
Interfacing the Am188TMEM Controller to the
DSLACTM/QSLACTM Devices Using the SSI
Application Note
The purpose of this application note is to show the user how to interface the Am188™EM micro-
controller to the DSLAC™ and QSLAC™ devices using the Synchronous Serial Interface (SSI).
These techniques are not restricted to the Am188EM microcontroller; other members of the
Am186™ microcontroller family with SSI ports can be interfaced in a similar fashion.

BACKGROUND
Traditionally, line cards (if they had a processor at all)
used a simple, inexpensive 8-bit microcontroller. How-
ever, as the number of lines per card increases, 16-bit
controllers like the Am188™EM microcontroller be-
come more attractive for several reasons:

■ Over time 16-bit controller costs have decreased

■ More peripheral functions are integrated, reducing
external components counts

■ Newer, smaller packaging options are available

■ 16-bit controllers generally offer larger address
spaces

These reasons, combined with the availability of supe-
rior, low-cost development tools like Microsoft & Bor-
land C, reduce t ime-to-market and long-term
maintenance costs.

The SLAC™ device connects to the host processor
through a 3-pin serial interface. While this interface is
used primarily to initialize the SLAC device, several
critical functions of the SLIC™ device can be moni-
tored through the serial interface; therefore, it may be
necessary to make the interface as fast as possible.
Using the SSI port of the Am188EM microcontroller re-
duces software overhead making the interface much
faster.

The serial Microprocessor Interface (MPI) of the
DSLAC™ and QSLAC™ devices pre-dates most—if
not all—of today’s industry standard serial interfaces
ports, including the Synchronous Serial Interface (SSI)
port of the Am188EM microcontroller. Because these
two serial interfaces (MPI and SSI) were not designed
to be compatible, it takes a little effort to make them
work together. This application note attempts to show
that it is worth the effort and explains how to do it.

In most line-card designs, the only cost effective alter-
native is to interface to the processor’s PIOs and ma-
nipulate the MPI signal lines directly from software.
While this is a perfectly acceptable approach—even

desirable in some cases—the use of the SSI port can
greatly reduce software overhead and code space.

FURTHER REFERENCES
The remainder of this application note assumes at least
a passing familiarity with the chips involved; the
Am188EM microcontroller, the Am79C02 DSLAC fam-
ily, and the Am79Q02 QSLAC family. If additional de-
tails are needed, the following literature is available
from AMD:

Am186™EM/EMLV and Am188™EM/EMLV
Microcontrollers Data Sheet, order #19168

Am186™EM and Am188™EM Microcontrollers
User’s Manual, order #19713

Am79C02/03/031(A) DSLAC™ Device Data Sheet,
order #18503

Am79Q02/021/031 QSLAC™ Device Data Sheet,
Available through your local AMD sales office

AMD’s complete line of line card devices are found in
the Linecard Products for the Public Infrastructure Mar-
ket Data Book, Publication #18503.

MPI HARDWARE OVERVIEW
The QSLAC and DSLAC devices have very similar
MPIs; both are serial, master/slave-type interfaces. Dif-
ferences between the two devices are described in the
following paragraphs. A system or line card micropro-
cessor is the master and the interface is designed so
that multiple slaves (i.e. SLAC devices) can be at-
tached to a single master’s MPI bus.

The MPI signals, like most digital buses, consist of
three types of signals:

■ Clock/Control

■ Address

■ Data

The data line (DIO) is a bidirectional, three-state serial
bus. The Am79C02 has separate data in (Din) and data
out (Dout) pins that can be strapped together to look
Publication# 21728 Rev: A Amendment/0
Issue Date: May 1997

This document contains information on a product under development at Advanced Micro Devices. The information
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed
product without notice.

like the other SLAC device’s single DIO pin. The data
on this line consists of eight-bit bytes transmitted most
significant bit (MSB, D7) first, regardless of direction.
The master initiates all transfers by sending a com-
mand byte to the SLAC device. Each command has a
predetermined length (number of bytes) and direction
(read or write). For example, if the master microproces-
sor sends out command number 25 (read GX filter co-
efficients) to the DSLAC device, the DSLAC device
knows to transmit two bytes. Because the command
determines what is transmitting, master or slave; it is
important to make sure the software drivers are correct
to prevent bus contention, which could damage the de-
vices. Also, in the case of a read, the SLAC device will
not accept a new command until the old one is finished
(i.e. all of the data is clocked out). Software verification
is critical.

The clock signal (DCLK) can free run or be active only
during data transfers and is an input to the SLAC de-
vice. The DCLK maximum frequency is 4.096 MHz for
both SLAC devices. Data is clocked into the SLAC de-
vice on the rising edge of DCLK, but data is sent out on
the falling edge of DCLK. This common technique
makes it easier to satisfy setup and hold time require-
ments. DCLK can be stopped indefinitely in either the
High or Low state if the chip select input is held High.

Each of the individual SLAC devices on the MPI bus is
addressed (i.e. selected) by pulling one of the chip se-
lect inputs Low. The QSLAC device has a single chip
select for all four channels while the DSLAC device has
a separate chip select for each channel (CS1 and
CS2). The rising edge of the chip select marks or
frames the end of each byte; therefore, the chip select
line must go High for at least the minimum off period
before the next byte is read or written. The DSLAC de-
vice’s minimum off period is 5 µs while the QSLAC de-
vice’s minimum is 2.5 µs.

Finally, the QSLAC device does have an interrupt pin
as part of the microprocessor interface. A description of
this pin is available in the Am79Q02/03/031 QSLAC™
Device Data Sheet.

SSI HARDWARE OVERVIEW
The Synchronous Serial Interface (SSI) on the
Am188EM microcontroller was designed to provide a

low pin-count interface to application-specific inte-
grated circuits (ASICs). Fortunately, although not by
design, it is similar to the SLAC device’s MPI. Like the
MPI, the SSI is a synchronous, master/slave serial bus
protocol that allows multiple slaves on the bus. The
maximum clock rate can be as high as 20 MHz.

The SSI bus consists of four signals:

■ SCLK

■ SDATA

■ SDEN0

■ SDEN1

Each of these signals is on a separate pin. All of the
pins are shared (i.e. multiplexed) with one of the
Am188EM microcontroller’s 32 PIOs. This allows the
SSI pins to be used as PIOs if their normal SSI function
is not needed.

The SDATA pin, like DIO, is a bidirectional, three-state
serial bus. Unlike DIO, a weak pull-up or pull-down re-
sistor keeps the last value on the bus for systems that
cannot tolerate three-state inputs. The data on this pin
consists of eight-bit bytes transmitted least significant
bit (LSB, D0) first. The master/slave protocol is con-
trolled entirely with software.

The clock signal (SCLK) is only active during byte
transfers and is an output. The frequency is derived
from the processor’s internal clock by dividing it by 2, 4,
8, or 16. In the case of a 40-MHz device, this allows for
speeds up to 20 MHz as mentioned above. Like the
SLAC device, data is clocked out on the falling edge
and clocked in on the rising edge.

The two enable pins (SDEN0 and SDEN1) are outputs
and unlike the chip selects of the MPI, they are high-
level active. While the state of the SDEN pins is con-
trolled by software somewhat like a PIO, the pin must
be high for the interface to transmit or receive.

COMPARING MPI TO SSI
Table 1 summarizes the similarities and differences be-
tween the two interfaces.
2 Interfacing the Am188TMEM Controller to the DSLACTM/QSLACTM Devices Using the SSI

Table 1. MPI and SSI Comparison

SOLVING THE REVERSED-BIT-ORDER
PROBLEM
The reversed-bit-order problem is not as severe as it
might seem. Generally, there are two types of data sent
over the serial interface: coefficients and bit flags.

In most cases, coeff ic ients are generated by
AmSLAC™ software and stored as hex values in a
table in the microprocessor’s non-volatile storage. It
should not be difficult to rearrange the bit order prior to
placing them in the table, preventing the need for the
microprocessor to do it.

The bit flags are used to monitor or set the state of the
SLAC devices’ I/O pins in real time, but because the bit
flags are independent, the host microprocessor’s code
only needs to know where they are in the byte. Order is
not important. Bit reversal should not be significant as
it is taken into account by software.

In both cases, it should not be necessary to do bit re-
versal in the microprocessor while in use.

SOLVING THE ENABLE-POLARITY
PROBLEM
The obvious solution is to use inverters on the SDEN
outputs, but with a little bit of extra software, it is possi-
ble to do without the glue logic. Because the DSLAC
device requires two chip selects and the QSLAC de-
vice requires one chip select, if inverters are used, this
technique can only handle one DSLAC device or two
QSLAC devices. If more SLAC devices are required,
the easiest solution is to use general PIOs on the
Am188EM microcontroller to drive the chip selects of
the SLAC devices.

The alternate solution is to use the Am188EM micro-
controller’s PIO pins instead of SDEN to drive the chip
selects. As discussed above, if multiple SLAC devices
are on the bus and more than two chip selects are
needed, PIOs are required anyway. Always using PIO
pins maintains consistency and is the better solution.
Software will still need to control the DE0 and DE1 bits

as if SDEN0 and SDEN1 were used. However, be-
cause their pins are not used, they can be programmed
as PIOs and used to drive the chip selects. No pins are
wasted.

Using software to drive the SLAC devices’ chip selects
through PIOs also provides a solution for the polarity
problem and CS framing issue. Because software is
controlling the state of the PIOs directly, it is trivial to in-
vert the sense of the PIOs relative to SDEN0 or
SDEN1. Correctly controlling the chip selects further
requires that CS go high after each byte is transmitted
or received. The multiple writes and reads illustrated in
the Am186™EM and Am188™EM Microcontrollers
User’s Manual in figures 11-5 and 11-6 are not allowed.

Figure 1 shows the resulting connections for a DSLAC
device. The QSLAC device is similar, but has only one
chip select.

Figure 1. Interface Connections

TIMING CONSIDERATIONS
The following tables compare the timing requirements
for the worst case. For each case in the table, the worst
case is determined by looking at the most stringent re-
quirement to see if the other end of the interface can
meet the requirement. There is only one speed grade
for the DSLAC device and the QSLAC device, but there
are multiple speed grades of the Am188EM microcon-
troller, so each case has been looked at with the worst
possibility in mind.

For example, in Table 2, the date setup time for the
case where the Am188EM microcontroller is driving

Feature MPI SSI Comment

Word size 8 8 OK

Bit order MSB first LSB first Bit order is reversed

Master/Slave yes yes OK

Max frequency 4.096 MHz uP OK

Transmit clock edge falling falling OK

Receive clock edge rising rising OK

Clock inactive state either high OK

Synchronous yes yes OK

CS framed yes yes and no Yes, with software

Enable state low high CS and SDEN are the wrong polarity

SDATA (pin 23)

SCLK (pin 26)

PIO22 (pin 25)

DIO (pin 21)

DCLK (pin 19)

CS1 (pin 32)

PIO23 (pin 24) CS2 (pin 31)

g

Am188EM(tqfp) Am79C03(plcc)
Interfacing the Am188TMEM Controller to the DSLACTM/QSLACTM Devices Using the SSI 3

data out to the DSLAC device is calculated as de-
scribed in the following paragraph.

The DSLAC device requirement is read directly from
the data sheet parameter #10 (tIDS - Input Data Setup
Time). This value is 30 ns for both the DSLAC and
QSLAC devices. Determining what the Am188EM mi-
crocontroller provides takes a little calculation. First,
decide what the minimum low period is for SCLK. This
is really determined by the DSLAC device, where the
minimum DCLK low period is determined by parameter
#3 (tDCL - Data Clock Low Pulse Width), which is 97 ns.
SDATA is guaranteed to be stable no more than 25 ns
after the falling edge of SCLK by parameter #78
(tSLDV - SCLK Low to Data Valid) for the slowest pro-
cessor (20 MHz). Subtracting 25 from 97 leaves 72 ns
worst-case setup time before the rising edge of DCLK.

The previous example assumes worst-case duty cycle
for DCLK. The fastest clock allowed has a period of
244 ns, but if the clock is not perfectly symmetric, either
the Low or High period can be as short as 97 ns rather
than one half of the clock rate (122 ns). In the case of
the Am188EM microcontroller this is probably over-de-
sign. Because SCLK’s frequency is related to one half
CLKOUTA, it should always be close to a 50% duty cy-
cle. In this case, the data setup time provided by the
Am188EM microcontroller is closer to 97 ns.

As the tables illustrate, there are generous margins
even in the worst case.

In the case of the data hold time in Table 2, there is no
specification given in the Am188EM microcontroller
data sheet for how quickly SDATA can change after the
clock goes Low. It is assumed that the worst case is
that SDATA will instantaneously change as soon as
SCLK goes Low. This means that the hold time pro-
vided by the Am188EM microcontroller is the same as
the minimum SCLK High period specified by the
DSLAC device as 97 ns.

The CS setup and hold time times are given for the
case where SDEN is driven from inverters as dis-
cussed above. Even though SDEN is driven by the SSI
interface, it is still controlled by software by writing a
one or zero to the DE0 or DE1 bits in the synchronous
serial control (SSC) register. Because they are con-
trolled by software, the actual delays will be much
longer than specified. The same will hold true if PIOs
are used to drive the SLAC device chip selects.

Table 3 gives the usable options for each of the avail-
able speed grades and the resultant data transfer rate.
To achieve the maximum DCLK rate of 4 MHz, the
Am188EM microcontroller’s internal frequency must be
8, 16, or 32 MHz (÷2, 4, or 8).

Table 2. Microprocessor Output (Data Write)

Table 3. Microprocessor Input (Data Read)

SOFTWARE CONSIDERATIONS
The basics of using the SSI port from software can be
illustrated with two subroutines; the first subroutine
writes a byte to the SLAC device and the second reads
a single byte. These two subroutines, along with initial-
ization, form the core of the necessary drivers.

The SSI port appears as five registers in the Am188EM
microcontroller ’s peripheral control block. This
256-byte block can be located in either memory or I/O

space at the location pointed to by the Peripheral Con-
trol Block Relocation Register. Because the base loca-
tion of the block can be moved, the location of
individual registers is specified as an offset from the
Peripheral Control Block Relocation Register rather
than an absolute address. The PIO ports and control
registers are also located in this block of addresses. At
reset, the block is located at 0FF00h in the I/O space.

DSLAC Device Requires
(ns, min)

Am188EM Microcontroller
Provides (ns, min) Comments

Data setup time 30 72 OK

Data hold time 30 97 OK

CS setup time 70 219 OK

CS hold time 0 122 OK

Am188EM
Microcontroller Requires

(ns, min)
DSLAC Device Provides

(ns, min) Comments

Data setup time 10 47 OK

Data hold time 3 97 OK
4 Interfacing the Am188TMEM Controller to the DSLACTM/QSLACTM Devices Using the SSI

Table 4. SSI Port Registers

The bit-level definitions from the SSI Port registers
from Table 4 are shown in Figure 2.

Figure 2. Bit-Level Definition of SSI Port
Registers

The Port Busy (PB) bit in the status register goes High
when a transmit or receive operation is in progress.
The two SDEN enables (DE0 and DE1) control the
state of SDEN and enable transmission or reception. A
write to the transmit register or a read of the receive
register initiates the transfer. For a more complete
functional description of these registers, including the
features not used here, refer to the Am186™EM and
Am188™EM Microcontrollers User’s Manual.

Assuming the connections in Figure 1, the following
steps are required to execute the Read Revision Code
Number Command (#23) of the DSLAC device.

Send the command:

1. Enable CS1, set PIO 22 low
[PDATA1 bit 6 = 0]

2. Enable transmit, set DE0 high
[SSC bit 0 = 1]

3. Write the command, bit reversed
[SSD0 = 0CEh]

4. Wait for PB to go low
[SSS bit 0 = 0]

5. Disable transmit, set DE0 low
[SSC bit 0 = 0]

6. Disable CS1, set PIO 22 high
[PDATA1 bit 6 = 1]

After waiting 5 ms, receive the data:

1. Enable CS1, set PIO 22 low
[PDATA1 bit 6 = 0]

2. Enable receive, set DE0 high
[SSC bit 0 = 1]

3. Start reception
[read SSR]

4. Wait for PB to go low
[SSS bit 0 = 0]

5. Disable receive, set DE0 low
[SSC bit 0 = 0]

6. Disable CS1, set PIO 22 high
[PDATA1 bit 6 = 1]

7. Read revision number
[read SSR]

Appendix A provides the listings for two general pur-
pose read and write routines. They have been coded in
assembly language to maximize speed. In most cases
the natural flow of the software will guarantee that there
is at least 5 ms between bytes. In the listing given, the
print commands between writes and reads take much
longer than 5 ms. If this is not the case, either a soft-
ware delay or the Am188EM microcontroller’s timer
could provide the necessary wait.

INITIALIZATION
There are two parts to the initialization process. First,
the on-board peripheral of the Am188EM microcontrol-
ler (PIO and SSI ports) must be set up for proper oper-
ation. This includes setting the mode and direction of
the PIO pins as well as setting the pin itself to a known
state. Second, now that the interface is operational, the
SLAC device itself should be initialized. Each of the
SLAC devices have a recommended power-up se-
quence that can be found in the data sheet. As an ex-
ample, the DSLAC device’s recommended sequence
is as follows:

1. Select MCLK (command #6),

2. Software reset (command #2),

3. Program coefficients and parameters,

4. Activate (command #5)

The Am188EM microcontroller’s PIO and SSI port
should be initialized as soon as possible after reset to
ensure the output pins are in the correct state, but 1 ms
is needed after power is stable before commands can
be sent to the SLAC device. Because the Am188EM
microcontroller also requires 1 ms for PLL lock (param-
eter #61 - tLOCK), most systems have an external
power-up-reset monitor that provides this delay. If not,
or if the systems have separate power supplies, soft-
ware must wait before sending the first command. The
QSLAC device has a power interruption flag (P1, com-
mand 23 bit 7) that should be checked after the delay.

Offset
from PCB

Register
Mnemonic Register Name

10h SSS Synchronous Serial Status

12h SSC Synchronous Serial Control

14h SSD1 Synchronous Serial Transmit 1

16h SSD0 Synchronous Serial Transmit 0

18h SSR Synchronous Serial Receive

SSS

7 6 5 4 3 2 1 0

SSC

SSD1

SSD0

SSR

RE/
DE

DR/
DT

PB

SCLKDIV DE1 DE0

TRANSMIT REGISTER 1

TRANSMIT REGISTER 0

RECEIVE REGISTER
Interfacing the Am188TMEM Controller to the DSLACTM/QSLACTM Devices Using the SSI 5

SOFTWARE LISTING
The software listing in Appendix A is written in C and
compiled with Microsoft’s C/C++ compiler. This exam-
ple code illustrates how to read the DSLAC device’s Z
filter coefficients. The software was tested on several
of the evaluation boards available from AMD. An
ASLAC Interface Board (ACIF) was used to load a
known set of coefficients into a DSLAC Device Low
Noise Board. An SD186EM demonstration board was
then connected in place of the ACIF Board to read back
the coefficients.

The main body of the program first initializes the vari-
ous ports, then sends a "read Z filter" command. As

noted previously, the command must be bit reversed.
The "for" loop then reads back the 14 bytes of the Z fil-
ter coefficients. The subroutines SSI_read and
SSI_write are written in assembly language for speed
and clarity. They implement the code required to send
or receive a single byte. Once again, the bytes coming
back from the DSLAC device are bit reversed.

SUMMARY
While the two serial interfaces were not designed to be
used together, they are surprisingly compatible. The
two simple fixes required to make them work together
are worth the effort to save code space and speed up
operation.
6 Interfacing the Am188TMEM Controller to the DSLACTM/QSLACTM Devices Using the SSI

Appendix A
Software Listing
#include <stdio.h>

#include "sys\types.h"

#include "sd186em.h" // defines register addresses

// function prototypes

 void SSI_init(void);

 void SSI_write(int);

 Uint8 SSI_read(void);

// useful constants

 #define READ_Z 0xA1 // read z-filter (bit reversed)

 #define P22_LOW 0xFFBF // PIO 22 low bit mask

 #define P22_HI 0x0040 // PIO 22 high bit mask

 #define DE0_LOW 0xFFFE // DE0 bit low bit mask

 #define DE0_HI 0x0001 // DE1 bit high bit mask

 #define PB_HI 0x0001 // PB bit high bit mask

void main() {

 Uint8 buf[256];

 int i;

 printf("Start Program\n");

 SSI_init();

 printf("Finish SSI_init\n");

 for (i=0; i<256; i++) buf[i] = 0;

 printf("Finish buffer initialization\n");

 SSI_write(READ_Z);

 printf("Command Sent\n");
A-1

 for (i=0; i<14; i++) {

 buf[i] = SSI_read();

 printf("byte %d = %x \n",i,buf[i]);

 } /* end for loop */

exit(0);

}

//****************************** END OF MAIN *******************************

void SSI_init(void)

{

 _asm{

 mov dx,PIOMODE1 // point to mode register

 in ax,dx // read register (in IO space)

 or ax,0x00C0 // set bits low (to make output)

 out dx,ax // write to register (in IO space)

 mov dx,PDIR1 // point to PIO1 DIRECTION register

 in ax,dx // read

 and ax,0xFF3F // set PIO direction bit (to output)

 out dx,ax // write

 mov dx,PDATA1 // point to PIO1 DATA register

 in ax,dx // read

 or ax,0x00C0 // set PIO data bits (to make them high)

 out dx,ax // write

 mov dx,SSC // point to sync serial control register

 mov ax,0x0030 // Set clk divisor to 16, enables low (inactive)

 out dx,ax // write

 } /* end _asm */

}

//============================ END OF SSI_INIT =============================
A-2

Uint8 SSI_read(void)

{

 int i;

 _asm{

 mov dx,PDATA1 // STEP 1 - set CS1 low (PIO 22)

 in ax,dx //

 and ax,P22_LOW //

 out dx,ax //

 mov dx,SSC // STEP 2 - enable reception

 in ax,dx // (i.e. set bit DE0 = 1)

 or ax,DE0_HI //

 out dx,ax //

 mov dx,SSR // STEP 3 - start reception

 in ax,dx // (with dummy read of SSR)

 mov dx,SSS // STEP 4 - wait for data

h1: in ax,dx // (done when PB = 0)

 and ax,PB_HI //

 jnz h1 //

 mov dx,SSC // STEP 5 - disable reception

 in ax,dx // (set DE0 low)

 and ax,DE0_LOW //

 out dx,ax //

 mov dx,PDATA1 // STEP 6 - set CS1 high (PIO 22)

 in ax,dx //

 or ax,P22_HI //

 out dx,ax //

 mov dx,SSR // STEP 7 - read the data

 in ax,dx //
A-3

 mov i,ax // move data to output variable

 } /* end _asm */

 return(i);

}

//============================ END OF SSI_READ =============================

static void SSI_write(i)

int i;

{

 _asm{

 mov dx,PDATA1 // STEP 1 - set CS1 low (PIO 22)

 in ax,dx //

 and ax,P22_LOW //

 out dx,ax //

 mov dx,SSC // STEP 2 - enable transmission

 in ax,dx // (i.e. set bit DE0 = 1)

 or ax,DE0_HI //

 out dx,ax //

 mov dx,SSD0 // STEP 3 - transmit byte

 mov ax,i //

 out dx,ax //

 mov dx,SSS // STEP 4 - wait for completion

h1: in ax,dx // (done when PB = 0)

 and ax,PB_HI //

 jnz h1 //

A-4

 mov dx,SSC // STEP 5 - disable transmission

 in ax,dx // (set DE0 low)

 and ax,DE0_LOW //

 out dx,ax //

 mov dx,PDATA1 // STEP 6 - set CS1 high (PIO 22)

 in ax,dx //

 or ax,P22_HI //

 out dx,ax //

 } /* end _asm */

}

//========================== END OF SSI_WRITE ==============================

Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Am186, Am188, AmSLAC, DSLAC, QSLAC, SLAC, and SLIC are trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
A-5

