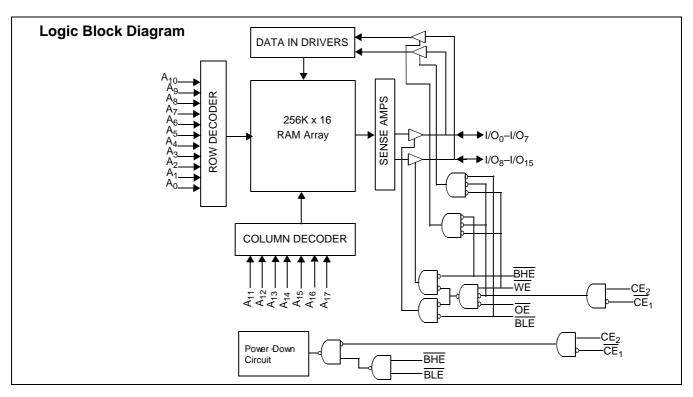


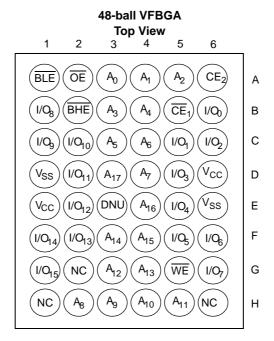
4-Mbit (256K x 16) Pseudo Static RAM


Features

- Advanced low-power MoBL[®] architecture
- High speed: 55 ns, 60 ns and 70 ns
- Wide voltage range: 2.7V to 3.3V
- Typical active current: 1 mA @ f = 1 MHz
- Low standby power
- Automatic power-down when deselected

Functional Description^[1]

The CYK256K16SCCB is a high-performance CMOS pseudo static RAM (PSRAM) organized as 256K words by 16 bits that supports an asynchronous memory interface. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL) in portable applications such as cellular telephones. The device can be put into standby mode reducing power consumption dramatically when deselected (CE₁ LOW, CE₂ HIGH or both BHE and BLE are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE₁ HIGH, CE₂ LOW, OE is deasserted HIGH), or during a write operation (Chip Enabled and Write Enable WE LOW).


Reading from the device is accomplished by asserting the Chip Enables (CE₁ LOW and CE₂ HIGH) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins A₀ through A₁₇ will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table for a complete description of read and write modes.

Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Product Portfolio

							Power Di	ssipatior	1 I	
		loo Rang	e	Operating, I _{CC} (mA)			Operating, I _{CC} (mA) Sta		Standb	V. lena
	V _{CC} Range (V)		(V)		f = 1	MHz	f = f	МАХ	(μ.	A)
Product	Min.	Тур.	Max.	Speed (ns)	Typ. ^[2]	Max.	Typ. ^[2]	Max.	Typ. ^[2]	Max.
CYK256K16SCCB	2.7	3.0	3.3	55	1	5	14	22	17	40
				60						
				70			8	15		

Notes:

Xores:
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} (typ) and T_A = 25°C.
 Ball H1, G2, H6 are the address expansion pins for the 8-Mb, 16-Mb, and 32-Mb densities, respectively.
 NC "no connect"—not connected internally to the die.
 DNU (Do Not Use) pins have to be left floating or tied to V_{SS} to ensure proper application.

Maximum Ratings

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage to Ground Potential0.4V to 4.6V
DC Voltage Applied to Outputs in High-Z State ^[6, 7, 8] 0.4V to 3.7V

DC Input Voltage ^[6, 7, 8]	–0.4V to 3.7V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A)	V _{CC}
Industrial	–25°C to +85°C	2.7V to 3.3V

DC Electrical Characteristics (Over the Operating Range)

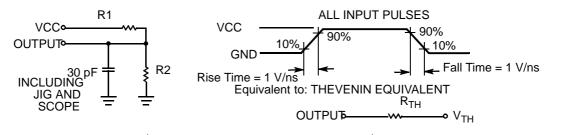
			CYK2	56K16SCCB -55,	60, 70	
Parameter	Description	Test Conditions	Min.	Typ. ^[2]	Max.	Unit
V _{CC}	Supply Voltage		2.7	3.0	3.3	V
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	V _{CC} – 0.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA			0.4	V
V _{IH}	Input HIGH Voltage		0.8 * V _{CC}		V _{CC} + 0.4	V
V _{IL}	Input LOW Voltage	F = 0	-0.4		0.62	V
I _{IX}	Input Leakage Current	$GND \le V_{IN} \le Vcc$	-1		+1	μA
I _{OZ}	Output Leakage Current	GND ≤ V _{OUT} ≤ Vcc, Output Disabled	-1		+1	μA
I _{CC}	V _{CC} Operating Supply Current	$f = f_{MAX} = 1/t_{RC} \begin{array}{c} V_{CC} = 3.3V, \\ I_{OUT} = 0 \text{ mA}, \\ CMOS \text{ level} \end{array}$		14 for –55 14 for –60 8 for –70	22 for55 22 for60 15 for70	mA
		f = 1 MHz		1 for all speeds	5 for all speeds	
I _{SB1}	Automatic CE ₁ Power-down Current —CMOS Inputs	$\label{eq:central_constraints} \begin{split} \overline{CE} \geq V_{CC} &= 0.2V, \ CE_2 \leq 0.2V\\ V_{\text{IN}} \geq V_{CC} &= 0.2V, \ V_{\text{IN}} \leq 0.2V, \\ f = f_{\text{MAX}}(\underline{Address and Data Only}), \\ f = 0 \ (\overline{OE}, \ WE, \ BHE \ and \ BLE) \end{split}$		150	250	μA
I _{SB2}		$\label{eq:constraint} \begin{split} \overline{CE} \geq V_{CC} & -0.2V, \ CE_2 \leq 0.2V \\ V_{IN} \geq V_{CC} & -0.2V \ or \ V_{IN} \leq 0.2V, \\ f = 0, \ V_{CC} & = 3.3V \end{split}$		17	40	μΑ

Capacitance^[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	T _A = 25°C, f = 1 MHz	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Thermal Resistance^[9]

Parameter	Description	Test Conditions	VFBGA	Unit
θ_{JA}	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test methods and	55	°C/W
θ_{JC}		procedures for measuring thermal impedance, per EIA/JESD51.	17	°C/W


Notes:

6. V_{IH(MAX)} = V_{CC} + 0.5V for pulse durations less than 20 ns.
 7. V_{IL(MIN)} = -0.5V for pulse durations less than 20 ns.
 8. Overshoot and undershoot specifications are characterized and are not 100% tested.
 9. Tested initially and after design or process changes that may affect these parameters.

Document #: 38-05526 Rev. *H

AC Test Loads and Waveforms

Parameters	3.0V V _{CC}	Unit
R1	22000	Ω
R2	22000	Ω
R _{TH}	11000	Ω
V _{TH}	1.50	V

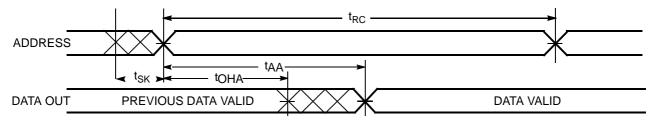
Switching Characteristics (Over the Operating Range)^[10]

		_	55	_	60	-70		
Parameter Description		Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cyc	le			1	1			
t _{RC}	Read Cycle Time	55 ^[14]		60		70		ns
t _{AA}	Address to Data Valid		55		60		70	ns
t _{OHA}	Data Hold from Address Change	5		8		10		ns
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		55		60		70	ns
t _{DOE}	OE LOW to Data Valid		25		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[11, 12]	5		5		5		ns
t _{HZOE}	OE HIGH to High Z ^[11, 12]		25		25		25	ns
t _{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low $Z^{[11, 12]}$	5		5		5		ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[11, 12]		25		25		25	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55		60		70	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[11, 12]	5		5		5		ns
t _{HZBE}	BLE/BHE HIGH to High-Z ^[11, 12]		10		10		25	ns
t _{SK} ^[14]	Address Skew		0		5		10	ns
Write Cyc	le ^[13]			1	1			
t _{WC}	Write Cycle Time	55		60		70		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	45		45		60		ns
t _{AW}	Address Set-up to Write End	45		45		55		ns
t _{HA}	Address Hold from Write End	0		0	1	0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns

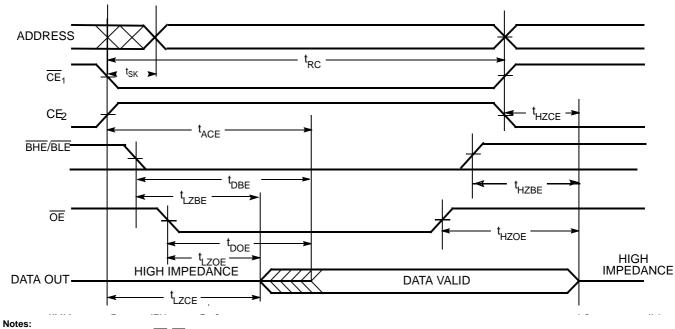
Notes:

Notes:
10. Test conditions assume signal transition time of 1 V/ns or higher, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0V to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance
11. t_{HZOE}, t_{HZEE}, t_{HZEE} and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
12. High-Z and Low-Z parameters are characterized and are not 100% tested.
13. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, CE₂ = V_{IH}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates write.
14. To objetive 5F. appendix and appendix the red expense of build be CE appendix and the time of the ordinance or the odd expense of the signal that terminates write.

14. To achieve 55-ns performance, the read access should be \overline{CE} controlled. In this case t_{ACE} is the critical parameter and t_{SK} is satisfied when the addresses are stable prior to chip enable going active. For the 70-ns cycle, the addresses must be stable within 10 ns after the start of the read cycle.



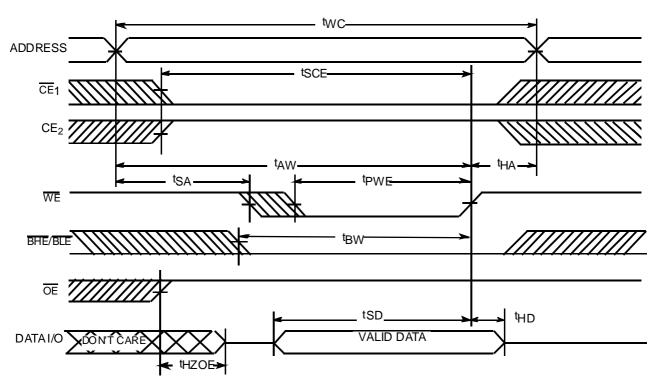
Switching Characteristics (Over the Operating Range)^[10] (continued)


		-55		-60		-70		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{PWE}	WE Pulse Width	40		40		45		ns
t _{BW}	BLE/BHE LOW to Write End	50		50		55		ns
t _{SD}	Data Set-up to Write End	25		25		25		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
	WE LOW to High Z ^[11, 12]		25		25		25	ns
t _{LZWE}	WE HIGH to Low Z ^[11, 12]	5		5		5		ns

Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[14, 15, 16]

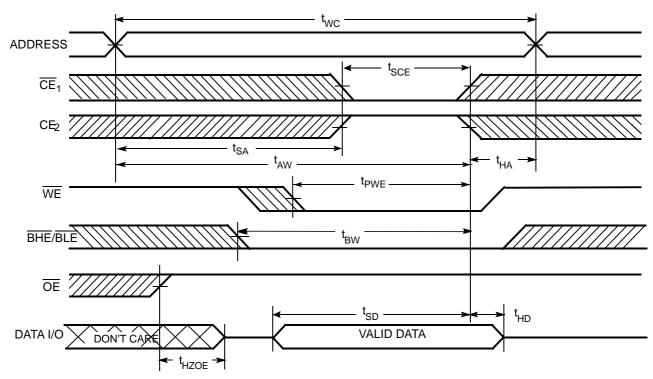
Read Cycle 2 (OE Controlled)^[14, 16]



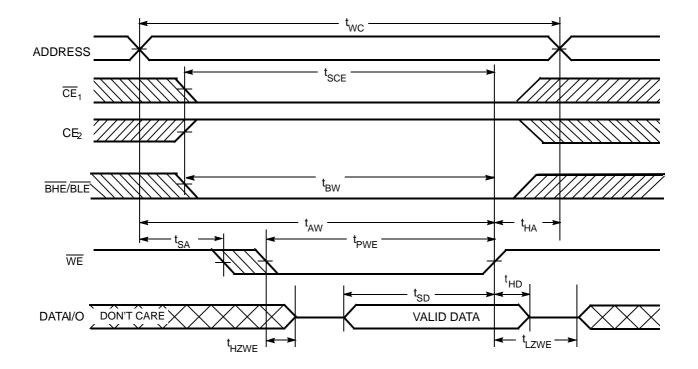
15. <u>Device is continuously selected</u>. \overline{OE} , $\overline{CE} = V_{IL}$. 16. WE is HIGH for Read Cycle.

Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled)^[12, 13, 17, 18, 19]

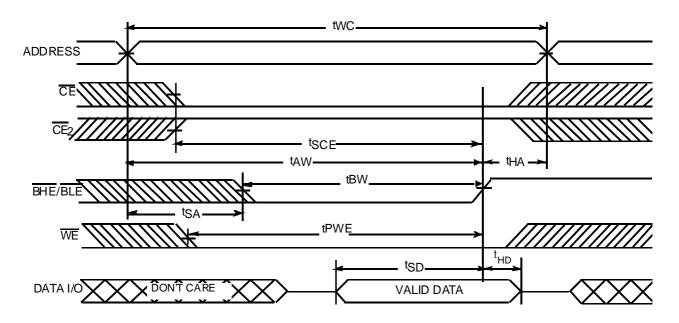

Notes:

To be a logical structure of $\overline{OE} \ge V_{IH}$. 18. If Chip Enable goes INACTIVE simultaneously with \overline{WE} =HIGH, the output remains in a high-impedance state. 19. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)

Write Cycle 2 (\overline{CE}_1 or CE_2 Controlled)^[12, 13, 17, 18, 19]


Write Cycle 3 (\overline{WE} Controlled, \overline{OE} LOW)^[18, 19]

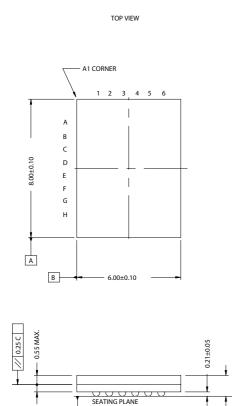
Switching Waveforms (continued)

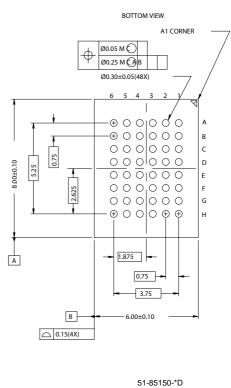
Write Cycle No. 4 ($\overline{\text{BHE}/\text{BLE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[18, 19]

Truth Table^[20]

CE ₁	CE2	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read (Upper Byte and Lower Byte)	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read (Upper Byte only)	Active (I _{CC})
L	Н	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read (Lower Byte only)	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write (Upper Byte and Lower Byte)	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write (Lower Byte Only)	Active (I _{CC})
L	Н	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write (Upper Byte Only)	Active (I _{CC})

Note: 20. H = Logic HIGH, L = Logic LOW, X = Don't Care.




Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CYK256K16SCCBU-55BVI	51-85150	48-ball Very Fine Pitch BGA (6.0 x 8.0 x 1.0 mm)	Industrial
	CYK256K16SCBU-55BVXI		48-ball Very Fine Pitch BGA (6.0 x 8.0 x 1.0 mm) (Pb-Free)	
60	CYK256K16SCCBU-60BVI	51-85150	48-ball Very Fine Pitch BGA (6.0 x 8.0 x 1.0 mm)	Industrial
70	CYK256K16SCCBU-70BVI	51-85150	48-ball Very Fine Pitch BGA (6.0 x 8.0 x 1.0 mm)	Industrial
	CYK256K16SCBU-70BVXI	1	48-ball Very Fine Pitch BGA (6.0 x 8.0 x 1.0 mm) (Pb-Free)	

Package Diagram

48-ball VFBGA (6 x 8 x 1 mm) (51-85150)

MoBL is a registered trademark, and MoBL3 and More Battery Life are trademarks, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

1.00 MAX

Document #: 38-05526 Rev. *H

С

0.26 MAX.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	215621	See ECN	REF	New data sheet
*A	218183	See ECN	REF	Changed ball E3 on package pinout from DNU to NC
*В	230855	See ECN	AJU	Changed from Advance Information to Preliminary Modified MAX limit on DC Input voltage in 'Maximum Ratings' section Fixed package name typo in 'Thermal Resistance' table Changed ordering code from CYK256K16SCCB to CYK256K16SCCBU in 'Ordering Information' section
*C	234474	See ECN	SYT	Changed ball E3 on package pinout from NC to DNU.
*D	260330	See ECN	PCI	Changed from Preliminary to Final
*E	298651	See ECN	PCI	Added 60-ns speed bin
*F	314013	See ECN	RKF	Added Pb-Free parts to the Ordering information
*G	522566	See ECN	NXR	Changed V_{IL} Max spec from 0.4 V to 0.6 V in DC Electrical Characteristics table
*H	562386	See ECN	NXR	Changed V_{IL} Max spec from 0.6 V to 0.62 V in DC Electrical Characteristics table