
# SK 80 MBBB 055



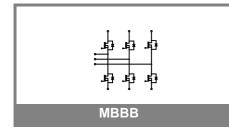
SEMITOP® 3

### **MOSFET Module**

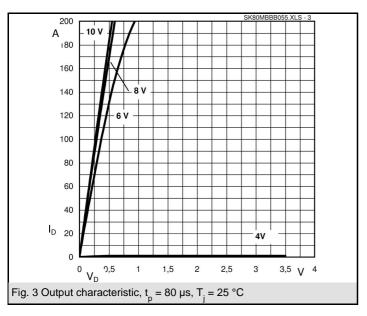
#### **SK80MBBB055**

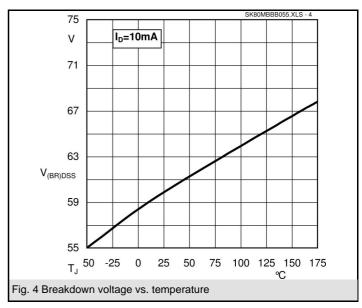
Publish Data

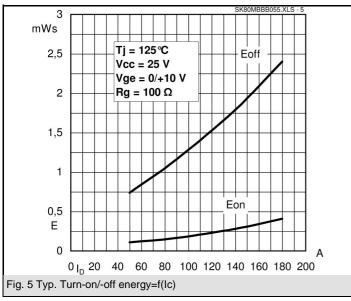
#### **Features**


- Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- Trench-gate technologyShort internal connections and low inductance case

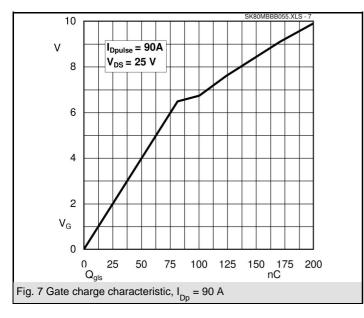
### **Typical Applications\***

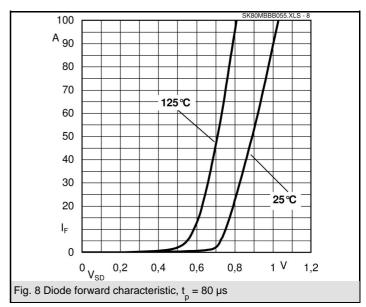

- Low power SMPS
- EV vehicles
- 1) Maximum PCB temperature, at pins contact, = 85°C
- 2) R<sub>ds(on)</sub> = chip level value


| Absolute                          | Maximum Ratings                                  | T <sub>s</sub> = 25 °C, unless otherwise specified |       |  |  |  |  |
|-----------------------------------|--------------------------------------------------|----------------------------------------------------|-------|--|--|--|--|
| Symbol                            | Conditions                                       | Values                                             | Units |  |  |  |  |
| MOSFET                            |                                                  |                                                    |       |  |  |  |  |
| $V_{DSS}$                         |                                                  | 55                                                 | V     |  |  |  |  |
| $V_{GSS}$                         |                                                  | ± 20                                               | V     |  |  |  |  |
| I <sub>D</sub>                    | $T_s = 25 (80) ^{\circ}C; 1)$                    | 117 (87)                                           | Α     |  |  |  |  |
| I <sub>DM</sub>                   | $t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}C;$   | 234 (174)                                          | Α     |  |  |  |  |
| T <sub>j</sub>                    |                                                  | - 40 <b>+</b> 150                                  | °C    |  |  |  |  |
| Inverse diode                     |                                                  |                                                    |       |  |  |  |  |
| I <sub>F</sub> = - I <sub>D</sub> | T <sub>s</sub> = 25 (80) °C;                     | 117 (87)                                           | Α     |  |  |  |  |
| $I_{FM} = -I_{DM}$                | $t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$ | 234 (174)                                          | Α     |  |  |  |  |
| T <sub>j</sub>                    |                                                  | - 40 <b>+</b> 150                                  | °C    |  |  |  |  |
| Freewheeling CAL diode            |                                                  |                                                    |       |  |  |  |  |
| $I_F = -I_D$                      | $T_s = ^{\circ}C$                                |                                                    | Α     |  |  |  |  |
| T <sub>j</sub>                    |                                                  |                                                    | °C    |  |  |  |  |
| T <sub>stg</sub>                  |                                                  | - 40 <b>+</b> 125                                  | °C    |  |  |  |  |
| T <sub>sol</sub>                  | Terminals, 10 s                                  | 260                                                | °C    |  |  |  |  |
| V <sub>isol</sub>                 | AC, 1 min (1s)                                   | 2500 / 3000                                        | V     |  |  |  |  |

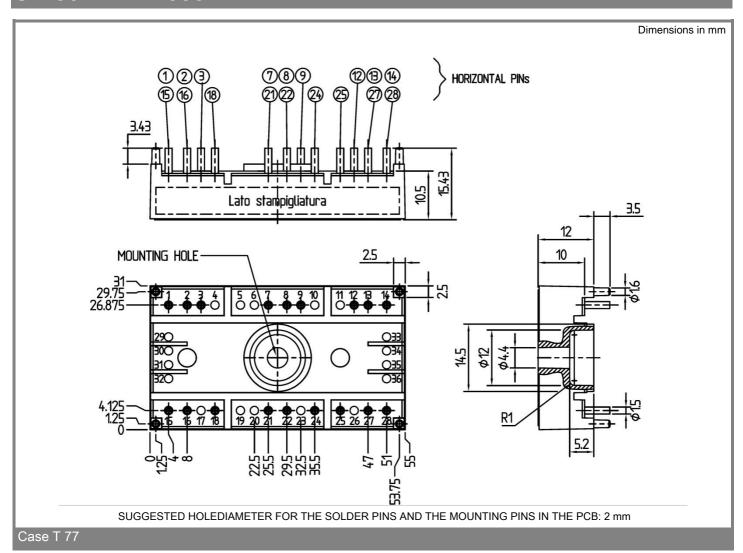

| Characte             | ristics                                                                   | $T_s = 25 ^{\circ}C$ , | r <sub>s</sub> = 25 °C, unless otherwise specified |      |          |  |  |  |
|----------------------|---------------------------------------------------------------------------|------------------------|----------------------------------------------------|------|----------|--|--|--|
| Symbol               | Conditions                                                                | min.                   | typ.                                               | max. | Units    |  |  |  |
| MOSFET               |                                                                           |                        |                                                    |      |          |  |  |  |
| V <sub>(BR)DSS</sub> | $V_{GS} = 0 \text{ V}, I_{D} = 0.25 \text{ mA}$                           | 55                     |                                                    |      | V        |  |  |  |
| V <sub>GS(th)</sub>  | $V_{GS} = V_{DS}$ ; $I_D = 0.25 \text{ mA}$                               | 2,5                    | 3,2                                                | 4,5  | V        |  |  |  |
| I <sub>DSS</sub>     | $V_{GS} = 0 \text{ V}; V_{DS} = V_{DSS}; T_j = 25 \text{ °C}$             |                        |                                                    | 1    | μA       |  |  |  |
| I <sub>GSS</sub>     | $V_{GS} = \pm 20V ; V_{DS} = 0 V$                                         |                        | 2.2                                                | 100  | nA<br>mO |  |  |  |
| R <sub>DS(on)</sub>  | $I_D = 20 \text{ A}; V_{GS} = 10 \text{ V}; T_j = 25 ^{\circ}\text{C}$    |                        | 2,2                                                | 2,9  | mΩ       |  |  |  |
| R <sub>DS(on)</sub>  | $I_D = 20 \text{ A}; V_{GS} = 10 \text{ V}; T_j = 125 \text{ °C}$         |                        | 3,4                                                | 4,5  | mΩ       |  |  |  |
| C <sub>CHC</sub>     | per MOSFET                                                                |                        |                                                    |      | pF       |  |  |  |
| C <sub>iss</sub>     | under following conditions:                                               |                        | 10,6                                               |      | nF       |  |  |  |
| C <sub>oss</sub>     | $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$          |                        | 1,65                                               |      | nF       |  |  |  |
| C <sub>rss</sub>     |                                                                           |                        | 0,8                                                |      | nF       |  |  |  |
| L <sub>DS</sub>      |                                                                           |                        |                                                    |      | nΗ       |  |  |  |
| t <sub>d(on)</sub>   | under following conditions:                                               |                        | 438                                                |      | ns       |  |  |  |
| t <sub>r</sub> `´    | $V_{DD} = 25 \text{ V}; V_{GS} = 15 \text{ V};$<br>$I_{D} = 90 \text{ A}$ |                        | 398                                                |      | ns       |  |  |  |
| $t_{d(off)}$         | $R_G = 100 \Omega$                                                        |                        | 1444                                               |      | ns       |  |  |  |
| t <sub>f</sub>       |                                                                           |                        | 349                                                |      | ns       |  |  |  |
| R <sub>th(j-s)</sub> | per MOSFET (per module)                                                   |                        |                                                    | 1,1  | K/W      |  |  |  |
| Inverse diode        |                                                                           |                        |                                                    |      |          |  |  |  |
| $V_{SD}$             | $I_F = 50 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$           |                        | 0,9                                                |      | V        |  |  |  |
| I <sub>RRM</sub>     | under following conditions:                                               |                        |                                                    |      | Α        |  |  |  |
| $Q_{rr}$             | $I_F = A; T_{vj} = ^{\circ}C; R_G = \Omega$                               |                        |                                                    |      | μC       |  |  |  |
| t <sub>rr</sub>      | $V_R = A$ ; di/dt = A/ $\mu$ s                                            |                        |                                                    |      | ns       |  |  |  |
| Free-whe             | eling diode                                                               |                        |                                                    |      |          |  |  |  |
| $V_{F}$              | $I_F = A; V_{GS} = V$                                                     |                        |                                                    |      | V        |  |  |  |
| I <sub>RRM</sub>     | under following conditions:                                               |                        |                                                    |      | Α        |  |  |  |
| Q <sub>rr</sub>      | $I_F = A; T_{vi} = ^{\circ}C$                                             |                        |                                                    |      | μC       |  |  |  |
| t <sub>rr</sub>      | $V_r = A$ ; di/dt = A/ $\mu$ s                                            |                        |                                                    |      | ns       |  |  |  |
| Mechanical data      |                                                                           |                        |                                                    |      |          |  |  |  |
| M1                   | mounting torque                                                           | 2,25                   |                                                    | 2,5  | Nm       |  |  |  |
| w                    |                                                                           |                        | 30                                                 |      | g        |  |  |  |
| Case                 | SEMITOP® 3                                                                |                        | T 47                                               |      |          |  |  |  |





## SK 80 MBBB 055












## SK 80 MBBB 055





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.