# 3-Input 1-Output Video Switch (with Y-C mix) Monolithic IC MM1188

#### **Outline**

This is a 3-input, 1-output video switch IC for video signal switching. Of the 3 inputs, one has an input pin that supports S input, and there is a built-in mixing circuit.

#### **Features**

- 1. Built-in mixing circuit and input pin for S input
- 2. Built-in 6dB amp
- 3. Clamp function (IN1–Y, IN2, IN3)
- 4. Mute function
- 5. Current consumption
  6. Operating power supply voltage range
  7. Frequency response
  12.5mA typ.
  8~13V
  10MHz
- 8. Crosstalk 70dB (at 4.43MHz)

#### Package

SIP-9B (MM1188XS)

### **Applications**

- 1. TV
- 2. VCR, etc.

## Block Diagram



#### Control input truth table

| SW1 | SW2 | OUT |  |  |
|-----|-----|-----|--|--|
| L   | L   | IN1 |  |  |
| Н   | L   | IN2 |  |  |
| _   | Н   | IN3 |  |  |

# Pin Description

| Pin no. | Pin name   | Function                                       | Internal equivalent circuit diagram     |
|---------|------------|------------------------------------------------|-----------------------------------------|
| 1 9     | IN3<br>IN2 | Input 3 Input 2                                | VCC 027 220 220 77                      |
| 2       | Vcc        | Power supply                                   |                                         |
| 3<br>8  | SW1<br>SW2 | Switch 1<br>Switch 2                           | 11k                                     |
| 4       | OUT        | Output                                         | 200 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 |
| 5       | GND        | Ground                                         |                                         |
| 6       | IN1-Y      | Input 1 (luminance signal or composite signal) | VCC                                     |



# Absolute Maximum Ratings (Ta=25°C)

| Item                  | Symbol | Ratings  | Units |  |
|-----------------------|--------|----------|-------|--|
| Storage temperature   | Tstg   | -40~+125 | °C    |  |
| Operating temperature | Topr   | -20~+75  | °C    |  |
| Power supply voltage  | Vcc    | 15       | V     |  |
| Allowable loss        | Pd     | 1100     | mW    |  |

## Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=12.0V)

| Item                           |         | Symbol            | Measurement conditions     | Min. | Тур. | Max. | Units            |
|--------------------------------|---------|-------------------|----------------------------|------|------|------|------------------|
| Operating power supply voltage | e range | Vcc               |                            | 8.0  |      | 13.0 | V                |
| Consumption current            |         | Id                | Refer to Measuring Circuit | 8.8  | 12.5 | 16.5 | mA               |
| Voltage gain                   |         | Gv                | Refer to Measuring Circuit | 5.5  | 6.0  | 6.5  | dB               |
| Frequency characteristic       | ;       | Fc                | Refer to Measuring Circuit | -1   | 0    | +1   | dB               |
| Differential gain              |         | DG                | Refer to Measuring Circuit |      | 0    | ±3   | %                |
| Differential phase             |         | DP                | Refer to Measuring Circuit |      | 0    | ±3   | deg              |
| Output offset voltage          |         | Voff              | Refer to Measuring Circuit |      |      | ±60  | mV               |
| Crosstalk                      |         | Ст                | Refer to Measuring Circuit |      | -70  | -60  | dB               |
| Switch 1 input voltage H       |         | V <sub>IH</sub> 1 | Refer to Measuring Circuit | 2.3  |      |      | V                |
| Switch 1 input voltage L       |         | VIL1              | Refer to Measuring Circuit |      |      | 0.9  | V                |
| Switch 2 input voltage H       |         | V <sub>IH</sub> 2 | Refer to Measuring Circuit | 2.3  |      |      | V                |
| Switch 2 input voltage L       |         | VIL2              | Refer to Measuring Circuit |      |      | 0.9  | V                |
| IN1-C input dynamic range      | Α       | DRA               | Refer to Measuring Circuit | 1.0  |      |      | V <sub>P-P</sub> |
| in 1-C input dynamic range     | В       | DRB               | Refer to Measuring Circuit | 1.2  |      |      | V <sub>P-P</sub> |
| IN1-Y, IN2, IN3 input dynamic  | range   | DRc               | Refer to Measuring Circuit | 1.5  |      |      | V <sub>P-P</sub> |
| IN1-C input impedance          |         | Ri                |                            |      | 15   |      | kΩ               |
| IN1-C pin voltage              |         | Viic              | S1~S6=2                    | 4.0  | 4.5  | 5.0  | V                |
| IN1-Y pin voltage              |         | V <sub>I1Y</sub>  | S1~S6=2                    | 4.1  | 4.6  | 5.1  | V                |
| IN2 pin voltage                |         | Vı2               | S1~S4=S6=2, S5=1           | 4.1  | 4.6  | 5.1  | V                |
| IN3 pin voltage                |         | V <sub>I</sub> 3  | S1~S5=2, S6=1              | 4.1  | 4.6  | 5.1  | V                |
| Out pin voltage                |         | Vo                | S1~S6=2                    | 3.5  | 4.0  | 4.5  | V                |

## Measuring Procedures (Except where noted otherwise, Vcc=12.0V, VC1=Vcc, VC2=0V)

|                 |       | Switch state      |               |               |               | stato         |               |     |                                                                                                 |  |  |
|-----------------|-------|-------------------|---------------|---------------|---------------|---------------|---------------|-----|-------------------------------------------------------------------------------------------------|--|--|
| Item            |       | Symbol            | S1            | S2            | S3            | S4            | S5            | S6  | Measuring Procedure                                                                             |  |  |
| Consumption     | on    | Id                | 2             | 2             | 2             | 2             | 2             | 2   | Connect a DC ammeter to the Vcc pin and measure. The                                            |  |  |
| current         |       | Iu                |               |               |               |               |               |     | ammeter is shorted for use in subsequent measurements.                                          |  |  |
|                 |       |                   | 1             | 2             | 2             | 2             | 2             | 2   | Input a 1.0V <sub>P-P</sub> , 100kHz sine wave to SG, and                                       |  |  |
|                 |       |                   | 2             | 1             | 2             | 2             | 2             | 2   | obtain Gv from the following formula given TP1                                                  |  |  |
| Voltage gai     | ın    | Gv                | 2             | 2             | 1             | 2             | 1             | 2   | voltage as V1 and TP3 voltage as V2.                                                            |  |  |
|                 |       |                   | $\frac{2}{2}$ | 2 2           | 2 2           | 1             | $\frac{1}{2}$ | 1   | CV 201 OC (V2 /V1) AD                                                                           |  |  |
|                 |       |                   | 1             | 2             | 2             | 2             | $\frac{2}{2}$ | 2   | GV=20LOG (V2/V1) dB<br>For the above Gv measurement, given TP3                                  |  |  |
|                 |       |                   | $\frac{1}{2}$ | 1             | $\frac{2}{2}$ | 2             | $\frac{2}{2}$ | 2   | voltage for 10MHz as V3, Fc is obtained from the                                                |  |  |
| Frequency       |       | Fc                | 2             | 2             | 1             | 2             | 1             | 2   | following formula.                                                                              |  |  |
| characteris     | tic   |                   | 2             | 2             | 2             | 1             | 1             | 1   | Tonowing formation                                                                              |  |  |
|                 |       |                   | 2             | 2             | 2             | 1             | 2             | 1   | Fc=20LOG (V3/V2) dB                                                                             |  |  |
|                 |       |                   | 2             | 1             | 2             | 2             | 2             | 2   | Input a 1.0V <sub>P-P</sub> staircase wave to SG, and                                           |  |  |
| Differential g  | ioin  | DG                | 2             | 2             | 1             | 2             | 1             | 2   | measure differential gain at TP3. *1                                                            |  |  |
| Differential 9  | Jaiii | DG                | 2             | 2             | 2             | 1             | 1             | 1   | _                                                                                               |  |  |
|                 |       |                   | 2             | 2             | 2             | 1             | 2             | 1   | APL=10~90%                                                                                      |  |  |
|                 |       |                   | 2             | 1             | 2             | 2             | 2             | 2   |                                                                                                 |  |  |
| Differential ph | nase  | DP                | 2             | 2             | 1             | 2             | 1             | 2   | Proceed as for DG, and measure differential                                                     |  |  |
| Dinoronaiai pi  | iacc  |                   | 2             | 2             | 2             | 1             | 1             | 1   | phase. *2                                                                                       |  |  |
|                 |       |                   | 2             | 2             | 2             | 1             | 2             | 1   |                                                                                                 |  |  |
| Output offs     | et    | 37 CC             | 2             | 2             | 2             | 2             | 2             | 2   | Measure the DC voltage difference of each                                                       |  |  |
| voltage         |       | Voff              | $\frac{2}{2}$ | 2 2           | 2             | 2 2           | 1             | 2   | switch status at TP2.                                                                           |  |  |
|                 |       |                   |               | 2             | 2 2           | $\frac{2}{2}$ | 1             | 1 2 |                                                                                                 |  |  |
|                 |       |                   | 1             | $\frac{2}{2}$ | $\frac{2}{2}$ | $\frac{2}{2}$ | $\frac{1}{2}$ | 1   |                                                                                                 |  |  |
|                 |       |                   | 1             | 2             | 2             | 2             | $\frac{2}{1}$ | 1   | Assume VC1=2.3V, VC2=0.9V.                                                                      |  |  |
|                 |       |                   | $\frac{1}{2}$ | 1             | $\frac{2}{2}$ | 2             | 1             | 2   | Input a 1.0V <sub>P-P</sub> , 4.43MHz sine wave to SG, and                                      |  |  |
|                 |       |                   | $\frac{2}{2}$ | 1             | 2             | 2             | 2             | 1   | given TP3 voltage during signal output as V4,                                                   |  |  |
| Crosstalk       |       | Ст                | 2             | 1             | 2             | 2             | 1             | 1   | switch S5 and S6, and given TP3 voltage for                                                     |  |  |
|                 |       |                   | 2             | 2             | 1             | 2             | 2             | 2   | output OFF as V5, CT is obtained from the                                                       |  |  |
|                 |       |                   | 2             | 2             | 1             | 2             | 2             | 1   | following formula.                                                                              |  |  |
|                 |       |                   | 2             | 2             | 1             | 2             | 1             | 1   |                                                                                                 |  |  |
|                 |       |                   | 2             | 2             | 2             | 1             | 2             | 2   | C <sub>T</sub> =20LOG (V5/V4) dB                                                                |  |  |
|                 |       |                   | 2             | 2             | 2             | 1             | 1             | 2   |                                                                                                 |  |  |
| Switch 1 inp    | out   |                   | 2             | 2             | 2             | 2             | 1             | 2   | Impress an optional DC voltage on TP7 and TP8.                                                  |  |  |
| voltage H       |       | V <sub>IH</sub> 1 |               |               |               |               |               |     | Gradually raise from VC1=0V. TP4 voltage when                                                   |  |  |
|                 |       |                   |               |               |               |               |               |     | TP8 voltage is output on TP2 is V <sub>IH</sub> 1. Gradually                                    |  |  |
| Switch 1 inp    | out   | <b>37 1</b>       |               |               |               |               |               |     | lower from VC1=Vcc. TP4 voltage when TP7                                                        |  |  |
| voltage L       |       | Vil1              |               |               |               |               |               |     | voltage is output on TP2 is V <sub>L</sub> 1.                                                   |  |  |
|                 |       |                   | 2             | 2             | 2             | 2             | 2             | 1   |                                                                                                 |  |  |
| Switch 2 inp    |       | V <sub>IH</sub> 2 |               |               |               |               |               | 1   | Impress an optional DC voltage on TP7 and TP9.                                                  |  |  |
| voltage H       |       | T 1112            |               |               |               |               |               |     | Gradually raise from VC1=0V. TP5 voltage when                                                   |  |  |
| 0               |       |                   |               |               |               |               |               |     | TP9 voltage is output on TP2 is V <sub>IH</sub> 2. Gradually                                    |  |  |
| Switch 2 inp    |       | VIL2              |               |               |               |               |               |     | lower from VC1=Vcc. TP5 voltage when TP7                                                        |  |  |
| voltage L       |       |                   |               |               |               |               |               |     | voltage is output on TP2 is V <sub>II</sub> 2.                                                  |  |  |
|                 |       |                   | 3             | 1             | 2             | 2             | 2             | 2   | Input a luminance signal as shown in Figure 1 to                                                |  |  |
|                 |       |                   |               |               |               |               |               |     | SG1, and a chroma signal as shown in Figure 2                                                   |  |  |
|                 | Α     | DRA               |               |               |               |               |               |     | to SG2. Change the chroma signal amplitude and                                                  |  |  |
|                 |       | DIVA              |               |               |               |               |               |     | measure the maximum amplitude where there is                                                    |  |  |
| IN1-C input     |       |                   |               |               |               |               |               |     | no waveform distortion at TP3 and convert to                                                    |  |  |
| dynamic         |       |                   | 0             | -             | 0             | 0             | 0             | 0   | input amplitude.                                                                                |  |  |
| range           |       |                   | 3             | 1             | 2             | 2             | 2             | 2   | Input a luminance signal as shown in Figure 3 to SG1,                                           |  |  |
|                 | В     | DRB               |               |               |               |               |               |     | and a chroma signal as shown in Figure 2 to SG2.                                                |  |  |
|                 | Ь     | DIVR              |               |               |               |               |               |     | Change the chroma signal amplitude and measure the maximum amplitude where there is no waveform |  |  |
|                 |       |                   |               |               |               |               |               |     | distortion at TP3 and convert to input amplitude.                                               |  |  |
| IN1-Y, IN2, I   | N3    |                   | 2             | 1             | 2             | 2             | 2             | 2   | Input a sine wave to SG1. Measure the maximum                                                   |  |  |
| input dynam     |       | DRc               | $\frac{2}{2}$ | 2             | 1             | 2             | $\frac{2}{1}$ | 2   | amplitude where there is no waveform distortion                                                 |  |  |
| range           |       | 210               | 2             | 2             | 2             | 1             | 1             | 1   | at TP3 and convert to input amplitude.                                                          |  |  |
|                 |       |                   |               |               |               |               |               |     |                                                                                                 |  |  |

Note: \*1 \*2 Measurement of IN1-C and IN1-Y mixed differential gain and differential phase is as follows. Switch status: S1=3, S2=1, S3=S4=S5=S6=2

Measuring procedure : Input a  $1.0V_{P-P}$  staircase wave signal (without chroma signal) to SG1, and a chroma signal to SG2. Measure TP3 differential gain and differential phase.





Figure 3

## **Measuring Circuit**

