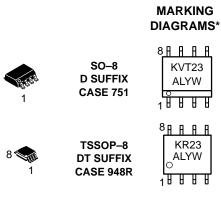
3.3V Dual Differential LVPECL to LVTTL Translator

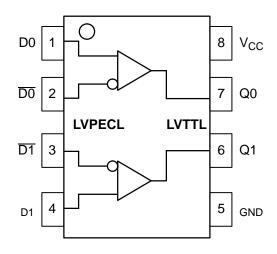
The MC100LVELT23 is a dual differential LVPECL to LVTTL translator. Because LVPECL (Positive ECL) levels are used only +3.3 V and ground are required. The small outline 8-lead package and the dual gate design of the LVELT23 makes it ideal for applications which require the translation of a clock and a data signal.


The LVELT23 is available in only the ECL 100K standard. Since there are no LVPECL outputs or an external V_{BB} reference, the LVELT23 does not require both ECL standard versions. The LVPECL inputs are differential. Therefore, the MC100LVELT23 can accept any standard differential LVPECL input referenced from a V_{CC} of +3.3 V.

- 2.0 ns Typical Propagation Delay
- Maximum Frequency > 180 MHz
- Differential LVPECL Inputs
- PECL Mode Operating Range:V_{CC}= 3.0 V to 3.8 V with GND= 0 V
- 24 mA LVTTL Outputs
- Flow Through Pinouts
- Internal Pulldown Resistors
- Q Output will default LOW with inputs open or at GND
- ESD Protection: >1.2 KV HBM, >150 V MM
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 91 devices

ON Semiconductor™

http://onsemi.com


A = Assembly Location L = Wafer Lot Y = Year

W = Work Week

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
MC100LVELT23D	SO–8	98 Units / Rail
MC100LVELT23DR2	SO–8	2500 / Reel
MC100LVELT23DT	TSSOP-8	98 Units / Rail
MC100LVELT23DTR2	TSSOP-8	2500 / Reel

PIN	FUNCTION
Q0, Q1	LVTTL Outputs
D0, D1, D0, D1	Differential LVPECL Inputs
V _{CC}	Positive Supply
GND	Ground

PIN DESCRIPTION

MAXIMUM RATINGS*

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Power Supply	GND = 0 V		3.8	V
VI	Input Voltage	GND = 0 V, V _I not more positive than V _{CC}		3.8	V
l _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 SOIC 8 SOIC	190 130	°C/W °C/W
θ _{JC}	Thermal Resistance (Junction to Case)	std bd	8 SOIC	41 to $44 \pm 5\%$	°C/W
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	8 TSSOP 8 TSSOP	185 140	°C/W °C/W
θ _{JC}	Thermal Resistance (Junction to Case)	std bd	8 TSSOP	41 to $44 \pm 5\%$	°C/W
T _{sol}	Solder Temperature	<2 to 3 Seconds: 245°C desired		265	°C

 * Maximum Ratings are those values beyond which damage to the device may occur.

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CCH}	Power Supply Current (Outputs set to HIGH)	10	18	25	10	18	25	10	18	25	mA
I _{CCL}	Power Supply Current (Outputs set to LOW)	15	26	33	15	26	33	15	26	33	mA
V _{IH}	Input HIGH Voltage	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage	1490		1825	1490		1825	1490		1825	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 2)	2.0		3.3	2.0		3.3	2.0		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D	-150		0.5	-150		0.5	-150		0.5	μA

LVPECL DC CHARACTERISTICS V_{CC} = 3.3 V; GND = 0 V (Note 1.)

NOTE: Circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

1. All values vary 1:1 with V_{CC}. V_{CC} can vary \pm 0.3 V. 2. V_{IHCMR} min varies 1:1 with GND, max varies 1:1 with V_{CC}.

TTL DC CHARACTERISTICS V_{CC} = 3.3 V; GND = 0V (Note 3)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage (I _{OH} = -3.0 mA)	2.4			2.4			2.4			V
V _{OL}	Output LOW Voltage (I _{OL} = 24 mA)			0.5			0.5			0.5	V
I _{OS}	Output Short Circuit Current	-180		-50	-180		-50	-180		-50	mA

NOTE: Circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

3. All values vary 1:1 with V_{CC}. V_{CC} can vary \pm 0.3 V.

AC CHARACTERISTICS V_{CC} = 3.3 V; GND = 0 V (Note 3 and Note 5.)

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency (Note 6)	180			180			180			MHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	1.0	1.5	2.5	1.0	1.7	2.5	1.0	1.7	2.5	ns
t _{SK+ +} t _{SK} t _{SKPP}	Output-to-Output Skew++ Output-to-Output Skew- – Part-to-Part Skew (Note 7)			60 25 500			60 25 500			60 25 500	ps
t _{JITTER}	Cycle-to-Cycle Jitter (RMS)		< 1			< 1			< 1		ps
V _{PP}	Input Voltage Swing (Differential) (Note 8)	200	800	1000	200	800	1000	200	800	1000	mV
t _r t _f	$\begin{array}{llllllllllllllllllllllllllllllllllll$	330	600	900	330	600	900	330	650	900	ps

V_{CC} can vary ±0.3 V.
 All loading with 500 ohms to GND, CL = 20 pF.
 F_{max} guaranteed for functionality only. V_{OL} and V_{OH} levels are guaranteed at DC only.
 Skews are measured between outputs under identical conditions.

8. 200 mV input guarantees full logic swing at the output.

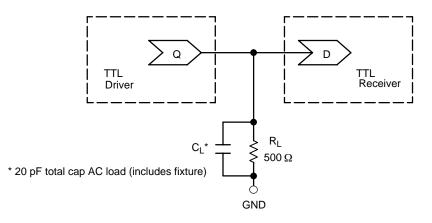
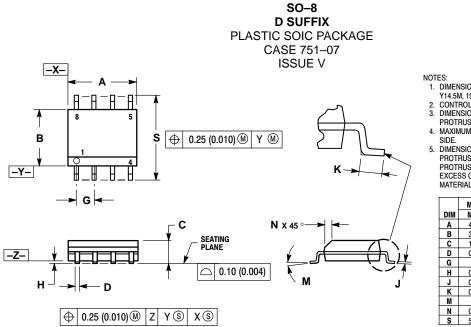
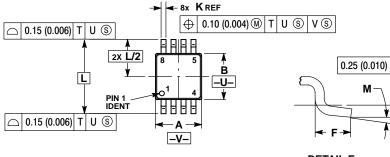



Figure 2. TTL Output Loading Used for Device Evaluation

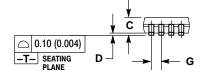
Resource Reference of Application Notes

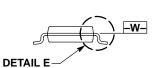
AN1404	– E(CLinPS Circuit Performance at Non–Standard V _{IH} Levels
AN1405	– E	CL Clock Distribution Techniques
AN1406	– D	esigning with PECL (ECL at +5.0 V)
AN1503	– E(CLinPS I/O SPICE Modeling Kit
AN1504	– M	etastability and the ECLinPS Family
AN1560	– Lo	ow Voltage ECLinPS SPICE Modeling Kit
AN1568	– In	terfacing Between LVDS and ECL
AN1596	– E(CLinPS Lite Translator ELT Family SPICE I/O Model Kit
AN1650	– U:	sing Wire–OR Ties in ECLinPS Designs
AN1672	– Tł	he ECL Translator Guide
AND8001	- O	dd Number Counters Design
AND8002	– M	arking and Date Codes
AND8020	– Te	ermination of ECL Logic Devices

PACKAGE DIMENSIONS



NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.


	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.2	7 BSC	0.050 BSC			
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
М	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		


PACKAGE DIMENSIONS

TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

DETAIL E

NOTES:

- DIES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED

- FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
C	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65	BSC	0.026	6 BSC	
K	0.25	0.40	0.010	0.016	
L	4.90	BSC	0.193	BSC	
М	0 °	6 °	0°	6 °	

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

MC100LVELT23