32 kHz Clock CMOS IC with Digital Trimming and Alarm #### **Features** 32 kHz voltage regulated oscillator 1.1 - 2.2 V operating voltage range Integrated capacitors for digital trimming Suitable for up to 12.5 pF quartz Trimming inputs insensitive to stray capacitance #### Output pulse formers Mask options for motor period and pulse width Low resistance output for bipolar stepping motor Alarm function Motor-fast-test function ### **Pad Configuration** General Description The e1467D is an integrated The e1467D is an integrated circuit in CMOS Silicon Gate Technology for analog clocks. It consists of a 32 kHz oscillator, frequency divider, output pulse formers, push-pull motor drivers and alarm output. Integrated capacitors are mask-selectable to accomodate the external quartz crystal. Additional capacitance can be selected through pad bonding, for trimming the oscillator frequency. ### **Absolute Maximum Ratings** | Parameters | Symbol | Value | Unit | |--|------------------|--|------| | Supply voltage | V _{SS} | –0.3 to 5 V | V | | Input voltage range, all inputs | $V_{\rm IN}$ | $(V_{SS} - 0.3 \text{ V})$ V_{IN} $(V_{DD} + 0.3 \text{ V})$ | V | | Output short circuit duration | | indefinite | | | Power dissipation (DIL package) | P _{tot} | 125 mW | mW | | Operating ambient temperature range | T _{amb} | −20 to +70 | °C | | Storage temperature range | T _{stg} | -40 to + 125 | °C | | Lead temperature during soldering at 2 mm distance, 10 seconds | T_{sld} | 260 | °C | Absolute maximum ratings define parameter limits which, if exceeded, may permanently change or damage the device. All inputs and outputs in TEMIC Semiconductors circuits are protected against electrostatic discharges. However, precautions to minimize the build-up of electro-static charges during handling are recommended. This circuit is protected against supply voltage reversal for typically 5 minutes. Rev. A1, 01-Apr-99 ^{*)} The pads for V_{DD} and OSCOUT are interchangeable per mask option ^{**)} The pads for ALIN/-MTEST and MOT1L are inter changeable per mask-option ## **Functional Description** #### **Oscillator** An oscillator inverter with feedback resistor is provided for generation of the 32768 Hz clock frequency. Values for the fixed capacitors at OSCIN and OSCOUT are mask-selectable (see note 3 of operating characteristics). Four control inputs SC1 to SC4 enable the addition of integrated trimming capacitors to OSCIN and OSCOUT, providing 15 tuning steps. #### **Trimming Capacitors** A frequency variation of typ. 4 ppm for each tuning step is obtained by bonding the capacitor switch pads to V_{DD} . As none of these pads are bonded, the IC is in an untrimmed state. Figure 4 shows the trimming curve characteristic. Note: For applications which utilize this integrated trimming feature, TEMIC will determine optimum values for the integrated capacitors Coscin and Coscout. #### **Motor Drive Output** The e1467D contains two push-pull output buffers for driving bipolar stepping motors. During a motor pulse, the n-channel device of one buffer and the p-channel device of the other buffer will be activated. Both n-channel transistor are on and conducting, between output pulses. The outputs are protected against inductive voltage spikes with diodes to both supply pins. The motor output period and pulse width are mask programmable, as listed below: Available motor periods (T_M): 125, 250, 500 ms and 2, 16 s Available max. pulse widths (t_M) : 15, 6, 23.4, 31.25, 46.9 ms Available motor periods for motor test (T_{MT}): 250, 500 ms and 1 s **Note:** The following constraints for combination of motor period and pulse widths have to be considered: $T_M = 4 * t_M, T_{MT} = 4 * t_M$ or alternatively $T_M = 2 * t_M, T_{MT} = 2 * t_M$ #### **Alarm Outputs** The alarm output driver consists of push-pull stage for driving a speaker via an external bipolar transistor. The output is configured for npn and pnp bipolar capability. The output is an alarm tone modulated by a low frequency. Tone frequencies, modulation frequencies, and on/off times are selectable via the metal mask option. #### **Alarm Input** A debounced alarm input is provided. Alarm activation is either to $V_{\rm DD}$ or V_{SS} by a mask option. #### **Test Functions** For test purposes the ALIN/MTEST pad is open. With a high resistance probe (R $10\,M$ C $20\,pF$), a test frequency f_{TEST} of 128 Hz can be measured at the ALIN/MTEST pad. Connecting ALIN/MTEST (for at least 32 ms) to the opposite polarity for alarm activation changes the motor period from the selected value to T_{MT} (mask-selectable) while the pulse width remains unaffected. This feature can be used for testing the mechanical parts of the clock. Figure 1. Functional test #### **Test Crystal Specification** $\begin{array}{ll} \text{Oscillation frequency} & \text{f}_{OSC} = 32768 \text{ Hz} \\ \text{Series resistance} & \text{R}_S = 30 \text{ k} \\ \text{Static capacitance} & \text{C}_O = 1.5 \text{ pF} \\ \text{Dynamic capacitance} & \text{C}_1 = 3.0 \text{ fF} \end{array}$ Load capacitance C_L optionally 10 or 12.5 pF 2 (5) Rev. A1 01-Apr-99 ## **Operating Characteristics** $V_{SS}=0,\,V_{DD}=1.5$ V, $T_{amb}=+25^{\circ}$ C, unless otherwise specified All voltage levels are measured with reference to V_{SS} . Test crystal as specified below. | Parameters | Test Conditions / Pins | Symbol | Min. | Тур. | Max. | Unit | |---|---|-----------------------------------|-------------|------|------|------| | Operating voltage | | $V_{ m DD}$ | 1.1 | 1.5 | 2.2 | V | | Operating temperature | | T _{amb} | -20 | | +70 | °C | | Operating current | $R_1 = \infty$, note 2 | I_{DD} | | 1 | 3 | A | | Motor drive output | | | | | | | | Motor output current | $V_{DD} = 1.2 \text{ V}, R_1 = 200$ | $I_{\mathbf{M}}$ | 4.3 | | | mA | | Motor period | | T _M Mask option | | n | | | | Motor period during motor | | T_{MT} | Mask option | | | | | test | | | | | | | | Motor pulse width | | t _M | Mask option | | n | | | Oscillator | | | | | | | | Startup voltage | Within 2 s | V _{START} | 1.2 | | 2.2 | V | | Frequency stability | $V_{DD} = 100 \text{ mV}$
$V_{DD} = 1.1 \text{ to } 2.2 \text{ V}$ | f/f | | 0.1 | 0.2 | ppm | | Integrated input capacitance | Note 3 | Coscin | Mask option | | | | | Integrated output capacitance | | Coscout | Mask option | | | | | Input current SC1 to SC4 | $V_{IN} = 0.2 \text{ V}$ | I _{SCINL} | 1 | 5 | 25 | A | | - | $V_{\rm IN} = V_{\rm DD}$, note 5 | I _{SCINH} | 0.05 | 0.15 | 0.5 | A | | Alarm/output | | | | | | | | Output current for driving npn-transistor | $V_{DD} = 1.2 \text{ V}$ | | | | | | | n-channel | $R_3 = 100 \text{ k}$ | I _{ANn} | 1 | 3 | 10 | A | | p-channel | $R_2 = 1 \text{ k}$, note 2, note 4 | I_{ANp} | -0.5 | -1 | | mA | | Output current for driving pnp-transistor | $V_{DD} = 1.2 \text{ V}$ | • | | | | | | n-channel | R ₃ = 1 k | I _{APn} | 0.5 | 1 | | mA | | p-channel | $R_2 = 100 \text{k}$, note 2, note 4 | I _{APp} | -1 | -2 | -10 | A | | Alarm options | | | | | | • | | Tone frequency | | f_A | Mask option | | Hz | | | Modulation frequency | | f_{MOD} | Mask option | | | Hz | | On/Off time | | t _{ON} /t _{OFF} | Mask option | | S | | | Alarm input/motor test | | | | | | • | | Input current | ALIN = V _{DD} , peak current | I _{AINH} | 0.6 | 3 | 10 | A | | Input current | $ALIN = V_{SS}$, peak current | I _{AINL} | -0.6 | -3 | -10 | A | | Input debounce delay | | t _{AIN} | 23.4 | | 31.2 | ms | Note 1: Typical parameters represent the statistical mean values Note 2: See test circuit Note 3: Values can be selected in 1 pF steps. A total capacitance $(C_{OSCIN} + C_{OSCOUT})$ of 38 pF is available **Note 4:** npn or pnp driving transistors defined by mask options Note 5: I_{SCINH} is the peak current of a pulsed current with duty cycle 1:63. Average current is always smaller than 10 nA Rev. A1, 01-Apr-99 Figure 2. Motor output signal during normal operation and during motor test Figure 3. Alarm operation 4 (5) Rev. A1 01-Apr-99 Figure 4. Typical trimming curve characteristic for T_M of 2 s $C_{OX}\,\mbox{means}$ frequency deviation due to production process variations. Trimming inputs SC1 ... SC4 are binary weighted, i.e., SC1 ... SC4 = 0 corresponds to trimming step 0 SC1 ... SC4 = 1 corresponds to trimming step 15 LSB = SC1 #### We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423 Rev. A1, 01-Apr-99