3-Input 1-Output Video Switch (with Y-C mix) Monolithic IC MM1188

Outline

This is a 3-input, 1-output video switch IC for video signal switching. Of the 3 inputs, one has an input pin that supports S input, and there is a built-in mixing circuit.

Features

1. Built-in mixing circuit and input pin for S input
2. Built-in 6dB amp
3. Clamp function (IN1-Y, IN2, IN3)
4. Mute function
5. Current consumption
12.5 mA typ.
6. Operating power supply voltage range

8~13V
7. Frequency response

10 MHz
8. Crosstalk

70 dB (at 4.43 MHz)

Package

SIP-9B (MM1188XS)

Applications

1. TV
2. VCR, etc.

Block Diagram

SW1	SW2	OUT
L	L	IN1
H	L	IN2
-	H	IN3

Pin Description

Pin no.	Pin name	Function	Internal equivalent circuit diagram
$\begin{aligned} & 1 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { IN3 } \\ & \text { IN2 } \end{aligned}$	Input 3 Input 2	
2	Vcc	Power supply	
$\begin{aligned} & 3 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { SW1 } \\ & \text { SW2 } \end{aligned}$	Switch 1 Switch 2	
4	OUT	Output	
5	GND	Ground	
6	IN1-Y	Input 1 (luminance signal or composite signal)	

| 7 | IN1-C | Input 1 (chroma signal) | |
| :---: | :---: | :---: | :---: | :---: |

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Ratings	Units
Storage temperature	TsTG	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Operating temperature	Topr	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Power supply voltage	VCC	15	V
Allowable loss	Pd	1100	mW

Electrical Characteristics (Except where noted otherwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=12.0 \mathrm{~V}$)

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Units
Operating power supply voltage range	Vcc		8.0		13.0	V
Consumption current	Id	Refer to Measuring Circuit	8.8	12.5	16.5	mA
Voltage gain	Gv	Refer to Measuring Circuit	5.5	6.0	6.5	dB
Frequency characteristic	Fc	Refer to Measuring Circuit	-1	0	+1	dB
Differential gain	DG	Refer to Measuring Circuit		0	± 3	\%
Differential phase	DP	Refer to Measuring Circuit		0	± 3	deg
Output offset voltage	Voff	Refer to Measuring Circuit			± 60	mV
Crosstalk	$\mathrm{C}_{\text {T }}$	Refer to Measuring Circuit		-70	-60	dB
Switch 1 input voltage H	VIH1	Refer to Measuring Circuit	2.3			V
Switch 1 input voltage L	VIL1	Refer to Measuring Circuit			0.9	V
Switch 2 input voltage H	VIH2	Refer to Measuring Circuit	2.3			V
Switch 2 input voltage L	VIL2	Refer to Measuring Circuit			0.9	V
IN1-C input dynamic range	DRA	Refer to Measuring Circuit	1.0			VP-P
	DRв	Refer to Measuring Circuit	1.2			VP-P
IN1-Y, IN2, IN3 input dynamic range	DRc	Refer to Measuring Circuit	1.5			VP-P
IN1-C input impedance	Ri			15		$\mathrm{k} \Omega$
IN1-C pin voltage	Vilc	S1~S6=2	4.0	4.5	5.0	V
IN1-Y pin voltage	VI1Y	S1~S6=2	4.1	4.6	5.1	V
IN2 pin voltage	Vi2	S1~S4=S6=2, S5=1	4.1	4.6	5.1	V
IN3 pin voltage	Vi3	S1~S5=2, S6=1	4.1	4.6	5.1	V
Out pin voltage	Vo	S1~S6=2	3.5	4.0	4.5	V

Measuring Procedures (Except where noted otherwise, $\mathrm{Vcc}=12.0 \mathrm{~V}, \mathrm{VC} 1=\mathrm{Vcc}, \mathrm{VC} 2=0 \mathrm{~V}$)

Item	Symbol	Switch state						Measuring Procedure
		S1	S2	S3	S4	S5	S6	
Consumption current	Id	2	2	2	2	2	2	Connect a DC ammeter to the Vcc pin and measure. The ammeter is shorted for use in subsequent measurements.
Voltage gain	Gv	1	2	2	2	2	2	Input a 1.0 V P-P, 100 kHz sine wave to SG , and obtain Gv from the following formula given TP1 voltage as V1 and TP3 voltage as V2.GV=20LOG (V2/V1) dB
		2	1	2	2	2	2	
		2	2	1	2	1	2	
		2	2	2	1	1	1	
		2	2	2	1	2	1	
Frequency characteristic	Fc	1	2	2	2	2	2	For the above Gv measurement, given TP3 voltage for 10 MHz as $\mathrm{V} 3, \mathrm{Fc}_{\mathrm{c}}$ is obtained from the following formula.
		2	1	2	2	2	2	
		2	2	1	2	1	2	
		2	2	2	1	1	1	
		2	2	2	1	2	1	$\frac{\mathrm{FC}=20 \mathrm{LOG}(\mathrm{V} 3 / \mathrm{V} 2) \mathrm{dB}}{\text { Input a 1.0VP-P staircase wave to SG, and }}$ measure differential gain at TP3. $* 1$APL=10~90\%
Differential gain	DG	2	1	2	2	2	2	
		2	2	1	2	1	2	
		2	2	2	1	1	1	
		2	2	2	1	2	1	
Differential phase	DP	2	1	2	2	2	2	Proceed as for DG, and measure differential phase. *2
		2	2	1	2	1	2	
		2	2	2	1	1	1	
		2	2	2	1	2	1	
Output offset voltage	Voff	2	2	2	2	2	2	Measure the DC voltage difference of each switch status at TP2.
		2	2	2	2	1	2	
		2	2	2	2	1	1	
Crosstalk	$\mathrm{C}_{\text {T }}$	1	2	2	2	1	2	Assume VC1=2.3V, VC2=0.9V. Input a 1.0 V p-p, 4.43 MHz sine wave to SG , and given TP3 voltage during signal output as V4, switch S5 and S6, and given TP3 voltage for output OFF as $\mathrm{V} 5, \mathrm{C}_{\mathrm{T}}$ is obtained from the following formula. $\mathrm{C}_{\mathrm{T}=20 \mathrm{LOG}(\mathrm{~V} 5 / \mathrm{V} 4) \mathrm{dB}}$
		1	2	2	2	2	1	
		1	2	2	2	1	1	
		2	1	2	2	1	2	
		2	1	2	2	2	1	
		2	1	2	2	1	1	
		2	2	1	2	2	2	
		2	2	1	2	2	1	
		2	2	1	2	1	1	
		2	2	2	1	2	2	
		2	2	2	1	1	2	
Switch 1 input voltage H	VIH1	2	2	2	2	1	2	Impress an optional DC voltage on TP7 and TP8. Gradually raise from VC1 $=0 \mathrm{~V}$. TP4 voltage when TP8 voltage is output on TP2 is Vin1. Gradually lower from VC1=Vcc. TP4 voltage when TP7 voltage is output on TP2 is VIL1.
Switch 1 input voltage L	VIL1							
Switch 2 input voltage H	VIH2	2	2	2	2	2	1	Impress an optional DC voltage on TP7 and TP9. Gradually raise from VC1=0V. TP5 voltage when TP9 voltage is output on TP2 is $\mathrm{V}_{\mathrm{IH}} 2$. Gradually lower from VC1=Vcc. TP5 voltage when TP7 voltage is output on TP2 is VIL2.
Switch 2 input voltage L	VIL2							
IN1-C input dynamic range	DRA	3	1	2	2	2	2	Input a luminance signal as shown in Figure 1 to SG1, and a chroma signal as shown in Figure 2 to SG2. Change the chroma signal amplitude and measure the maximum amplitude where there is no waveform distortion at TP3 and convert to input amplitude.
	DRB	3	1	2	2	2	2	Input a luminance signal as shown in Figure 3 to SG1, and a chroma signal as shown in Figure 2 to SG2. Change the chroma signal amplitude and measure the maximum amplitude where there is no waveform distortion at TP3 and convert to input amplitude.
IN1-Y, IN2, IN3 input dynamic range	DRc	2	1	2	2	2	2	Input a sine wave to SG1. Measure the maximum amplitude where there is no waveform distortion at TP3 and convert to input amplitude.
		2	2	1	2	1	2	
		2	2	2	1	1	1	

Note : *1 *2 Measurement of IN1-C and IN1-Y mixed differential gain and differential phase is as follows. Switch status : S1=3, S2=1, S3=S4=S5=S6=2
Measuring procedure : Input a 1.0Vp-p staircase wave signal (without chroma signal) to SG1, and a chroma signal to SG2. Measure TP3 differential gain and differential phase.

Figure 1

Figure 2

Figure 3

Measuring Circuit

