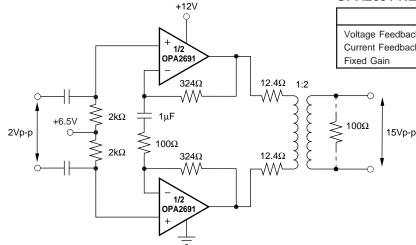


SBOS224 - DECEMBER 2001


Dual Wideband, Current Feedback OPERATIONAL AMPLIFIER With Disable

FEATURES

- FLEXIBLE SUPPLY RANGE: +5V to +12V
- WIDEBAND +5V OPERATION: 230MHz (G = +2)
- UNITY GAIN STABLE: 400MHz (G = 1)
- HIGH OUTPUT CURRENT: 190mA
- OUTPUT VOLTAGE SWING: ±4.0V
- HIGH SLEW RATE: 2100V/µs
- LOW SUPPLY CURRENT: 5.1mA/ch
- LOW DISABLED CURRENT: 100μA/ch

DESCRIPTION

The OPA2691 sets a new level of performance for broadband dual current feedback op amps. Operating on a very low 5.1mA/ch supply current, the OPA2691 offers a slew rate and output power normally associated with a much higher supply current. A new output stage architecture delivers a high output current with minimal voltage headroom and crossover distortion. This gives exceptional single-supply operation. Using a single +5V supply, the OPA2691 can deliver a 1V to 4V output swing with over 120mA drive current and 150MHz bandwidth. This combination of features makes the OPA2691 an ideal RGB line driver or single supply Analog-to-Digital Converter (ADC) input driver.

APPLICATIONS

- xDSL LINE DRIVER/RECEIVER
- MATCHED I/Q CHANNEL AMPLIFIER
- BROADBAND VIDEO BUFFERS
- HIGH SPEED IMAGING CHANNELS
- PORTABLE INSTRUMENTS
- DIFFERENTIAL ADC DRIVERS
- ACTIVE FILTERS
- WIDEBAND INVERTING SUMMING

The OPA2691's low 5.1mA/ch supply current is precisely trimmed at 25° C. This trim, along with low drift over temperature, ensures lower maximum supply current than competing products. System power may be further reduced by using the optional disable control pin (SO-14 only). Leaving this disable pin open, or holding it HIGH, gives normal operation. If pulled LOW, the OPA2691 supply current drops to less than 150μ A/ch while the output goes into a high impedance state. This feature may be used for power savings.

OPA2691 RELATED PRODUCTS

	SINGLES	DUALS	TRIPLES
Voltage Feedback	OPA690	OPA2690	OPA3690
Current Feedback	OPA691	OPA2681	OPA3691
Fixed Gain	OPA692	OPA2682	OPA3692

Single Supply ADSL Upstream Driver

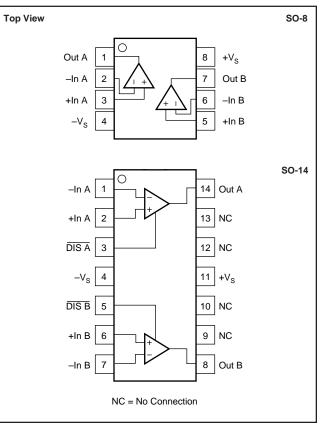
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
OPA2691ID	SO-8	D	–40°C to +85°C	OPA2691I	OPA2691ID	Rails, 100
"	"	"	"	"	OPA2691IDR	Tape and Reel, 2500
OPA2691I-14D	SO-14	D	–40°C to +85°C	OPA2691I	OPA2691I-14D	Rails, 58
"	"	"	"	"	OPA2691I-14DR	Tape and Reel, 2500

NOTES: (1) For the most current specifications and package information, refer to our web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾


NOTE: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability. (2) Packages must be derated based on specified θ_{IA} . Maximum T_I must be observed.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN CONFIGURATIONS

SPECIFICATIONS: $V_S = \pm 5V$

 R_F = 402 $\Omega,~R_L$ = 100 $\Omega,~and~G$ = +2, (see Figure 1 for AC performance only), unless otherwise noted.

		OPA2691ID, I-14D						
		TYP MIN/MAX OVER TEMPERATURE				RATURE		
PARAMETER	CONDITIONS	+25°C	+25°C ⁽²⁾	0°C to 70°C ⁽³⁾	-40°C to +85°C ⁽³⁾	UNITS	MIN/ MAX	TES
AC PERFORMANCE (see Figure 1)								
Small-Signal Bandwidth (V _O = 0.5Vp-p)	$G = +1, R_F = 453\Omega$	400				MHz	typ	l c
	$G = +2, R_F = 402\Omega$	350				MHz	typ	l c
	$G = +5, R_F = 261\Omega$	320				MHz	typ	
	$G = +10, R_F = 180\Omega$	200				MHz	typ	
Bandwidth for 0.1dB Gain Flatness	$G = +2, V_0 = 0.5Vp-p$	35				MHz	typ	
Peaking at a Gain of +1	$R_{\rm F} = 453, V_{\rm O} = 0.5 V P - P$	1				dB	typ	
Large-Signal Bandwidth	$G = +2, V_0 = 5Vp-p$	300				MHz	typ	
Slew Rate	G = +2, 4V Step	2100				V/µs	typ	
Rise-and-Fall Time	$G = +2, V_0 = 0.5V$ Step	1.7				ns	typ	
	G = +2, 5V Step	2.0				ns		
Settling Time to 0.02%		14					typ	
	$G = +2$, $V_O = 2V$ Step					ns	typ	
0.1%	$G = +2$, $V_O = 2V$ Step	10				ns	typ	1 '
Harmonic Distortion	G = +2, f = 5MHz, V _O = 2Vp-p							1
2nd Harmonic	$R_{L} = 100\Omega$	-71				dBc	typ	
	$R_L \ge 500\Omega$	-80				dBc	typ	
3rd Harmonic	$R_1 = 100\Omega$	-76				dBc	typ	
	$R_1 \ge 500\Omega$	-92				dBc	typ	
Input Voltage Noise	f > 1MHz	2.5				nV/√Hz	typ	
Noninverting Input Current Noise	f > 1MHz	12				pA/√Hz	typ	
nverting Input Current Noise	f > 1MHz	15				pA/√Hz	typ	
Differential Gain	$G = +2$, NTSC, $V_0 = 1.4$ Vp, $R_L = 150\Omega$	0.001				%	typ	
	$R_1 = 37.5\Omega$	0.001				%	typ	
Differential Phase	$G = +2$, NTSC, $V_0 = 1.4Vp$, $R_L = 150\Omega$	0.000				deg	typ	
		0.01						
	$R_L = 37.5\Omega$					deg	typ	
Channel-to-Channel Crosstalk	f = 5MHz	-70				dBc	typ	
DC PERFORMANCE ⁽⁴⁾								1
Open-Loop Transimpedance Gain (Z _{OL})	$V_{\Omega} = 0V, R_{L} = 100\Omega$	225	125	110	100	kΩ	min	
nput Offset Voltage	$V_{CM} = 0V$	±0.8	±3	±3.7	±4.3	mV	max	
Average Offset Voltage Drift	$V_{CM} = 0V$			±12	±20	μV/°C	max	
Noninverting Input Bias Current	$V_{CM} = 0V$	+15	+35	±43	±45	μΑ	max	
Average Noninverting Input Bias Current	Drift $V_{CM} = 0V$	110	100	-300	-300	nÁ/°C	max	·
Inverting Input Bias Current	$V_{CM} = 0V$ $V_{CM} = 0V$	±5	±25	±30	±40	μA	max	
Average Inverting Input Bias Current Drit	$V_{CM} = 0V$ t $V_{CM} = 0V$	±5	-23	±90	±200	nA°/C	max	⁻
	v _{CM} = 0v			190	1200	TIA /C	шал	<u> </u>
NPUT								1
Common-Mode Input Range (CMIR) ⁽⁵⁾		±3.5	±3.4	±3.3	±3.2	V	min	
Common-Mode Rejection (CMRR)	$V_{CM} = 0V$	56	52	51	50	dB	min	/
Noninverting Input Impedance		100 2				kΩ pF	typ	
nverting Input Resistance (R _I)	Open-Loop	37				Ω	typ	
OUTPUT								
Voltage Output Swing	No Load	±4.0	±3.8	±3.7	±3.6	V	min	
ollago ollipat olling	100Ω Load	±3.9	±3.7	±3.6	±3.3	v	min	
Current Output, Sourcing	$V_0 = 0$	+190	+160	+140	+100	mĂ	min	
Current Output, Sinking		-190	-160	-140	-100	mA	min	
Short-Circuit Current	$V_0 = 0$	±250	-100	-140	-100			
						mA	typ	
Closed-Loop Output Impedance	G = +2, f = 100kHz	0.03				Ω	typ	
DISABLE (Disabled LOW) (SO-14 only)								
Power-Down Supply Current (+V _S)	$V_{\overline{DIS}} = 0$, Both Channels	-300	-600	-700	-800	μA	max	
Disable Time		100				ns	typ	
Enable Time		25				ns	typ	I I
Off Isolation	G = +2, 5MHz	70				dB	typ	
Output Capacitance in Disable	- , -	4				pF	typ	
Furn On Glitch	$G = +2, R_{L} = 150\Omega, V_{IN} = 0$	±50				mV	typ	
Turn Off Glitch	$G = +2$, $R_1 = 150\Omega$, $V_{1N} = 0$	±20				mV	typ	
Enable Voltage		3.3	3.5	3.6	3.7	V	min	
Disable Voltage		1.8	1.7	1.6	1.5	v	max	
	V 0 Each Channel							
Control Pin Input Bias Current (DIS)	$V_{\overline{DIS}} = 0$, Each Channel	75	130	150	160	μΑ	max	_
POWER SUPPLY								1
Specified Operating Voltage		±5				V	typ	
Maximum Operating Voltage Range			±6	±6	±6	V	max	
Max Quiescent Current	$V_{S} = \pm 5V$	10.2	10.6	11.2	11.5	mA	max	
Min Quiescent Current	$V_{S} = \pm 5V$	10.2	9.8	9.2	8.9	mA	min	
Power-Supply Rejection Ratio (-PSRR)	Input Referred	58	52	50	49	dB	min	
	1				-			<u> </u>
		10 10 105				~	4. 10-	1
Specification: D, 14D	have the state of the state of	-40 to +85				°C	typ	
Thermal Resistance, θ_{JA}	Junction-to-Ambient	4.0-				0.000	Ι.	1
ID SO-8		125				°C/W	typ	
14D SO-14		100				°C/W	typ	L

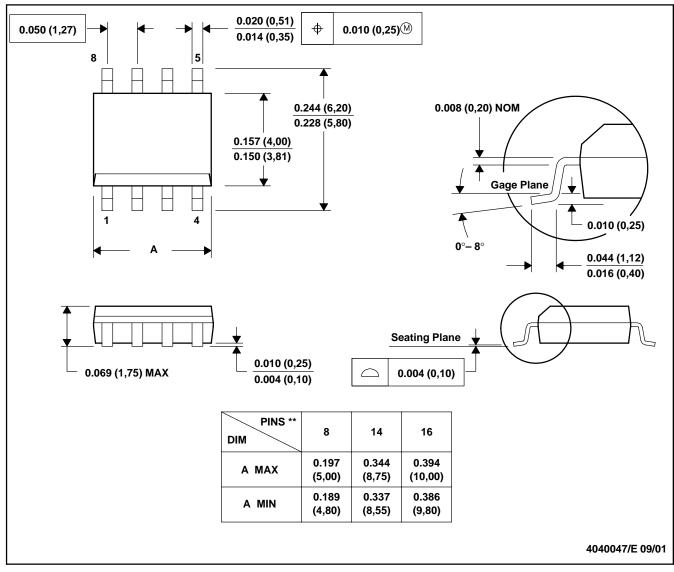
NOTES: (1) Test Levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information. (2) Junction temperature = ambient for 25°C specifications. (3) Junction temperature = ambient at low temperature limit: junction temperature = ambient +15°C at high temperature limit for over temperature specifications. (4) Current is considered positive out of node. V_{CM} is the input common-mode voltage. (5) Tested < 3dB below minimum specified CMRR at ± CMIR limits.

SPECIFICATIONS: V_S = +5V

 R_F = 499 $\Omega,~R_L$ = 100 Ω to $V_S/2,~G$ = +2, (see Figure 2 for AC performance only), unless otherwise noted.

	OPA2691ID, I-14D							
		ТҮР	YP MIN/MAX OVER		VER TEMPE	R TEMPERATURE		1
			. (9)	0°C to	-40°C to		MIN/	TEST
PARAMETER	CONDITIONS	+25°C	+25°C ⁽²⁾	70°C ⁽³⁾	+85°C ⁽³⁾	UNITS	MAX	LEVEL
AC PERFORMANCE (see Figure 2)								
Small-Signal Bandwidth (V _O = 0.5Vp-p)	G = +1, R _F = 649Ω	250				MHz	typ	C
-	$G = +2, R_F = 499\Omega$	230				MHz	typ	C
	$G = +5, R_F = 360\Omega$	215				MHz	typ	C C
	$G = +10, R_F = 200\Omega$	171				MHz	typ	C C
Bandwidth for 0.1dB Gain Flatness	$G = +2, V_O < 0.5Vp-p$	35				MHz	typ	Ċ
Peaking at a Gain of +1	$R_{\rm F} = 649\Omega, V_{\rm O} < 0.5 V {\rm p-p}$	0.4				dB	typ	l č
Large-Signal Bandwidth	$G = +2, V_0 = 2Vp-p$	300				MHz	typ	l č
Slew Rate	G = +2, 2V Step	850				V/µs	typ	l č
Rise-and-Fall Time	$G = +2, V_0 = 0.5V$ Step	1.5				ns	typ	l č
		2.0						l č
Sattling Time to 0.00%	$G = +2$, $V_O = 2V$ Step					ns	typ	
Settling Time to 0.02%	$G = +2$, $V_O = 2V$ Step	16				ns	typ	C
0.1%	$G = +2, V_O = 2V \text{ Step}$	12				ns	typ	C
Harmonic Distortion	G = +2, f = 5MHz, V _O = 2Vp-p							1
2nd Harmonic	$R_{\rm L} = 100\Omega$ to $V_{\rm S}/2$	-68				dBc	typ	C C
	$R_{L} \ge 500\Omega$ to $V_{S}/2$	-75				dBc	typ	C C
3rd Harmonic	$R_1 = 100\Omega$ to $V_S/2$	-71				dBc	typ	C C
	$R_{\rm L} \ge 500\Omega$ to $V_{\rm S}/2$	-79				dBc	typ	Ιč
Input Voltage Noise	f > 1MHz	2.2				nV/√Hz	typ	l č
Noninverting Input Current Noise	f > 1 MHz	12				pA/√Hz	typ	Ιč
5	f > 1MHz	12				pA/√Hz		Ιč
Inverting Input Current Noise	I > IIVIHz	15				ралини	typ	
DC PERFORMANCE ⁽⁴⁾								
Open-Loop Transimpedance Gain (Z _{OL})	$V_0 = V_S/2$, $R_L = 100\Omega$ to $V_S/2$	200	100	90	80	kΩ	min	A
Input Offset Voltage	$V_{CM} = 2.5V$	±0.8	±3.5	±4.1	±4.8	mV	max	A
Average Offset Voltage Drift	$V_{CM} = 2.5V$			±12	±20	μV/°C	max	В
Noninverting Input Bias Current	$V_{CM} = 2.5V$	+20	+40	±48	±56	μA	max	A
Average Noninverting Input Bias Current			-	-250	-250	nÁ/°C	max	В
Inverting Input Bias Current	$V_{CM} = 2.5V$	±5	±20	±25	±35	μΑ	max	Ā
Average Inverting Input Bias Current Drif	t $V_{CM} = 2.5V$			±112	±200	nÁ/°C	max	B
	*CM - 2.0 *			-112	-200	10.0 0	max	<u> </u>
INPUT								
Least Positive Input Voltage ⁽⁵⁾		1.5	1.6	1.7	1.8	V	max	A
Most Positive Input Voltage ⁽⁵⁾		3.5	3.4	3.3	3.2	V	min	A
Common-Mode Rejection (CMRR)	$V_{CM} = 2.5V$	54	50	49	48	dB	min	A
Noninverting Input Impedance		100 2				kΩ pF	typ	C
Inverting Input Resistance (R ₁)	Open-Loop	40				Ω	typ	C
OUTPUT								
Most Positive Output Voltage	No Load	4	3.8	3.7	3.5	V	min	A
wost i ostive ouput voltage		3.9	3.7	3.6	3.4	v	min	Â
Legat Desitive Output Valtage	$R_L = 100\Omega, 2.5V$					v		
Least Positive Output Voltage	No Load	1	1.2	1.3	1.5	v	max	A
Ourseast Outsuit Ocuration	$R_{L} = 100\Omega, 2.5V$	1.1	1.3	1.4	1.6		max	A
Current Output, Sourcing	$V_{O} = V_{S}/2$	+160	+120	+100	+80	mA	min	A
Current Output, Sinking	$V_0 = V_S/2$	-160	-120	-100	-80	mA	min	A
Closed-Loop Output Impedance	G = +2, $f = 100$ kHz	0.03				Ω	typ	C
DISABLE (Disable LOW) (SO-14 only)								
Power-Down Supply Current (+V _S)	$V_{DIS} = 0$, Both Channels	-300	-600	-700	-800	μA	max	A
Disable Time		100				ns	typ	C C
Enable Time		25				ns	typ	l č
Off Isolation	G = +2, 5MHz	65				dB	typ	Ιč
Output Capacitance in Disable	0 = +2, 300112	4				pF		Ιč
	C 12 D 1500 V V /2						typ	Ιč
Turn On Glitch	$G = +2, R_L = 150\Omega, V_{IN} = V_S/2$	±50				mV	typ	
Turn Off Glitch	$G = +2, R_L = 150\Omega, V_{IN} = V_S/2$	±20	a -		0-	mV	typ	C C
Enable Voltage		3.3	3.5	3.6	3.7	V	min	A
Disable Voltage		1.8	1.7	1.6	1.5	V	max	A
Control Pin Input Bias Current (DIS)	V _{DIS} = 0, Each Channel	75	130	150	160	μA	typ	C
POWER SUPPLY								
Specified Single-Supply Operating Voltage	ae	5				V	typ	l c
Maximum Single-Supply Operating Volta		Ť	12	12	12	v	max	Ă
Max Quiescent Current		9	9.6	12	10.4	mA	max	Â
Min Quiescent Current	$V_{s} = +5V$							
	$V_{\rm S} = +5V$	9	8.2	8.0	7.8	mA	min	A
Power-Supply Rejection Ratio (+PSRR)	Input Referred	55				dB	typ	С
TEMPERATURE RANGE								
Specification: D, 14D		-40 to +85				°C	typ	C
Thermal Resistance, θ_{JA}								1
		125				°C/W	typ	l c
D SO-8		120				0,11	1 90	· ~

NOTES: (1) Test Levels: (A) 100% tested at 25°C. Over temperature limits by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information. (2) Junction temperature = ambient for 25° C specifications. (3) Junction temperature = ambient at low temperature limit; junction temperature = ambient +15°C at high temperature limit for over temperature specifications. (4) Current is considered positive out of node. V_{CM} is the input common-mode voltage. (5) Tested < 3dB below minimum specified CMRR at ±CMIR limits.



D (R-PDSO-G**)

8 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated