NEC

User's Manual

IE-789831-NS-EM1

Emulation Board

Target Devices μ PD789830 Subseries

[MEMO]

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

- The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics America, Inc. (U.S.) • Filiale Italiana

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60

Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

Branch The Netherlands

Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

• Tyskland Filial

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 6253-8311 Fax: 6250-3583

Major Revisions in This Edition

Page	Description			
Throughout	 Addition of IE-78K0S-NS-A as supported in-circuit emulator Addition of NP-H100GC-TQ as supported emulation probe 			
pp. 12, 13	Figure 1-1 System Configuration Modification of shape of interface cable Modification of supply medium of the debugger to CD-ROM Modification of Notes 1 to 3			
p. 13	Addition of Table 1-1 Correspondence Between Emulation Probe and Conversion Socket/Conversion Adapter			
p. 15	Partial modification of Table 1-2 Basic Specifications			
p. 20	3.2 Switch and Jumper Settings on Main Unit • Addition of (2) Settings on the IE-78K0S-NS-A			
p. 23 of previous edition	Deletion of 3.3 Low-Voltage Emulation Setting			
p. 21	Addition of 3.3 Setting Power Supply Voltage of Target Interface			
pp. 22 to 25	 3.4.1 Overview of clock settings Change from "internal clock" in previous edition to "clock oscillator" Figure 3-3 External Circuits Used as System Clock Oscillator Addition of Vss pin in figure of (a) Clock oscillator Figure 3-4 When Using Clock That Is Already Mounted on Emulation Board (Main System Clock) to Figure 3-7 When Using User-Mounted Clock (Subsystem Clock) Change from "resonator" in previous revision to "clock oscillator or external clock" on target system Change from "clock generator" in previous edition to "external clock" in Figure 3-8 When Supplying Pulse from Target System 			
pp. 39, 40	Addition of APPENDIX B NOTES ON DESIGNING TARGET SYSTEM			

The mark ★ shows major revised points.

INTRODUCTION

Product Overview

The IE-789831-NS-EM1 is designed to be used with the IE-78K0S-NS or IE-78K0S-NS-A to debug the following target devices that belong to the 78K/0S Series of 8-bit single-chip microcontrollers.

• μPD789830 Subseries: μPD789830, 78F9831

Target Readers

This manual is intended for engineers who will use the IE-789831-NS-EM1 with the IE-78K0S-NS or IE-78K0S-NS-A to perform system debugging.

Engineers who use this manual are expected to be thoroughly familiar with the target device's functions and use methods and to be knowledgeable about debugging.

Organization

When using the IE-789831-NS-EM1, refer to not only this manual (supplied with the IE-789831-NS-EM1) but also the manual that is supplied with the IE-78K0S-NS or IE-78K0S-NS-A.

IE-78K0S-NS User's Manual

- Basic specifications
- System configuration
- · External interface functions

IE-789831-NS-EM1 User's Manual

- General
- Part names
- Installation
- Differences between target devices and target interface circuits

IE-78K0S-NS-A User's Manual

- Basic specifications
- System configuration
- · External interface functions

Purpose

This manual's purpose is to explain various debugging functions that can be performed when using the IE-789831-NS-EM1.

Terminology The meanings of certain terms used in this manual are listed below.

Term	Meaning
Emulation device	This is a general term that refers to the device in the emulator that is used to emulate the target device. It includes the emulation CPU.
Emulation CPU	This is the CPU block in the emulator that is used to execute user-generated programs.
Target device	This is the device to be emulated.
Target system	This includes the target program and the hardware provided by the user. When defined narrowly, it includes only the hardware.
IE system	This refers to the combination of the in-circuit emulator (IE-78K0S-NS or IE-78K0S-NS-A) and the emulation board (IE-789831-NS-EM1).

Conventions Data significance: Higher digits on the left and lower digits on the right

Note: Footnote for item marked with **Note** in the text

Caution: Information requiring particular attention

Remark: Supplementary information

preliminary versions. However, preliminary versions are not marked as such.

Document Name	Document Number
IE-78K0S-NS In-Circuit Emulator	U13549E
IE-78K0S-NS-A In-Circuit Emulator	U15207E
IE-789831-NS-EM1 Emulation Board	This manual
ID78K Series Integrated Debugger Ver. 2.30 or Later Operation Windows™ Based	U15185E
μPD789830 Subseries	U13679E

Caution The documents listed above are subject to change without notice. Be sure to use the latest documents when designing.

CONTENTS

	CHAPT	ER 1	GENERAL	11
	1.1	Syster	n Configuration	12
	1.2		are Configuration	
	1.3	Basic	Specifications	15
	СНАРТ	ER 2	PART NAMES	16
	2.1	Parts o	of Main Unit	17
	СНАРТ	ER 3	INSTALLATION	18
	3.1	Conne	ction	19
	3.2		and Jumper Settings on Main Unit	
*	3.3	Setting	g Power Supply Voltage of Target Interface	21
	3.4	Clock	Settings	22
		3.4.1	Overview of clock settings	22
		3.4.2	Main system clock settings	25
		3.4.3	Subsystem clock setting	29
	3.5	Extern	al Trigger	32
	CHAPT	ER 4	DIFFERENCES BETWEEN TARGET DEVICE AND TARGET INTERFACE CIRC	UIT33
	APPEN	DIX A	EMULATION PROBE PIN ASSIGNMENT TABLE	37
*	APPEN	DIX B	NOTES ON DESIGNING TARGET SYSTEM	39

LIST OF FIGURES

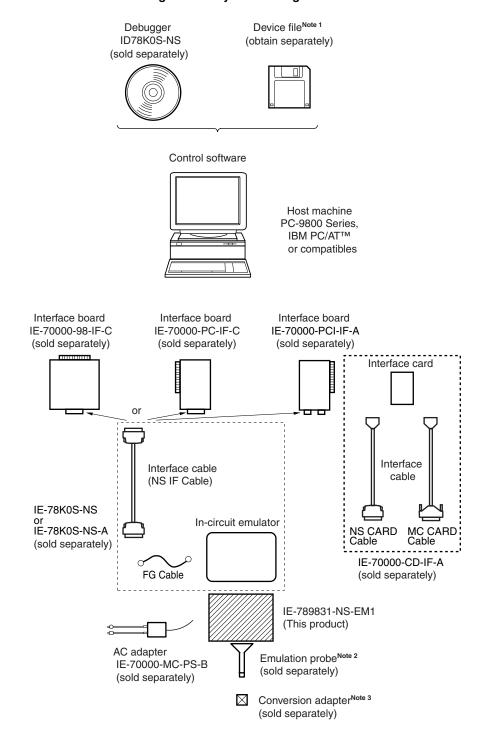
Figure	re No. Title	Page
1-1	System Configuration	12
1-2	Basic Hardware Configuration	14
2-1	IE-789831-NS-EM1 Part Names	17
3-1	Connection of Emulation Probe	19
3-2	Connecting TP1 and Target System Power Supply Voltage	21
3-3	External Circuits Used as System Clock Oscillator	22
3-4	When Using Clock That Is Already Mounted on Emulation Board (Main System Clock)	23
3-5	When Using Clock That Is Already Mounted on Emulation Board (Subsystem Clock)	23
3-6	When Using User-Mounted Clock (Main System Clock)	24
3-7	When Using User-Mounted Clock (Subsystem Clock)	24
3-8	When Supplying Pulse from Target System	25
3-9	Connections on Parts Board (Main System Clock)	26
3-10	Crystal Oscillator (Main System Clock)	27
3-11	Pin Alignment of Crystal Oscillator and Socket (Main System Clock)	28
3-12	Connections on Parts Board (Subsystem Clock)	30
3-13	Crystal Oscillator (Subsystem Clock)	31
3-14	Pin Alignment of Crystal Oscillator and Socket (Subsystem Clock)	31
3-15	External Trigger Input Position	32
4-1	Equivalent Circuit of Emulation Circuit	35
B-1	Distance Between IE System and Conversion Adapter	39
B-2	Connection Conditions of Target System (When NP-100GC Is Used)	40
B-3	Connection Conditions of Target System (When NP-H100GC-TQ Is Used)	40

LIST OF TABLES

Table	e No.	Title	Page
1-1	Correspondence Between Emulation Probe	e and Conversion Adapter	13
1-2	Basic Specifications		15
3-1	Switch and Jumper Settings on IE-78K0S-I	NS	20
3-2	Switch and Jumper Settings on IE-78K0S-I	NS-A	20
3-3	Setting Power Supply of Target Interface		21
3-4	Main System Clock Settings		25
3-5	Subsystem Clock Settings		29
A-1	NP-100GC, NP-H100GC-TQ Pin Assignme	ents	37
B-1	Distance Between IE System and Convers	ion Adapter	39

CHAPTER 1 GENERAL

The IE-789831-NS-EM1 is a development tool for efficient debugging of hardware or software when using one of the following target devices that belong to the 78K/0S Series of 8-bit single-chip microcontrollers.


This chapter describes the IE-789831-NS-EM1's system configuration and basic specifications.

- Target devices
 - μ PD789830 Subseries

1.1 System Configuration

Figure 1-1 illustrates the IE-789831-NS-EM1's system configuration.

Figure 1-1. System Configuration

Notes 1. The device file is as follows, in accordance with the subseries.

 μ S×××DF789831: μ PD789830, 78F9831 Subseries

The device file can be downloaded from the web site of NEC Electronics

(http://www.necel.com/micro/)

2. The emulation probes NP-100GC and NP-H100GC-TQ are products of Naito Densei Machida Mfg. Co., Ltd.

For further information, contact Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-45-475-4191)

3. The conversion adapter TGC-100SDW is a product of TOKYO ELETECH CORPORATION.

For further information, contact Daimaru Kogyo Co., Ltd.
Tokyo Electronics Department (TEL: +81-3-3820-7112)

Osaka Electronics Department (TEL: +81-6-6244-6672)

Table 1-1. Correspondence Between Emulation Probe and Conversion Adapter

Package	Emulation Probe	Conversion Socket/Conversion Adapter
100-pin plastic LQFP	NP-100GC (probe length: 200 mm)	TGC-100SDW
(GC type)	NP-H100GC-TQ (probe length: 400 mm)	

1.2 Hardware Configuration

Figure 1-2 shows the IE-789831-NS-EM1's position in the basic hardware configuration.

Host machine

Interface board (sold separately)

Interface card (sold separately)

Figure 1-2. Basic Hardware Configuration

1.3 Basic Specifications

The basic specifications of the IE-789831-NS-EM1 are listed in Table 1-2.

Table 1-2. Basic Specifications

Parameter	Description		
Target device	μPD789830 Subseries		
System clock	3.58 MHz		
Main system clock supply	External: Input via an emulation probe from the target system nternal: Mounted on emulation board (3.58 MHz), or mounted on the parts board by the user		
Subsystem clock supply	External: Input via an emulation probe from the target system Internal: Mounted on the emulation board (32.768 kHz), or mounted on the parts board by the user		
Target interface voltage	V _{DD} = 2.7 to 5.0 V (same as that of target device) Operates on internal power supply (5 V) when target system is not connected		

*

CHAPTER 2 PART NAMES

This chapter introduces the parts of the IE-789831-NS-EM1 main unit.

The packing box contains the emulation board (IE-789831-NS-EM1), packing list, user's manual, and guarantee card.

If there are any missing or damaged items, please contact an NEC Electronics sales representative.

Fill out and return the guarantee card that comes with the main unit.

2.1 Parts of Main Unit

Figure 2-1 shows the part names of the IE-789831-NS-EM1.

0 0 LowVolt **EXTOUT** 0 Subsystem clock X2 USCLK 0 - EXTIN Subsystem clock ХЗ Main system clock X1 UMCLK CN JP1 -Probe connector CN1 100GC IE-789831-NS-EM1 LED1 USER VDD 0

Figure 2-1. IE-789831-NS-EM1 Part Names

CHAPTER 3 INSTALLATION

This chapter describes methods for connecting the IE-789831-NS-EM1 to the IE-78K0S-NS or IE-78K0S-NS-A, emulation probe, etc. Mode setting methods are also described.

Caution Connecting or removing components to or from the target system, or making switch or other setting changes must be carried out after the power supply to both the IE system and the target system has been switched OFF.

3.1 Connection

(1) Connection with IE-78K0S-NS or IE-78K0S-NS-A main unit

See the **IE-78K0S-NS User's Manual (U13549E)** for a description of how to connect the IE-789831-NS-EM1 to the IE-78K0S-NS^{Note}.

Note When using the IE-78K0S-NS-A, see the IE-78K0S-NS-A User's Manual (U15207E).

(2) Connection with emulation probe

See the **IE-78K0S-NS User's Manual (U13549E)** for a description of how to connect an emulation probe to the IE-789831-NS-EM1^{Note}.

On this board, connect the emulation probe to CN1.

Note When using the IE-78K0S-NS-A, see the IE-78K0S-NS-A User's Manual (U15207E).

Caution Incorrect connection may damage the IE system.

Be sure to read the emulation probe's user's manual for a detailed description of the connection method.

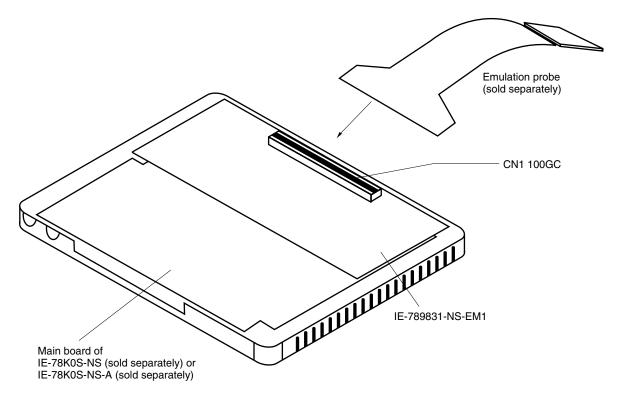


Figure 3-1. Connection of Emulation Probe

3.2 Switch and Jumper Settings on Main Unit

(1) Settings on the IE-78K0S-NS

When using the IE-789831-NS-EM1, set the switches and jumpers on the IE-78K0S-NS as shown in Table 3-1. For details of these switch and jumper settings, refer to the **IE-78K0S-NS User's Manual (U13549E)**.

Table 3-1. Switch and Jumper Settings on IE-78K0S-NS

	SW1	SW3	SW4	JP1	JP4
Setting	OFF	All switches ON (Fixed)	All switches ON (Fixed)	2 and 3 shorted	1 and 2 shorted

Caution Incorrect connection may damage the IE-789831-NS-EM1.

★ (2) Settings on the IE-78K0S-NS-A

When using the IE-789831-NS-EM1, set the switches and jumpers on the IE-78K0S-NS-A as shown in Table 3-

2. For details of these switch and jumper settings, refer to the IE-78K0S-NS-A User's Manual (U15207E).

Table 3-2. Switch and Jumper Settings on IE-78K0S-NS-A

	SW1		JP3
Setting	OFF	1 and 2 shorted (fixed)	Shorted (fixed)

Caution Incorrect connection may damage the IE-789831-NS-EM1.

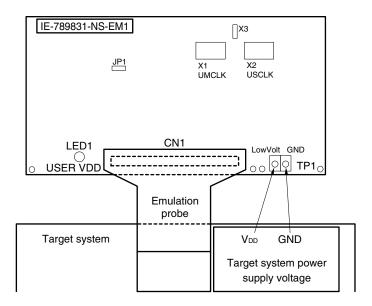
★ 3.3 Setting Power Supply Voltage of Target Interface

In the IE system, emulation is possible with a voltage of the same level as the power supply voltage of the target system.

When the target system is not connected, the IE system automatically operates with the emulator's internal power supply (5 V).

When debugging with a voltage that is the same level as that of the target system, supply the same voltage as that of the target system to the TP1 terminal pin of the IE-789831-NS-EM1 (the same applies when the voltage is 5 V).

Set the target voltage to between 2.7 and 5.0 V.


For how to select the operating power supply, refer to the ID78K Series Ver.2.30 or Later Operation Windows-Based User's Manual (U15185E).

Maximum current consumption of TP1
 2.7 to 5.0 V: Approximately 100 mA

Table 3-3. Setting Power Supply of Target Interface

Douger Cumply of Toyant Interfe	Integrated Debugger (ID78K0S-NS)	
Power Supply of Target Interface	Operating Power Supply Selection	
When connecting target system	2.7 to 5.0 V	Target
When not connecting target system	5 V	Internal

Figure 3-2. Connecting TP1 and Target System Power Supply Voltage

Caution Before connecting TP1 on the board and the target system power supply voltage, turn off the power to the IE-78K0S-NS or IE-78K0S-NS-A.

Remark The V_{DD} pin on the target system is exclusively used to control LED1 (USER VDD) that monitors whether the power supply of the target system is connected in the IE-789831-NS-EM1.

3.4 Clock Settings

3.4.1 Overview of clock settings

The main system clock and subsystem clock to be used during debugging can be selected from (1) to (3) below.

- (1) Clock that is already mounted on emulation board
- (2) Clock that is mounted by user
- (3) Pulse input from target system

If the target system includes a clock oscillator, select either (1) Clock that is already mounted on emulation board or (2) Clock that is mounted by user. For the clock oscillator, a resonator is connected to the target device and the target device's internal oscillator is used. An example of the external circuit is shown in part (a) of Figure 3-3. During emulation, the oscillator that is mounted on the target system is not used. Instead, the clock that is mounted on the emulation board installed in the IE-78K0S-NS or IE-78K0S-NS-A is used.

If the target system includes an external clock, select either (1) Clock that is already mounted on emulation board, (2) Clock that is mounted by user, or (3) Pulse input from target system.

For the external clock, a clock signal is supplied from outside of the target device and the target device's internal oscillator is not used. An example of the external circuit is shown in part (b) of Figure 3-3.

Caution

The IE system will be hung-up if the main system clock is not supplied normally. Moreover, be sure to input a rectangular wave as the pulse from the target system. There is no need to supply a clock to the X2 and XT2 pins. Also, even if a crystal resonator is connected directly to X1 (for the main system clock) or XT1 (for the subsystem clock), the target device will not operate.

Figure 3-3. External Circuits Used as System Clock Oscillator

(a) Clock oscillator

(b) External clock

Target device

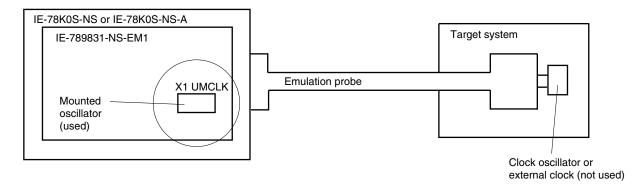
Vss

External clock

X1 or XT1

X2 or XT2

Crystal or ceramic resonator

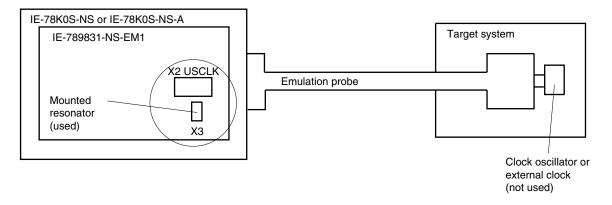

(1) Clock that is already mounted on emulation board

The crystal oscillator mounted on the IE-789831-NS-EM1 can be used.

(a) Main system clock

A crystal oscillator (X1 UMCLK) is already mounted on the emulation board. Its frequency is 3.58 MHz.

Figure 3-4. When Using Clock That Is Already Mounted on Emulation Board (Main System Clock)



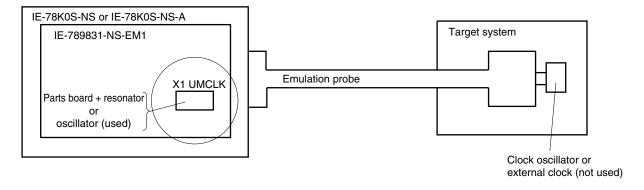
Remark The clock that is supplied by the oscillator of the IE-789831-NS-EM1 (encircled in the figure) is used.

(b) Subsystem clock

A crystal resonator (X3) is already mounted on the emulation board. Its frequency is 32.768 kHz

Figure 3-5. When Using Clock That Is Already Mounted on Emulation Board (Subsystem Clock)

Remark The clock that is supplied by the resonator of the IE-789831-NS-EM1 (encircled in the figure) is used.

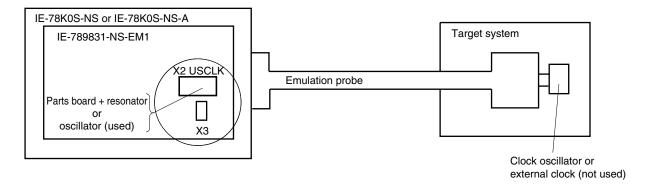

(2) Clock that is mounted by user

The user can mount any clock supported by the set specifications on the IE-789831-NS-EM1. This feature is effective when debugging at a different frequency than the clock already mounted.

(a) Main system clock

Remove the crystal oscillator (X1 UMCLK) that is already mounted on the emulation board, and mount the parts board on which the resonator to be used is mounted or mount the oscillator to be used.

Figure 3-6. When Using User-Mounted Clock (Main System Clock)

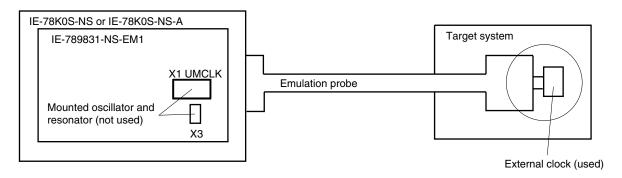


Remark The clock that is supplied by the resonator of the IE-789831-NS-EM1 (encircled in the figure) or the oscillator is used.

(b) Subsystem clock

Remove the parts board (X2 USCLK) that is already mounted on the emulation board, and mount the parts board on which the resonator to be used is mounted or mount the oscillator to be used.

Figure 3-7. When Using User-Mounted Clock (Subsystem Clock)


Remark The clock that is supplied by the resonator of the IE-789831-NS-EM1 (encircled in the figure) or the oscillator is used.

*

(3) Pulse input from target system

An external clock on the target system can be used as both the main system clock and subsystem clock via an emulation probe.

Figure 3-8. When Supplying Pulse from Target System

Remark The pulse that is supplied by the external clock on the target system (encircled in the figure) or the oscillator is used.

3.4.2 Main system clock settings

Table 3-4 shows the settings of the IE-789831-NS-EM1 when the main system clocks in (1) to (3) are used.

Table 3-4. Main System Clock Settings

Frequency of Main System C	IE-789831-NS-EM1	CPU Clock Source	
		X1 UMCLK	Selection (ID78K0S-NS)
(1) When using clock that is already mounted on emulation board		Oscillator	Internal
(2) When using clock mounted by user	Other than 3.58 MHz	Oscillator configured by user	
(3) When inputting pulse from target system		Oscillator (not used)	External

Caution When inputting a pulse from the target system, open the configuration dialog box when starting the integrated debugger (ID78K0S-NS) and select "External" in the area (Clock) for selecting the CPU's clock source (this selects the user's clock).

Remark The factory settings of the IE-789831-NS-EM1 are those listed above under "when using clock that is already mounted on emulation board".

(1) When using clock that is already mounted on emulation board

When the IE-789831-NS-EM1 is shipped, a 3.58 MHz crystal oscillator is already mounted in the IE-789831-NS-EM1's socket (X1 UMCLK). When using the factory-set mode settings, there is no need to make any other hardware settings.

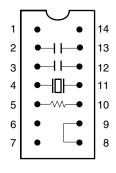
When starting the integrated debugger (ID78K0S-NS), open the configuration dialog box and select "Internal" in the area (Clock) for selecting the CPU's clock source (this selects the emulator's internal clock).

(2) When using clock mounted by user

Perform the settings described under either (a) or (b), depending on the type of clock to be used. When starting the integrated debugger (ID78K0S-NS), open the configuration dialog box and select "Internal" in the area (Clock) for selecting the CPU's clock source (this selects the emulator's internal clock).

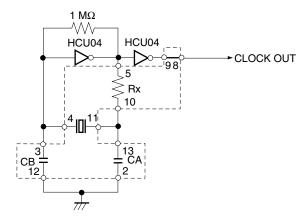
(a) When using a ceramic resonator or crystal resonator

- Items to be prepared
 - · Parts board
 - Ceramic resonator or crystal resonator
 - Resistor Rx


- Capacitor CA
- Capacitor CB
- Solder kit

<Steps>

<1> Solder the target ceramic resonator or crystal resonator, resistor Rx, capacitor CA, and capacitor CB (all with suitable oscillation frequencies) onto the parts board (as shown below).

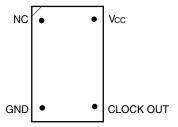

Figure 3-9. Connections on Parts Board (Main System Clock)

Parts board (X1 UMCLK)

Pin No.	Connection	
2-13	Capacitor CA	
3-12	Capacitor CB	
4-11	Ceramic resonator or crystal resonator	
5-10	Resistor Rx	
8-9	Shorted	

Circuit diagram

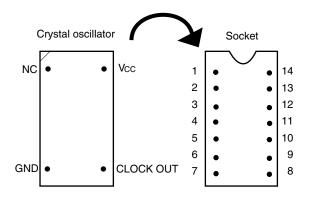
Remark The sections enclosed in broken lines indicate parts that are attached to the parts board.


- <2> Prepare the IE-789831-NS-EM1.
- <3> Remove the crystal oscillator that is mounted in the IE-789831-NS-EM1's socket (X1 UMCLK).
- <4> Connect the parts board (from <1> above) to the socket (X1 UMCLK) from which the crystal oscillator was removed. Check the pin 1 mark to make sure the board is mounted in the correct direction.
- <5> Make sure that the parts board is wired as shown in Figure 3-9 above.
- <6> Install the IE-789831-NS-EM1 in the IE-78K0S-NS or IE-78K0S-NS-A.

The above steps configure the following circuit and enable supply of the clock from the mounted resonator to the emulation device.

(b) When using a crystal oscillator

- Items to be prepared
 - Crystal oscillator (see pinouts shown in Figure 3-10)


Figure 3-10. Crystal Oscillator (Main System Clock)

<Steps>

- <1> Prepare the IE-789831-NS-EM1.
- <2> Remove the crystal oscillator that is mounted in the IE-789831-NS-EM1's socket (X1 UMCLK).
- <3> Connect a crystal oscillator to the socket (X1 UMCLK) from which the crystal oscillator was removed (in <2> above). Insert the pins of the crystal oscillator into the socket aligning the pins as shown in the figure below.

Figure 3-11. Pin Alignment of Crystal Oscillator and Socket (Main System Clock)

Crystal Oscillator Pin Name	Socket Pin No.
NC	1
GND	7
CLOCK OUT	8
Vcc	14

<4> Install the IE-789831-NS-EM1 in the IE-78K0S-NS or IE-78K0S-NS-A.

(3) When inputting pulse from target system

No hardware settings are required for this situation.

When starting the integrated debugger (ID78K0S-NS), open the configuration dialog box and select "External" in the area (Clock) for selecting the CPU's clock source (this selects the user's clock).

3.4.3 Subsystem clock setting

Table 3-5 shows the settings of the IE-789831-NS-EM1 when the subsystem clocks in (1) to (3) are used.

Table 3-5. Subsystem Clock Settings

Francisco (10 harden Olad		IE-789831-NS-EM1	
Frequency of Subsystem C	X2 USCLK	JP1	
(1) When using clock (X3) that is already mounted on emulation board	32.768 kHz	6 and 8 shorted	2 and 3 shorted
(2) When using clock mounted by user	Other than 32.768 kHz	Oscillator configured by user	
(3) When inputting pulse from target system		Not used	1 and 2 shorted

Caution Before setting JP1 to switch between the clock on the board and external clock, turn off the power of the IE-78K0S-NS or IE-78K0S-NS-A.

Remark The factory settings of the IE-789831-NS-EM1 are those listed above under "when using clock that is already mounted on emulation board".

(1) When using clock that is already mounted on emulation board

When the IE-789831-NS-EM1 is shipped, a 32.768 kHz crystal resonator (X3) and a parts board (X2 USCLK) on which pins 6 and 8 are shorted are already mounted on the IE-789831-NS-EM1. Short 2 and 3 of the jumper (JP1) on the IE-789831-NS-EM1. No settings are required on the integrated debugger (ID78K0S-NS).

(2) When using clock mounted by user

Perform the settings in (a) or (b) below, depending on the type of clock to be used. Short 2 and 3 of the jumper (JP1) on the IE-789831-NS-EM1.

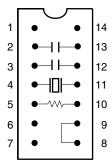
No settings are required on the integrated debugger (ID78K0S-NS).

(a) When using a ceramic resonator or crystal resonator

- Items to be prepared
 - Ceramic resonator or crystal resonator
- Capacitor CB

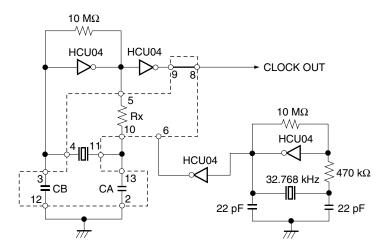
Resistor Rx

Solder kit


Capacitor CA

<Steps>

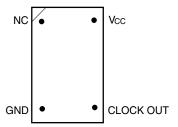
- <1> Prepare the IE-789831-NS-EM1.
- <2> Solder the target ceramic resonator or crystal resonator, resistor Rx, capacitor CA, and capacitor CB (all with suitable oscillation frequencies) onto the parts board (X2 USCLK).


Figure 3-12. Connections on Parts Board (Subsystem Clock)

Parts board (X2 USCLK)

Pin No.	Connection	
2-13	Capacitor CA	
3-12	Capacitor CB	
4-11	Ceramic resonator or crystal resonator	
5-10	Resistor Rx	
8-9	Shorted	

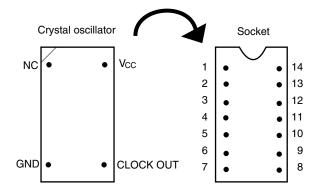
Circuit Diagram


Remark The sections enclosed in broken lines indicate parts that are attached to the parts board.

- <3> Make sure that the parts board (X2 USCLK) is wired as shown in Figure 3-12 above.
- <4> Install the IE-789831-NS-EM1 in the IE-78K0S-NS or IE-78K0S-NS-A.

(b) When using a crystal oscillator

- Items to be prepared
 - Crystal oscillator (see pinouts shown in Figure 3-13)


Figure 3-13. Crystal Oscillator (Subsystem Clock)

<Steps>

- <1> Prepare the IE-789831-NS-EM1.
- <2> Remove the parts board that is mounted in the socket (X2 USCLK) of the IE-789831-NS-EM1.
- <3> Connect a crystal oscillator to the socket (X2 USCLK) from which the parts board was removed (in <2> above). Insert the crystal oscillator into the socket aligning the pins as shown in the figure below.

Figure 3-14. Pin Alignment of Crystal Oscillator and Socket (Subsystem Clock)

Crystal Oscillator Pin Name	Socket Pin No.
NC	1
GND	7
CLOCK OUT	8
Vcc	14

<4> Install the IE-789831-NS-EM1 in the IE-78K0S-NS or IE-78K0S-NS-A.

(3) When inputting pulse from target system

Short 1 and 2 of the jumper (JP1) on the IE-789831-NS-EM1.

No settings are required on the integrated debugger (ID78K0S-NS).

3.5 External Trigger

To set an external trigger, connect the IE-789831-NS-EM1's check pins EXTOUT and EXTIN as shown below.

See the IE-78K0S-NS User's Manual (U13549E) or IE-78K0S-NS-A User's Manual (U15207E) for pin characteristics.

For the use methods, see the ID78K Series Ver.2.30 or Later Operation Windows Based User's Manual (U15185E).

(1) EXTOUT

The EXTOUT pin on the IE-789831-NS-EM1 outputs a low level for 1.3 μ s when a break event occurs.

Caution Connect a pull-up resistor on the target system because this is an open drain output.

(2) EXTIN

An event signal can be input from the EXTIN pin on the IE-789831-NS-EM1. Input a high-level pulse signal for 2 CPU operation clocks or more.

DETINOT

| External trigger

Figure 3-15. External Trigger Input Position

CHAPTER 4 DIFFERENCES BETWEEN TARGET DEVICE AND TARGET INTERFACE CIRCUIT

This chapter describes differences between the target device's signal lines and the signal lines of the target interface circuit of the IE system.

The target interface circuit of the IE system realizes emulation via an emulation circuit configured by an emulation CPU, TTL, CMOS-IC, and other components. The electrical characteristics are different from those of the target device because a protector and other circuits are provided.

- (1) Signals input to or output from the emulation CPU
- (2) Signals input from the target system via a gate
- (3) LCD-related signals
- (4) Other signals

The IE-789831-NS-EM1's circuit is used as follows for signals listed in (1) to (4) above.

(1) Signals input to or output from the emulation CPU

The following signals perform the same operations as in the μ PD789830 and the μ PD78F9831. However, a 1 Ω pull-down resistor and 100 Ω resistor are inserted in series.

- · Signals related to port 0
- · Signals related to port 1
- Signals related to port 2
- · Signals related to port 3
- · Signals related to port 4

(2) Signals input from the target system via a gate

Since the following signals are input via a gate, their timing shows a delay compared to the μ PD789830 and the μ PD78F9831. Their AC characteristics and DC characteristics are therefore different from the μ PD78F9830 and the μ PD78F9831 making it necessary to observe a stricter timing design than in the μ PD78F9830 and the μ PD78F9831.

- RESET signal
- Signals related to clock input

In all the signals input from the target system, the $\overline{\text{RESET}}$ signal and signals related to clock input are input to the emulation CPU via a logic IC. The DC characteristics are therefore different from the μ PD789830 and the μ PD78F9831.

(3) LCD-related signals

Because the following signals input/output LCD-related signals, special processing is not performed in the IE-789831-NS-EM1.

- Common pins (COM0 to COM15)
- Segment pins (S0 to S31)
- Port 5 (alternately functions as P50 to P57/S32 to S39)

(4) Other signals

V_{DD} pin

When the emulation CPU is operating at 5 V, its power is supplied from the IE-789831-NS-EM1, but when operating at low voltage, its power is supplied from the low-voltage pin (TP1). The V_{DD} pin of the target system is only used to control the LED (TVcc) in the IE-789831-NS-EM1 that monitors the input of the target system's power supply.

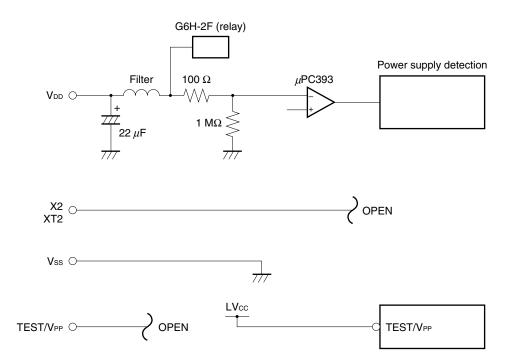
• Vss pin

The Vss pin is connected to GND in the IE-789831-NS-EM1

• TEST/VPP pin

The TEST/VPP pin is not used in the IE-789831-NS-EM1.

• X2, XT2 pins


The X2 and XT2 pins are not used in the IE-789831-NS-EM1.

Probe side IE-789831-NS-EM1 side 100 Ω Port 0 O Port 0 Port 1 Port 1 P20 to P22 P20 to P22 1 ΜΩ P24 to P26 P24 to P26 Port 3 Port 3 Port 4 Port 4 100 Ω P23 O \sim P23 LVccHC4066 100 Ω RESET O -RESET UMCLK HC157 100 Ω HSK120 **★** X1 μPD789009 HSK120 μ PD789009 **USCLK** JP1 -⊙ 3 20-100 Ω HSK120 **-**○ 1 HSK120 ^{µPD789009} XT1 HCU04 HCU04 μ PD789009 COM0 to COM15 COM0 to COM15 S0 to S31 O S0 to S31 P50 to P57/ P50 to P57/S32 to S39 S32 to S39

Figure 4-1. Equivalent Circuit of Emulation Circuit (1/2)

Figure 4-1. Equivalent Circuit of Emulation Circuit (2/2)

Probe side IE-789831-NS-EM1 side

APPENDIX A EMULATION PROBE PIN ASSIGNMENT TABLE

Table A-1. NP-100GC, NP-H100GC-TQ Pin Assignments (1/2)

Emulation Probe	CN1 Pin No.	Emulation Probe	CN1 Pin No.
1	118	35	57
2	117	36	58
3	114	37	59
4	113	38	60
5	108	39	55
6	107	40	56
7	104	41	49
8	103	42	50
9	100	43	45
10	99	44	46
11	94	45	41
12	93	46	42
13	30	47	35
14	29	48	36
15	24	49	31
16	23	50	32
17	20	51	4
18	19	52	3
19	16	53	8
20	15	54	7
21	10	55	14
22	9	56	13
23	6	57	18
24	5	58	17
25	33	59	22
26	34	60	21
27	37	61	28
28	38	62	27
29	43	63	92
30	44	64	91
31	47	65	98
32	48	66	97
33	51	67	102
34	52	68	101

Remarks 1. NP-100GC and NP-H100GC-TQ are products of Naito Densei Machida Mfg. Co., Ltd.

2. The numbers in the "Emulation probe" column indicate the corresponding pin number on the emulation probe tip.

Table A-1. NP-100GC, NP-H100GC-TQ Pin Assignments (2/2)

Emulation Probe	CN1 Pin No.	Emulation Probe	CN1 Pin No.
69	106	85	63
70	105	86	64
71	112	87	61
72	111	88	62
73	116	89	65
74	115	90	66
75	87	91	71
76	88	92	72
77	83	93	75
78	84	94	76
79	77	95	79
80	78	96	80
81	73	97	85
82	74	98	86
83	69	99	89
84	70	100	90

Remarks 1. NP-100GC and NP-H100GC-TQ are products of Naito Densei Machida Mfg. Co., Ltd.

2. The numbers in the "Emulation probe" column indicate the corresponding pin number on the emulation probe tip.

APPENDIX B NOTES ON DESIGNING TARGET SYSTEM

The following shows the conditions when connecting the emulation probe to the conversion adapter. Follow the configuration below and consider the shape of parts to be mounted on the target system when designing a system.

Among the products described in this appendix, NP-100GC and NP-H100GC-TQ are products of Naito Densei Machida Mfg. Co., Ltd., and TGC-100SDW is a product of TOKYO ELETECH CORPORATION.

Table B-1. Distance Between IE System and Conversion Adapter

Emulation Probe	Conversion Adapter	Distance Between IE System and Conversion Adapter
NP-100GC	TGC-100SDW	170 mm
NP-H100GC-TQ		370 mm

Figure B-1. Distance Between IE System and Conversion Adapter

In-circuit emulator

Emulation Board
IE-789831-NS-EM1

CN1

Emulation Probe
NP-100GC, NP-H100GC-TQ

Target system

Conversion adapter: GC-100SDW

Note Distance when the NP-100GC is used. When the NP-H100GC-TQ is used, the distance is 370 mm.

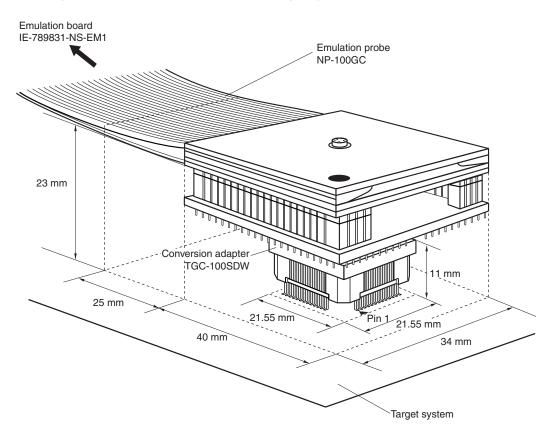
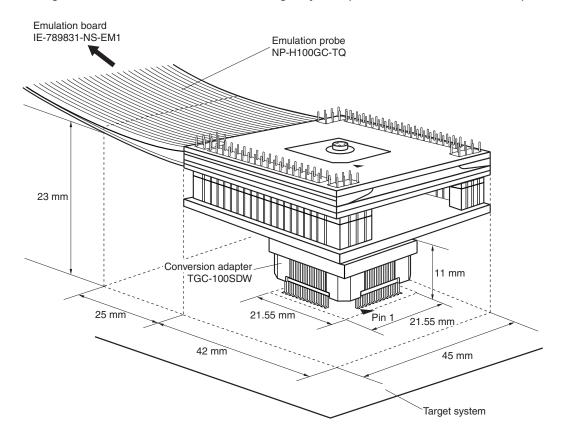



Figure B-2. Connection Conditions of Target System (When NP-100GC Is Used)

Figure B-3. Connection Conditions of Target System (When NP-H100GC-TQ Is Used)

