Features

- DC Characteristic Adjustable
- Transmit and Receive Gain Adjustable
- Symmetrical Input of Microphone Amplifier
- Anti-clipping in Transmit Direction
- Automatic Line-loss Compensation
- Symmetrical Output of Earpiece Amplifier
- Built-in Ear Protection
- DTMF and MUTE Input
- Adjustable Sidetone Suppression Independent of Sending and Receiving Amplification
- Speech Circuit with Two Sidetone Networks
- Built-in Line Detection Circuit
- Integrated Amplifier for Loud-hearing Operation
- Anti-clipping for Loudspeaker Amplifier
- Improved Acoustical Feedback Suppression
- Power Down
- Voice Switch
- Tone Ringer Interface with DC/DC Converter
- Zero Crossing Detection
- Common Speaker for Loud-hearing and Tone Ringer
- Supply Voltages for all Functional Blocks of a Subscriber Set
- Integrated Transistor for Short-circuiting the Line Voltage
- Answering Machine Interface
- Operation Possible from 10 mA Line Currents
- Filters against EMI on Critical I/O

Applications

- Feature Phone
- Answering Machine
- Fax Machine
- Speaker Phone

Benefits

- Savings of One Piezoelectric Transducer
- Complete System Integration of Analog Signal Processing on One Chip
- Very Few External Components
- Fewer Components for EMI Protection

Description

The microcontroller-controlled telephone circuit U4090B-P is a linear integrated circuit for use in feature phones, answering machines and fax machines. It contains the speech circuit, tone ringer interface with DC/DC converter, sidetone equivalent and ear protection rectifiers. The circuit is line powered and contains all components necessary for amplification of signals and adaptation to the line.
An integrated voice switch with loudspeaker amplifier allows loud-hearing or handsfree operation. With an anti-feedback function, acoustical feedback during loud-hearing can be reduced significantly. The generated supply voltage is suitable for a wide range of peripheral circuits.

Figure 1. Block Diagram

Figure 2. Detailed Block Diagram

Pin Configuration

Figure 3. Pinning SSO44

Pin Description

Pin	Symbol	Function
1	GT	A resistor from this pin to GND sets the amplification of the microphone and DTMF signals, the input amplifier can be muted by applying VMP to G_{T}
2	DTMF	Input for DTMF signals, also used for the answering machine and hands-free input
3	MICO	Output of microphone preamplifier
4	MIC 2	Non-inverting input of microphone amplifier
5	MIC 1	Inverting input of microphone amplifier
6	PD	Active high input for reducing the current consumption of the circuit, simultaneously V_{L} is shorted by an internal switch
7	IND	The internal equivalent inductance of the circuit is proportional to the value of the capacitor at this pin, a resistor connected to ground may be used to reduce the DC line voltage
8	VL	Line voltage
9	GND	Reference point for DC- and AC-output signals
10	SENSE	A small resistor (fixed) connected from this pin to V_{L} sets the slope of the DC characteristic and also effects the line-length equalization characteristics and the line current at which the loudspeaker amplifier is switched on
11	VB	Unregulated supply voltage for peripheral circuits (voice switch), limited to typically 7 V
12	SAO	Output of loudspeaker amplifier
13	VMPS	Unregulated supply voltage for micorcontroller, limited to 6.3 V
14	VMP	Regulated supply voltage of 3.3 V for peripheral circuits (especially microprocessors), minimum output current: 2 mA (ringing) 4 mA (speech mode)
15	SWOUT	Output for driving external switching transistor
16	COSC	40-kHz oscillator for ringing power converter
17	VRING	Input for ringing signal protected by internal Zener diode
18	THA	Threshold adjustment for ringing frequency detector
19	RFDO	Output of ringing frequency detector
20	LIDET	Line detect; output is low when the line current is more than 15 mA
21	IMPSEL	Control input for selection of line impedance 1. 600Ω 2. 900Ω 3. Mute of second transmit stage (TXA); also used for indication of external supply (answering machine); last chosen impedance is stored
22	TSACL	Time constant of anti-clipping of speaker amplifier
23	GSA	Current input for setting the gain of the speaker amplifier, adjustment characteristic is logarithmical, or RGSA > $2 M \Omega$, the speaker amplifier is switched off
24	SA I	Speaker amplifier input (for loudspeaker, tone ringer and hands-free use)
25	MUTX	Three-state input of transmit mute: 1. Speech condition; inputs MIC1/MIC2 active 2. DTMF condition; input DTMF active. A part of the input signal is passed to the receiving amplifier as a confidence signal during dialing 3. Input DTMF used for answering machine and hands-free use; receive branch not affected
26	ATAFS	Attenuation of acoustical feedback suppression, maximum attenuation of AFS circuit is set by a resistor at this pin, without the resistor, AFS is switched off
27	INLDT	Input of transmit level detector

Pin Description (Continued)

Pin	Symbol	Function
28	INLDR	Input of receive level detector
29	TLDT	Time constant of transmit level detector
30	TLDR	Time constant of receive level detector
31	AGA	Automatic gain adjustment with line current, a resistor connected from this pin to GND sets the starting point, maximum gain change: 6 dB .
32	IREF	Internal reference current generation; RREF $=62 \mathrm{k} \Omega$; IREF $=20 \mu \mathrm{~A}$
33	STO	Sidetone reduction output Output resistance approximate: 300Ω, Maximum load impedance: $10 \mathrm{k} \Omega$.
34	VM	Reference node for microphone-earphone and loudspeaker amplifier, supply for electret microphone ($\mathrm{IM} \leq 700 \mathrm{~mA}$)
35	MUTR	Three-state mute input 1. Normal operation 2. Mute for ear piece 3. Mute for RECIN signal Condition of earpiece mute is stored
36	RECO 2	Inverting output of receiving amplifier
37	STI S	Input for sidetone network (short loop) or for answering machine
38	STI L	Input for sidetone network (long loop)
39	RAC	Input of receiving amplifier for AC coupling in feedback path
40	RECO 1	Output of receiving amplifier
41	GR	A resistor connected from this pin to GND sets the receiving amplification of the circuit; amplifier RA1 can be muted by applying VMP to GR
42	TTXA	Time constant of anti-clipping in transmit path
43	RECIN	Input of receiving path; input impedance is typically $80 \mathrm{k} \Omega$
44	TXIN	Input of intermediate transmit stage, input resistance is typically $20 \mathrm{k} \Omega$

Note: Filters against electromagnetic interference (EMI) are located at following pins: MIC1, MIC2, RECIN, TXIN, STIS, STIL and RAC.

DC Line Interface and Supply-voltage Generation

The DC line interface consists of an electronic inductance and a dual-port output stage which charges the capacitors at $V_{\text {MPS }}$ and V_{B}. The value of the equivalent inductance is given by:

$$
\mathrm{L}=\mathrm{R}_{\text {SENSE }} \times \mathrm{C}_{\text {IND }} \times\left(\left(\mathrm{R}_{\mathrm{DC}} \times \mathrm{R}_{30}\right) /\left(\mathrm{R}_{\mathrm{DC}}+\mathrm{R}_{30}\right)\right)
$$

In order to improve the supply during worst-case operating conditions, two PNP current sources - $I_{\text {BOPT }}$ and $I_{\text {MPSOPT }}$ - hand an extra amount of current to the supply voltages when the NPNs in parallel are unable to conduct current.
A flowchart for the control of the current sources (Figure 5) shows how a priority for supply VMPS is achieved.

Figure 4. DC Line Interface with Electronic Inductance and Generation of a Regulated and an Unregulated Supply

Figure 5. Supply Capacitors CMPS and CB Are Charged with Priority on CMPS

Figure 6. Supply of Functional Blocks Controlled by Input Voltages $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{RING}}$ and by Logic Inputs PD and IMPSEL

The U4090B-P contains two identical series regulators which provide a supply voltage V_{MP} of 3.3 V suitable for a microprocessor. In speech mode, both regulators are active because $\mathrm{V}_{\text {MPS }}$ and V_{B} are charged simultaneously by the DC-line interface. Output current is 4 mA . The capacitor at $\mathrm{V}_{\text {MPS }}$ is used to provide the microcomputer with sufficient power during long-line interruptions. Thus, long flash pulses can be bridged or an LCD display can be turned on for more than 2 seconds after going on hook. When the system is in ringing mode, V_{B} is charged by the on-chip ringing power converter. In this mode only one regulator is used to supply V_{MP} with a maximum of 2 mA .

Supply Structure of the Chip

A major benefit of the chip is that it uses a very flexible supply structure which allows simple realization of numerous applications such as:

- Group listening phone
- Hands-free phone
- Ringing with the built in speaker amplifier
- Answering machine with external supply

The special supply topology for the various functional blocks is illustrated in Figure 6.
There are four major supply states:

1. Speech condition
2. Power down (pulse dialing)
3. Ringing
4. External supply
5. In speech condition the system is supplied by the line current. If the LIDET-block detects a line voltage above the fixed threshold (1.9 V), the internal signal VLON is activated, thus switching off RFD and RPC and switching on all other blocks of the chip.
At line voltages below 1.9 V , the switches remain in their quiescent state as shown in Figure 7.
OFFSACOMP disables the group listening feature (SAI, SA, SACL, AFS) below line currents of approximately 10 mA .
6. When the chip is in power-down mode ($P D=$ high), e.g., during pulse dialing, the internal switch QS shorts the line and all amplifiers are switched off. In this condition, LIDET, voltage regulators and IMPED CONTR are the only active blocks.
7. During ringing, the supply for the system is fed into V_{B} via the ringing power converter (RPC). The only functional amplifiers are in the speaker amplifier section (SAI, SA, SACL).
8. In an answering machine, the chip is powered by an external supply via pin V_{B}. This application allows the possibility to activate all amplifiers (except the transmit line interface TXA). Selecting IMPSEL $=$ high impedance activates all switches at the ES line.

Acoustic Feedback Suppression

Acoustical feedback from the loudspeaker to the handset microphone may cause instability in the system. The U4090B-P offers a very efficient feedback suppression circuit, which uses a modified voice switch topology. Figure 7 shows the basic system configuration.

Two attenuators (TX ATT and RX ATT) reduce the critical loop gain by introducing an externally adjustable amount of loss either in the transmit or in the receive path. The sliding control in block ATT CONTR determines, whether the TX or the RX signal has to be attenuated. The overall loop gain remains constant under all operating conditions.
Selection of the active channel is made by comparison of the logarithmically compressed TX- and RX- envelope curve.
The system configuration for group listening, which is realized in the U4090B-P, is illustrated in Figure 9. TXA and SAI represent the two attenuators, the logarithmic envelope detectors are shown in a simplified way (operational amplifiers with two diodes).

Figure 7. Basic Voice Switch System

Figure 8. Integration of the Acoustic Feedback Suppression Circuit into the Speech Circuit Environment

Figure 9. Acoustic Feedback Suppression by Alternative Control of Transmit and Speaker Amplifier Gain

A detailed diagram of the AFS (acoustic feedback suppression) is given in Figure 9. Receive and transmit signals are first processed by logarithmic rectifiers in order to produce the envelopes of the speech at TLDT and RLDT. After amplification, a decision is made by the differential pair which direction should be transmitted.

The attenuation of the controlled amplifiers TXA and SAI is determined by the emitter current IAT which consists of three parts:
$\mathrm{I}_{\text {ATAS }} \quad$ sets maximum attenuation
$I_{\text {ATGSA }} \quad$ decreases the attenuation when speaker amplifier gain is reduced
$I_{\text {AGAFS }} \quad$ decreases the attenuation according to the loop gain reduction caused by the AGA function
$I_{\text {AT }}=I_{\text {ATAFS }}-I_{\text {ATGSA }}-I_{\text {AGAFS }}$
$\Delta G=I_{A T} \times 0.67 \mathrm{~dB} / \mu \mathrm{A}$
Figure 10 illustrates the principle relationship between speaker amplifier gain (GSA) and attenuation of AFS (ATAFS). Both parameters can be adjusted independently, but the internal coupling between them has to be considered. The maximum usable value of GSA is 36 dB . The shape of the characteristic is moved in the x -direction by adjusting resistor RATAFS, thus changing ATAFS ${ }_{m}$. The actual value of attenuation (ATAFS ${ }_{a}$), however, can be determined by reading the value which belongs to the actual gain GSA $_{\text {a }}$. If the speaker amplifier gain is reduced, the attenuation of AFS is automatically reduced by the same amount in order to achieve a constant loop gain. Zero attenuation is set for speaker gains
GSA \leq GSAO $=36 \mathrm{~dB}-$ ATAFS $_{\mathrm{m}}$.
Figure 10. Reducing Speaker Amplifier Gain Results in an Equal Reduction of AFS Attenuation

Figure 11. Line Detection with Two Comparators for Speech Mode and Pulse Dialing

Line Detection (LIDET)

The line current supervision is active under all operating conditions of the U4090B-P. In speech mode (PD = inactive), the line-current comparator uses the same thresholds as the comparator for switching off the entire speaker amplifier. The basic behavior is illustrated in Figure 12. Actual values of ILON/ILOFF vary slightly with the adjustment of the DC characteristics and the selection of the internal line impedance.
When Power Down is activated (during pulse dialing), the entire line current flows through the short-circuiting transistor QS (see Figure 6). As long as IL is above typically 1.6 mA , output LIDET is low. This comparator does not use hysteresis.

Figure 12. Line Detection in Speech Mode with Hysteresis

Ringing Power Converter (RPC)

The RPC transforms the input power at VRING (high voltage/low current) into an equivalent output power at V_{B} (low voltage/high current) which is capable of driving the lowohmic loudspeaker. Input impedance at VRING is fixed at $5 \mathrm{k} \Omega$ and the efficiency of the step-down converter is approximate 65%.

Figure 13. Comparator Thresholds Depending on DC Mask and Line Impedance

Ringing Frequency Detector (RFD)

The U4090B-P offers an output signal for the microcontroller, which is a digital representation of the double ringing frequency. It is generated by a current comparator with hysteresis. The input voltage $\mathrm{V}_{\text {RING }}$ is transformed into a current via RTHA. The thresholds are $8 \mu \mathrm{~A}$ and $24 \mu \mathrm{~A}$. RFDO and $\mathrm{V}_{\text {RING }}$ are in phase. A second comparator with hysteresis is used to enable the output RFDO as long as the supply voltage for the microprocessor VMP is above 2.0 V .

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Line current	I_{L}	140	mA
DC line voltage	V_{L}	12	V
Maximum input current, pin 17	$\mathrm{I}_{\mathrm{RING}}$	15	mA
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Total power dissipation, $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	0.9	W

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SSO44	$\mathrm{R}_{\text {thJA }}$	70	K/W

Electrical Characteristics

$\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{dBm}=775 \mathrm{mV}_{\mathrm{rms}}, \mathrm{I}_{\mathrm{M}}=0.3 \mathrm{~mA}, \mathrm{I}_{\mathrm{MP}}=2 \mathrm{~mA}, R D C=130 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, R \mathrm{RSA}=560 \mathrm{k} \Omega$,
$Z_{\text {ear }}=68 \mathrm{nF}+100 \Omega, \mathrm{Z}_{\mathrm{M}}=68 \mathrm{nF}$, pin 31 open, $\mathrm{V}_{\text {IMPSEL }}=\mathrm{GND}, \mathrm{V}_{\text {MUTX }}=G N D, \mathrm{~V}_{\text {MUTR }}=\mathrm{GND}$, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
DC Characteristics						
DC voltage drop over circuit	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=14 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=60 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \end{aligned}$	V_{L}	$\begin{aligned} & 4.6 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 5.0 \\ & 7.5 \\ & 9.4 \end{aligned}$	$\begin{gathered} 5.4 \\ 10.0 \\ \hline \end{gathered}$	V

Transmission Amplifier, $\mathrm{I}_{\mathrm{L}}=14 \mathrm{~mA}, \mathrm{~V}_{\mathrm{MIC}}=2 \mathrm{mV}, \mathrm{R}_{\mathrm{GT}}=27 \mathrm{k} \Omega$, Unless Otherwise Specified

Range of transmit gain		G_{T}	40	45	50	dB
Transmitting amplification	$\begin{aligned} & \mathrm{R}_{\mathrm{GT}}=12 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{GT}}=27 \mathrm{k} \Omega \end{aligned}$	G_{T}	$\begin{gathered} \hline 47 \\ 39.8 \end{gathered}$	48	$\begin{gathered} \hline 49 \\ 41.8 \end{gathered}$	dB
Frequency response	$\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \mathrm{f}=300 \text { to } 3400 \mathrm{~Hz} \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{T}}$			± 0.5	dB
Gain change with current	Pin 31 open $\mathrm{I}_{\mathrm{L}}=14 \text { to } 100 \mathrm{~mA}$	$\Delta \mathrm{G}_{\mathrm{T}}$			± 0.5	dB
Gain deviation	$\mathrm{T}_{\text {amb }}=-10$ to $+60^{\circ} \mathrm{C}$	$\Delta \mathrm{G}_{\mathrm{T}}$			± 0.5	dB
CMRR of microphone amplifier		CMRR	60	80		dB
Input resistance of MIC amplifier	$\begin{aligned} & \mathrm{R}_{\mathrm{GT}}=12 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{GT}}=27 \mathrm{k} \Omega \end{aligned}$	R_{i}	45	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	110	k ת
Distortion at line	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{L}}=700 \mathrm{mV} \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	$d_{\text {t }}$			2	\%
Maximum output voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}>19 \mathrm{~mA}, \mathrm{~d}<5 \% \\ & \mathrm{~V}_{\text {MIC }}=25 \mathrm{mV} \\ & \text { CTXA }=1 \mu \mathrm{~F} \end{aligned}$	$\mathrm{V}_{\text {Lmax }}$	1.8	3	4.2	dBm
	IMPSEL = open $\mathrm{R}_{\mathrm{GT}}=12 \mathrm{k} \Omega$	$\mathrm{V}_{\text {MICOmax }}$		-5.2		dBm
Noise at line psophometrically weighted	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA} \\ & \mathrm{G}_{\mathrm{T}}=48 \mathrm{~dB} \end{aligned}$	no		-80	-72	dBmp
Anti-clipping attack time release time	$\text { CTXA }=1 \mu \mathrm{~F}$ each 3 dB overdrive			$\begin{gathered} 0.5 \\ 9 \end{gathered}$		ms
Gain at low operating current	$\begin{aligned} & \mathrm{l}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{MP}}=1 \mathrm{~mA} \\ & R D C=68 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{MIC}}=1 \mathrm{mV} \\ & \mathrm{I}_{\mathrm{M}}=300 \mu \mathrm{~A} \end{aligned}$	G_{T}	40		42.5	dB
Distortion at low operating current	$\begin{aligned} & \mathrm{l} \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{M}}=300 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{MP}}=1 \mathrm{~mA} \\ & \mathrm{RDC}=68 \mathrm{kS} \\ & \mathrm{~V}_{\mathrm{MIC}}=10 \mathrm{mV} \end{aligned}$	$d_{\text {t }}$			5	\%
Line loss compensation	$\begin{aligned} & \mathrm{l} \mathrm{~L}=100 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{AGA}}=20 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{T}}$	-6.4	-5.8	-5.2	dB
Mute suppression a) MIC muted (microphone preamplifier) b) TXA muted (second stage)	$\begin{aligned} & \mathrm{L}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \text { MUTX = open } \end{aligned}$	$\mathrm{G}_{\text {TM }}$	60	80		dB
	IMPSEL = open	$\mathrm{G}_{\text {TTX }}$	60			dB

Electrical Characteristics (Continued)
$\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{dBm}=775 \mathrm{mV} \mathrm{rms}, \mathrm{I}_{\mathrm{M}}=0.3 \mathrm{~mA}, \mathrm{I}_{\mathrm{MP}}=2 \mathrm{~mA}, R D C=130 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{RGSA}=560 \mathrm{k} \Omega$,
$Z_{\text {ear }}=68 \mathrm{nF}+100 \Omega, \mathrm{Z}_{\mathrm{M}}=68 \mathrm{nF}$, pin 31 open, $\mathrm{V}_{\text {IMPSEL }}=G N D, \mathrm{~V}_{\text {MUTX }}=G N D, \mathrm{~V}_{\text {MUTR }}=\mathrm{GND}$, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Receiving Amplifier, $\mathrm{I}_{\mathrm{L}}=14 \mathrm{~mA}, \mathrm{R}_{\mathrm{GR}}=62 \mathrm{k}$, Unless Otherwise Specified, $\mathrm{V}_{\mathrm{GEN}}=300 \mathrm{mV}$						
Adjustment range of receiving gain	$\mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA}$, single ended differential MUTR = GND	G_{R}	$\begin{aligned} & -8 \\ & -2 \end{aligned}$		$\begin{aligned} & +2 \\ & +8 \end{aligned}$	dB
Receiving amplification	$\mathrm{R}_{\mathrm{GR}}=62 \mathrm{k} \Omega$ differential $\mathrm{R}_{\mathrm{GR}}=22 \mathrm{k} \Omega$ differential	G_{R}	-1.75	$\begin{aligned} & \hline-1 \\ & 7.5 \end{aligned}$	-0.25	dB
Amplification of DTMF signal from DTMF IN to RECO 1, 2	$\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \mathrm{~V}_{\text {MUTX }}=\mathrm{V}_{\mathrm{MP}} \end{aligned}$	G_{RM}	7	10	13	dB
Frequency response	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA}, \\ & \mathrm{f}=300 \text { to } 3400 \mathrm{~Hz} \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{RF}}$			± 0.5	dB
Gain change with current	$\mathrm{I}_{\mathrm{L}}=14$ to 100 mA	$\Delta \mathrm{G}_{\mathrm{R}}$			± 0.5	dB
Gain deviation	$\mathrm{T}_{\text {amb }}=-10$ to $+60^{\circ} \mathrm{C}$	$\Delta \mathrm{G}_{\mathrm{R}}$			± 0.5	dB
Ear-protection differential	$\mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GEN}}=11 \mathrm{~V}_{\mathrm{rms}}$	EP			2.2	$\mathrm{V}_{\text {rms }}$
MUTE suppression a) RECATT b) RA2 c) DTMF operation	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \text { MUTR }=\text { open } \\ & \mathrm{V}_{\text {MUTR }}=\mathrm{V}_{\mathrm{MP}} \\ & \mathrm{~V}_{\text {MUTX }}=\mathrm{V}_{\mathrm{MP}} \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{R}}$	60			dB
Output voltage $\mathrm{d} \leq 2 \%$ differential	$\mathrm{I}_{\mathrm{L}}=14 \mathrm{~mA}, \mathrm{Z}_{\text {ear }}=68 \mathrm{nF}+100 \Omega$		0.775			$\mathrm{V}_{\text {rms }}$
Maximum output current d $\leq 2 \%$	$\mathrm{Z}_{\text {ear }}=100 \Omega$		4			$\begin{gathered} \mathrm{mA} \\ \text { (peak) } \end{gathered}$
Receiving noise psophometrically weighted	$\begin{aligned} & \mathrm{Z}_{\text {ear }}=68 \mathrm{nF}+100 \Omega \\ & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \end{aligned}$	ni		-80	-77	dBmp
Output resistance	Each output against GND	Ro			10	Ω
Line loss compensation	$\mathrm{R}_{\text {AGA }}=20 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	$\Delta \mathrm{G}_{\mathrm{RI}}$	-7.0	-6.0	-5.0	dB
Gain at low operating current	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{MP}}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{M}}=300 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GEN}}=560 \mathrm{mV} \\ & \mathrm{RDC}=68 \mathrm{k} \Omega \end{aligned}$	G_{R}	-2	-1	0	dB
AC impedance	$\begin{aligned} & \mathrm{V}_{\text {IMPSEL }}=\mathrm{GND} \\ & \mathrm{~V}_{\text {IMPSEL }}=\mathrm{V}_{\mathrm{MP}} \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{imp}} \\ & \mathrm{Z}_{\mathrm{imp}} \end{aligned}$	$\begin{aligned} & 570 \\ & 840 \end{aligned}$	$\begin{aligned} & 600 \\ & 900 \end{aligned}$	$\begin{aligned} & \hline 640 \\ & 960 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Distortion at low operating current	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{MP}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{GEN}}=560 \mathrm{mV} \\ & \mathrm{RDC}=68 \mathrm{k} \Omega \end{aligned}$	dR			5	\%
Speaker Amplifier						
Minimum line current for operation	No AC signal	$\mathrm{I}_{\text {Lmin }}$			15	mA
Input resistance	Pin 24		14		22	$\mathrm{k} \Omega$
Gain from SAI to SAO	$\begin{aligned} & \mathrm{V}_{\mathrm{SAI}}=3 \mathrm{mV} \\ & \mathrm{l}_{\mathrm{L}}=15 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{GSA}}=560 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{GSA}}=20 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\mathrm{G}_{\text {SA }}$	35.5	$\begin{gathered} 36.5 \\ -3 \end{gathered}$	37.5	dB

Electrical Characteristics (Continued)

$\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{dBm}=775 \mathrm{mV} \mathrm{rms}, \mathrm{I}_{\mathrm{M}}=0.3 \mathrm{~mA}, \mathrm{I}_{\mathrm{MP}}=2 \mathrm{~mA}, R D C=130 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{RGSA}=560 \mathrm{k} \Omega$,
$Z_{\text {ear }}=68 \mathrm{nF}+100 \Omega, \mathrm{Z}_{\mathrm{M}}=68 \mathrm{nF}$, pin 31 open, $\mathrm{V}_{\text {IMPSEL }}=G N D, \mathrm{~V}_{\text {MUTX }}=G N D, \mathrm{~V}_{\text {MUTR }}=G N D$, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.
Output power	Load resistance $R_{\mathrm{L}}=50 \Omega, \mathrm{~d}<5 \%$ $\mathrm{~V}_{\mathrm{SAI}}=20 \mathrm{mV}$ $\mathrm{L}_{\mathrm{L}}=15 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$				

DTMF Amplifier Test Conditions: $\operatorname{IMP}=\mathbf{2} \mathbf{~ m A}, \mathrm{IM}=\mathbf{0 . 3} \mathrm{mA}, \mathrm{V}_{\text {mutx }}=\mathrm{VMP}$

Adjustment range of DTMF gain	$\mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}$ mute active	G_{D}	40		50	dB
DTMF amplification	$\mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{DTMF}}=8 \mathrm{mV}$ Mute active: $\mathrm{MUTX}=\mathrm{V}_{\mathrm{MP}}$	G_{D}	40.7	41.7	42.7	dB
Gain deviation	$\mathrm{I}_{\mathrm{L}}=15 \mathrm{~mA}, \mathrm{~T}_{\mathrm{amb}}=-10 \mathrm{to}+60^{\circ} \mathrm{C}$	G_{D}			± 0.5	dB
Input resistance	$\mathrm{R}_{\mathrm{GT}}=27 \mathrm{k} \Omega$ $\mathrm{R}_{\mathrm{GT}}=15 \mathrm{k} \Omega$	R_{i}	60	180	300	$\mathrm{k} \Omega$
Distortion of DTMF signal	L $\geq 15 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{L}}=0 \mathrm{dBm}$	d_{D}			26	2
Gain deviation with current	$\mathrm{I}_{\mathrm{L}}=15 \mathrm{to} 100 \mathrm{~mA}$	$\Delta \mathrm{G}_{\mathrm{D}}$			± 0.5	dB

AFS Acoustic Feedback Suppression

Adjustment range of attenuation	$\mathrm{I}_{\mathrm{L}} \geq 15 \mathrm{~mA}$		0		50	dB
Attenuation of transmit gain	$\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{NLDT}}=0 \mu \mathrm{~A} \\ & \mathrm{R}_{\text {ATAFS }}=30 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{INLDR}}=10 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\Delta \mathrm{G}_{\mathrm{T}}$		45		dB
Attenuation of speaker amplifier	$\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{NLDP}}=0 \mu \mathrm{~A} \\ & \mathrm{R}_{\text {ATAFS }}=30 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{INLDR}}=10 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\Delta \mathrm{G}_{\text {SA }}$		50		dB
AFS disable	$\mathrm{I}_{\mathrm{L}} \geq 15 \mathrm{~mA}$	$\mathrm{V}_{\text {ATAFS }}$	1.5			V

Supply Voltages, $\mathrm{V}_{\text {MIC }}=25 \mathrm{mV}, \mathrm{T}_{\text {amb }}=-10$ to $+60^{\circ} \mathrm{C}$

V_{MP}	$\mathrm{I}_{\mathrm{L}}=14 \mathrm{~mA}$ $R D C=68 \mathrm{k} \Omega$ $\mathrm{I}_{\mathrm{MP}}=2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{MP}}$	3.1	3.3	3.5

Electrical Characteristics (Continued)
$\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{dBm}=775 \mathrm{mV} \mathrm{rms}, \mathrm{I}_{\mathrm{M}}=0.3 \mathrm{~mA}, \mathrm{I}_{\mathrm{MP}}=2 \mathrm{~mA}, R D C=130 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{RGSA}=560 \mathrm{k} \Omega$,
$Z_{\text {ear }}=68 \mathrm{nF}+100 \Omega, \mathrm{Z}_{\mathrm{M}}=68 \mathrm{nF}$, pin 31 open, $\mathrm{V}_{\text {IMPSEL }}=\mathrm{GND}, \mathrm{V}_{\text {MUTX }}=\mathrm{GND}, \mathrm{V}_{\text {MUTR }}=\mathrm{GND}$, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.
$\mathrm{V}_{\mathrm{MPS}}$	$\mathrm{I}=100 \mathrm{~mA}$ $\mathrm{RDC}=\mathrm{infinite}$ $\mathrm{I}_{\mathrm{MP}}=0 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{MPS}}$			Unit
V_{M}	$\mathrm{I}_{\mathrm{L}} \mathrm{w} 14 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{M}}=700 \mu \mathrm{~A}$ $\mathrm{RDC}=130 \mathrm{k} \Omega$	V_{M}	1.3	V	
$\mathrm{~V}_{\mathrm{B}}$	$\mathrm{I}_{\mathrm{B}}=+20 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{B}}$		3.3	V

Ringing Power Converter, IMP = $1 \mathrm{~mA}, \mathrm{IM}=0$

Maximum output power	$\mathrm{V}_{\mathrm{RING}}=20.6 \mathrm{~V}$	$\mathrm{P}_{\text {SA }}$		20		mW
Threshold of ring frequency detector	RFDO: low to high $\mathrm{V}_{\mathrm{HYST}}=\mathrm{V}_{\mathrm{RING}} \mathrm{ON}-\mathrm{V}_{\mathrm{RING}} \mathrm{OFF}$	$V_{\text {RINGON }}$ $\mathrm{V}_{\mathrm{HYST}}$		$\begin{aligned} & 17.5 \\ & 11.0 \end{aligned}$		V
Input impedance	$\mathrm{V}_{\text {RING }}=30 \mathrm{~V}$	$\mathrm{R}_{\text {RING }}$	4	5	6	$\mathrm{k} \Omega$
Input impedance in speech mode	$\begin{aligned} & \mathrm{f}=300 \mathrm{~Hz} \text { to } 3400 \mathrm{~Hz} \mathrm{I}_{\mathrm{L}}>15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{RING}}=20 \mathrm{~V}+1.5 \mathrm{~V}_{\mathrm{rms}} \end{aligned}$	$\mathrm{R}_{\text {RINGSP }}$	150			k Ω
Logic level of frequency detector	$\begin{aligned} & \mathrm{V}_{\mathrm{RING}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{B}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{RING}}=25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {RFDO }}$		$\begin{gathered} 0 \\ \mathrm{~V}_{\mathrm{MP}} \end{gathered}$		V
Ring detector enable	$\mathrm{V}_{\text {RING }}=25 \mathrm{~V}$, RFDO high	$\mathrm{V}_{\text {MPON }}$	1.8	2.0	2.2	V
Zener diode voltage	$\mathrm{I}_{\mathrm{RING}}=25 \mathrm{~mA}$	$\mathrm{V}_{\text {RINGmax }}$	30.8		33.3	V

MUTR Input

MUTR input current	$\mathrm{V}_{\text {MUTR }}=\mathrm{GND}$ $\mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA}$ $\mathrm{~V}_{\text {MUTR }}=\mathrm{V}_{\text {MP }}$	$\mathrm{I}_{\text {MUTE }}$		-20	-30	$\mu \mathrm{C}$
MUTR input voltage	Mute low; $\mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA}$	$\mathrm{~V}_{\text {MUTE }}$			0.3	V
	Mute high; $\mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA}$	$\mathrm{~V}_{\text {MUTE }}$	$\mathrm{VMP}-$ 0.3 V			V

PD Input

PD input current	PD active, $\mathrm{I}_{\mathrm{L}}>14 \mathrm{~mA} \mathrm{~V}_{\mathrm{PD}}=\mathrm{V}_{\mathrm{MP}}$	I_{pd}		9	
Input voltage	$\mathrm{PD}=$ active	V_{pd}	2		
Voltage drop at V_{L}	$\mathrm{PD}=$ inactive	V_{pd}			V

Input Characteristics of IMPSEL

Input current	$\begin{aligned} & \mathrm{I}_{\mathrm{L}} \geq 14 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IMPSEL }}=\mathrm{V}_{\mathrm{MP}} \\ & \mathrm{~V}_{\text {IMPSEL }}=\mathrm{GND} \end{aligned}$	$I_{\text {IMPSEL }}$ $I_{\text {IMPSEL }}$		$\begin{gathered} 18 \\ -18 \end{gathered}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input voltage	Input high	$\mathrm{V}_{\text {IMPSEL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{MP}}- \\ & 0.3 \mathrm{~V} \end{aligned}$			V
	Input low	$\mathrm{V}_{\text {IMPSEL }}$			0.3	V
MUTX Input						
Input current	$\begin{aligned} & \mathrm{V}_{\text {MUTX }}=\mathrm{V}_{\text {MP }} \\ & \mathrm{V}_{\text {MUTX }}=\mathrm{GND} \end{aligned}$	$I_{\text {MUTX }}$ $I_{\text {MUTX }}$		$\begin{gathered} 20 \\ -20 \end{gathered}$	$\begin{gathered} 30 \\ -30 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Electrical Characteristics (Continued)

$\mathrm{f}=1 \mathrm{kHz}, 0 \mathrm{dBm}=775 \mathrm{mV} \mathrm{rms}, \mathrm{I}_{\mathrm{M}}=0.3 \mathrm{~mA}, \mathrm{I}_{\mathrm{MP}}=2 \mathrm{~mA}, \mathrm{RDC}=130 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{RGSA}=560 \mathrm{k} \Omega$,
$Z_{\text {ear }}=68 \mathrm{nF}+100 \Omega, \mathrm{Z}_{\mathrm{M}}=68 \mathrm{nF}$, pin 31 open, $\mathrm{V}_{\text {IMPSEL }}=G N D, \mathrm{~V}_{\text {MUTX }}=G N D, \mathrm{~V}_{\text {MUTR }}=G N D$, unless otherwise specified

Parameters	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Input voltage	Input high	$\mathrm{V}_{\text {MUTX }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{MP}}- \\ & 0.3 \mathrm{~V} \end{aligned}$			V
	Input low	$\mathrm{V}_{\text {MUTX }}$			0.3	V
Line Detection						
Line current for LIDET active	$\mathrm{PD}=$ inactive	ILON		12.6		mA
Line current for LIDET inactive	$\mathrm{PD}=$ inactive	ILOFF		11.0		mA
Current threshold during power down	$\mathrm{V}_{\mathrm{B}}=5 \mathrm{~V}, \mathrm{PD}=$ active	ILONPD	0.8	1.6	2.4	mA

U4090B-P Control
Table 1. Selection of TX Mute and Line Impedance

Logic Level	IMPSEL	MODE
0	Line impedance $=600 \Omega$ TXA $=$ on ES $=$ off	Speech
0 to Z	Line impedance $=600 \Omega$ TXA $=$ off ES $=$ on	Transmit-mute
1 to Z	Line impedance $=900 \Omega$ TXA $=$ off ES $=$ on	Transmit-mute
1	Line impedance $=900 \Omega$ TXA $=$ on ES $=$ off	Speech

Table 2. Selection of Earpiece Mute and Answering Machine Mode

Logic Level	MUTR	MODE
0	RA2 $=$ on RECATT $=$ on STIS + STIL $=$ on	Speech
0 to Z	RA2 $=$ on RECATT $=$ off STIS $=$ on, STIL $=$ off	RA2 $=$ off RECATT $=$ off STIS $=$ on, STIL $=$ off AGA off for STIS
1 to Z For answering machine		
1	RA2 $=$ off RECATT $=$ on STIS + STIL $=$ on	For answering machine

Table 3. Selection of Transmit Mute

Logic Level	MUTX	MODE
0	MIC 1/2 transmit enabled receive enable AFS $=$ on AGA $=$ on TXACL $=$ on	Speech
	DTMF transmit enabled receive enable AFS $=$ on AGA $=$ on TXACL $=$ on	For answering machine
1	DTMF transmit enabled DTMF to receive enable AFS $=$ off AGA $=$ off TXACL $=$ off	DTMF dialling

Table 4. Specification of Logic Levels

Logic Level
$0=<(0.3 \mathrm{~V})$
$\mathrm{Z}=>(1 \mathrm{~V})<(\mathrm{VMP}-1 \mathrm{~V})$ or (open input)
$1=>(\mathrm{VMP}-0.3 \mathrm{~V})$

Explanation of

 AbbreviationsRECATT = Receive attenuation
STIS, STIL = Inputs of sidetone balancing amplifiers
ES = External supply
AFS = Acoustic feedback suppression control
AGA = Automatic gain adjustment
RA2 = Inverting receive amplifier
TXACL = Transmit anti-clipping control

Figure 14. Typical DC Characteristic

Figure 15. Typical Adjustment Range of Transmit Gain

Figure 16. Typical Adjustment Range of Receive Gain (Differential Output)

Figure 17. Typical AGA Characteristic

Figure 18. Typical Load Characteristic of V_{B} for a Maximum (RDC = Infinity) DC-characteristic and 3-mW Loudspeaker Output

RDC $=$ Infinity; $\mathrm{VI}=200 \mathrm{mV} / 1 \mathrm{kHz} ; \mathrm{PSAO}=3 \mathrm{~mW} ; \mathrm{IMP}=2 \mathrm{~mA} ; \mathrm{IM}=300 \mu \mathrm{~A} ; \mathrm{RGSA}=560 \mathrm{k}$

Figure 19. Typical Load Characteristic of V_{B} for a Medium DC-characteristic ($\mathrm{RDC}=130 \mathrm{k} \Omega$) and 3-mW Loudspeaker Output

RDC $=130 \mathrm{k} ; \mathrm{VI}=200 \mathrm{mV} / 1 \mathrm{kHz} ;$ PSAO $=3 \mathrm{~mW} ; \mathrm{IMP}=2 \mathrm{~mA} ; \mathrm{IM}=300 \mu \mathrm{~A} ; \mathrm{RGSA}=560 \mathrm{k}$

Figure 20. Typical Load Characteristic of V_{B} for a Minimum DC-characteristic (RDC $=68 \mathrm{k} \Omega$) and 3-mW Loudspeaker Output

$R D C=68 \mathrm{k}, \mathrm{VI}=200 \mathrm{mV}, \mathrm{PSAO}=3 \mathrm{~mW} ; \mathrm{IMP}=2 \mathrm{~mA} ; \mathrm{IM}=300 \mu \mathrm{~A} ; \mathrm{RGSA}=560 \mathrm{k}$

Figure 21. Basic Test Circuit

Figure 22. Test Circuit for DC Characteristics and Line Detection

Figure 23. Test Circuit for Transmission Amplifier

Figure 24. Test Circuit for Receiving Amplifier

Figure 25. Test Circuit for Speaker Amplifier

Figure 26. Test Circuit for DTMF Amplifier

Figure 27. Test Circuit for Ringing Power Converter

Figure 28. Test Circuit for Input Characteristics of I/O Ports

Figure 29. Application Circuit for Loud-hearing

Figure 30. Application for Hands-free Operation

Table 5. Typical Values of External Components (Figure 29 and Figure 30)

Name	Value	Name	Value	Name	Value	Name	Value
C_{1}	100 nF	C_{16}	$47 \mu \mathrm{~F}$	R_{3}	$>68 \mathrm{k} \Omega$	R_{18}	$30 \mathrm{k} \Omega$
C_{2}	4.7 nF	C_{17}	$10 \mu \mathrm{~F}$	R_{4}	$10 \mathrm{k} \Omega$	R_{19}	$6.8 \mathrm{k} \Omega$
C_{3}	$10 \mu \mathrm{~F}$	C_{18}	$10 \mu \mathrm{~F}$	R_{5}	$1.5 \mathrm{k} \Omega$	R_{20}	$6.8 \mathrm{k} \Omega$
C_{4}	$220 \mu \mathrm{~F}$	C_{19}	68 nF	R_{6}	$62 \mathrm{k} \Omega$	R_{21}	$15 \mathrm{k} \Omega$
C_{5}	$47 \mu \mathrm{~F}$	C_{20}	68 nF	R_{7}	$680 \mathrm{k} \Omega$	R_{22}	$330 \mathrm{k} \Omega$
C_{6}	$470 \mu \mathrm{~F}$	C_{21}	$1 \mu \mathrm{~F}$	R_{8}	$22 \mathrm{k} \Omega$	R_{23}	$220 \mathrm{k} \Omega$
C_{7}	820 nF	C_{22}	100 nF	R_{9}	$330 \mathrm{k} \Omega$	R_{24}	$68 \mathrm{k} \Omega$
C_{8}	$100 \mu \mathrm{~F}$	C_{23}	6.8 nF	R_{10}	$3 \mathrm{k} \Omega$	R_{25}	$2 \mathrm{k} \Omega$
C_{9}	100 nF	C_{24}	10 nF	R_{11}	$62 \mathrm{k} \Omega$	R_{26}	$3.3 \mathrm{k} \Omega$
C_{10}	150 nF	C_{25}	100 nF	R_{12}	$30 \mathrm{k} \Omega$	R_{27}	$18 \mathrm{k} \Omega$
C_{11}	86 nF	C_{26}	470 nF	R_{13}	$62 \mathrm{k} \Omega$	R_{28}	$2 \mathrm{k} \Omega$
C_{12}	33 nF	C_{27}	33 nF	R_{14}	$120 \mathrm{k} \Omega$	R_{29}	$1 \mathrm{k} \Omega$
C_{13}	$10 \mu \mathrm{~F}$	$\mathrm{~L}_{1}$	2.2 mH	R_{15}	$47 \mathrm{k} \Omega$	R_{30}	$12 \mathrm{k} \Omega$
C_{14}	100 nF	R_{1}	$27 \mathrm{k} \Omega$	R_{16}	$1 \mathrm{k} \Omega$	R_{31}	$56 \mathrm{k} \Omega$
C_{15}	$1 \mu \mathrm{~F}$	R_{2}	$20 \mathrm{k} \Omega$	R_{17}	$1.2 \mathrm{k} \Omega$		

Ordering Information

Extended Type Number	Package	Remarks
U4090B-PFN	SSO44	-
U4090B-PFNG3	SSO44	Taped and reeled
T4090B-PC	Die	Chip on foil

Package Information

Package SSO44

 specifications

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia

Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa BIdg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved.

Atmel ${ }^{\circledR}$ and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be the trademarks of others.

