SPEC No.	EL0991	9 3
ISSUE:	Nov. 26 199	37

T	a				
	v				

SPECIFICATIONS

Product Type	8M bit MASK ROM
	LHMC86 \times
Nodel No.	(LH53C8600N)

*This specifications contains 14 pages including the cover and appendix.

If you have any objections, please contact us before issuing purchasing order.

CUSTOMERS ACCEPTANCE	
DATE:	* 1. 21 98.
BY:	PRESENTED
	BY: M. Okada
	M, OKADA
	Dept. General Manager

REVIEWED BY:

PREPARED BY:

J. Taninote

1000m

M. Watanalie

Engineering Dept. 1
Nemory Engineering Center
Tenri Integrated Circuits Development Group
SHARP CORPORATION

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- Then using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - ·Office electronics
 - ·Instrumentation and measuring equipment
 - · Machine tools
 - ·Audiovisual equipment
 - ·Home appliances
 - ·Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - •Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - · Mainframe computers
 - Traffic control systems
 - ·Gas leak detectors and automatic cutoff devices
 - ·Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - · Aerospace equipment
 - ·Communications equipment for trunk lines
 - -Control equipment for the nuclear power industry
 - ·Medical equipment related to life support. etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

ì

CONTENTS

1.	General Description	P. 2
2.	Features	P. 2
3.	Block Diagram	P. 3
4.	Pin Connections	P. 4
5.	Pin Description	P. 4
6.	Absolute Maximum Ratings	P. 5
7.	Operating Ranges	P. 5
8.	D. C. Electrical Characteristics	P. 5
9.	A.C. Electrical Characteristics	P. 6
10.	Timing Chart	P. 7
11.	Note	P. 7
12.	Package and Packing Specification	P. 8

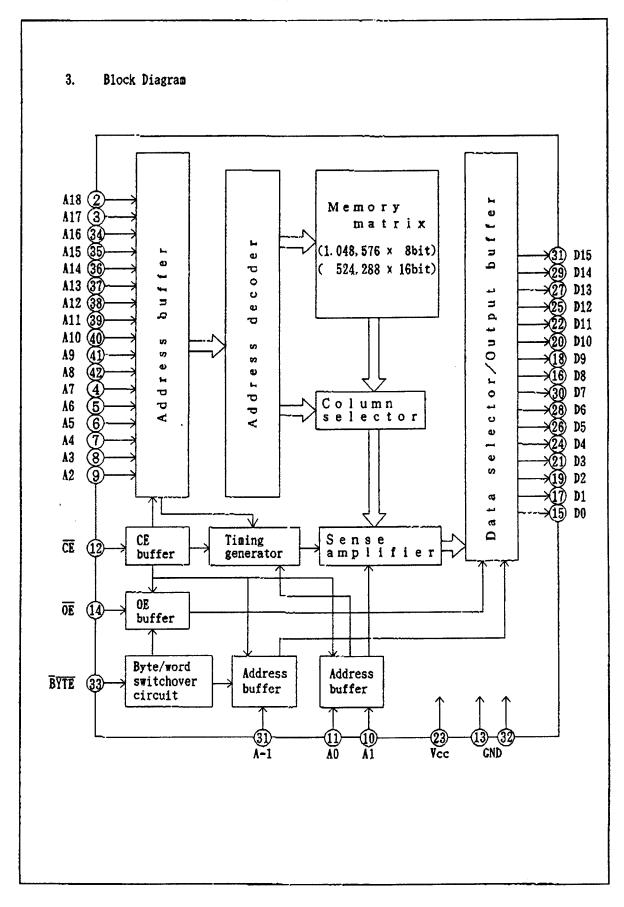
1. General Description

The SHARP LHMC86xx(LH53C8600N) is an 8Mbit CMOS mask ROW (mask-programmable read-only memory) with page mode operation, produced by the silicon gate CMOS process.

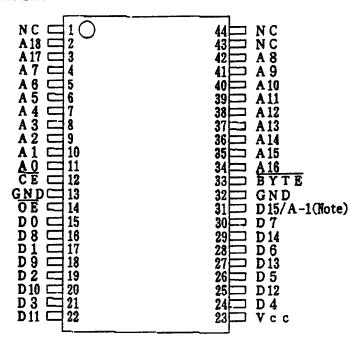
2. Features

```
• Memory organization selection

1.048.576 x 8-bit (Byte mode : BYTE-V(L)


524.288 x 16-bit (Word mode : BYTE-V(L)
```

- Single +5v Power supply
- · Static operation
- · Input/Output TTL compatible
- 3-state output
- Access time: 100ns (max.)
 Access time in page mode: 65ns (max.)
- Addressable page: 8 words or 16 bytes
- 44Pin-SOP
- · Supply current


Operating: 100mA (max.) Standby : 300mA (max.)

- Others

Non programmable
Not designed or rated as radiation hardened
CNOS process(P type silicon substrate)

4. Pin Connections

(44 Pin SOP)

(Note)

The D15/A-1 pin becomes LSB address input (A-1) when the $\overline{\text{BYTE}}$ pin is set to be low in byte mode, and data output (D15) when set to be high in word mode.

5. Pin Description

A-1 ~ A2	Address input (page mode operation)
A3 ~ A18	Address input
DO ~ D15	Data output
BYTE	x8bit/x16bit(byte/word) mode select input (Note)
CB	Chip enable input (Note)
0Ē	Output enable input (Note)
Vcc	Power Pin (+5V)
GND	Ground
NC	Non connection

(Note)

CE	OE	BYTE	A-1	Data	output	Address	input	Supply
			(D15)	D0~D7-Pin	D8~D15-Pin	LSB	MSB	current
Ħ	X	X	I	High Impedanc	eHigh Impedance	-	_	Standby
L	H	X	X	High Impedance	High Impedance	_		Operating
L	L	H	-	D0~D7	D8-D15	AO	A18	Operating
L	L	L	Ĺ	D0~D7	High Impedance	A-1	A18	Operating
L	L	L	H	D8~D15	High Impedance	A-1	A18	Operating

X : Don't Care

6. Absolute Maximum Ratings

Item	Symbol	Ratin	ıg	Unit
Supply Voltage	Vcc	-0.3 ~	+7.0	V
Input Voltage	V ₁₁ V	-0.3 ~	Vcc+0.3	V
Output Voltage	Vout	-0.3 ~	Vcc+0.3	V
Operating Temperature	Tops	0 ~	+70	t
Storage Temperature	Tere	-65 ~	+150	℃

7. Operating Ranges

Ta = 0 - 70 t Item Symbol . Kin. Typ. Max. Unit Supply Voltage Vcc 4.75 5.25 5.0

D. C. Electrical Characteristics 8.

Vcc=5V±5%, Ta=0~70%

				rcc=orion,	18-0-1	<u> </u>
Item	Symbol .	Test conditions	Nin.	lax.	Unit	Note
Input high voltage	V 1H		2. 2	Vcc+0. 3	V	
Input low voltage	VIL		-0. 3	0.8	v	
Output high voltage	Von	Ion = -400 nA	2. 4		v	
Output low voltage	VoL	Ior = 2. 0mA		0.4	v	
Input leakage current	Ital	VIN = OV~VCC		10	μΑ	
Output leakage current	Itol	Vout=0V~Vcc		10	μΑ	1
Supply current	Icci	tac=100ns	· ` ~	100	m A	
(Operating)	I cc2	tac=las		80	m Å	2
Supply current	Issi	CE = V _{1 M}		2	mA	
(standby)	1 332	CE=Vcc-0. 2V		300	μΑ	
Input capacitance	CIN	f=1MHz.		10	рF	
Output capacitance	Cour	Ta=25°C		10	pF	

Note 1: $\overline{CE} = V_{tH}$ $\overline{0E} = V_{1H}$

Note 2: $\frac{V_{1N}}{CE} = V_{1R}$, V_{1L}

(Output is open)

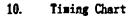
9. A.C. Electrical Characteristics

Vcc=+5V±5X, Ta=0~70C

Item	symbol	Win.	lax.	Unit
Read cycle time	tac	100		
Address access time	taa		100	
Chip enable access time	TACE		100	
Page address access time	tara		65	
Output enable delay time	tos		50	ŊS
Output hold time	ton	0		
Output floating time	tens		50(Note)	
-	tonz		40(Note)	

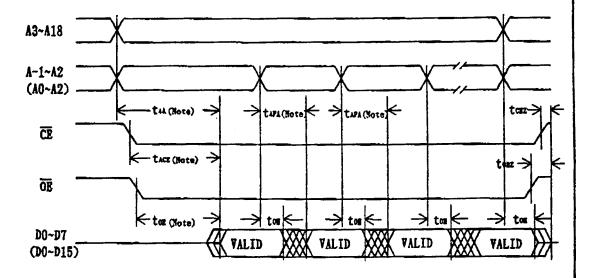
Test Condition

Input voltage amplitude : 0.47 ~ 2.67


Input signal rise time : 10ns Input signal fall time : 10ns Input reference level : 1.5V

Output reference level : 1.5V

Output load condition : 1TTL + 50pF


(Note) Determined by the time for the output to be opened. (irrespective of output voltage)

ii)Page mode read cycle

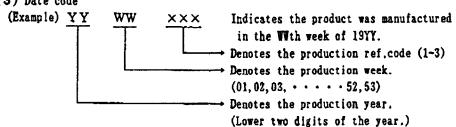
Note: The output data becomes valid when the last interval, tak, tace, tark or tor have concluded.

11. Note

It is recommended that a decoupling capacitor be connected between Ycc and Gnd-Pin.

12 Package and packing specification

1. Package Outline Specification Refer to drawing No. AA1050


2. Markings

2-1. Marking contents

(1) Product name : 000000

(2) Company name: SHARP

(3) Date code

(4) The marking of "JAPAN" indicates the country of origin.

2-2. Marking layout

Refer to drawing No.AA1050

(This layout does not define the dimensions of marking character and marking position.)

3. Packing Specification (Dry packing for surface mount packages)

Dry packing is used for the purpose of maintaining IC quality after mounting packages on the PCB (Printed Circuit Board).

When the epoxy resin which is used for plastic packages is stored at high humidity, it may absorb 0.15% or more of its weight in moisture. If the surface mount type package for a relatively large chip absorbs a large amount of moisture between the epoxy resin and insert material (e.g. chip, lead frame) this moisture may suddenly vaporize into steam when the entire package is heated during the soldering process (e.g. VPS). This causes expansion and results in separation between the resin and insert material, and sometimes cracking of the package. This dry packing is designed to prevent the above problem from occurring in surface mount packages.

3-1. Packing Materials

Material Name	Material Specification	Purpose
Magazine	Anti-static treated plastic (15devices/magazine)	Packing of device
Stopper	Plastic or rubber	Fixing of device
Cap	Plastic (2caps/bag)	Fixing of Magazine
Laminated aluminum bag	Aluminum polyethylene (1bag/case)	Drying of device
Desiccant	Silica gel	Drying of device
Inner case	Card board (600devices/case)	Packaging of device
Label	Paper	Indicates part number, quantity and date of manufacture
Outer case	Card board	Outer packing of Magazine

(Devices shall be inserted into a magazine (sleeve) in the same direction.)

- 3-2. Outline dimension of magazine (sleeve)
 Refer to attached drawing
- 4. Storage and Opening of Dry Packing
 - 4-1. Store under conditions shown below before opening the dry packing

(1) Temperature range : 5~40℃

(2) Humidity : 80% RH or less

- 4-2. Notes on opening the dry packing
 - (1) Before opening the dry packing, prepare a working table which is grounded against ESD and use a grounding strap.
 - (2) The magazine has been treated to be conductive or anti-static. If the device is transferred to another magazine, use a equivalent magazine.
 - (3) A stopper is included with the magazine. Before storage, make sure the stopper is inserted.
- 4-8. Storage after opening the dry packing

Perform the following to prevent absorption of moisture after opening.

- (1) After opening the dry packing, store the ICs in an environment with a temperature of 5~25℃ and a relative humidity of 60% or less and mount ICs within 4 days after opening dry packing.
- (2) To re-store the ICs for an extended period of time within 4 days after opening the dry packing, use a dry box or re-seal the ICs in the dry packing with desiccant (whoes indicater is blue), and store in an environment with a temperature of 5~40°C and a relative humidity of 80% or less, and mount ICs within 2 weeks.
- (3) Total period of storage after first opening and re-opening is within 4 days, and store the ICs in the same environment as section 4-3.(1).

First opening—X₁—re-sealing—Y—re-opening—X₂—mounting

ICs in dry 5~25°C 5~40°C 5~25°C packing 60%RH or less 80%RH or less 60%RH or less

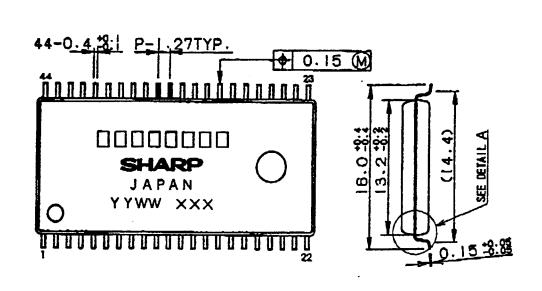
X₁+X₂: within 4 days
Y: within 2 weeks

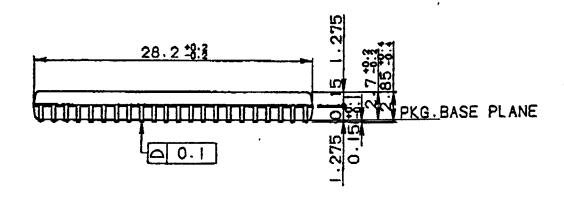
- 4-4. Baking (drying) before mounting
 - (1) Baking is necessary
 - (A) If the humidity indicator in the desiccant becomes pink
 - (B) If the procedure in section 4-3 could not be performed
 - (2) Recommended baking conditions

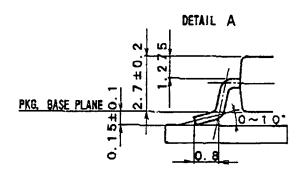
 If the above conditions (A) and (B) are applicable, bake it before mounting. The recommended conditions are 16~24 hours at 120°C or 5~10 hours at 150°C. Note that the standard magazine can not be baked. Use the heat resistant magazine.
 - (3) Storage after baking
 After baking ICs, store the ICs in the same environment as section
 4-3.(1).

10

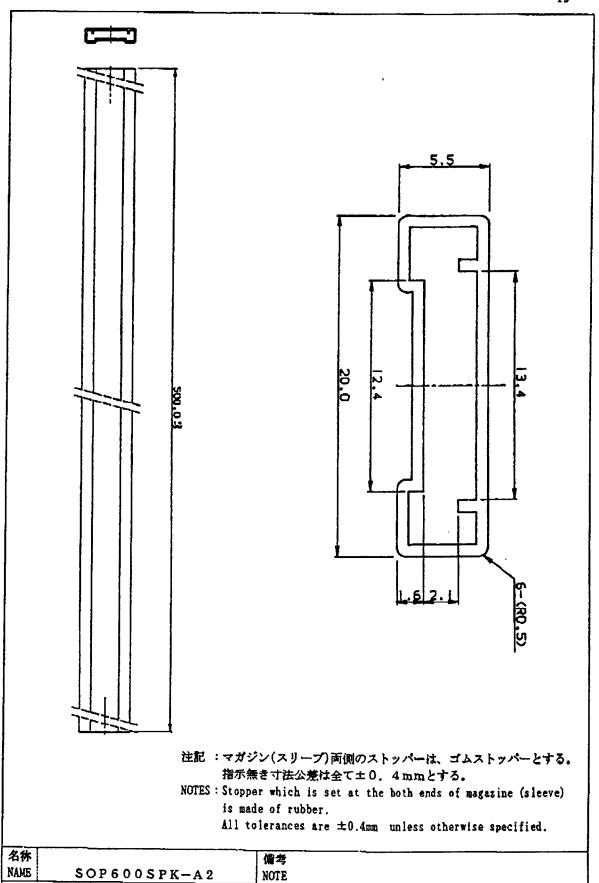
5. Surface Mount Conditions


Please perform the following conditions when mounting ICs not to deteriorate IC


5-1. Soldering conditions (The following conditions are valid only for one time soldering.)


Mounting Method	Temperature and Duration	Measurement Point
Reflow soldering (air)	Peak temperature of 240°C or less, duration of less than 15 seconds above 230°C, temperature increase rate of 1~4°C/second	IC package surface
Solder dipping	245°C or less, duration of less than 3 seconds/dip, total of 5 seconds	Solder bath
Vapor phase soldering	215°C or less, duration of less than 40 seconds above 200°C	Steam
Manual soldering (soldering iron)	260°C or less, duration of less than 10 seconds	IC outer lead surface

5-2. Conditions for removal of residual flux


(1) Ultrasonic washing power : 25 Watts/liter or less (2) Washing time : Total 1 minute maximum
(3) Solvent temperature : 15~40°C

D 44				3421.1		444.34	
名称			リード仕上		TIN-LEAD	[信考	プラスチックバッケージ外帯が住住、パリを含まないものとする。
NAME	NAME SOP44-P-600						Plastic body dimensions do not include burr
I			}	単位			of resin.
DRAWING NO.		AA10	50	UNIT	mm		

単位

TINU

mm

CV648

DRAWING NO.

8 Meg bit, Mask ROM, 5V, Page Mode, LH53C8600N