~V}>\mathrm{AVcc} \geq 2.4 \mathrm{~V}$	8.455	11 MHz
$2.4 \mathrm{~V}>\mathrm{AVcc} \geq 2.3 \mathrm{~V}$	9.300	10 MHz
$2.3 \mathrm{~V}>\mathrm{AVcc} \geq 2.2 \mathrm{~V}$	11.63	8 MHz
$2.2 \mathrm{~V}>\mathrm{AVcc} \geq 2.1 \mathrm{~V}$	15.50	6 MHz
$2.1 \mathrm{~V}>\mathrm{AV}_{\mathrm{cc}} \geq 2.0 \mathrm{~V}$	23.25	4 MHz
$2.0 \mathrm{~V}>\mathrm{AVcc} \geq 1.9 \mathrm{~V}$	46.50	2 MHz
$1.9 \mathrm{~V}>\mathrm{AVcc} \geq 1.8 \mathrm{~V}$	93.00	1 MHz

MB90470 Series

- Use of the X0/X1, X0A/X1A Pins

Use with a crystal oscillator

In normal use ($\mathrm{Vcc}=2 \mathrm{~V}$ or higher)
Pull-up resistance 1, 2
Damping resistance 1, 2
C1 to C4
For all pins, consult regarding manufacturer of oscillator.
(Sample operation using Vcc $=2 \mathrm{~V}$, $\mathrm{f}=5 \mathrm{MHz}$ or less)
Pull-up resistance $1=5.1 \mathrm{k} \Omega$
Pull-up resistance $2=510 \mathrm{k} \Omega$
Damping resistance $1=0 \Omega$
Damping resistance $2=39 \mathrm{k} \Omega$
$\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$
$\mathrm{C} 3=\mathrm{C} 4=30 \mathrm{pF}$

- Sample use of external clock input

6. Flash Memory Program/Erase Characteristics

Parameter	Conditions	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V} \mathrm{CC}=3.3 \mathrm{~V} \end{aligned}$	-	1	15	s	Excludes 00 н programming prior erasure
Chip erase time		-	7	-	s	Excludes 00 н programming prior erasure
Word (16-bit) programming time		-	16	3600	$\mu \mathrm{s}$	Excludes system-level overhead
Erase/Program cycle	-	1000	-	-	cycle	
Data hold time	-	100000	-	-	h	

MB90470 Series

SAMPLE CHARACTERISTICS

(1) "H" level output voltage

(3) "H" level input voltage/ "L" level input voltage (CMOS input)

$$
\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{cc}}
$$

(2) "L" level output voltage

(4) "H" level input voltage/ "L" level input voltage (hysteresis input)

$$
\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{cc}}
$$

MB90470 Series

(5) Supply Current ($\mathrm{f}_{\mathrm{cp}}=$ internal stroke frequency)

- MASK versions

MB90470 Series

- FLASH versions

MB90470 Series

(Continued)

MB90470 Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90473PF		
MB90474PF	100-pin plastic QFP	
MB90477PF	(FPT-100P-M06)	
MB90478PF		
MB90F474LPF		
MB90F474HPF		
MB90473PFV		
MB90474PFV	100-pin plastic LQFP	
MB90478PFV	(FPT-100P-M05)	
MB90F474LPFV		

MB90470 Series

PACKAGE DIMENSIONS

| 100-pin plastic QFP | Note 1) | *: These dimensions do not include resin protrusion. |
| :---: | :---: | :---: | :---: |
| (FPT-100P-M06) | Note 2) | Pins width and pins thickness include plating thickness. |
| | Note 3) | Pins width do not include tie bar cutting remainder. |

© 2002 FUJTSU LIITED FIOOOOSS-C.5.5
Dimensions in mm (inches)
Note : The values in parentheses are reference values.
(Continued)

MB90470 Series

MB90470 Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: R/W :Readable and writable
 X :Undefined
 RESV:Reserved bit

