

PI5C3384 PI5C3384C PI5C32384 (25Ω)

10-Bit, 2-Port BusSwitch

Product Features:

- Near-zero propagation delay
- Low noise, 25Ω version (PI5C32384)
- 5Ω switches connect inputs to outputs (PI5C3384)
- Direct bus connection when switches are ON
- Ultra-low quiescent power (0.2 µA typical)
 - Ideally suited for notebook applications
- Packages available:
 - 24-pin 300-mil wide plastic PDIP (P)
 - 24-pin 150-mil wide plastic QSOP (Q)
 - 24-pin 150-mil wide plastic TQSOP (R)
 - 24-pin 300-mil wide plastic SOIC (S)

Logic Block Diagram

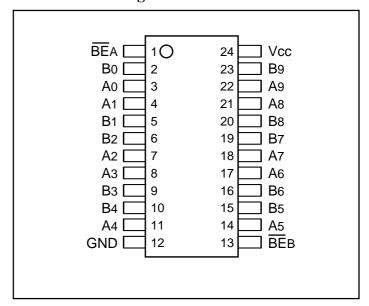
Truth Table(1)

Function	BEA	BEB	B0-B4	B5-B9
Disconnect	Н	Н	Hi-Z	Hi-Z
Connect	L	Н	A0-A4	Hi-Z
Connect	Н	L	Hi-Z	A5-A9
Connect	L	L	A0-A4	A5-A9

Note:

= High Voltage Level 1. H

= Don't Care X


L = Low Voltage Level Hi-Z = High Impedance

Product Description:

Pericom Semiconductor's PI5C series of logic circuits are produced in the Company's advanced sub-micron CMOS technology, achieving industry performance.

The PI5C3384, PI5C3384C, and PI5C32384 are 10-bit, 2-port bus switches designed with a low ON resistance allowing inputs to be connected directly to outputs. The bus switch creates no additional propagational delay or additional ground bounce noise. The switches are turned ON by the Bus Enable (\overline{BE}) input signal. Two bus enable signals are provided, one for each of the upper and lower five bits of the two 10-bit buses. The PI5C32384 is designed with an internal 25Ω resistor reducing noise reflection in high-speed applications.

Product Pin Configuration

Product Pin Description

181

Pin Name	Description
BEA, BEB	Bus Enable Inputs (Active LOW)
A0-A9	Bus A
B0-A9	Bus B
GND	Ground
Vcc	Power

PS 7029A 03/13/96

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature6	55°C to +150°C
Ambient Temperature with Power Applied	-40°C to +85°C
Supply Voltage to Ground Potential (Inputs & Vcc Only)	-0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & D/O Only)	-0.5V to +7.0V
DC Input Voltage	-0.5V to +7.0V
DC Output Current	120 mA
Power Dissipation	0.5W

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5V \pm 5\%$)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
Vih	Input HIGH Voltage	Guaranteed Logic HIGH L	Level	2.0	_	_	V
VIL	Input LOW Voltage	Guaranteed Logic LOW Level		-0.5	_	0.8	V
Іін	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$		_	_	±1	μΑ
IIL	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$		_	_	±1	μΑ
Іохн	High-Impedance Output Current	$0 \le A, B \le V_{CC}$		_	_	±1	μΑ
Vik	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$		_	-0.7	-1.2	V
Ios	Short Circuit Current ⁽³⁾	A(B) = 0V, B(A) = VCC		100	_	_	mA
VH	Input Hysteresis at Control Pins			_	150	_	mV
Ron	Switch On Resistance ⁽⁴⁾	Vcc = Min., Vin = 0.0V, Ion = 48 mA	PI5C3384 PI5C3384C PI5C32384		5 5 28	7 7 40	Ω
		Vcc = Min., Vin = 2.4V, Ion = 15 mA	PI5C3384 PI5C3384C PI5C32384		10 10 35	15 15 48	Ω

Capacitance ($TA = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽⁵⁾	Description	Test Conditions	Тур	Max.	Units
CIN	Input Capacitance	$V_{IN} = 0V$	_	6	pF
Coff	A/B Capacitance, Switch Off	$V_{IN} = 0V$		6	pF
Con	A/B Capacitance, Switch On	$V_{IN} = 0V$		8	pF

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, $TA = 25^{\circ}C$ ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.

182

5. This parameter is determined by device characterization but is not production tested.

PS7029A 03/13/96

Power Supply Characteristics

Parameters	Description	Test Condition	$s^{(1)}$	Min.	Typ ⁽²⁾	Max.	Units
Icc	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc	PI5C3384 PI5C32384	_	0.1	3.0	μΑ
			PI5C3384C	_	60	100	μΑ
ΔΙςς	Supply Current per Input @ TTL HIGH	$V_{CC} = Max., V_{IN} = 3.4V^{(3)}$		_	_	2.5	mA
Іссь	Supply Current per Input per MHz ⁽⁴⁾	Vcc = Max., <u>A</u> and <u>B</u> Pins Open BE1 or BE2 = GND Control Input Toggling 50% Duty Cycle		_	_	0.25	mA/ MHz

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input ($V_{IN} = 3.4V$, control inputs only); A and B pins do not contribute to Icc.
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

PI5C3384/3384C Switching Characteristics over Operating Range

Parameters	Description	Conditions ⁽¹⁾	Min	Тур	Max	Unit
t PLH	Propagation Delay ^(2,3)	CL = 50 pF	_	0.25	_	ns
t PHL	Ax to Bx, Bx to Ax	$R_L = 500\Omega$				
tpzh	Bus Enable Time		1.5	_	6.5	ns
tpzl	\overline{BE} x to Ax or Bx					
tphz	Bus Disable Time		1.5		5.5	ns
tplz	BEx to Ax or Bx					

Notes:

- 1. See test circuit and waveforms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

183 PS 7029A 03/13/96

PI5C32384 Switching Characteristics over Operating Range

			PI5C32384			
Parameters	Description	Conditions ⁽¹⁾	Min	Тур	Max	Unit
tplh	Propagation Delay ^(2,3)	CL = 50 pF	_	1.25	_	ns
tphl	Ax to Bx, Bx to Ax	$R_L = 500\Omega$				
tpzh	Bus Enable Time		1.5	_	7.5	ns
tpzl	$\overline{BE}x$ to Ax or Bx					
tphz	Bus Disable Time		1.5	_	5.5	ns
tPLZ	BEx to Ax or Bx					

Notes:

- 1. See test circuit and waveforms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.