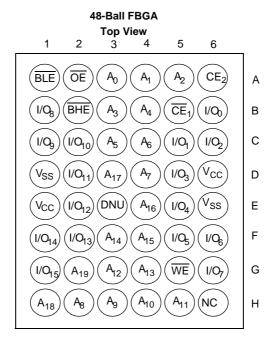

16-Mbit (1M x 16) Pseudo Static RAM

Features

- Advanced low-power MoBL[®] architecture
- High speed: 55 ns, 70 ns
- Wide voltage range: 2.7V to 3.3V
- Typical active current: 3 mA @ f = 1 MHz
- Typical active current: 13 mA @ f = f_{MAX}
- · Low standby power
- Automatic power-down when deselected

Functional Description^[1]


The CYK001M16SCCA is a high-performance CMOS pseudo static RAM (PSRAM) organized as 1M words by 16 bits that supports an asynchronous memory interface. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL) in portable applications such as cellular telephones. The device can be put into standby mode, reducing power consumption dramatically when deselected (CE1 LOW, CE2 HIGH or both BHE and BLE are HIGH). The input/output pins (I/O0 through I/O15) are placed in a high-impedance state when the chip is deselected (\overline{CE}_1 HIGH, \overline{CE}_2 LOW) or \overline{OE} is deasserted HIGH, or during a write operation (Chip Enabled and Write Enable WE LOW). Reading from the device is accomplished by asserting the Chip Enables (\overline{CE}_1 LOW and CE₂ HIGH) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table for a complete description of read and write modes.

Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Product Portfolio^[5]

							Power Di	ssipation		
	V _{CC} Range (V)				(Operating	j, I _{CC} (mA	.)	Standt	oy, I _{SB2}
				Speed	f = 1	f = 1 MHz f = f _{MAX}		МАХ	(μ A)	
Product	Min.	Тур.	Max.	(ns)	Typ. ^[5]	Max.	Typ. ^[5]	Max.	Typ. ^[5]	Max.
CYK001M16SCCA	2.7	3.0	3.3	55	3	5	13	22	80	150
				70				17		

Notes:

2. DNU pins are to be left floating or tied to V_{SS}.
 3. Ball H6 is the address expansion pins for the 32-Mb density.
 4. NC "no connect"-not connected internally to the die.
 5. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} (typ) and T_A = 25°C.

CYK001M16SCCA <u>Mo</u>BL[®]

Maximum Ratings^[6, 7, 8]

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage to Ground Potential0.4V to 4.6V
DC Voltage Applied to Outputs in High-Z State $^{[6,\ 7,\ 8]}$ 0.4V to 3.3V

DC Input Voltage ^[6, 7, 8]	–0.4V to 3.3V
Output Current into Outputs (LOW) .	
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Rang	e	Ambient Temperature (T _A)	V _{cc}
Industr	ial	–25°C to +85°C	2.7V to 3.3V

DC Electrical Characteristics (Over the Operating Range)

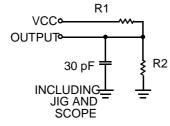
			CYK0	01M16SC	CA-55	CYK001M16SCCA-70			
Parameter	Description	Test Conditions	Min.	Typ. ^[5]	Max.	Min.	Typ. ^[5]	Max.	Unit
V _{CC}	Supply Voltage		2.7	3.0	3.3	2.7		3.3	V
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	V _{CC} – 0.4			V _{CC} – 0.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA			0.4			0.4	V
V _{IH}	Input HIGH Voltage		0.8 * V _{CC}		V _{CC} + 0.4	0.8 * V _{CC}		V _{CC} + 0.4	V
V _{IL}	Input LOW Voltage	f = 0	-0.4		0.4	-0.4		0.4	V
I _{IX}	Input Leakage Current	$GND \le V_{IN} \le Vcc$	-1		+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	GND <u>≤</u> V _{OUT} <u>≤</u> Vcc, Output Disabled	-1		+1	-1		+1	μA
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$ Vcc = 3.3V,		13	22		13	17	mA
	Supply Current	f = 1 MHz I _{OUT} = 0mA, CMOS level		3	5		3	5	
I _{SB1}	Automatic CE Power-down Current —CMOS Inputs	$\label{eq:constraint} \begin{array}{l} \overline{CE} \geq V_{CC} - 0.2V, \ CE_2 \leq 0.2V \\ V_{IN} \geq V_{CC} - 0.2V, \ V_{IN} \leq 0.2V, \\ f = f_{MAX}(\underline{Address \ and \ Data \ Only}), \\ f = 0 \ (\overline{OE}, \ WE, \ \overline{BHE} \ and \ \overline{BLE}), \\ V_{CC} = 3.3V \end{array}$		100	525		100	525	μΑ
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\label{eq:constraint} \begin{split} \overline{CE} \geq V_{CC} &= 0.2 \text{V}, \text{CE}_2 \leq 0.2 \text{V} \\ V_{\text{IN}} \geq V_{CC} &= 0.2 \text{V} \text{ or } \text{V}_{\text{IN}} \leq 0.2 \text{V}, \\ \text{f} = 0, \ V_{CC} &= 3.3 \text{V} \end{split}$		80	150		80	150	μΑ

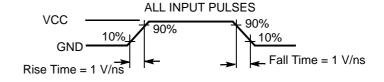
Capacitance^[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	T _A = 25°C, f = 1 MHz	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Notes:

Notes:
0. V_{IH(MAX)} = V_{CC} + 0.5V for pulse durations less than 20 ns.
7. V_{IL(MIN)} = -0.5V for pulse durations less than 20 ns.
8. Overshoot and undershoot specifications are characterized and are not 100% tested.
9. Tested initially and after design or process changes that may affect these parameters.




CYK001M16SCCA MoBI

Thermal Resistance^[9]

Parameter	Description	Test Conditions	FBGA	Unit
θ_{JA}		Test conditions follow standard test methods and procedures for measuring thermal	55	°C/W
θ^{JC}	Thermal Resistance (Junction to Case)	impedance, per EIA / JESD51.	17	°C/W

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT

R_{TH} • V_{TH} OUTPUT

Parameters	3.0V V _{CC}	Unit
R1	22000	Ω
R2	22000	Ω
R _{TH}	11000	Ω
V _{TH}	1.50	V

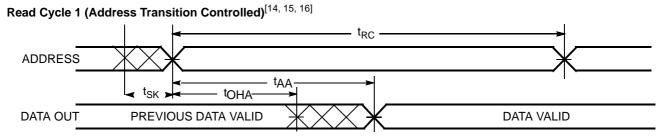
Switching Characteristics (Over the Operating Range)^[10, 11, 12, 13]

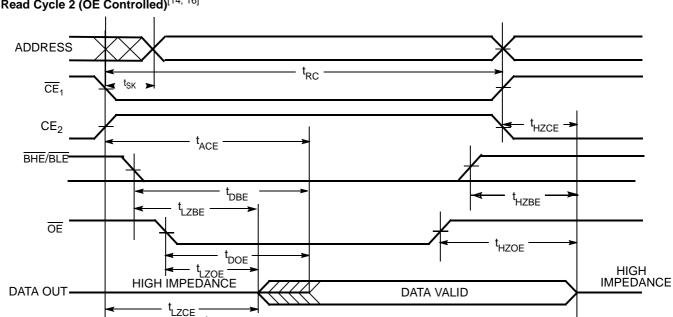
		CYK001M ²	6SCCA-55	CYK001M		
Parameter Description		Min.	Max.	Min.	Max.	Unit
Read Cycle	+ + +		•	•	••	
t _{RC}	Read Cycle Time	55 ^[14]		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[11, 12]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[11, 12]		25		25	ns
t _{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low Z ^[11, 12]	5		5		ns
t _{HZCE}	\overline{CE}_1 HIGH and CE_2 LOW to High Z ^[11, 12]		25		25	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55		70	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[11, 12]	5		5		ns
t _{HZBE}	BLE/BHE HIGH to High-Z ^[11, 12]		10		25	ns
t _{SK} ^[14]	Address Skew		0		10	ns

Notes:

Notes:
 10. Test conditions assume signal transition time of 1 V/ns or higher, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0V to V_{CC(typ)}, and output loading of the specified |_{OL}/l_{OH} and 30-pF load capacitance.
 11. t_{HZOE}, t_{HZEE} and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
 12. High-Z and Low-Z parameters are characterized and are not 100% tested.
 13. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, CE₂ = V_{IH}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates write.
 14. To aphyloge FE approximate the under the terminate of the memory is defined by the overlap of WE. CE

14. To achieve 55-ns performance, the read access should be \overline{CE} controlled. In this case t_{ACE} is the critical parameter and t_{SK} is satisfied when the addresses are stable prior to chip enable going active. For the 70-ns cycle, the addresses must be stable within 10 ns after the start of the read cycle.



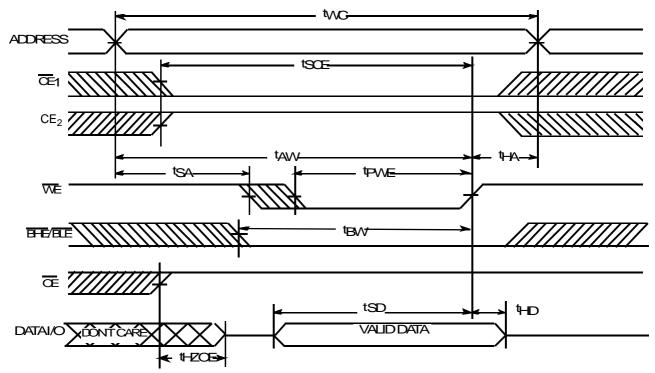

CYK001M16SCCA <u>MoB</u>L[®]

Switching Characteristics (Over the Operating Range)^[10, 11, 12, 13] (continued)

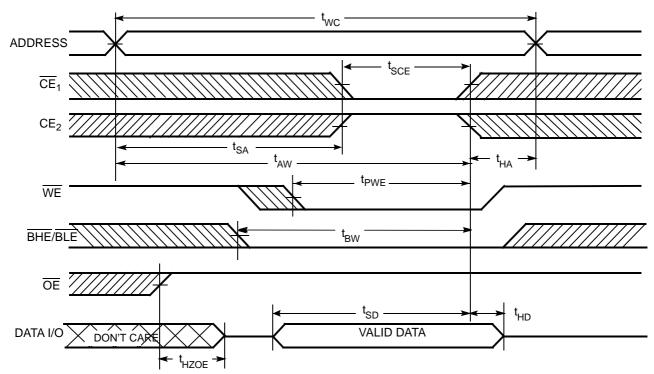
		CYK001M	16SCCA-55	CYK001M		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Write Cycle ^[13]						
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	\overline{CE}_1 LOW and CE_2 HIGH to Write End	45		55		ns
t _{AW}	Address Set-up to Write End	45		55		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		55		ns
t _{BW}	BLE/BHE LOW to Write End	50		55		ns
t _{SD}	Data Set-up to Write End	25		25		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[11, 12]		25		25	ns
t _{LZWE}	WE HIGH to Low Z ^[11, 12]	5		5		ns

Switching Waveforms

Read Cycle 2 (OE Controlled)^[14, 16]


Notes:

15. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$ and $CE_2 = V_{IH}$. 16. WE is HIGH for Read Cycle.

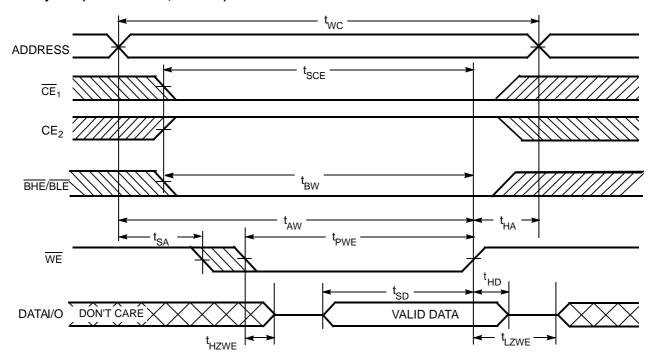


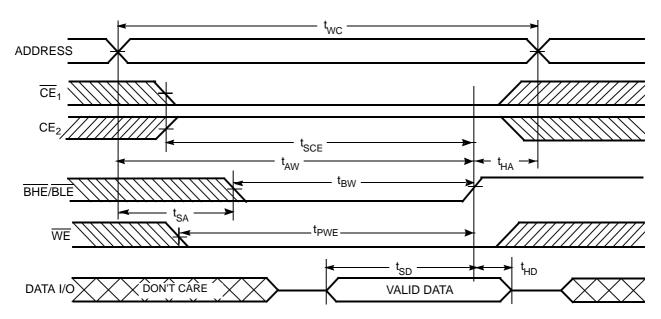
Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled)^[12, 13, 17, 18, 19]

Write Cycle 2 (\overline{CE}_1 or CE_2 Controlled)^[12, 13, 17, 18, 19]

Notes:


17. Data I/O is high impedance if OE ≥V_{IH}. 18. If Chip Enable goes INACTIVE simultaneously with WE =HIGH, the output remains in a high-impedance state. 19. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.


CYK001M16SCCA MoBL[®]

Switching Waveforms (continued)

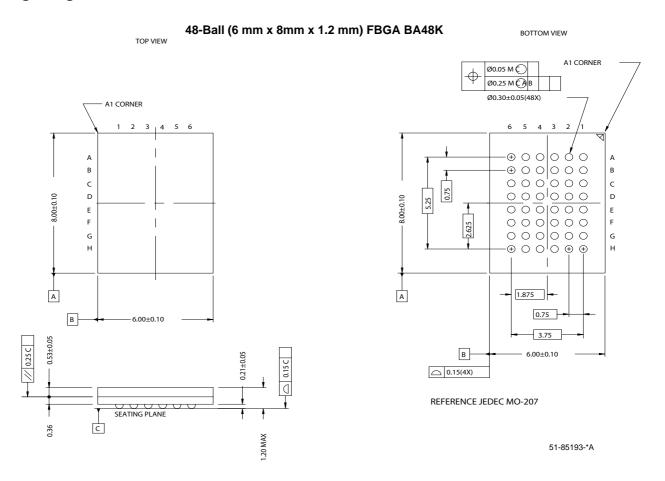
Write Cycle 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[18, 19]

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)^[18, 19]

CYK001M16SCCA <u>MoBL</u>[®]

Truth Table^[20]

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write (Upper Byte and Lower Byte)	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write (Lower Byte Only)	Active (I _{CC})
L	Н	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write (Upper Byte Only)	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CYK001M16SCCAU-55BAI	BA48K	48-ball Fine Pitch BGA (6.0 x 8.0 x 1.2 mm)	Industrial
70	CYK001M16SCCAU-70BAI	BA48K	48-ball Fine Pitch BGA (6.0 x 8.0 x 1.2 mm)	Industrial
55	CYK001M16SCAU-55BAXI	BA48K	48-ball Fine Pitch BGA (6.0 x 8.0 x 1.2 mm) (Pb-Free)	Industrial
70	CYK001M16SCAU-70BAXI	BA48K	48-ball Fine Pitch BGA (6.0 x 8.0 x 1.2 mm) (Pb-Free)	Industrial

Note: 20. H = Logic HIGH, L = Logic LOW, X = Don't Care

Package Diagrams

MoBL is a registered trademark, and MoBL3 and More Battery Life are trademarks, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CYK001M16SCCA 16-Mbit (1M x 16) Pseudo Static RAM Document Number: 38-05426				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	130539	01/27/04	AWK	New Data Sheet
*A	216680	03/26/04	REF	Added 55-ns Speed bin Updated from Advance Information to Final data sheet.
*В	220121	See ECN	REF	Changed the t _{OHA} parameter for 70 ns speed grade from 10 ns to 5 ns
*C	225580	See ECN	AJU	Changed Ordering code from CYK001M16SCCA to CYK001M16SCCAU on page 8
*D	313999	See ECN	RKF	Added Pb-Free parts to the Ordering information