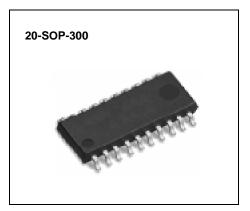


SEMICONDUCTOR IM

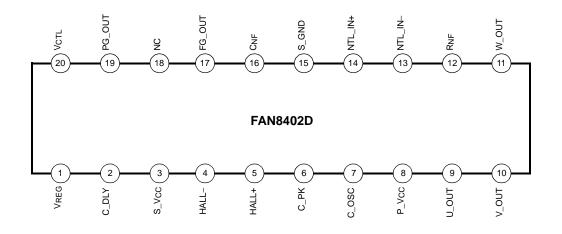

FAN8402D (KA3081D) 3-Phase BLDC Motor Driver

Features

- Commutation FG, PG is executed by 1-hall
- Soft switching at output terminal reduces switching impulse.
- 3-phase full wave BLDC motor driver.
- Voltage reference (Uses band gap circuit)
- Built-in thermal shut-down (TSD) circuit

Description

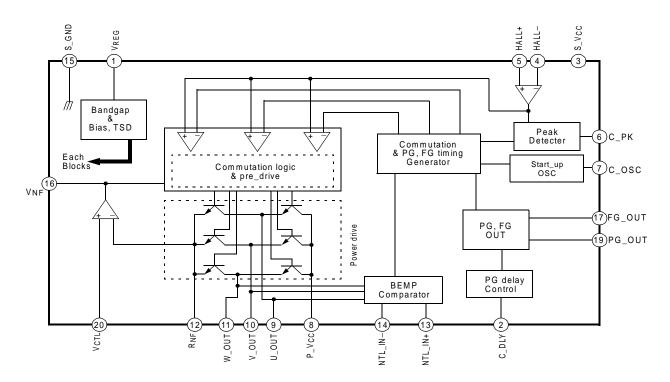
FAN8402D is a bipolar integrated circuit used to drive 3phase brushless DC motor in full wave mode using 1-hall sensor. FAN8402D uses 1-hall for commutation and PG generation. It is a special circuit for soft switching using 1-hall reduces the EMI and eliminates snubber. The FG is generated by BEMF.


Typical Applications

- Video Cassette recorder (VCR) cylinder (drum) motor
- Other 3-phase BLDC motor

Ordering Information

Device	Package	Operating Temp.
FAN8402D	20-SOP-300	–25°C ~ +75°C
FAN8402DTF	20-SOP-300	–25°C ~ +75°C


Pin Assignments

Pin Definitions

Pin Number	Pin Name	Pin Function Description
1	Vreg	Regurator output
2	C_DLY	PG. delay
3	S_VCC	Signal VCC
4	HALL-	Hall- input
5	HALL+	Hall+ input
6	C_PK	Peak detector of hall signal
7	C_OSC	Start-up oscillator
8	P_VCC	Power VCC
9	U_OUT	U-phase output
10	V_OUT	V-phase output
11	W_OUT	W-phase output
12	RNF	Output current sensing
13	NTL_IN-	Input from the neutral point of the motor coils.
14	NTL_IN+	Input from the neutral point of the motor coils.
15	S_GND	Signal ground
16	CNF	Phase compensation
17	FG_OUT	FG. output
18	NC	-
19	PG_OUT	PG. output
20	VCTL	Output current control

Internal Block Diagram

Equivalent Circuits

Description	Pin No.	Internal circuit
Hall input	5,4	
Output & Current detection	9,10,11 8,12	(1) w_OUT (1) w_OUT (1) w_OUT (1) w_OUT (1) w_OUT (1) w_OUT (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
FG Output	17	VREG VCC
PG Output	19	VREG VCC

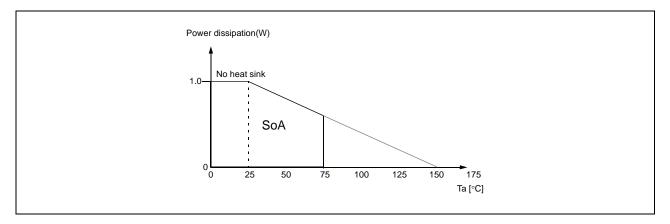
Equivalent Circuits (Continued)

Description	Pin No.	Internal circuit	
Voltage control reference	20		

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Value	Unit	Remark
Supply voltage (Signal)	VCCmax	20	V	-
Maxium Output current	lOmax	1.0 ^{note1}	A / Phase	
Regulator output current	IREGmax	10	mA	
Power dissipation	Pd	1.0 ^{note2}	W	No heat sink
Junction temperature	TJ	150	°C	-
Operating temperature	TOPR	-20 ~ +75	°C	Ambient temperature (Ta)
Storage temperature	TSTG	-40 ~ +155	°C	

NOTES:


1. Duty 1 / 100, pulse width $500\mu s$

2. 1) When mounted on glass epoxy PCB ($76.2 \times 114 \times 1.57$ mm)

2) Power dissipation reduces 9.6mW / °C for using above Ta=25°C.

3) Do not exceed Pd and SOA(Safe Operating Area).

Power Dissipation Curve

Recommened Operating Conditions (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max	Unit
Operating supply voltage(Signal)	S_VCC	4.5	5.0	5.5	V
Operating supply voltage(Power)	P_Vcc	8	12	18	V

Electrical Characteristics

(Measured in test circuit, P_V_{CC}=12V, Ta=25°C)

Parameter	Symbol	Conditions	Min.	Тур.	max.	Unit
TOTAL	1				•	
Supply voltage	Vcc	-	8.0	-	18	V
Supply current (1)	ICC1	P_V _{CC} =12V, V _{REG} =open, V _{CTL} =0V	-	11.2	17	mA
Supply current (2)	ICC2	P_V _{CC} =12V, V _{REG} =open, V _{CTL} =0V	-	11.5	17	mA
REGURATOR						•
VREG output voltage (2)	VREG2	P_VCC=12V, IREG=0mA	4.7	5.0	5.3	V
VREG output voltage (5)	VREG5	P_VCC=12V, IREG=10mA	4.7	5.0	5.3	V
START-UP OSCILLATOR						•
C_OSC operation frequency	OSC_FEQ	C_OSC=47nF	6	8	10	Hz
C_OSC charging current	OSC_ICH	C_OSC=47nF	-0.5	-2	-3.5	μA
C_OSC discharging current	OSC_IDC	C_OSC=47nF	1	3	5	μA
C_OSC low threshold voltage	OSC_THL	C_OSC=47nF	0.2	0.5	0.8	V
C_OSC high threshold voltage	OSC_THH	C_OSC=47nF	2.7	3.0	3.3	V
VOLTAGE CONTROL					•	•
VCTL start voltage	VCTL_ST	VCTL=0~2V When IO=25mA	1.01	1.26	1.51	V
VCTL input voltage range	VCTL_IN	VREG	0	-	VREF	V
VCTL input bias current	VCTL_BI	VCTL=2.0V	-	1.0	1.5	μΑ
Gain	GM	R _{NF} =0.47Ω, V _{CTL} =0~2V	0.38	0.45	0.52	А
HALL INPUT					•	•
Input hall signal Min. voltage note	VH_MIN		300	-	-	mVp-p
PG hall 1'st Min. voltage note	VH_P1		60	-	-	mVo-p
PG hall 2'nd Min. voltage note	VH_P2		55	-	-	mVo-p
PG hall 3'rd Min. voltage note	VH_P3	1st 3rd	75	-	-	mVo-p
PG hall 1'st-2'nd level note	ΔV_{H}	2nd	5	-	-	mVo-p
FG (FREQUENCY GENERATOR), PG (PHAS	E GENERATOR)			1	
FG, PG high level	FG_PG_H	-	4.5	-	-	V
FG, PG low level	FG_PG_L	-	-	-	0.5	V

Notes:

The note in the chart means items calculated and approved in design not the items proven by actual test results.

Electrical Characteristics (Continued)

(Measured in test circuit, P_V_{CC}=12V, Ta=25°C)

Parameter	Symbol	Conditions	Min.	Тур.	max.	Unit	
TSD							
Temp. threshold note	TSD_T	-	130	150	-	°C	
Temp. hysteresis ^{note}	TSD_H	-	20	30	-	°C	
OUTPUT							
Output saturation voltage (Upper)	VSU1	VCTL=4V, IO=600mA,	-	1.0	1.5	V	
Output saturation voltage (Under)	VSD1	$RNF=0.47\Omega, RL=10\Omega$	-	0.4	0.7	V	
NTL_IN- input voltage range	VNTL_IN-	-	0	-	Vcc	V	
C _{NF} voltage	VCNF	V _{CTL} =2V	1	-	-	V	
C_PK frequency	CPK_FRQ	C_PK=100Ω + 0.1μF	0.8	1	1.2	kHz	
C_CK voltage level	CPK_V	C_PK=100Ω + 0.1μF HALL- =0.25V	0.4	-	-	Vр-р	
C_DLY							
C_DLY charging current	IC_DLY	C_DLY=4nF	-20	-30	-40	μA	

Notes:

The note in the chart means items calculated and approved in design not the items proven by actual test results.

Application Information

1. SYSTEM BLOCK DIAGRAM

The figure 1 shows concept of soft switching for 3-phase output with a hall sensor.

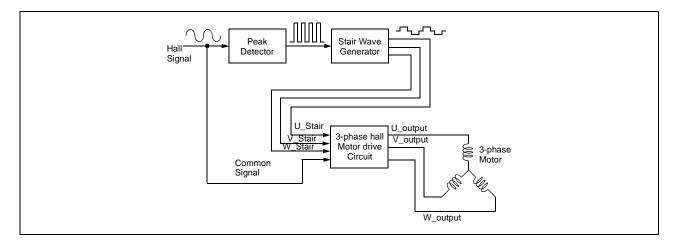


Figure 1.

- Peak detector Generates clock pulses at the peak points of the hall signal.
- Stair wave generator
- Generates 3 stair wave signals 120 degree apart from the clock pulses.
- 3-phase motor drive circuit Controls output currents to operate 3-phase motor using the vol
- tage difference between the 3 stair wave signals and FG hall signal.

2. STRUCTURE OF BLDC MOTOR

Consists of main and sub magnets. For every main magnet there are 3 submagnets as shown in Fig 2. Sub-magnet takes hall signal and goes through 6 gradual filtering steps purifying in order to operate 3-phase motor with one

Sub-magnet takes hall signal and goes through 6 gradual filtering steps purifying in order to operate 3-phase motor with o hall sensor.

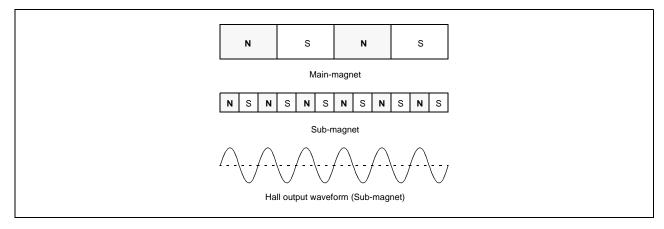


Figure 2.

3. PRINCIPLE OF OPERATION

Input circuit of 3-phase motor drive with soft-switching function is shown as the figure 3.

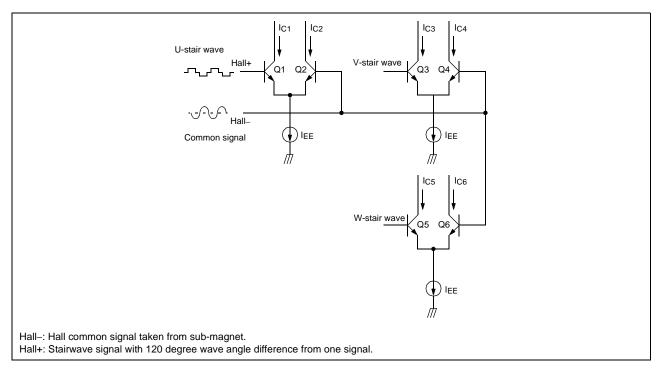


Figure 3.

Next the figure 4 shows common signal (Hall signal) and each individual stairwave at its own position.

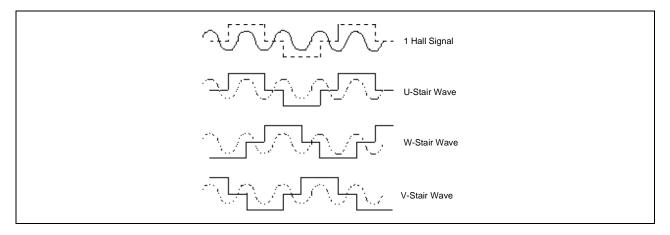


Figure 4.

Figure 5 shows hall signal and stairwave signal position.

The section where the difference between hall signal and stairwave is within 100mV.

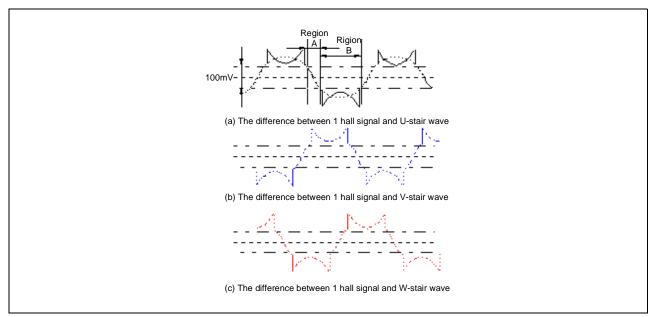
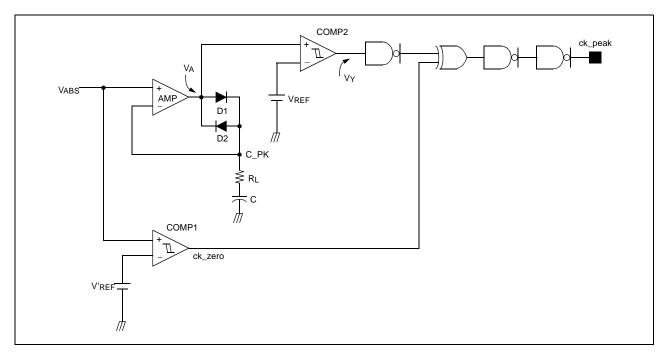



Figure 5.

4. PEAK DETECTOR

Hall signals and stairwave signals made from peak detectors's output rotate the motor. The peak detector circuit is shown in Fig 6.

Figure 6.

VABS in the figure 6 is a signal from twice amplified hall signal and hall bias at 2.5 volt as standard voltage as you see in the figure 7.

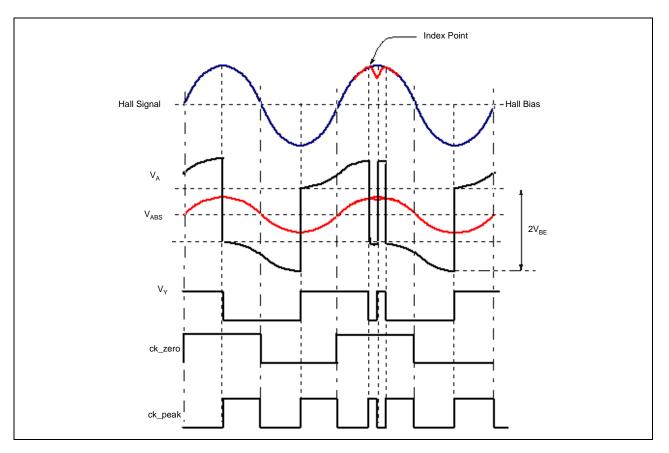


Figure 7.

5. DRIVE OUTPUT

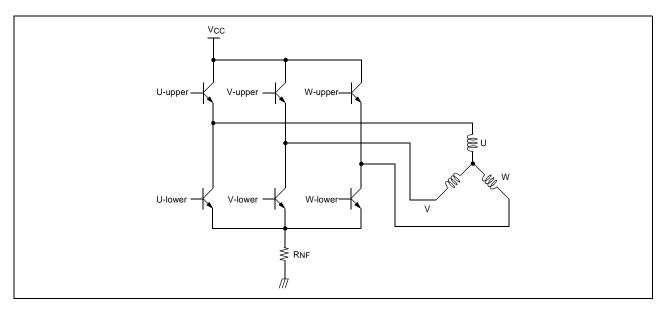
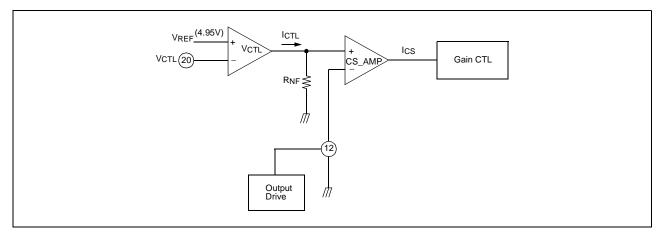
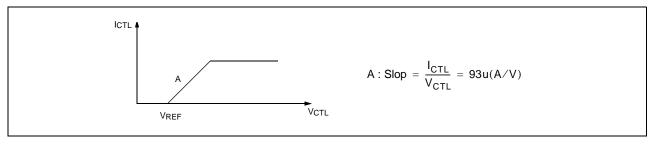
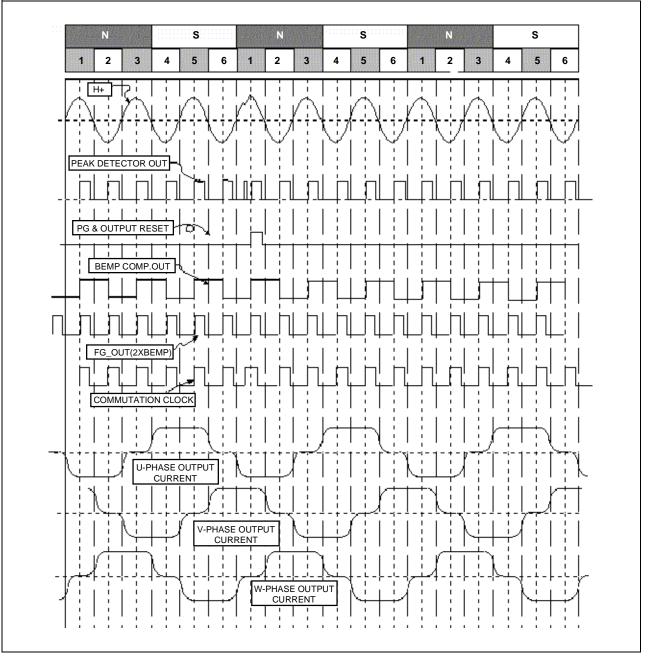



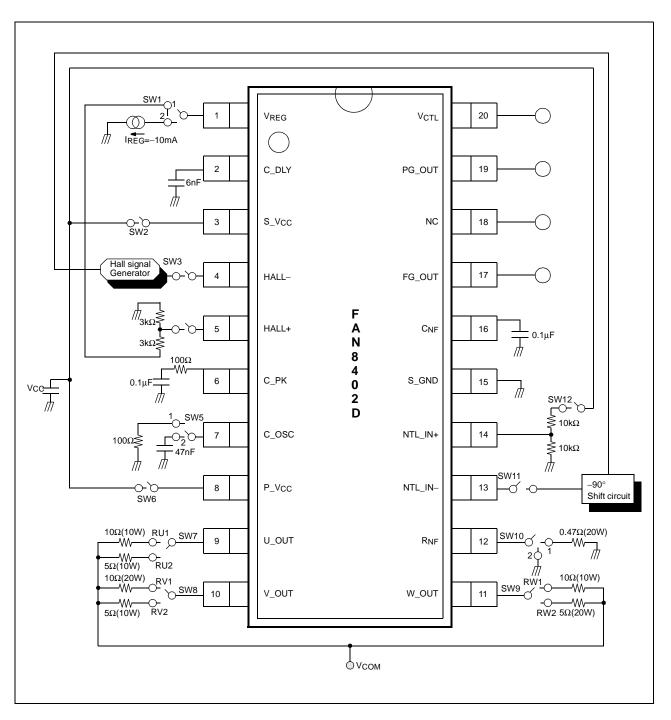
Figure 8.

The figure 8 shows the 3-phases of the BLDC motor.

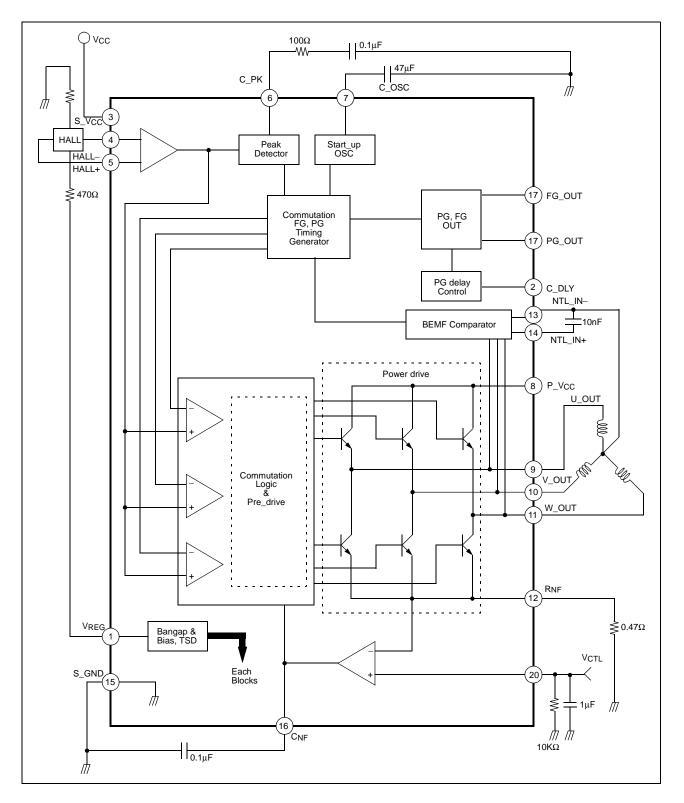

The upper power TRs in output group operate in linear area and the lower group work in saturation area.

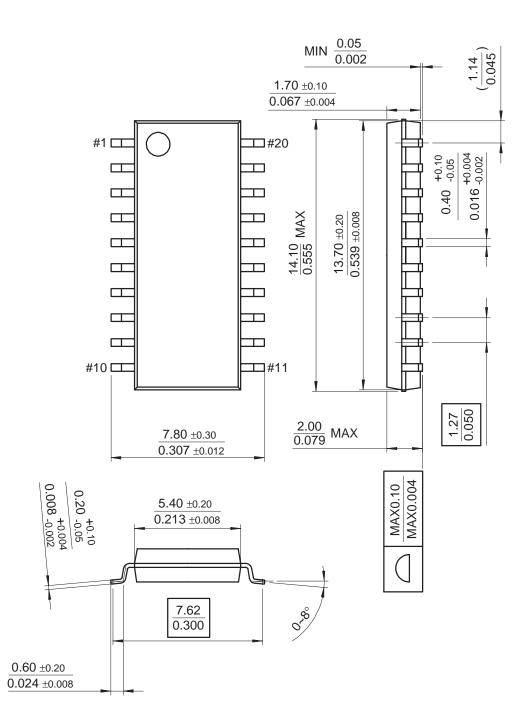
6. VOLTAGE CONTROL & CURRENT SENSING


The circuit in the figure 9 outputs ICTL current when VCTL (Control voltage from servo) is larger than the value of VREF. The V-I characteristic of this circuit is shown in the figure 10.



The CS-AMP terminal amplifies by getting inputs from output terminal getting ICTL and RNF voltages. RNF resistance feedbacks the current in output terminal.


Timing Chart



Test Circuits

Typical Application Circuits

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ **FAST[®]**

FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ **ISOPLANAR™** MICROWIRE™ **OPTOLOGIC**[™] OPTOPLANAR™ POP™ PowerTrench[®]

QFET™ QS™ QT Optoelectronics[™] Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ UHC™

VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. F1