TOSHIBA TMP68HC000

16- BIT MICROPROCESSOR

TMP68HCO000P-10/ TMP68HCO000P-12/ TMP68HCO000P-16
TMP68HCOGON-10/ TMP68HCOON-12/ TMP6SHCO000N-16
TMP68HC000Y-10/ TMP68HC000Y-12/ TMP68HC000Y-16
TMP68HCO00F-10/ TMP68HCO000F-12/ TMP68HC000F-16
TMP68HCO00T-10*/ TMP68HC000T-12*/ TMP68HC000T*-16

Package typ
P : plastic DIP
N : Shrank plastic DIP
Y : pin grid array (without stand-off) : TMP68HC000 only
F : plastic QFP : TMP68HCO000 only
T : plastic leaded chi carrier

(* Under development)

1. INTRODUCTION
TMP68HCO000 are compatible with the Motorola MC68HC000.

L] Low power Dissipation (TMP68HC000)

As show in the user programming model (Figure 1.1} , the TMP68HCO000 offers 16/32-
bit registers and a 32-bit program counter. The first eight registers (DO~D7) are used as
data registers for byte (8-bit) , word (16-bit) , and long word (32-bit) operations. The
second set of seven registers (A0~A6) and the user stack pointer (USP) may be used as
software stack pointers and base address registers. In addition, the registers may be
used for word and long word operations. All of the 16 registers may be used as index
registers.

In supervisor mode, the upper byte of the status register and the supervisor stack

pointer (SSP) are also available to the programmer. These registers are shown in Figure
1.2.

The status register (Figure 1.3) contains the interrupt mask (eight levels available)
as well as the condition codes: extend (X) , negative (N) , zero (Z) , overflow (V) , and
carry (C). Additional status bits indicate that the processor is in a trace (T') mode and in
a supervisor (S) or user state.

MPUO00-1
E 9097249 004?422 791 HA

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

o

31 16 15 87

00

01

D2 .

D3 Eight

D4 Data

DS Registers

D6
D7

T T T T
U U T WS B W |

o

31 16 15
: AQ
Al

A2
A3 Seven

Ad Add.ress
A5 Registers

Ab

T T T
) I WO N S W X

[: A7 (USP) User Stack Pointer

31 Q
| |PC Program Counter

7 0

|:| CCR Status Register

Figure 1.1 User Programming Model

31 16 15 0
: | a7 (s5P) supervisor Stack Pointer

15 8 7 0
i CCR SR Status Register

Figure 1.2 Supervisor Programming Model Supplement

User Byte
System Byte (Condition Code Register)
| I
[1T 1
15 13 10 8 4 0
211 |1lg X|N|Z|V|C|

Carry
Overflow
Zero
Negative
Extend
Interrupt Mask
Supervisor State
Trace Mode

Figure 1.3 Status Register

MPUO00-2
H 9097249 0047423 bLed W

TOSHIBA TMP68HC000

1.1 DATA TYPES AND ADDRESSING MODES

Five basic data types are supported. These data types are:
L] Bits
° BCD Digits (4 bits)
] Bytes (8 bits)
[Words (16 bits)
L] Long Words (32 bits)

In addition, operations on other data types such as memory addresses, status word
data, etc., are provided in the instruction set.
The 14 address modes, shown in Table 1.1, include six basic types:

L] Register Direct

e Register Indirect

. Absolute

. Program Counter Relative
L] Immediate

° Implied

MPUO00-3
Bl 9097249 00Ou?u424 564 EN

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA . TMP68HCO000

Included in the register indirect addressing modes is the capability to do
postincrementing, predecrementing, offsetting, and indexing. The program counter

relative mode can also be modified via indexing and offsetting.

Table 1.1 Addressing Modes

Addressing Modes Syntax
Register Direct Addressing
Data Register Direct Dn
Address Register Direct An
Absolute Data Addressing
Absolute Short Abs.W
Absolute Long Abs.L
Program Counter Relative Addressing
Relative with Offset d16 (PC)
Relative with Index Offset d8 (PC, Xn)
Register indirect Addressing
Register Indirect (An)
Postincrement Register Indirect (An) +
Predecrement Register Indirect -(An)
Register Indirect with Offset d16 (An)
Indexed Register Indirect with Offset d8 (An, Xn)
Immediate Data Addressing
Immediate # XXX
Quick Immediate #1~#8
Implied Addressing
Implied Register SR/USP/SSP/PC
Notes: Dn = Data Register
An = Address Register
Xn = Address or Data Register used as Index Register
SR = Status Register
PC = Program Counter
SP = Stack Pointer
USP = User Stack Pointer
() = Effective Address
d8 = 8-Bit Offset (Displacement)
d16 = 16-Bit Offset (Displacement)
#xxx = Immediate Data

MPUOQO-4

BN 9097249 0O4?425 4TO B

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght

2003

TOSHIBA TMP68HC000

1.2 INSTRUCTION SET OVERVIEW

The TMP68HCO000 instruction set is shown in Table 1.2. Some additional
instructions are variations, or subsets, of these and they appear in Table 1.3. Special
emphasis has been given to the instruction set’s support of structured high-level
languages to facilitate ease of programming. Each instruction, with few exceptions,
operates on bytes, words, and long words and most instructions can use any of the 14
addressing modes. Combining instruction types, data types, and addressing modes, over
1000 useful instructions are provided. These instructions include signed and unsigned,

multiply and divide, “quick”arithmetic operations, BCD arithmetic, and expanded
operations (through traps).

Table 1.2 Instruction Set Summary (1/2)

Mnemonic Description
ABCD Add Decimal with Extend
ADD Add
AND Logical And
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
Bcc Branch Conditionally
BCHG Bit Test and Change
BCLR Bit Test and Clear
BRA Branch Always
BSET Bit Test and Set
BSR Branch to Subroutine
BTST Bit Test
CHK Check Register Against Bounds
CLR Clear Operand
CcMP Compare
DBcc Test Condition, Decrement and Branch
DIVS Signed Divide
DIVU Unsigned Divide
EOR Exclusive Or
EXG Exchange Registers
EXT Sign Extend
MP Jump
JSR Jump to Subroutine
LEA Load Effective Address
LINK Link Stack
LSL Logical Shift Left
LSR Logical Shift Right

MPUOO-5

B 3097249 004742L 337 EE

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HCO000

Table 1.2 Instruction Set Summary (2/2)

Mnemonic Description
MOVE Move
MOVEM Move Multiple Registers
MOVEP Move Peripheral Data
MULS Signed Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NOP No Operation
NOT One's Complement
OR Logical OR
PEA Push Effective Address
RESET Reset External Devices
ROL Rotate Left without Extend
ROR Rotate Right without Extend
ROXL Rotate Left with Extend
ROXR Rotate Right with Extend
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine
STOP Stop
SUB Subtract
SWAP Swap Data Register Halves
TAS Test and Set Operand
TRAP Trap
TRAPV Trap on Overflow
TST Test
UNLK Unlink

MPUO0O-6

Bl 9097249 0047427 273 WA

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HCO000

Table 1.3 Variations of Instruction Types

Instruction Variation Description
Type
ADD ADD Add
ADDA Add Address
ADDQ Add Quick
ADDI Add immediate
ADDX Add with Extend
AND AND Logical And
ANDI AND Immediate
ANDI to CCR AND Immediate to Condition Codes
ANDI to SR AND Immediate to Status Register
CMP CcMP Compare
CMPA Compare Address
CMPM Compare Memory
CMPI Compare Immediate
EOR EOR Exclusive OR
EORI Exclusive OR Immediate
EQRIto CCR Exclusive OR immediate to Condition Codes
EQRi to SR Exclusive OR Immediate to Status Register
MOVE MOVE Move
MOVEA Move Address
MQOVEQ Move Quick
MOVE from SR Move from Status Register
MOVE to SR Move to Status Register
MOVE to CCR Move to Condition Codes
MOVE USP Mave User Stack Pointer
NEG NEG Negate
NEGX Negate with Extend
OR OR Logical OR
ORI OR Immediate
ORIl to CCR OR Immediate to Condition Codes
ORI to SR OR immediate to Status Register
SUB suB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend

MPUO00-7

M 9097249 004?428 10T WM

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght

2003

TOSHIBA , TMP68HC000

2. DATA ORGANIZATION AND ADDRESSING CAPABILITIES

This section contains a description of the registers and the data organization of the
TMP68HCO000.

2.1 OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a
long word equals 32 bits. The operand size for each instruction is either explicitly
encoded in the.instruction or implicitly defined by the instruction operation. Implicit
instructions support some subset of all three sizes.

2.2 DATA ORGANIZATION IN REGISTERS

The eight data registers support data eperands of 1, 8, 16, or 32 bits. The seven
address registers together with the stack pointers support address operadnds of 32 bits.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operadns occupy the low order 8 bits, word
operands the low order 16 bits, and long word operands the entire 32 bits. The least
significant bit is addressed as bit zero; the most significant bit is addressed as bit 31.

When a data register is used as either a source or destination operand, only the
appropriate low order portion is changed; the remaining high order portion is neither
used nor changed.

2.2.2 Address Registers

Each address register and the stack pointer is 32 bits wide and holds a full 32-bit
address. Address registers do not support the sized operands. Therefore, when an
address register is used as a source operand, either the low order word or the entire long
word operand is used depending upon the operation size. When an address register is
used as the destination operand, the entire register is affected regardless of the
operation size. If the operation size is word, any other operands are sign extended to 32
bits before the operation is performed.

2.3 DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte having an even address
the same as the word, as shown in Figure 2.1. The low order byte has an odd address
that is one count higher than the word address. Instructions and multibyte data are
accessed only on word (even byte) boundaries. If a long word datum is located at address
n (n even) , then the second word of that datum is located at address n+2.

MPUQO-8
I 9097249 0047429 OubL M

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HCO000

8 7

Byte 000000

Word 000000

Byte 000001

Byte 000002

Word 000002

Byte 000003

e

Byte FFFFFE

Word FFFFFE

1

Byte FFFFFF

Figure 2.1 Word Organization in Memory

The data types supported by the TMP68HC000 are: bit data, integer data of 8, 16, or
32 bits, 32-bit addresses and binary coded decimal data. Each of these data types is put
in memory, as shown in Figure 2.2. The numbers indicate the order in which the data

accessed from the processor.

MPUQO-9

M 5097249 004?430 &LS N

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

Bit Data
1 Byte = 8 Bits

7 6 5 4 3 2 1 0

I I I I A

Integer Data
1 Byte = 8 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
M5B Byte 0 LSB Byte 1
Byte 2 Byte 3

1 Word = 16 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB Word 0 LSB
Word 1
Word 2

1 Long Word = 32 Bits
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

MSB_ LongWord0Q ... HighOrder .

Low Order LSB

............. LongWOrd T e

............. Long WVOId 2 e
Addresses

1Address = 32 Bits
1 14 13 12 11 0 9 8 7 6 5 4 3 2 1 0

Ms8 _ AddressO . HighOrder

Low Order LSB
............. AAIESS 1 e
............. AGAIESS 2 e
MSB = Most Significant Bit LSB = Least Significant BIT

Decimal Data
2 Binary Coded Decimal Digits = 1 Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSD BCDO BCD1 LSD BCD2 BCD3
BCD4 BCDS BCD6 BCD7
MSD = Most Significant Digit LSD = Least Significant Digit

Figure 2.2 Memory Data Organization

MPU00-10
B 9097249 004743l 7Ty HA

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

2.4 ADDRESSING

Instructions for the TMP68HCO00 contain two kinds of information: the type of
function to be performed and the location of the operand(s) on which to perform that
function. The methods used to locate (address) the operand(s) are explained in the
following paragraphs.

Instructions specify an operand location in one of three ways:

Register Specification — the number of the register is given in the register field
of their instruction.

Effective Address — useof the different effective addressing modes.

Implicit Reference — thedefinition of certain instructions implies the use of
specific registers.

2.5 INSTRUCTION FORMAT

Instructions are from one to five words in length as shown in Figure 2.3. The length
of the instruction and the operation to be performed is specified by the first word of the
instruction which is called the operation word. The remaining words further specify the
operands. These words are either immediate operands or extensions to the effective
address mode specified in the operation word.

15 0
Operation Word (First Word Specifies Operation and Modes)
Immediate Operand (If Any, One or Two Wards)

Source Effective Address Extension (If Any, One or Two Words)
Destination Effective Address Extension (if Any, One or Two Words)

Figure 2.3 Instruction Operation Word General Format

2.6 PROGRAM/DATA REFERENCES

The TMP68HCO000 separates memory references into two classes: program references
and data references. Program references, as the name implies, are references to that
section of memory that contains the program being executed. Data references refer to
that section of memory that contains data. Operand reads are from the data space
except in the case of the program counter relative addressing mode. All operand writes
are to the data space.

2.7 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields
within the instruction specify whether the register selected is an address or data register
and how the register is to be used.

MPUQ0-11
B 3097249 0047432 30 MM

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP6E8HCO00

2.8 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address
field in the operation word. For example, Figure 2.4 shows the general format of the
single-effective-address instruction operation word. The effective address is composed of
two 3-bit fields: the mode field and the register field. The Value in the mode field selects
the different address modes. The register field contains the number of a register.

The effective address field may require additional information to fully specify the
operand. This additional information, called the effective address extension, is
contained in the following word or words and is considered part of the instruction, as
shown in Figure 2.3. The effective address modes are grouped into three categories:
register direct, memory addressing, and special.

1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Q
lex[xlxlx[xlxlxlxlx[Mode |Register|
L

T
Effective Address
Figure 2.4 Single Effective Address Instruction Operation Word

2.8.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of 16
multifunction registers.

2.8.1.1 Data Register Direct

The operand is in the data register specified by the effective address register field.
2.8.1.2 Address Register Direct

The operand is in the address register specified by the effective address register field.
2.8.2 Memory Address Modes

These effective addressing modes specify that the operand is in memory and provide
the specific address of the operand.

2.8.2.1 Address Register Indirect

The address of the operand is in the address register specified by the register field.
The reference is classified as a data reference with the exception of the jump and jump-
to-subroutine instructions.

2.8.2.2 Address Register Indirect with Postincrement

The address of the operand is in the address register specified by the register field.
After the operand address is used, it is incremented by one, two, or four depending upon
whehter the size of the operand is byte, word, or long word. If the address register is the
stack pointer and the operand size is byte, the address is incremented by two rather than
one to keep the stack pointer on a word boundary. The reference is classified as a data
reference.

MPU00-12
B 9097249 004?433 577 WA

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

2.8.2.3 Address Register Indirect with Predecrement

The address of the operand is in the address register specified by the register field.
Before the operand address is used, it is decremented by one, two, or four depending
upon whether the operand size is byte, word, or long word. If the address register is the
stack pointer and the operand size is byte, the address is decremented by two rather than

one to keep the stack pointer on a word boundary. The reference is classified as a data
reference.

2.8.2.4 Address Register Indirect with Displacement

This addressing mode requires one word of extension. The address of the operand is
the sum of the address in the address register and the sign-extended 16-bit displacement
integer in the extension word. The reference is classified as a data reference with the
exception of the jump and jump-to-subroutine instructions.

2.8.2.5 Address Register Indirect with Index

This addressing mode requires one word of extension. The address of the operand is
the sum of the address in the address register, the sing-extended displacement integer in
the low order eight bits of the extension word, and the contents of the index register.
The reference is classified as a data reference with the exception of the jump and jump-
to-subroutine instructions.

2.8.3 Special Address Modes

The special address modes use the effective address register field to specify the special
addressing mode instead of a register number.

2.8.3.1 Absolute Short Address

This addressing mode requires one word of extension. The address of the operand is
the extension word. The 16-bit address is sign extended before it is used. The reference
is classified as a data reference with the exception of the jump and jump-to-subroutine
instructions.

2.8.3.2 Absolute Long Address

This addressing mode requires two words of extension. The address of the operand is
developed by the concatenation of the extension words. The high order part of the
address is the first extension word; the low order part of the address is the second
extension word. The reference is classified as a data reference with the exception of the
jump and jump-to-subroutine instruction.

2.8.3.3 Program Counter with Displacement

This addressing mode requires one word of extension. The address of the operand is
the sum of the address in the program counter and the sign-extended 16-bit
displacement integer in the extension word. The value in the program counter is the
address of the extension word. The reference is classified as a program reference.

MPU00-13
I 9097249 004?434 403 WA

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP6&8HCO000

2.8.3.4 Program Counter with Index

This addressing mode requires one word of extension. The address is the sum of the
address in the program counter, the sign-extended displacement integer in the lower
eight bits of the extension word, and the contents of the index register. The value in the
program counter is the address of the extension word. This reference is classified as a
program reference.

2.8.3.5 Immediate Data

This addressing mode requires either one or two words of extension depending on the
size of the operation.

Byte Operation : operand is low order byte of extension word
Word Operation : operand is extension word
Long Word Operation : operand is in the two extension words, high order 16 bits

are in the first extension word, low order 16 bits are in the
second extension word

2.8.3.6 Implicit Reference

Some instructions make implicit reference to the program counter (PC) , the system
stack pointer (SP) , the supervisor stack pointer (SSP) , the user stack pointer (USP) , or
the status register (SR) . A selected set of instructions may reference the status register
by means of the effective address field. These are:

ANDI to CCR
ANDI to SR
EORI to CCR
EORI to SR
ORI to CCR
ORI to SR
MOVE to CCR
MOVE to SR
MOVE from SR

MPUQO-14
I 9097249 0047435 34T N

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO00

2.9 EFFECTIVE ADDRESS ENCODING SUMMARY

Table 2.1 is a summary of the effective addressing modes discussed in the previous

paragraphs.
Table 2.1 Effective Address Encoding Summary
Addressing Mode Mode Register

Data Register Direct 000 Register Number
Address Register Direct 001 Register Number
Address Register Indirect 010 Register Number
Add'ress Register Indirect with 011 Register Number
Postincrement

Address Register Indirect with 100 Register Number
Predecrement

Afidress Register Indirect with 101 Register Number
Displacement

Address Register indirect with Index 110 Register Number
Absolute Short 11 000
Absolute Long 111 001
Program Counter with Dispiacement 111 010
Program Counter with index 111 011
Immediate 11 100

2.10 SYSTEM STACK

The system stack is used implicitly by many instructions; user stacks and queues may
be created and maintained through the addressing modes. Address register seven (A7)
is the system stack pointer (SP) . The system stack pointer is either the supervisor stack
pointer (8SP) or the user stack pointer (USP) , depending on the state of the S bit in the
status register. If the S bit indicates supervisor state, SSP is the active system stack
pointer and the USP cannot be referenced as an address register. If the S bit indicates
user state, the USP is the active system stack pointer, and the SSP cannot be referenced.
Each system stack fills from high memory to low memory.

MPUQO-15
B 9097249 004?43bL 28L WE

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCQ00

3. INSTRUCTION SET SUMMARY

This section contains an overview of the form and structure of the TMP68HCO000
instruction set. The instructions form a set of tools that include all the machine
functions to perform the following operations:

Data Movement
Integer Arithmetic
Logical

Shift and Rotate

Bit Manipulation
Binary Coded Decimal
Program Control
System Control

The complete range of instruction capabilities combined with the flexible addressing
modes described previously provide a very flexible base for program development.

3.1 DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provided by the move
(MOVE) instruction. The move instruction and the effective addressing modes allow
both address and data manipulation. Data move instructions allow byte, word, and long
word operands to be transferred from memeory to memory, memory to register, register
to memory, and register to register. Address move instructions allow word and long
word operand transfers and ensure that only legal address manipulations are executed.
In addition to the general move instruction there are several special data movement
instructions: move multiple registers (MOVEM) , move peripheral data (MOVEP) ,
exchange registers (EXG) , load effective address (LEA) , push effective address (PEA) ,
link stack (LINK) , unlink stack (UNLK) , and move quick (MOVEQ) . Table 3.1is a
summary of the data movement operations.

MPU0O0-16
H 9097249 004?437 112 N

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HC000

Table 3.1 Data Movement Operations

Instruction Operand Size Operation
EXG 32 Xxe>Xy
LEA 32 EA—ARN
An— —(SP)
LINK -~ SP—AnN
SP + displacement —SP
MOVE 8,16,32 s —d
(EA)—AN,Dn
MOVEM 16,32 An,Dn —(EA)
(EA)—=Dn
M P
OVE 16,32 Dn—>(EA)
MOVEQ 8 #xxx-—->Dn
PEA 32 EA— - (SP)
SWAP 32 Dn[31:16]<Dn[15:0]
An—5P
L _ .
UNLK (SP) + —AnN
Notes: s = source -() = indirect with predecrement
d = destination ()+ = indirect with postincrement
[1 = bitnumber #xxx = immediate data

3.2 INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD) , subtract
(SUB) , multiply (MUL) , and divide (DIV) as well as arithmetic compare (CMP) , clear
(CLR) , and negate (NEG) . The add and subtract instructions are available for both
address and data operations, with data operations accepting all operand sizes. Address
operations are limited to legal address size operands (16 or 32 bits) . Data, address, and
memory compare operations are also available. The clear and negate instructions may
be used on all sizes of data operands.

The multiply and divide operations are available for signed and unsigned operands
using word multiply to produce a long word product, and a long word dividend with
word divisor to produce a word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended
instructions. These instructions are: add extended (ADDX) , subtract extended (SUBX),
sign extend (EXT) , and negate binary with extend (NEGX) .

A test operand (TST) instruction that will set the condition codes as a result of a
compare of the operand with zero is also available. Test and set (TAS) is a
synchronization instruction useful in multiprocessor systems. Table 3.2 isa summary of
the integer arithmetic operations.

MPU00-17
B 9097249 0047438 059 WA

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HCO00

Table 3.2 Integer Arithmetic Operations

Instruction Operand Size Operation
8,16,32 Dn + (EA) =»Dn
(EA) + Dn —(EA)
ADD (EA) + #xxx —(EA)
16,32 An + (EA) AN
8,16,32 Dx + Dy + X —=Dx
ADDX 16,32 - (AX) + ~ (Ay) + X =>(Ax)
CLR 8,16,32 0 —(EA)
8,16,32 Dn - (EA)
(EA) — #xxx
cmp (Ax) + ~ (Ay) +
16,32 An - (EA)
DIVS 32+16 Dn +{EA)—Dn
DiVU 3216 Dn <+ (EA)—Dn
EXT 8—16 {Dn)g—Dnig
16—32 (Dn)16—Dn32
MULS 16 x 1632 Dn x (EA) —=Dn
MULU 16 X 16532 Dn x (EA) »Dn
NEG 8,16,32 0 —(EA)—(EA)
NEGX 8,16,32 0 - (EA) - X—(EA)
8,16,32 Dn —(EA) —»Dn
(EA) - Dn —(EA)
sus (EA) — #xxx —(EA)
16,32 An - (EA) =>AN
Dx - Dy - X =Dx
SUBX 8,16,32 —(A%) ~ — (Ay) =X —>(AX)
TAS 8 (EA) - 0,1—>EA[7]
TST 8,16,32 (EA) -0
Notes: [] = bitnumber
—({) = indirect with predecrement
()+ = indirect with postincrement
#xxx = immediate data

MPUQO0-18

BN 9097249 0047439 TS5 BN

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

3.3 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of
integer data operands. A similar set of immediate instructions (ANDI, ORI, and EORI)
provide these logical operations with all sizes of immediate data. Table 3.3 is a
summary of the logical operations.

Table 3.3 Logical Operations

Instruction Operand Size Operation
DnA(EA)—Dn
AND 8, 16, 32 (EA)ADn—(EA)
(EA)A#xxx—>(EA)
Dny(EA)—-Dn
OR 8, 16, 32 (EANDn—(EA)
(EA)#xxx—(EA)
{EA)BDy—(EA)
EOR 8,16, 32 (EA)D #xxx—(EA)
NOT 8, 16, 32 ~(EA)—>(EA)
Notes: ~ = invert V = logical OR
#xxx = immediate data @ = logical exclusive OR
A = logical AND

3.4 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic instructions ASR
and ASL and logical shift instructions LSR and LSL. The rotate instructions (with and
without extend) available are ROXR, ROXL, ROR, and ROL. All shift and rotate
operations can be performed in either registers or memory. Register shifts and rotates
support all operand sizes and allow a shift count specified in a data register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts
or rotates.

MPU00-19
B 9097249 0047440 707 WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

Table3.4 Shift and Rotate Operations

Instruction Operand Size Operation

ASL - 8, 16, 32 XiC |« =——]< 0

ASR 8, 16, 32 XIC
LsL 8, 16, 32 XiC J«{ ~——]< 0

LSR 8, 16, 32 0 ~[—— [x¢]
ROL 8, 16, 32

ROR 8, 16, 32
ROXL 8, 16, 32 < —{x
ROXR 8, 16, 32 Cx ——1c]

3.5 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instruction: bit
test (BTST) , bit test and set (BSET) , bit test and clear (BCLR), and bit test and change
(BCHG) . Table 3.5 is a summary of the bit manipulation operations. (Z is bit 2 of the
status register.)

Table 3.5 Bit Manipulation Operations

Instruction Operand Size Operation
BTST 8, 32 ~bit of (EA) »Z
- 0.5 TR
o2 Bt
BcHG 0 32 hitot (EA) Sbitof €A
Note: ~=invert
MPUQ0-20

B 9097249 004744l b43 HE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TM68HC000

3.6 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are
accomplished using the following instructions: add decimal with extend (ABCD) ,
subtract decimal with extend (SBCD) , and negate decimal with extend (NBCD) . Table
3.6 is a summary of the binary coded decimal operations.

Table 3.6 Binary Coded Decimal Operations

Instruction Operand Size QOperation

Dx10 + Dy10 + X —Dx

ABCD 8
= (Ax)10+ = (Ay)10 + X —(Ax)
Dx10 ~Dy109 - X —Dx

SBCD 8
= (Ax)1p~ = (Ay)10 - X —(Ax)

NBCD 8 0-(EA)10 - X—(EA)

Note: -()=indirectwith predecrement

3.7 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditional and
unconditional branch instructions and return instructions. These instructions are
summarized in Table 3.7.

The conditional instructions provide setting and branching for the following

conditions:
CC carry clear LS loworsame
CS carry set LT lessthan
EQ equal MI minus
F never true NE notequal
GE greater or equal PL plus
GT greater than T always true
HI high VC nooverflow
LE 1lessorequal VS overflow

MPUO00-21

B 9097249 OQO47442 S5AT WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA

TM68HC000

Table 3.7 Program Control Operations

Instruction Operation
Conditional Branch Conditionally (14 Conditions)
Bce 8-and 16-Bit Displacement
DBcc Test Condition, Decrement, and Branch
16-Bit Displacement
Scc Set Byte Conditionally (16 Conditions)

Unconditional

BRA Branch Always
8-and 16-Bit Displacement
BSR Branch to Subroutine
8-and 16-Bit Displacement
JMP Jump
ISR Jump to Subroutine
Reterns
RTR Return and Restore Condition Codes
RTS Return from Subroutine

3.8 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap
generating instructions, and instructions that use or modify the status register. These
instructions are summarized in Table 3.8.

Table 3.8 System Control Operations

Instruction Operation
Privileged
ANDI to SR Logical AND to Status Register
EORI to SR Logical EOR to Status Register
MOVE EA to SR Load New Status Register
MOVE USP Move User Stack Pointer
ORI to SR Logical OR to Status Register
RESET Reset External Devices
RTE Return from Exception
STOP Stop Program Execution

Trap Generating
CHK
TRAP
TRAPV

Check Data Register Against Upper Bounds
Trap
Trap on Overflow

Status Register
ANDI to CCR
EORI to CCR
MOVE EA to CCR
MOVE SR to EA
ORito CCR

Logical AND to Condition Codes
Logical EOR to Condition Codes
Load New Condition Codes
Store Status Register

Logical OR to Condition Codes

Power ed by | Cniner.

MPU00-22

M 9097249 0047443 4lb BN

com El ectronic-Library Service CopyRi ght

2003

TOSHIBA TMP68HCO00

4. SIGNAL AND BUS OPERATION DESCRIPTION

This section contains a brief description of the input and output signals. A discussion
of bus operation during the various machine cycles and operations is also given.

Note : The terms “assertion” and “negation” will be used extensively. This is done to
avoid confusion when dealing with a mixture of “active-low” and “active-high”
signals. The term assert or assertion is used to indicate that a signal is active
or true, independent of whether that level is represented by a high or low

voltage. The term negate or negation is used to indicate that a signal is
inactive or false.

4.1 SIGNAL DESCRIPTION

The input and output signals can be functionally organized into the groups and the
pin assignments is shown in Figure 4.1. The following paragraphs provide a brief
description of the signals and a reference (if applicable) to other paragraphs that contain
more detail about the function being performed.

(6§ Pin PGA) (64 Pin DIP, 64 Pin SDIP)

KO CHOHONONONONS) D4 C| 1e 64 DS
N.C. FC2 FCO Al A3 A4 A6 A7 AJ NC D3 2 63 D6

J O O OO D253 62 D7
BERRIPLO FC1 N.C. A2 A5 A8 AT0 A1l Al4 01 g 61 D8

H D0 s 60 D9
CE> PL2 W’CL)T A1O3 Al2 A1OG AS e 59 —ID10

G O O Ubs 7 58 D11
VMA VPA A15 Al7 s s 57 D12

F RAW T 9 56 D13
HALT RESET A18 A19 DTACK T 10 55 D14

el O O O BG 11 54 D15
CLK GND VCC A20 BGACK {12 53 EIGND

D O O BRCH13 52 DAz
BR VCC s GND A21 Vee T 14 51 a2

C Q %/]\'N OO0 0O Kk 15 50 = A2
BGACK BG,-R/W Di3 A23 A22 GND 16 49 [vcc
Bl OO0 000000 HALT 17 a8 [A20
oTack [LBS UDS D0 D3 D6 D9 DIl D14 D15 RESET L 18 47 |3 A19
A O O (5@ O VMA £ 19 46 [T Aa18
N.C.[AS Dt D2 D4 D5 D7 DB Di0 Di2)/ EEZU 45 gAW
VPA 21 44 A16

t 2 3 a4 5 3 7 8 9 10 EERR:ZZ 43 :A15
(BOTTOM VIEW) PL2 T 23 42 a1

PLT 24 41 3A13

PO] 25 40 3 A2

FC2 T 26 39 FAan

FC1 T 27 38 F3JA10

FCO] 28 37 A9

A1 329 36 A8

A2 530 35 A7

A3 31 34 EAG

A4 32 33 A5

(TOP VIEW)

Figure4.1 Inputand Output Signals Pin Assingments (1/2)

MPUO00-23

B 9097249 0047444 352 EE

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

(64 pin QFP)
R or-nNmst
\Dlglmo-—cvmqmwr\wm —————
|2 C@aYaWaFaYaNaYaYalaYaJaNaNayaya)
&
BTACK ==5,”" == o1s
BG 1= GND
-B-G,&_CYI:I:E T A23
BR =T A22
vVCe 3 T A29
GNDE:C :I::AZO
HALT = F—T= A19
RESET ——1 F—— A18
VMA T A7
E T FrT— A16
Wﬁ:rts&) F—r— A15
BERR 113 20| FT3 A14
. 19
EEESE8<R23982333533
(TOP VIEW)
(68 pin PLCC) * Under Development
;ggkoaooooooooooo
i 8 8 e O s 08 s O O s e O 8 e o Y e W o o e
168
DTACKEiO ND13
BG nDi14
BGACK [D15
BR [0 GND
vee [[GND
c g 0 A23
GND § 0 A22
GND 0 A21
N.C. O 1 Vee
HALT { 0 A20
RESET (] 0 A19
VWA [b A18
E(DAI7
VPA (] D A16
BERR b A1S
1PL2 0A14
TPLT 026 440 A13
27 43

R M [U0)y e 0 e e)
O N— O CTANMENON OO N
UV OY -
n‘u_u_u.z(<<(<(<<(<(<(<(<(<<

(TOP VIEW)

4.1 Inputand Output Signals Pin Assignments (2/2)

MPU00-24
B 9097249 0047445 299 I

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

4.1.1 Address Bus (A1~A23)

This 23-bit, unidirectional, three-state bus is capable of addressing 8 megawords of
data. It provides the address for bus operation during all cycles except interrupt cycles.
During interrupt cycles, address lines Al, A2, and A3 provide information about what
level interrupt is being serviced while address lines Ad ~ A23 are all set to a logic high.

4.1.2 Data Bus (D0~D15)

This 16-bit, bidirectional, three-state bus is the general purpose data path. It can
transfer and accept data in either word or byte length. During an interrput
acknowledge cycle, the external device supplies the vector number on data lines DO~D7.

4.1.3 Asynchronous Bus Control

Asynchronous data transfers are handled using the following control signals; address
strobe, read/write, upper and lower data strobes, and data transfer acknowledge. These
signals are explained in the following paragraphs.

4.1.3.1 Address Strobe (AS)

This signal indicates that there is a valid address on the address bus.

4.1.3.2 Read/Write (R/W)

This signal defines the data bus transfer as a read or write cycle. The R/W signal also
works in conjunction with the data strobes as explained in the following paragraph.

4.1.3.3 Upper and Lower Data Storobe (UDS, LDS)

These signals control the flow of data on the data bus, as shown in Table 4.1. When
the R/W line is high, the processor will read from the data bus as indicated. When the
R/W line is low, the processor will write to the data bus as shown.

MPU00-25
B 9097249 004744b leo5 HE

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA

Table 4.1 Data Strobe Control of Data Bus

UDS [RW D8~D15 D0~D7

High High - No Valid Data No Valid Data

Low Low High Valid Data Bits Valid Data Bits
8~15 0~7

High Low High No Valid Data Valid Data Bits

0~7

Low High High Valid Data Bits No Valid Data
8~15

Low Low Low Valid Data Bits Valid Data Bits
8~15 0~7

High Low Low Valid Data Bits Valid Data Bits
0~7x 0~7

Low High Low Valid Data Bits Valid Data Bits
8~15 8~15=*

TMP68HCO000

* : These conditions are result of current implementation and may not appear
on future devices.

4.1.3.4 Data Transfer Acknowledge (DTACK)

This input indicates that the data transfer is completed. When the processor
recognizes DTACK during a read cycle, data is latched and the bus cycle terminated.
When DTACK is recognized during a write cycle, the bus cycle is terminated. (Refer to
“4 4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION”) .

4.1.4 Bus Arbitration Control

The three signals, bus request, bus grant, and bus grant acknowledge, form a bus
arbitration circuit to determine which device will be bus master device.

4.1.4.1 Bus Request (BR)

This input is wire ORed with all other devices that could be bus masters. This input
indicates to the processor that some other device desires to become the bus master.

4.1.4.2 Bus Grant (BG)

This output indicates to all other potential bus master devices that the processor will
release bus control at the end of the current bus cycle.

4.1.4.3 Bus Grant Acknowledge (BGACK)

This input indicates that some other device has become the bus master.
This signal should not be asserted until the following four conditions are met:

1. abus grant has been received
9. address strobe is inactive which indicates that the microprocessor is not using the bus

MPU00-26
B 9097249 004?447 Obl HE

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

3. data transfer acknowledge is inactive which indicates that neither memory nor
peripherals are using the bus

4. bus grant acknowledge is inactive which indicates that no other device is still
claiming bus mastership

4.1.5 Interrupt Control (IPLO, IPLI, TPL?)

These input pins indicate the encoded priority level of the device requesting an
interrupt. Level seven is the highest priority while level zero indicates that no
interrupts are requested. Level seven cannot be masked. The least significant bit is
given in IPLO and the most significant bit is contained in TPLY. These lines must remain
stable until the processor signals interrupt acknowledge (FCO~FC2 are all high) to
insure that the interrupt is recognized.

4.1.6 System Control

The system control inputs are used to either reset or halt the processor and to indicate
to the processor that bus errors have occurred. The three system control inputs are
explained in the following paragraphs.

4.1.6.1 BusError (BERR)

This input informs the processor that these is a problem with the cycle currently
being executed. Problems may be a result of:

1. nonresponding devices

2. interrupt vector number acquisition failure

3. illegal access request as determined by a memory management unit
4. other application dependent errors

The bus error signal interacts with the halt signal to determine if the current bus
cycle should be reexecuted or if exception processing should be performed.

Refer to “4.2.4 Bus Error and Halt Operation” for additional information about the
interaction of the bus error and halt signals.

4.1.6.2 Reset (RESET)

This bidirectional signal line acts to reset (start a system initialization sequence) the
processor in response to an external reset signal. An internally generated reset (result
of a RESET instruction) causes all external devices to be reset and the internal state of
the processor is not affected. A total system reset (processor and external devices) is the
result of external HALT and RESET signals applied at the same time. Refer to “4.,2.5
Reset Operation” for further information.

4.1.6.3 Halt (HALT)

When this bidirectional line is driven by an external device, it will cause the
processor to stop at the completion of the current bus eycle. When the procesor has been

MPUO00-27
B 9097249 004?448 TTa mE

Power ed by | Cnminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

halted using this input, all control signals are inactive and all three-state lines are put
in their high-impedance state (refer to Table 4.3) . Refer to “4.2.4 Bus Error and Halt
Operation” for additional information about the interaction between the HALT and bus
error signals.

When the processor has stopped executing instructions, such as in a double bus fault
condition (refer to “4.2.4.4 Double Bus Faults”) , the HALT line is driven by the
processor to indicate to external devices that the processor has stopped.

4.1.7 6800 Peripheral Control

These control signals are used to allow the interfacing of synchronous 6800
peripheral devices with the asynchronous TMP68HC000. These signals are explained in
the following paragraphs.

4.1.7.1 Enable (E)

This signal is the standard enable signal common to all 6800 type peripheral devices.
The period for this output is ten TMP68HCO000 clock periods (six clocks low, four clocks
high) . Enable is generated by an internal ring counter which may come up in any state
(i.e., at power on, it is impossible to guarantee phase relationship of E to CLK) . Eisa
free-running clock and runs regardless of the state of the bus on the MPU.

4.1.7.2 Valid Peripheral Address (VPA)

This input indicates that the device or region addressed is an 6800 Family device and
that data transfer should be synchronized with the enable (E) signal. This input also
indicates that the processor should use automatic vectoring for an interrupt. Refer to
«“SECTION 6 INTERFACE WITH 6800 PERIPHERALS”.

4.1.7.3 Valid Memory Address (VMA)

This output is used to indicate to 6800 peripheral devices that these is a valid address
on the address bus and the processor is synchronized to enable. This signal only
responds to a valid peripheral address (VPA) input which indicates that the peripheral
is an 6800 Family device.

MPU00-28
Bl 9097249 0047449 934 WA

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

4.1.8 Processor Status (FCO, FC1, FC2)

These function code outputs indicate the state (user or supervisor) and the cycle type
currently being executed, as shown in Table 4.9. The information indicated by the
function code outputsis valid whenever address strobe (AS) is active.

Table 4.2 Function Code Outputs

FC2 FC1 FCO Cycle Type
Low Low Low (Undefined, Reserved)
Low Low High [UserData

Low High Low [UserProgram

Low High High |(Undefined, Reserved)
High Low Low [(Undefined, Reserved)
High Low High |Supervisor Data

High High Low [Supervisor Program
High High High |Interrupt Acknowledge

4.1.9 Clock (CLK)

The clock input is a TTL-compatible signal that is internally buffered for
development of the internal clocks needed by the processor. The clock input should not
be gated off any time and the clock signal must conform to minimum and maximum
pulse width times.

MPU00-29
B 9097249 0047450 L5L EM

Power ed by | Cnminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HC000

4.1.10 Signal Summary

Table 4.3 is a summary of all the signals discussed in the previous paragraphs.

Table 4.3 Signal Summary

Hi-Z
Signal Name Mnemonic Input/OQutput AS‘t::‘:I: 3 State on HATT —OL
BGACK
Address Bus A1~A23 Output High Yes Yes Yes
Data Bus DO~D15 Input/Output High Yes Yes Yes
Address Strove AS Output Low Yes No Yes
Read / Write R/W Output S:Zl'ii::, Yes No Yes
gzs:::ggel‘sower DS, DS Output Low Yes No Yes
2‘:&‘;‘\;’,3':?;; STACK Input Low No No No
Bus Request BR Input Low No No No
Bus Grant BG Output Low No No No
Bus Grant Acknowledge |BGACK Input Low No No No
Interrupt Priority Level |TPLO, TPLT, IPL2 Input Low No No No
Bus Error BERR Input Low No No No
Reset RESET Input/Qutput Low Yes No't No?
Halt HALT Input/ Output Low Yes No? No'1
Enable E Output High No No No
Valid Memory Address | VMA Output Low Yes No Yes
valid Peripheral Address |VPA Input Low No No No
Function Code Output FCO, FC1, FC2 Output High Yes No Yes
Clock CLK Input High No No No
Power Input Vee Input - - - -
Ground GND Input - - — -
Note:
1. Opendrain
MPUO0O0-30

B 9097249 00u?u51 592 IR

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

4.2 BUS OPERATION

The following paragraphs explain control signal and bus operation during data
transfer operations, bus arbitration, bus error and halt conditions, and reset operation.

4.2.1 Data Transfer Operations

Transfer of data between devices involves the following leads:

1. address bus A1~A23
2. data bus DO~D15
3. control signals

The address and data buses are separate parallel buses used to transfer data using an
asynchronous bus structure. In all cycles, the bus master assumes responsibility for
deskewing all signals it issues at both the start and end of a cycle. In addition, the bus
master is responsible for deskewing the acknowledge and data signals from the slave
device.

The following paragraphs explain the read, write, and read-modify-write cycles. The
indivisible read-modify-write cycle is the method used by the TMP68HCO000 for
interlocked multiprocessor communications.

4.2.1.1 Read Cycle

During a read cycle, the processor receives data from the memory or a peripheral
device. The processor reads bytes of data in all cases. If the instruction specifies a word
(or double word) operation, the processor reads both upper and lower both
simultaneously by asserting both upper and lower data strobes. When the instruction
specifies byte operation, the processor uses an internal A0 bit to determine which byte to
read and then issues the data strobe required for that byte. For byte operations, when
the A0 bit equals zero, the upper data strobe is issued. When the AQ bit equals one, the
lower data strobe is issued. When the data is received, the processor correctly positions
it internally.

A word read cycle flowchart is given in Figure 4.2. A byte read cycle flowchart is
given in Figure 4.3. Read cycle timing is given in Figure 4.4. Figure 4.5 details word
and byte read cycle operations.

MPU00-31

B 9097249 OU4?452 429 MR

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

BUS MASTER SLAVE

Address the Device

1) SetR/W to Read

2) Place Function Code on FCO~FC2

3) Place Address on A1~A23

4) Assert Address Strove (AS)

5) Assert Upper Data Strobe (UDS)
and Lower Data Strobe (LDS)

Input the Data

1) Decode Address

2) Place Data on DO~D15

3) Assert Data Transfer Acknowledge
(DTACK)

Acquire the Data

1) Latch Data
2) Negate UDS and (DS
3) Negate AS

Terminate the Cycle

1) Remove Data from DO~D15
2) Negate DTACK

Start Next Cycle

Figure 4.2 Word Read Cycle Flowchart

MPU00-32
H 9097249 0047453 365 WA

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

BUS MASTER SLAVE

Address the Device

1) SetR/W to Read
2) Place Function Code on FCO~FC2
3) Place Address on A1~A23
4) Assert Address Strove (AS)
5) Assert Upper Data Strove (UDS) or
Lower Data Strobe (IDS)
(based on AQ) Input the Data

1) Decode Address

2) Place Data on DO~D7 or D8~D15
(based on UDS or LDS)

Assert Data Transfer Acknowledge
(DTACK)

3

=

Acquire the Data

1) tatch Data
2) Negate UDS or LDS
3) Negate AS

Terminate the Cycle

1) Remove Data from DO~D7 or
D8~D15

2) Negate DTACK

Start Next Cycle

Figure 4.3 Byte Read Cycle Flowchart

MPU00-33
BN 3097249 0047454 2T1 WA

Power ed by | Cnminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

50152 S3 54 55 S6 S7 SO 5152 53 545556 S7 S0 S152 53 S4 W W W W S5 56 57
CLK

Feo~Fc2 __X_ — X — X
A1~p23 __ D= > —__

', Read } Write { Slow Read —-———>|

Figure 4.4 Read and Write Cycle Timing Diagram

MPUO00-34
BE 9097249 0047455 138 HRM

Power ed by | Cnminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

SO 51 S2 53 54 S5 56 S7 SO S1 S2 $3 54 S5 S6 57 SO S1 S2 53 S4 S5 §6 S7

CLK
FCO~FC2 x X X - —_
A1~a23) —~C . —
AO* | =

D0~D7 ———— i S — —)

* tinternal Signal Only

l‘—- Word Read —>I<— Odd Byte Read —>|(— EvenByte Read —»

Figure 4.5 Word and Byte Read Cycle Timing Diagram

MPU00-35
B 9097249 0047456 074

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

4.2.1.2 Write Cycle

During a write cycle, the processor sends data to either the memory or a peripheral
device. The processor writes bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the instruction specifies a byte
operation, the processor uses an internal A0 bit to determine which byte to write and
then issues the data strobe required for that byte. For byte operations, when the A0 bit
equals zero, the upper data strobe is issued. When the A0 bit equals one, the lower data
strobe is issued. A word write flowchart is given in Figure 4.6. A byte write cycle

~ flowchart is given in Figure 4.7. Write cycle timing is given in Figure 4.4. Figure 4.8
details word and byte write cycle operation.

BUS MASTER SLAVE

Address the Device

1) Place Function Code on FCO~FC2

2} Place Addresson A1~A23

3) Assert Address Strobe (AS)

4) Set R/W to Write

5) Place Data on DO~D15

6) Assert Upper Data Strobe (UDS) Input the Data
and Lower Data Strobe (LDS)

1) Decode Address

2) Store Data on DO~D15

Terminate Output Transfer 3) Assert Data Transfer Acknowledge
(DTACK)

1) Negate UDS and LDS

2) Negate AS

3) Remove Data from DO~D15
4) SetR/Wto Read Terminate the Cycle’

1) Negate DTACK

Start Next Cycle

Figure 4.6 Word Write Cycle Flowchart

MPUO00-36
BN 9097249 0047457 TOO WA

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

BUS MASTER SLAVE

Address the Device

1) Place Function Code on FCO~EC2

2) Place Address on A1~A23

3) Assert Address Strobe (AS)

4) SetR/Wto Write

5) Place Data on DO~D7 or D8~D15
(according to AQ)

6) Assert Upper Data Strobe (UDS) or
Lower Data Strobe (LDS) ﬁ,r Input the Data
(based on AQ)
L 1) Decode Address
' 2) Strove Data on DO~D7ifLDS is
Asserted
Strove Data on D8~D15 if UDS is
Terminate Output Transfer Asserted
— — 3) Assert Data Transfer Acknowledge
1) Negate UDS and (D5 (DTACK)
2) Negate AS
3) Remove Data from DO~D7 or
D8~D15
4) SetR/Wto Read —_— Terminate the Cycle
1) Negate DTACK
Start Next Cycle

Figure 4.7 Byte Write Cycle Flowchart

MPU00-37
M 9097249 0047458 947 EE

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HCO000

50 S1 $2 S3 54 S5 S6 57 SO S1 52 S3 5S4 55 $6 S7 SO S1 S2 S3 S4 S5 56 S7

CLK

Fo~Fc2 _ K

ar~a2z

X
-

>
[al
A

oT
D8~D15 > S —
DO~D7 — —)———(:‘—:)_

* :Iinternal Signa! Only

|<——— Word Write ——>l<—— Odd Byte Write ——> |<— Even Byte Write —>‘

Figure 4.8 Word and Byte Write Cycle Timing Diagram
4.2.1.3 Read-Modify-Write Cycle

The read-modify-write cycle performs a read, modifies the data in the arithmetic-logic
unit, and writes the data back to the same address. In the TMP68HC000, this cycle is
indivisible in that the address strobe is asserted throughout the entire cycle. The test
and set (TAS) instruction uses this cycle to provide meaningful communication between
processors in a multiple processor environment. This instruction is the only instruction
that uses the read-modify-write cycles and since the test and set instruction only
operates on bytes, all read-modify-write cycles are byte operations. A read-modify-write

flowchart is given in Figure 4.9 and a timing diagram is given in Figure 4.10.

MPU00-38
B 9097249 0047459 443 WE

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HC000

BUS MASTER

Address the Device

1)
2)
3)
4)
5)

SetR /W to Read

Place Function Code on FCO~FC2
Place Address on A1~A23

Assert Address Strobe (AS)

Assert Upper Data Strobe (UDS) or
Lower Data Strobe (LD5)

SLAVE

Input the Data

Acquire the Data

1)
2)
3)

Latch Data
Negate UDS or LDS
Start Data Modification

]
2
3

)
)
)

Decode Address

Place Data on DO~D7 or D8~D15
Assert Data Transfer Acknowledge
(DTACK)

Terminate the Cycle

Start Qutput Transfer

1)
2)
3)

SetR/W to Write

Place Data on DO~D7 or D8~D15
Assert Upper Data Strobe (UDS) or
Lower Data Strobe (LDS)

_

2

=

)

Remaove Data from DO~D7 or
D8~D15
Negate DTACK

Input the Data

Terminate Output Transfer

1
2)
3)

4

=

Negate UDS or LDS

Negate AS

Remove Data from DO~D7 or
D8~D15

SetR/W to Read

1

)

2)

Store Data on DO~D7 or D8~D15
Assert Data Transfer Acknowledge
(DTACK)

Terminate the Cycle

Start Next Cycle

1

-

Negate DTACK

Figure 4.9 Read-Modify-Write Cycle Flowchart

M 9097249 004?4L0 S5TS MW

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

50 S1 52 S3 S4 S5 SB 57 $8 S9 510 511512513 $14 515 S16 S17 $18 519
CLK

Fco~Fc2 _X X
A1~A23 Ty (T Y (—

UDS or LDS \ / \ /
RAN \ _/
DTACK \eoo -/ ____/___
A ———
or
D8~D15

| Indivisible Cycle I

Figure 4.10 Read-Modify-Write Cycle Timing Diagram
4.2.2 Bus Arbitration

Bus arbitration is technique used by master-type devices to request, be granted, and
acknowledge bus mastership. In its simplest form, it consists of the following:

1. asserting a bus mastership request
9. receiving a grant that the bus is available at the end of the current cycle
3. acknowledging that mastership has been assumed

Figure 4.11 is a flowchart showing the detail involved in a request from a single
device. Figure 4.12 is a timing diagram for the same operation. This technique allows
processing of bus requests during data transfer cycles. The timing diagram shows that
the bus request is negated at the time that an acknowledge is asserted. This type of
operation would be true for a system consisting of the processor and one device capable of
bus mastership. In systems having a number of devices capable of the busmastership,
the bus request line from each device is wire ORed to the processor. In this system, it is
easy to see that there could be more than one bus request being made. The timing
diagram shows that the bus grant signal is negated a few clock cycles after the
transition of the acknowledge (BGACK) signal.

MPUO0O0-40
Bl 9097249 004?461 431 WN

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

PROCESSOR REQUESTING DEVICE

Request the Bus

1) Assert Bus Request (BR)
Grant Bus Arbitration

1) Assert Bus Grant (BG)

Acknowledge bus Mastership

1) External Arbitration Determines

Next Bus Master

Next Bus Master Waits for Current

Cycle to Complete

3) Next Bus Master Asserts Bus Grant
Acknoledge (BGACK) to Become
New Master

Terminate Arbitration < 14) Bus Master Negates BR

2

~

1) Negate BG (and Wait for BGACK to
be Negated)

Operate as Bus Master

1) Perform Data Transfers (Read and
Write Cycles) According to the

Same Rules the Processor Uses
R

Release Bus Mastership

—_
=

Negate BGACK

Re-Arbitrate or Resume
Processor Operation

Figure 4.11 Bus Arbitration Cycle Flowchart

MPUO00-41
B 9097249 004?4kL2 378 WA

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

FCO~FC2 D—m
Aat~a23 K r—4 D e G, { — X

- —/ 7
R/IW
BTACK _/ _/ /S _/
00~b1s —<__y——-___ > —(

seack N0/ \

Processor ——>I~<— DMA Device ——>|<——_ Processor ‘—>I4—‘— DMA Device —

Figure 4.12 Bus Arbitration Cycle Timing Diagram

4.2.2.1 Requesting the Bus

External devices capable of becoming bus masters request the bus by asserting the
bus request (BR) signal. This is a wire-ORed signal (although it need not be constructed
from open-collector devices) that indicates to the processor that some external device
requires control of the external bus. The processor is effectively at a lower bus priority
level than the external device and will relinquish the bus after it has completed the last
bus cycle it has started.)

When no acknowledge is received before the bus request signal goes inactive, the
processor will continue processing when it detects that the bus request is inactive. This
allows ordinary processing to continue if the arbitration circuitry responded to noise
inadvertently.

MPU00-42
BN 9097249 004?ukL3 204 HE

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

4.2.2.2 Receiving the Bus Grant

The processor asserts bus grant (BG) as soon as possible. Normally this is
immediately after internal synchronization. The only exception to this occurs when the
processor has made an internal decision to execute the next bus cycle but has not
progressed far enough into the cycle to have asserted the address strobe (AS) signal. In
this case, bus grant will be delayed until AS is asserted to indicate to external devices
that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-chained network or through a
specific priority-encoded network. The processor is not affected by the external method
of arbitration as long as the protcol is obeyed.

4.2.2.3 Acknowledgement of Mastership

Upon receiving a bus grant, the requesting device waits until address strobe, data
transfer acknowlegde, and bus grant acknowledge are negated before issuing its own
BGACK. The negation of the address strobe indicates that the previous master has
completed its cycle; the negation of bus grant acknowledge indicates that the previous
master has released the bus. (While address strobe is asserted, no device is allowed to
“break into” a cycle.) The negation of data transfer acknowledge indicates the previous
slave has terminated its connection to the previous master. Note that in some
applications data transfer acknowledge might not enter into this function. General
purpose devices would then be connected such that they were only dependent on address
strobe. When bus grant acknowledge is issued, the device is a bus master until it negates
bus grant acknowledge. Bus grant acknowledge should not be negated until after the
bus cycle(s) is (are) completed. Bus mastership is terminated at the negation of bus
grant acknowledge.

The bus request from the granted device should be dropped after bus grant
acknowledge is asserted. If a bus request is still pending, another bus grant will be
asserted within a few clocks of the negation of the bus grant. Refer to “4.2.3 Bus
Arbitration Control”. Note that the processor does not perform any external bus cycles
before it re-asserts bus grant.

4.2.3 Bus Arbitration Control

The bus arbitration control unit in the TMP68HC000 is implemented with a finite
state machine. A state diagram of this machine is shown in Figure 4.13. All
asynchronous signals to the TMP68HC000 are synchronized before being used
internally. This synchronization is accomplished in a maximum of one cycle of the
system clock, assuming that the asynchronous input setup time (#47) has been met (see

Figure 4.14) . The input signal is sampled on the falling edge of the clock and is valid
internally after the next falling edge.

MPU00-43
B 3097249 00474bLY 140 mm

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

RAM XA"D R

RA

Bus Request Internal

Bus Grant Acknoledge Internal

= Bus Grant

= Three-State Control to Bus Control Logic2)
= Don’t Care

X 460> =

Notes:

1) State machine will not change if the bus is S0 or S1. Refer to “4.2.3 Bus Arbitration Control”.
2) The address bus will be placed in the high-impedance state if T is asserted and ASis negated.

Figure 4.13 TMP68HCO000 Bus Arbitration Unit State Diagram

MPUOQO0-44
B §097249 004?ubL5 D87 IN

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

Internal Signal Valid
External Signal Sampled —l
|

CLK ——I

BR (External)

BR (Internai) —

Figure 4.14 Timing Relationship of External Asynchronous Inputs to Internal Signals

As shown in Figure 4.13, input signals labeled R and A are internally synchronized
on the bus request and bus grant acknowledge pins respectively. The bus grant output is
labeled G and the internal three-state control signal T. If T is true, the address, data,
and control buses are placed in a high-impedance state when AS is negated. All signals
are shown in positive logic (active high) regardless of their true active voltage level.
State changes (valid outputs) occur on the next rising edge after the internal signal is
valid.

A timing diagram of the bus arbitration sequence during a processor bus cycle is
shown in Figure 4.15. The bus arbitration sequence while the bus is inactive (i.e.,
executing internal operations such as a multiply instruction) is shown in Figure 4.16.

If a bus request is made at a time when the MPU has already begun a bus cycle but
AS has not been asserted (bus state S0) , BG will not be asserted on the next rising edge.
Instead, BG will be delayed until the second rising edge following its internal assertion.
This sequence is shown in Figure 4.17.

MPU00-45
B 9097249 00474k T13 MW

Power ed by | Cnminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

BGACK Negated
BG Asserted

BGACK Sampled
BR Valid Internal BGACK Negated Internal
BR Sampled Bus Three Stated Bus Released from Three
BB State and Processor Starts
BR Asserted ——1 Next Bus Cycle

CLK

SO S1 52 S3 S4 S5 56 S7 S0 S1 S2 S3 S4 S5 56 57 SO 51

BR \ /

BG _____—/7

BGACK ______/

—
FCO~FC2 X) {

ey —) — — C

%
|

3
|

oAk ~— / ___ /

DO~D15 — Neeeeee——

Processor [Alternate Bus Master] Processor

Figure 4.15 Bus Arbitration Timing Diagram — Processor Active

MPU00-46
B 9097249 00474L? 957 I

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

— BGACK N
BG Asserted and Bus GACK Negated

Three Stated

B8R Valid Internal Bus Released from Three
— State and Processor Starts
BR Sampled

ﬁ Next Bus Cycle
EﬁAsserted \l l
SO St 52 S354 S5 $6 S7

SO $152 53 54
BR \ /

:

g
[

DTACK N/ \
po~p15s ———————____—

Bus Inactive | Processor

~—— Processor ——»I Alternate Bus Master ———»l

Figure 4.16 Bus Arbitration Timing Diagram ~ Bus Inactive

MPU00-47
B 9097249 00474L8 89L EE

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA ~ TMP68HCO000

Bus Three Stated
BG Asserted
BR Vaiid Internal
BR Sampled
BR Asserted

BGACK Negated Internal

BEACK Bus Release from Three State
BGACK sampled l— and Processor Starts Next Bus

BGACK Negated 1 Cyde

CLK

50 S2 s4 S6 S0 52 54 S6 S0

FCO~FC2 X) { X

Al~A23) — (<

—— —
DO~D15 e/) W
-— Processor ——->|<— Alternate Bus Master ——>|<—— Processor ——>

Figure 4.17 Bus Arbitration Timing Diagram — Special Case

MPU00-48
B 5097249 0047469 722 M

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

4.2.4 Bus Error and Halt Operation

In a bus architecture that requires a handshake from an external device, the
possibility exists that the handshake might not occur. Since different systems will
require a different maximum response time, a bus error input is provided. External
circuitry must be used to determine the duration between address strobe and data
transfer acknowledge before issuing a bus error signal. When a bus error signal is
received, the processor has two options: initiate a bus error exception sequence or try
running the bus cycle again.

4.2.4.1 Bus Error Operation

When the bus error signal is asserted, the current bus cycle is terminated. If BERR is
asserted before the falling edge of S2, AS will be negated in S7 in either a read or write
cycle. Aslong as BERR remains asserted, the data and address buses will be in the high-
impedence state. When BERR is negated, the processor will begin stacking for exception
processing. Figure 4.18 is a timing diagram for the exception sequence. The sequence is
composed of the following elements:

1. stacking the program counter and status register
2. stacking the error information

3. reading the bus error vector table entry

4. executing the bus error handler routine

The stacking of the program counter and status register is the same-as if an interrupt
had occurred. Several additional items are stacked when a bus error occurs. These
items are used to determine the nature of the error and correct it, if possible. The bus
error vector is vector number two located at address $000008. The processor loads the
new program counter from this location. A software bus error handler routine is then
executed by the processor. Refer to “5.2 EXCEPTION PROCESSING” for additional
information.

MPUQO-49
BN 9097249 0047470 Yuy m

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

FCO~FC2 __—X
ar-azs

msmws |\ _/ N \
R/ TN
DTACK N _
po~p15 —) N —
BERR \ Vah
—

initiate Bus

Initiate Read Error Stacking

HALT=HIGH |<——|= ResponseFailure > | «—— BusError Detection l

Figure 4.18 Bus Error Timing Diagram
4.2.4.2 Re-Run Operation

When, during a bus cycle, the processor receives a bus error signal and the halt pin is
being driven by an external device, the processor enters the re-run sequence. Figure
4.19is a timing diagram for re-running the bus cycle. ‘

The processor terminates the bus cycle, then puts the address and data output lines in
the high-impedence state. The processor remains “halted”, and will not run another bus
cycle until the halt signal is removed by external logic. Then the processor will re-run
the previous cycle using the same function codes, the same data (for a write operation) ,
and the same controls. The bus error signal should be removed at Jeast one clock cycle
before the halt signal is removed.

Note: The processor will not re-run a read-modify-write cycle. This restriction is
made to guarantee that the entire cycle runs correctly and that the write
operation of a test-and-set operation is performed without ever releasing AS.
If BERR and HALT are asserted during a read-modify-write bus cycle, a bus
error operation results.

MPU00-50
B 9097249 0047471 380 WE

Power ed by | Cnminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

= 1 Clock Period ’
AALT \ Vi

| Read " Halt k)l*— Re-Run ~——»

Figure 4.19 Re-Run Bus Cycle Timing Diagram
4.2.4.3 Halt Operation

The halt input signal to the TMP68HC000 performs a halt/run/single-step function in
a similar fashion to the 6800 halt function. The halt and run modes are somewhat self
explanatory in that when the halt signal is constantly active the processor “halts” (does
nothing) and when the halt signal is constantly inactive the processer “runs” (does
something) .

This single-step mode is derived from correctly timed transitions on the halt signal
input. It forces the processor to execute a single bus cycle by entering the run mode until
the processor starts a bus cycle then changing to the halt mode. Thus, the single-step
mode allows the user to proceed through (and therefore debug) processor operations one
bus cycle at a time.

Figure 4.20 details the timing required for correct single-step operations. Some care
must be exercised to avoid harmful interactions between the bus error signal and the
halt pin when using the single-cycle mode as a debugging tool. This is also true of
interactions between the halt and reset lines since these can reset the machine.

MPU00-51
BN 9097249 0047472 217 mm

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

Feo~Fc2 _X__ X_
a1~a23 D {__ <

R/W
stack | M~/ __ /
bo~p1s —________ —— »—
et \ A

l ~«——— Read { Halt | Read 1

Figure 4.20 Halt Processor Timing Diagram

When the processor completes a bus cycle after recognizing that the halt signal is
active, most three-state signals are put in the high-impedence state, these include:

1. address line

2. data lines

This is required for correct performance of the re-run bus cycle operation.

While the processor is honoring the halt request, bus arbitration performs as usual.
That is, halting has no effect on bus arbitration. It is the bus arbitration function that
removes the control signals from the bus.

The halt function and the hardware trace capability allow the hardware debugger to
trace single bus cycles or single instructions at a time. These processor capabilities,
along with a software debugging package, give total debugging flexibility.

4.2.4.4 Double Bus Faults

When a bus error exception occurs, the processor will attempt to stack several words
containing information about the state of the machine. If a bus error exception occurs
during the stacking operation, there have been two bus error in a row. Thisis commonly
referred to as a double bus fault. When a double bus fault occurs, the processor will halt.
Once a bus error exception has occurred, any bus error exception occurring before the
execution of the next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a bus error exception and
dose not contribute to a double bus fault. Note also that this means that as long as the
external hardware requests it, the processor will continue to re-run the same bus cycle.

MPUO00-52
B 9097249 0047473 153 M

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

The bus error pin also has an effect on processor operation after the processor receives
an external reset input. The processor reads the vector table after a reset to determine
the address to start program execution. If a bus error occurs while reading the vector
table (or at any time before the first instruction is executed) , the processor reacts as if a
double bus fault has occurred and it halts. Only an external reset will start a halted
processor.

4.2.5 Reset Operation

The reset signal is a bidirectional signal that allows either the processor or an
external signal to reset the system. Figure 4.21 is a timing diagram for the reset
operation. Both the halt and reset lines must be asserted to ensure total reset of the
processor.

When the reset and halt lines are driven by an external device, it is recognized as an
entire system reset, including the processor. The processor responds by reading the
reset vector table entry (vector number zero, address $000000) and loads it into the
supervisor stack pointer (S8SP). Vector table entry number one at address $000004 is
read next and loaded into the program counter. The processor initializes the status
register to an interrupt level of seven. No other registers are affected by the reset
sequence.

When a reset instruction is executed, the processor drives the reset pin for 124 clock
periods. In this case, the processor is trying to reset the rest of the system. Therefore,
there is no effect on the internal state of the processor. All of the processor’s internal
registers and the status register are unaffected by the execution of a reset instruction.
All external devices connected to the reset line will be reset at the completion of the
reset instruction.

Asserting the reset and halt lines for ten clock cycles will cause a processor reset,
except when Ve is initially applied to the processor. In this case, an external reset must
be applied for at least 100 milliseconds.

MPU00-53
B 9097249 0047474 09T EE

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

Power ed

TOSHIBA TMP68HCO000

cu JUULULAMMARAMULLUUAR AR AR
+5Volts ====———=
Vce / |«——— 1t0 100 ms —>I

RESET |]
HATT] [
|«——>}— t<4Clocks |<—1——>|
1Si 1 i
Bus State Unknown g\l}lﬁzr’l{::dsﬁlﬂggdaés nactive Data 2 3 4 5 6

Notes :
(1) Internal start-up time (4) PC High read in here
(2) SSP High read in here (5) PC Low read in here
(3) SSP Low read in here (6) First instruction fetched here

Figure 4.21 Reset Operation Timing Diagram

4.3 THE RELATIONSHIP OF DTACK, BERR, AND HALT

In order to properly control termination of a bus cycle for a re-run or a bus error
condition, DTACK, BERR, and HALT should be asserted and negated on the rising edge '
of the TMP68HCO000 clock. This will assure that when two signals are asserted
simultaneously, the required setup time (#47) for both of them will be met during the
same bus state. i

This, or some equivalent precaution, should be designed external to the
TMP68HC000. Parameter #48 is intended to ensure this operation in a totally
asynchronous system, and may be ignored if the above conditions are met.

The preferred bus cycle terminations may be summarized as follows (case numbers
refer to Table 4.4) :

Normal Termination : DTACK occurs first (case 1) .

Halt Termination : HALT is asserted at the same time or before DTACK
and BERR remains negated (cases 2 and 3) .

Bus Error Termination : BERR is asserted in lieu of, at the same time, or before
DTACK (case 4) ; BERR is negated at the same time or
after DTACK.

MPUO00-54

B 9097249 0047475 T2bL

by 1 Cm ner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

Re-Run Termination : HALT and BERR are asserted in lieu of, at the same
time, or before DTACK (cases 6 and 7) ; HALT must be
held at least one cycle after BERR. Case 5 indicates
BERR may precede HALT which allows fully asyn-
chronous assertion.

Table 4.4 details the resulting bus cycle termination under various combinations of
control signal sequences. The negation of these same control signals under several
conditions is shown in Table 4.5 (DTACK is assumed to be negated normally in all cases;

for best results, both DTACK and BERR should be negated when address strobe is
negated) .

MPU00-55
B 9097249 004?47?b 9bc I

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

Table 4.4 DTACK, BERR, and HALT Assertion Results

Asserted on Rising
Case No. | control Signal Edge State Result
N+ 2
DTACK A S .
1 BERR NA X :loonr;n:l:ycle terminate and
HALT NA X
DTACK A s Normal cycle terminate and halt.
2 BERR NA X Continue when HALT removed
HALT A S ’
DTACK NA A Normai cycle terminate and halt.
3 ___BERR NA NA Continue when HALT removed
HALT A S ’
DTACK X X .
4 RERR A S tT;rmmate and take bus error
HALT NA NA P-
DTACK NA X
5 BERR A S Terminate and re-run.
HALT NA A
6 g;—;\:K i)S(Terminate and re-run when HALT
AALT A < removed.
DTACK NA X Terminate and re-run when HALT
7 BERR NA A removed
HALT A S :
Legend :
N . the number of the current even bus state (e.g., S4, S6, etc.)
A . signalis asserted in this bus state
NA : signalis not asserted in this state
X : don’tcare
S : signal was asserted in previous state and remains asserted in this state
MPUO00-56

B 9097249 004?477 AT9 HH

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HC000
Table4.5 BERR and HALT Negation Results
. Negated on Rising
Conditions of
OV Control
Termination in Sqn r? Edge of State Results — Next Cycle
Table 4.4 ‘gna
' N N+2
BERR [] or []
Bus Error HALT . or . Takes bus errortrap.
Re-run §E§_ﬁ) or) lllegal sequence; usually traps
HALT ° to vector number 0.
BERR []
Re-run HALT . Re-runs the bus cycle.
BERR []
Normal HALT . or . May lengthen next cycle.
BERR L) If next cycle is started it will be
Normal —_—— .
HALT [or none |terminated asa buserror.
° : Signalisnegated in this bus state.

EXAMPLEA : A system uses a watch-dog timer to terminate
accesses to unpopulated address space. The timer
asserts DTACK and BERR simultaneously after
time out (case 4) .

EXAMPLEB : A system uses error detection on RAM contents.
Designer may

(a)delay DTACK until data verified and return

BERR and HALT simultaneously to re-run error

cycle (case 6) , or if valid, return DTACK (case 1)

(b)ydelay DTACK until data verified and return
BERR at same time as DTACK if data in error
(case 4).

MPU00-57
B 5097249 0047?47?48 735 HE

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

44 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION

4.4.1 Asynchronous Operation

To achieve clock frequency independence at a system level, the TMP68HCO000 can be
used in an asynchronous manner. This entails using only the bus handshake lines (AS,
UDS, LDS, DTACK, BERR, HALT, and VPA) to control the data transfer. Using this
method, AS signals the start of a bus cycle and the data strobes are used as a condition
for valid data on a write cycle. The slave device (memory or peripheral) then responds
by placing the requested data on the data bus for a read cycle or latching data on a write
cycle and asserting the data transfer acknowledge signal (DTACK) to terminate the bus
cycle. If no slave responds or the access is invalid, external control logic asserts the
BERR, or BERR and HALT, signal to abort or rerun the bus cycle.

The DTACK signal is allowed to be asserted before the data from a slave device is
valid on a read cycle. The length of time that DTACK may precede data is given as
parameter #31 and it must be met in any asynchronous system to insure that valid data
is latched into the processor. Notice that there is no maximum time specified from the
assertion of AS to the assertion of DTACK. This is because the MPU will insert wait
cycles of one clock period each until DTACK is recognized.

4.4.2 Synchronous Operation

To allow for those systems which use the system clock as a signal to generate DTACK
and other asynchronous inputs, the asynchronous input setup time is given as
parameter #47. If this setup is met on an input, such as DTACK, the processor is
guaranteed to recognize that signal on the next falling edge of the system clock.
However, the converse is not true - if the input signal does not meet the setup time it is
not guaranteed not to be recognized. In addition, if DTACK is recognized on a falling
edge, valid data will be latched into the processor (on a read cycle) on the next falling
edge provided that the data meets the setup time given as parameter #27. Given this,
parameter #31 may be ignored. Note that if DTACK is asserted, with the required setup
time, before the falling edge of S4, no wait states will be incurred and the bus cycle will
run at its maximum speed of four clock periods.

Note: During an active bue cycle, BERR is sampled on every falling edge of the clock
starting with S2. DTACK is sampled on every falling edge of the clock starting
with S4 and data is latched on the falling edge of S6 during a read. The bus
cycle will then be terminated in S7 except when BERR is asserted in the absence
of DTACK, in which case it will terminate one clock cycle later in S9, VPA
issampled only on the third falling edge of the system clock before the rising
edge of the E clock.

MPUO00-58
B 9097249 0047479 b7l N

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

5. PROCESSING STATES

This section describes the actions of the TMP68HCO000 which are outside the normal
processing associated with the execution of instructions. The functions of the bits in the
supervisor portion of the status register are covered: the supervisor/user bit, the trace
enable bit, and the processor interrupt priority mask. Finally, the sequence of memory
references and actions taken by the processor on exception conditions are detailed.

The TMP68HCO000 is always in one of three processing states: normal, exception, or
halted. The normal processing state is that associated with instruction execution; the
memory references are to fetch instructions and operands, and to store results. A special
case of the normal state is the stopped state which the processor enters when a stop
instruction is executed. In this state, no further references are made.

The exception processing state is associated with interrupts, trap instructions,
tracing, and other exceptional conditions. The exception may be internally generated by
an instruction or by an unusual condition arising during the execution of an instruction.
Externally, exception processing can be forced by an interrupt, by a bus error, or by a
reset. Exception processing is designed to provide an efficient context switch so that the
processor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware failure. For
example, if during the exception processing of a bus error another bus error occurs, the
processor assumes that the system is unusable and halts. Only an external reset can
restart a halted processor. Note that a processor in the stopped state is not in the halted
state, nor vice versa.

5.1 PRIVILEGE STATES
The processor operates in one of two states of privilege: the “supervisor” state or the
“user” state. The privilege state determines which operations are legal, are used to
choose between the supervisor stack pointer and the user stack pointer in instruction

references, and may by used by an external memory management device to control and
translate accesses.

The privilege state is a mechanism for providing security in a computer system.
Programs should access only their own code and data areas, and ought to be restricted
from accessing information which they do not need and must not modify.

The privilege mechanism provides sequrity by allowing most programs to execute in
user state. In this state, the accesses are controlled, and the effects on other parts of the
system are limited. The operating system executes in the supervisor state, has access to
all resources, and performs the overhead tasks for the user state programs.

MPUO00-59
BN 9097249 0047480 393 WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

5.1.1 Supervisor State

The supervisor state is the higher state of privilege. For instruction execution, the
supervisor state is determined by the S bit of the status register; if the S bit is asserted
(high) , the processor is in the supervisor state. All instructions can be executed in the
supervisor state. The bue cycles generated by instructions executed in the supervisor
state are classified as supervisor references. While the processor is in the supervisor
privilege state, those instructions which use either the system stack pointer implicitly or
address register seven explicitly access the supervisor stack pointer.

All exception processing is done in the supervisor state, regardless of the setting of
the S bit. The bus cycles generated during exception processing are classified as
supervisor references. All stacking operations during exception processing use the
supervisor stack pointer.

5.1.2 User State

The user state is the lower state of privilege. For instruction execution, the user state
is determined by the S bit of the status register; if the S bit is negated (low) , the
processor is executing instructions in the user state.

Most instructions execute the same in user state as in the supervisor state. However,
some instructions which have important system effects are made privileged. User
‘programs are not permitted to execute the stop instruction or the reset instruction. To
ensure that a user program cannot enter the supervisor state except in a controlled
manner, the instructions which modify the whole state register are privileged. To aid in
debugging programs which are to be used as operating systems, the move to user stack
pointer (MOVE te USP) and move from user stack pointer (MOVE from USP)
instructions are also privileged. The bus cycles generated by an instruction executed in
the user state are classified as user state references. This allows an external memory
management device to translate the address and to control access to protected portions of
the address space. While the processor is in the user privilege state, those instructions
which use either the system stack pointer implicitly or address register seven explicitly,
access the user stack pointer.

5.1.3 Privilege State Changes

Once the processor is in the user state and executing instructions, only exception
processing can change the privilege state. During exception processing, the current
setting of the S bit of the status register is saved and the S bit is asserted, putting the
processor in the supervisor state. Therefore, when instruction execution resumes at the
address specified to process the exception, the processor is in the supervisor privilege
state.

MPU00-60
B 9097249 0047481 22T W

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

5.1.4 Reference Classification

When the processor makes a reference, it classifies the kind of reference being made,
using the encoding on the three function code output lines. This allows external
translation of addresses, control of access, and differentiation of special processor state,
such as interrput acknowledge. Table 5.1 lists the classification of references.

Table 5.1 Bus Cycle Classification

Function Code
Output
Reference Class
FC2 { FC1 | FCO

L L L (Unassigned)
L L H |UserData
L H L User Program
L H H (Unassigned)
H L L {{Unassigned)
H L H |Supervisor Data
H H L |Supervisor Program
H H H linterrupt Acknowledge

Note : L:LOW H:HIGH

5.2 EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general description of
exception processing is in order. The processing of an exception occurs in four steps,
with variations for different exception causes. During the first step, a temporary copy of
the status register is made and the status register is set for exception processing. In the
second step the exception vector is determined and the third step is the saving of the
current processor context. In the fourth step a new context is obtained and the processor
switches to instruction processing.

5.2.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the address
of a routine which will handle that exception. All exception vectors are two words in
length (Figure 5.1) , except for the reset vector which is four words. All exception vectors
lie in the supervisor data space, except for the reset vector which is in the supervisor
program space. A vector number is an 8-bit number which, when multiplied by four,
gives the address of an exception vector. Vector numbers are generated internally or
externally, depending on the cause of the exception. In the case of interrupts, during the
interrupt acknowledge bus cycle, a peripheral provides an 8-bit vector number (Figure
5.2) to the processor on data bus lines DO~D7. The processor translates the vector
number into a full 32-but address, shown in Figure 5.3. The memory layout for
exception vectors is given in Table 5.2.

MPU00-61
B 9097249 0047482 Lbb HE

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000
Word 0 New Program Counter (High) A0=0, A1=0
Word 1 New Program Counter (Low) AD=0, A1 =1

Figure5.1 Format of Vector Table Entries

D15 D8 D7 D0

| Ignored [v7]ve|vs[valvz]va|vi|vo|
MSB LSB
I
Vector Number
Figure5.2 Vector Number Format
A31 Al10 A0
| All Zeroes [v7]ve|vs|va|va]va|vi|vo[o o |

Figure5.3 Exception Vector Address Calculation

As shown in Table 5.2, the memory layout is 512 words long (1024 bytes) . It starts at
address 0 and proceeds through address 1023. This provides 255 unique vectors; some of
these are reserved for TRAPS and other system functions. Of the 255, there are 192

reserved for user interrupt vectors.

However, there is no protection on the first 64

entries, so user interrupt vectors may overlap at the discretion of the systems designer.

MPU00-62
B 9097249 0047483 OT2 WE

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

Table 5.2 Exception Vector Table

Vector Address
Assignment
Dec Hex Dec Hex Space
0 0 0 000 SP Reset:{nitial SSP
— = 4 004 SP Reset:initial PC
2 2 8 008 SD Bus Error
3 3 12 00C SD Address Error
4 4 16 010 SD lllegal Instruction
5 5 20 014 SD Zero Divide
6 6 24 018 SD CHK Instruction
7 7 28 01C SD TRAPV Instruction
8 8 32 020 SD Privilege Violation
9 9 36 024 SD Trace
10 A 40 028 SD Line 1010 Emulator
11 B 44 02C SD Line 1111 Emulator
12* C 48 030 sD (Unassigned, Reserved)
13* D 52 034 SD (Unassigned, Reserved)
14* E 56 038 SD (Unassigned, Reserved)
15 F 60 03C SD Uninitialized Interrupt Vector
. 64 040 sD {Unassigned, Reserved)
16t0 23 10to 17 95 05F _
24 18 96 060 sD Spurious Interrupt
25 19 100 064 SD Level 1 Interrupt Autovector
26 1A 104 068 SD Level 2 Interrupt Autovector
27 1B 108 06C SD Level 3 Interrupt Autovector
28 1C 112 070 SD Level 4 Interrupt Autovector
29 1D 116 074 SD Level 5 Interrupt Autovector
30 1E 120 078 SD Level 6 Interrupt Autovector
31 1F 124 07C SD Level 7 Interrupt Autovector
128 080 SD TRAP Instruction Vectors
32to047 | 2010 2F 191 OBF _
. 192 0co SD (Unassigned, Reserved)
48 to 63 30to 3F 255 OFF _
256 100 SD User Interrupt Vectors
64 to 255 | 40to FF 1023 3FF _

* Vector numbers 12, 13, 14, 16 to 23, and 48 to 63 are re-served for
future enhancements. No user peripheral devices should be assigned
these numbers.

MPU00-63
B 9097249 0047484 T39 IR

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

5.2.2 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally
generated exceptions are the interrupts and the bus error and reset requests. The
interrupts are requests from peripheral devices for processor action while the bus error
and reset inputs are used for access control and processor restart. The internally
generated exceptions come from instructions, or from address errors or tracing. The trap
(TRAP) , trap on overflow (TRAPV) , check data register against upper bounds (CHK) ,
and divide (DIV) instructions all can generate exceptions as part of their instruction
execution. In addition, illegal instructions, word fetches from odd addresses, and
privilege violations cause exceptions. Tracing behaves like a very high-priority
internally-generated interrupt after each instruction execution.

5.2.3 Exception Processing Sequence

Exception processing occurs in four identifiable steps. In the first step, an internal
copy is made of the status register. After the copy is made, the S bit is asserted, putting
the processor into the supervisor privilege state. Also, the T bit is negated which will
allow the exception handler to execute unhindered by tracing. For the reset and
interrupt exceptions, the interrupt priority mask is also updated.

In the second step, the vector number of the exception is determined. For interrupts,
the vector number is obtained by a processor fetch and classified as an interrupt
acknowledge. For all other exceptions, internal logic provides the vector number. This
vector number is then used to generate the address of the exception vector.

The third step is save the current processor status, except for the reset exception. The
current program counter value and the saved copy of the status register are stacked
using the supervisor stack pointer as shown in Figure 5.4. The program counter value
stacked usually points to the next unexecuted instruction; however, for bus error and
address error, the value stacked for the program counter is unpredictable, and may be
incremented from the address of the instruction which caused the error. Additional
information defining the current context is stacked for the bus error and address error
exceptions.

The last step is the same for all exceptions. The new program counter value is fetched
from the exception vector. The processor then resumes instruction execution. The
instruction at the address given in the exception vector is fetched, and normal
instruction decoding and execution is started.

MPU00-64
E 9097249 004?485 975 1A

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

SSP — Status Register Higher
High Addresses

Figure 5.4 Exception Stack Order
(Groups 1 and 2)

5.2.4 Multiple Exceptions

These paragraphs describe the processing which occurs when multiple exceptions
arise simultaneously. Exceptions can be grouped according to their occurrence and
priority. The group 0 exceptions are reset, bus error, and address error. These
exceptions cause the instruction currently being executed to be aborted and the
exception processing to commence within two clock cycles.

The group 1 exceptions are trace and interrupt, as well as the privilege violations and
illegal instruction. These exceptions allow the current instruction to execute to
completion, but pre-empt the execution of the next instruction by forcing exception
processing to occur (privilege violations and illegal instructions are detected when they
are the next instruction to be executed) . The group 2 exception occur as part of the
normal processing of instructions. The TRAP, TRAPV, CHK, and zero divide exceptions
are in this group. For these exceptions, the normal execution of an instruction may lead
to exception processing.

Group 0 exceptions have highest priority, while group 2 exceptions have lowest
priority. Within group 0, reset has highest priority, followed by address error and then
bus error. Within group 1, trace has priority over external interrupts, which in turn
takes priority over illegal instruction and privilege violation. Since only one instruction
can be executed at a time, there is no priority relation within group 2.

The priority relation between two exceptions determines which is taken, or taken
first, if the conditions for both arise simultaneously. Thesefore, if a bus error occurs
during a TRAP instruction, the bus error takes precedence, and the TRAP instruction
processing is aborted. In another example, if an interrupt request occurs during the
execution of an instruction while the T bit is asserted, the trace exception has priority,
and processed first. Before instruction processing resumes, however, the interrupt
exception is also processed, and instruction processing commences finally in the

interrupt handler routine. A summary of exception grouping and priority is given in
Table 5.3.

MPUO00-65
B 9097249 00O4?748L 601 HA

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO00

Table 5.3 Exception Grouping and Pribrity

Group Exception Processing

0 Reset Exception processing begins
Address Error within two clock cycles
Bus Error

1 Trace Exception processing begins
Interrupt before the next instruction
Illegal
Privilege

2 TRAP, TRAPV Exception processing is started
CHK, by normal instruction
Zero Divide execution

5.3 EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources and each exception has processing which is
peculiar to it. The following paragraphs detail the sources of exceptions, how each
arises, and how each is processed.

5.3.1 Reset

The reset input provides the highest exception level. The processing of the RESET
signal is designed for system initiation and recovery from catastrophic failure. Any
processing in progress at the time of the RESET is adorted and cannot be recoverd. The
processor is forced into the supervisor state and the trace state is forced off. The
processor interrupt priority mask is set at level seven. The vector number is internally
generated to reference the reset exception vector at location 0 in the supervisor program
space. Because no assumptions can be made about the validity of register contents, in
particular the supervisor stack pointer, neither the program counter nor the status
register is saved. The address contained in the first two words of the reset exception
vector is fetched as the initial supervisor stack pointer, and the address in the last two
words of the reset exception vector is fetched as the initial program counter. Finally,
instruction execution is started at the address in the progrom counter. The power-
up/restart code should be pointed to by the initial program counter.

The reset instruction does not cause loading of the RESET vector, but does assert the
reset line to reset external devices. This allows the software reset the system to a known
state and then continue processing with the next instruction.

MPU00-66
B 9097249 0047487 744 WA

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

5.3.2 Interrupts

Seven levels of interrupt priorities are provided. Devices may be chained externally
within interrupt priority levels, allowing an unlimited number of peripheral devices to
interrupt the processor. Interrupt priority levels are numbered from one to seven, with
level seven being the highest priority. The status register contains a 3-bit mask which
indicates the current processor priority, and interrupts are inhibited for all priority
levels less than or equal to the current processor priority.

An interrupt request is made to the processor by encoding the interrupt request level
on the interrupt request lines; a zero indicates no interrupt reQuest. Interrupt requests
arriving at the processor do not force immediate exception processing, but are made
pending. Pending interrupts are detected between instruction executions. If the
priority of the pending interrupt is lower than or equal to the current processor priority,
execution continues with the next instruction and the interrupt exception processing is
postponed. (The recognition of level seven is slightly different, as explained in the
following paragraph.)

If the priorty of the pending interrupt is greater than the current processor priority,
the exception processing sequence is started. A copy of the status register is saved, the
privilege state is sent to the supervisor stack, tracing is suppressed, and the processor
priority level is set to the level of the interrupt acknowledged. The processor fetches the
vector number from the interrupting device, classifying the reference as an interrupt
acknowledge and displaying the level number of the interrupt being acknowledged on
the address bus. If external logic requests an automatic vectoring, the processor
internally generates a vector number which is determined by the interrupt level
number. If external logic indicates a bus error, the interrupt is taken to be spurious, and
the generated vector number references the spurious interrupt vector. The processor
then proceeds with the usual exception processing, saving the program counter and
status register on the supervisor stack. the saved value of the program counter is the
address of the instruction which would have been executed had the interrupt not been
present. The content of the interrupt vector whose vector number was previously
obtained is fetched and loaded into the program counter, and normal instruction
execution commences in the interrupt handling routine. A flowchart for the interrupt
acknowledge sequence is given in Figure 5.5, a timing diagram is given in Figure 5.6,
and the interrupt processing sequence is shown in Figure 5.7.

Priority level seven is a special case. Level seven interrupts cannot be inhibited by
the interrupt priority mask, thus providing a “non-maskable interrupt” capability. An
interrupt is generated each time the interrupt requestlevel changes from some lower
level to level seven. Note that a level seven interrupt may still be caused by the level
comparison if the request level is a seven and the processor priority is set to a lower level
by an instruction.

MPU00-67
B 9097249 0047488 LAY W

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

PROCESSOR INTERRUPTING DEVICE

l { Request the Interrupt

Grant the Interrupt

1) Compare Interrupt Level in Status Register and
Wait for Current Instruction to Complete

2) Place interrupt Level on A1, A2, A3

3) Set Function Code to Interrupt Acknowledge

4) Assert Address Strobe (AS}

5) Assert Data Strobes (UDS* and LDS)

-

Provide the Vector Number

1) Place Vector Number on DO~D7
2) Assert Data Transfer Acknowledge
l (DTACK)

Acquire the Vector Number

1) Latch Vector Number
2) Negate UDS and [DS

3) Negate AS ——————l

l 1) Negate DTACK

Start Interrupt Processing]

Release

Figure5.5 Vector Acciuisition Flowchart

* ;. Although a vector is one byte, both data strobes are asserted due to
the microcode used for exception processing. The processor does not
recognize anything on data lines D8~D15 at this time.

MPUO00-68
B 9097249 0047489 510 WE

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

Fco~Fc2 _ X 7 X
As~a23 ¥ " — \Yean
Al~A3 — ~ Y

S e Y e N

uost T\ 2 N A U A
ms T\ 2 D A N A
R/W \ / \
DTACK \ / n______/ N
—
PLO~IPL2 X
Last Bus Cycle of IACK Cycle
Instruction (Vector Number Stack and
(Read or Write) | Acquisition) N Vector Fetch
|
Stack ! K
PCL
(S5P)

Figure5.6 Interrupt Acknowledge Cycle Timing Diagram

* i Although a vector number is one byte, both data strobes are asserted due to the

microcode used for exception processing. The processor does not recognize anything
on data lines D8~D15 at this time.

MPUO00-69
B 9097249 004?450 232 W

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA ' TMPE8HC000

Last Bus Cycle of IACK
Instruction Stack Cycle
(During Which PCL (Vector Number
interrupt Was (at55P-2) Acquisition)
Recognized)

Read
Stack Stack
Status PCH Vector
High
(atSSP - 6) (atSSP—4) "9
(A16~A31)
Read Fetch First Two
Instruction
Vector
Words of
Low
|
(AD~AT5) nterrupt
Routine

Note: SSP refers to the value of the supervisor stack pointer before the interrupt occurs.

Figure5.7 Interrupt Processing Sequence

MPU00-70
B 9097249 0047491 179 WA

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

5.3.3 Uninitialized Interrupt

An interrupting device asserts VPA or provides an interrupt during an interrupt
acknowledge cycle to the TMP68HC000. If the vector register has not been initialized,
the responding TLCS-68000 Family peripheral will provide vector 15, the uninitialized,
interrupt vector. This provides a uniform way to recover from a programming error.

5.3.4 Spurious Interrupt

If during the interrupt acknowledge cycle no device responds by asserting DTACK or
VPA, the bus error line should be asserted to terminate the vector acquisition. The
processor separates the processing of this error from bus error by fetching the spurious
interrupt vector instead of the bus error vector. The processor then proceeds with the
usual exception processing.

5.3.5 Instruction Traps

Traps are exceptions caused by instruction. They arise either from processor
recognition of abnormal conditions during instruction execution, or from use of
instructions whose normal behavior is trapping.

Some instructions are used specifically to generate traps. The TRAP instruction
always forces an exception and is useful for implementing system calls for user
programs. The TRAPV and CHK instructions force an exception if the user program
detects a runtime error, which may be anarithemetic overflow or a subscript out of
bounds.

The signed divide (DIVS) and unsigned (DIVU) instructions will force an exception if
a division operation is attempted with a divisor of zero.

5.3.6 Illegal and Unimplemented Instructions

“Illegal instruction” is the term used to refer to any of the word bit patterns which are
not the bit pattern of the first word of a legal instruction. During instruction execution,
if such an instruction is fetched, an illegal instruction exception occurs. Three bit
patterns will always force an illegal instruction trap on all TLCS-68000 Family
compatible microprocessors. They are: $4AFA, $4AFB, and $4AFC. " Two of the
patterns, $4AFA and $4AFB, are reserved for the system. The third pattern, $4AFC, is
reserved for customer use.

Word patterns with bits 15~12 equaling 1010 or 1111 are distinguished as
unimplemented instructions and separate exception vectors are given to these patterns
to permit efficient emulation. This facility allows the operating system to detect
program errors, or to emulate unimplemented instructions in software.

5.3.7 Privilege Violations

In order to provide system security, various instructions are privileged. An attempt
to execute one of the privileged instructions while in the user state will cause an

MPUQO-71
M 9097249 004?492 005 WA

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO00

exception. The privileged instructions are:

STOP ANDImmediate to SR
RESET EOR Immediate to SR
RTE OR Immediate to SR
MOVE to SR MOVE USP

5.3.8 Tracing

To aid in program development, the TMP68HCO000 includes a facility to allow
instruction-by-instruction tracing. In the trace state, after each instruction is executed
an exception is forced, allowing a debugging program to monitor the execution of the
program under test.

The trace facility uses the T bit in the supervisor portion of the status register. If the
T bit is negated (off) , tracing is disabled, and instruction execution proceeds from
instruction to instruction as normal. If the T bit is asserted (on) at the beginning of the
execution of an instruction, a trace exception will be generated after the execution of
that instruction is completed. If the instruction is not executed, either because an
interrupt is taken, or the instruction is illegal or privileged, the trance exception does
not occur. The trace exception also does not occur if the instruction is aborted by a reset,
bus error, or address error exception. If the instruction is indeed executed and an
interrupt is pending on completion, the trace exception is processed before the interrupt
exception. If, during the execution of the instruction an exception is forced by that
instruction, the forced exception is processed before the trace exception.

As an extreme illustration of the above rules, consider the arrival of an interrupt
during the execution of a TRAP instruction while tracing is enabled. First the trap
exception is processed, then the trace exception, and finally the interrupt exception.
Instruction execution resumes in the interrupt handler routine. :

5.3.9 Bus Error ‘

Bus-error exceptions occur when the external logic requests that a bus error be
processed by an exception. The current bus cycle which the processor is making is then
aborted. Whether the processor was doing instruction or exception processing, that
processing is terminated, and the processor immediately begins exception processing.

Exception processing for the bus error follows the usual sequence of steps. The status
register is copied, the supervisor state is entered, and the trace state is turned off. The
vector number is generated to refer to the bus error vector. Since the processor was not
between instructions when the bus error exception request was made, the context of the
processor is more detailed. To save more of this context, additional information is saved
on the supervisor stack. The program counter and the copy of the status register are of
course saved. The value saved for the program counter is advanced by some amount,

MPU00-72
BR 9097249 0047493 Tul mm

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

one to five words beyond the address of the first word of the instruction which made the
reference causing the bus error. If the bus error occurred during the fetch of the next
instruction, the saved program counter has a value in the vicinity of the current
instruction, even if the current instruction is a branch, a jump, or a return instruction.
Besides the usual information, the processor saves its internal copy of the first word of
the instruction being processed and the address which was being accessed by the aborted
bus cycle. Specific information about the access is also saved; whether it was a read or a
write, whether or not the processor was processing an instruction, and the classification
displayed on the function code outputs when the bus error occurred. The processor is
processing an instruction if it is in the normal state or processing a group 2 exception;the
processor is not processing an instruction if it is processing a group 0 or a group 1
exception. Figure 5.8 illustrates how this information is organized on the supervisor
stack. Although this information is not sufficient in general to effect full recovery from
the bus error, it does allow software diagnosis. Finally, the processor commences
instruction processing at the address contained in vector number two. It is the
responsibility of the error handler routine to clean up the stack and determine where to
continue execution.

15 14 13 12 11 10 9 8 7 6 5 aq 3 2 1 0
sSSP —» IR/\7V| N | Function Code
Higt)
cos ACCESS ADAIESS vorerrerraeieei) 3 OO OO O RO Higher
Low Address

Instruction Register

Status Register

High
- Program Counter . L
Low
RAW (read/write) : write=0,read =1
/N (instruction/not) o instruction=0,not=1

Figure 5.8 Exception Stack Order (Group 0)

If a bus error occurs during the exception processing for a bus error, address error, or
reset, the processor is halted and all processing ceases. This simplifies the detection of
catastrophic system failure, since the processor removes itself from the system rather
than destroy any memory contents. Only the RESET pin can restart a halted processor.

5.3.10 Address Error

Address error exceptions occur when the processor attempts to access a word or a long
word operand or an instruction at an odd address. The effect is much like an internally
generated bus error, so that the bus cycle is aborted and the processor ceases whatever
processing it is currently doing and begins exception processing. After the exception
processing commences, the sequence is the same as that for bus error including the

MPU00-73
EN 9097249 00u7uq9y 985 W

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

information that is stacked, except that the vector number refers to the address error
vector instead. Likewise, if an address error occurs during the exception processing for a
bus error, address error, or reset, the processor is halted. As shown in Figure 5.9, an
address error will execute a short bus cycle followed by exception processing.

S0 S1 52 $3 54 S5 S6 S7 S0 S1 S2 S3 S4 S5 56 57 S0 S1 .52 53 54 S5

A1~A23 — —

N
4

D0~D15 ——————————(<), N {

I Read |<_ Address Error _,I

Write

<—-——>J<- Write Stack —»
Approx. 8 Clock
Idle

Figureb.9 Address Error Timing Diagram

MPUO00-74
M 9097249 0047495 81y WA

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMPG68HCO000

6. INTERFACE WITH 6800 PERIPHERALS

Extensive line of 6800 peripherals are directly compatible with the TMPG8HC000.
Some of these devices that are particularly useful are:

6821
6840
6843
6845
6850
6852
6854
68488

Peripheral Interface Adapter

Programmable Timer Module

Floppy Disk Controller

CRT Controller

Asynchronous Communications Interface Adapter
Synchronous Serial Data Adapter

Advanced Data Link Controller

General Purpose Interface Adapter

To interface the synchronous 6800 peripherals with the asynchronous TMP68HC000,
the processor modifies its bus cycle to meet the 6800 cycle requirements whenever an
6800 device address is detected. This is possible since both processors use memory

mapped I/0.

Figure 6.1 is a flowchart of the interface operation between the processor

and 6800 devices.

MPU00-75
M 9097249 0047496 7?50 EE

Power ed by | Cnminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

PROCESSOR SLAVE

Initiate the Cycle

1) The Processor Starts a Normal
Read or Write Cycle

Define 6800 Cycle

1) External Hardware Asserts Valid
Peripheral Address (VPA)

Synchronize with Enable

1} The Processor Monitors Enable
(E) Until itis Low (Phase 1)
The Processor Asserts Valid
Memory Address (VMA)

2

~

Transfer the Data

1) The Peripheral Waits Until E is Active and
then Transfers the Data

Terminate the Cycle

1) The Processor Negates AS, UDS,
[DS, and Drives the E Clock
Low (On a Read Cycle, the Data
is Latched as E Goes Low
Internally)

2) The Processor Negates VMA

Start Next Cycle

Figure 6.1 6800 Interfacing Flowchart

MPU00-76
B 9097249 0047497 &97 W

Power ed by 1 Cminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

6.1 DATA TRANSFER OPERATION

Three signals on the processor provide the 6800 interface. They are: enable (E) , valid
memory address (VMA) , and valid peripheral address (VPA) . Enable corresponds to
the E or phase 2 signal in existing 6800 systems. The bus frequency is one tenth of the
incoming TMP68HCO000 clock frequency. The timing of E allows 1 megahertz
peripherals to be used with 8 megahertz TMP68HCO000s. Enable has a 60/40 duty cycle;
that is, it is low for six input clocks and high for four input clocks. This duty cycle allows
the processor to do successive VPA accesses on successive E pulses.

6800 cycle timing is given in Figures 6.2, 6.3, 8.7, and 8.8. At state zero (S0) in the
cycle, the address bus is in the high-impedance state. A function code is asserted on the
function code output lines. One-half clock later, in state 1, the address bus is released
from the high-impedance state.

SO S2 54 wW W W wW W W S6 S0 52

ST O T e T Y O B e B e B e B e B e B e B
T X
A/ T\

BTACK

Data Out ————” —

DataIn G S
ET\ / \

VPA \ /T

VNVIA \ /S

Figure 6.2 TMP68HCO000 to 6800 Perpheral Timing — Best Case

MPU00-77
ER 9097249 0047498 523 W

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

SO S2 S4 W W W W W W W W WWW W W W W S6 S0

CLK

FCO~FC2

X
a1~a23 _ >
A\

AS
DTACK
Data Out

Dataln

m

111

P

A
VMA \

WWJUVT%h

Figure 6.3 TMP68HCO000 to 6800 Perpheral Timing — Worst Case

During state 2, the address strobe (AS) is asserted to indicate that there is a valid
address on the address bus. If the bus cycle is a read cycle, the upper and/or lower data
strobes are also asserted in state 2.

If the bus cycle is a write cycle, the read/write (R/W) signal is switched to low (write)
during state 2. One-half clock later, in state 3, the write data is placed on the data bus,
and in state 4 the data strobes are issued to indicate validdata on the data bus. The
processor now inserts wait states until it recognizes the assertion of VPA.

The VPA input signals the processor that the address on the bus is the address of an
6800 device (or an area reserved for 6800 devices) and that bus should conform to the
phase 2 transfer characteristics of the 6800 bus. Valid peripheral address is derived by
decoding the address bus, conditioned by the address strobe. Chip select for the 6800
peripherals should be derived by decoding the address bus conditioned by VMA.

After recognition of VPA, the processor assures that the enable (E) is low, by waiting
if necessary, and subsequently asserts VMA. Valid memory address is then used as part
of the chip select equation of the peripheral. This ensures that the 6800 peripherals are
selected and deselected at the correct time. The peripheral now runs its cycle during the
high portion of the E signal. Figures 6.2 and 6.3 depict the best and worst case 6800
cycle timing. This cycle length is dependent strictly upon when VPA is asserted in
relationship to the E clock.

If we assume that external circuitry asserts VPA as soon as possible after the
assertion of AS, then VPA will be recognized as being asserted on the falling edge of S4.
In this case, no“extra” wait cycles will be inserted prior to the recognition of VPA
asserted and only the wait cycles inserted to synchronize with the E clock will determine
the total length of the cycle. In any case, the synchronization delay will be some integral

MPUO00-78
B 9097249 004?499 u4bT N

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

number of clock cycles within the following two extremes :

1. Best Case : VPA is recognized as being asserted on the falling edge three clock
cycles before E rises (or three clock cycles after E falls) .

2. Worst Case: VPA is recognized as being asserted on the falling edge two clock
cycles before E rises (or four clock cycles after E falls) .

During a read cycle, the processor latches the peripheral data in state 6. For all
cycles, the processor negates the address and data strobes one-half clock cycle later in
state 7 and the enable signal goes low at this time. Another half clock later, the address
bus is put in the high-impedance state. During a write cycle, the data bus is put in the
high-impedence state and the read/write signal is switched high. The peripheral logic
must remove VPA within one clock after the address strobe is negated.

DTACK should not be asserted while VPA is asserted. Notice that the TMP68HC000
VMA is active low, contrasted with the active high 6800 VMA. This allows the processor
to put its buses in the high-impedance state on DMA requests without inadvertently
selecting the peripherals.

6.2 INTERRUPT INTERFACE OPERATION

During an interrupt acknowledge cycle while the processor is fetching the vector, the
VPA is asserted, the TMP68HC000 will assert VMA and complete a normal 6800 read
cycle as shown in Figure 6.4. The processor will then use an internally generated vector
that is a function of the interrupt being serviced. This processor is known as
autovectoring. The seven autovectors are vector numbers 25~31 (decimal) .

Autovectoring operates in the same fashion (but is not restricted to) the 6800
interrupt sequence. The basic difference is that there are six normal interrupt vectors
and one NMI type vector. As with both the 6800 and the TMP68HCO000’s normal
vectored interrupt, the interrupt service routine can be located anywhere in the address
space. This is due to the fact that while the vector numbers are fixed, the contents of the
vector table entries are assigned by the user.

Since VMA is asserted during autovectoring, care should be taken to insure the 6800
peripheral address decoding prevents unintended accesses.

MPU00-79
B 9097249 004?500 TOlL WM

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA - TMP68HC000

S0 S2 S4 S6 SO S2 S4 W W W W W W W W W W 56 S0 S2

CLK
Fco~Fc2 X 4
Aa1~a3 > Dot

A4~A23 D> >—

(%

Normal Cycle

Autovector Operation

Figure 6.4 Autovector Operation Timing Diagram

* : Although UDS and LDS are asserted no data is read from the during the autovector cycle.

The vector number is generated internally.

MPU00-80
B 9097249 004?501 9ud W

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

7. INSTRUCTION SET AND EXECUTION TIMES
7.1 INSTRUCTION SET

The following paragraphs provide information about the addressing categories and
instruction set of the TMP68HC000.

7.1.1 Addressing Categories

Effective address modes may be categorized by the ways in which they may be used.
The following classifications will be used in the instruction definitions.

Data : Ifan effective address mode may be used to refer to data operands, it
is considered a data addressing effective address mode.

Memory : If an effective address mode may be used to refer to memory
operands, it is considered a memory addressing effective address
mode.

Alterable : If an effective address mode may be used to refer to alterable
(writeable) operands, it is considered an alterable addressing
effective address mode.

Control : Ifan effective address mode may be used to refer to memory operands

without an associated size, it is considered a control addressing
effective address mode.

These categories may be combined, so that additional, more restrictive, classifications
may be defined. For example, the instruction descriptions use such classifications as
alterable memory or data alterable. The former refers to those addressing modes which
are both alterable and memory addresses, and the latter refers to addressing modes
which are both data and alterable.

Table 7.1 shows the various categories to which each of the effective address modes
belong. Table 7.2 is the instruction set summary.

MPU00-81
B 9097249 004?502 84y A

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HC000

Table 7.1 Effective Addressing Mode Categories

Effective Addressing Categories
Address Mode Register
Modes Data | Memory | Control | Alterable
Dn 000 Register Number x - — X
An 001 Register Number - - - x
(An) 010 Register Number X X x X
(An) + 011 Register Number x x - x
-(An) 100 Register Number x x — X
d16{(An) 101 Register Number X X X X
d8(An, Xn) 110 Register Number X X X X
Abs W 111 000 X X X X
Abs.L 11 001 X X X X
d16(PQC) 11 010 X X X -
d8(PC, Xn) 111 011 X X x -
#xxx 111 100 x X — —
MPUO0O-82

B 9097249 D0O4?503 710 NN

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA

B 9097249 004?504 bL57 HE

TMP68HCO000
Table 7.2 Instruction Set (Sheet 1 of 5)
Condition
Mnemaonic Description Operation Codes
N V4 \% C
ABCD Add Decimal with Extend | (Destination)yg + (Source}jp + X uj| *>|luij-*
—Destination
ADD Add Binary (Destination) + (Source) * * * *
—Destination
ADDA Add address (Destination) + (Source) - == 1-
—Destination
ADDI Add Immediate (Destination) + Immediate Data * * * *
—Destination
ADDQ Add Quick (Destination) + Immediate Data * * * *
—Destination
ADDX Add Extended (Destination) + (Source) + x * * * *
—Destination
AND AND Logical (Destination)/\(Source) * * 0 0
—Destination
ANDI AND Immediate (Destination)}AImmediate Data * * 0 0
—Destination
ANDI to CCR AND Immediate to (Source)ACCR—CCR * * * *
Condition Codes
ANDI to SR AND Immediate to (Source)ASR—SR * * * *
Status Register
ASL,ASR Arithmetic Shift (Destination)Shifted by < count> = * * *
—Destination
Bec Branch Conditionally If ccthen PC+d—PC i Bl e
BCHG Test a Bit and Change ~{<bit number>)OF - * = |-
Destination—2Z
~(<bitnumber>)OF
Destination—
< bit number> OF Destination
BCLR Test a Bit and Clear ~{<bit number>)OF — * - | =
Destination—2
0—><bit number> OF
Destination
BRA Branch Always PC +d—PC - -1 —-1-
BSET Test a Bit and Set ~(<bit number>)OF - * =1 -
Destination—Z
1—<bitnumber> OF
Destination
MPUO0O0-83

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000
Table 7.2 Instruction Set (Sheet 2 of 5)
Condition
Mnemonic Description Operation Codes
N Z v C
BSR Branch to Subroutine PC—-(SP); PC+d—PC bl il Bl M
BTST Test a Bit ~(<bit number>)OF - * - | =
Destination—2
CHK Check Register Against fDn <0orDN> (<ea>) * U U U
Bounds then TRAP
CLR Clear an Operand 0—Destination 0 1 0 0
CMP Compare (Destination) ~ (Source) * * * *
CMPA Compare Address (Destination) - (Source) * * * *
CMPI Compare Immediate (Destination} — Immediate Data * * * *
CMPM Compare Memory (Destination)— (Source) * o I
DBcc Test Condition, If ~ccthen Dn - 1-Dn; - = |—=1-
Decrement and Branch ifDn# -1 then PC+d—PC
DIVS Signed Divide (Destination)}/ (Source) * * * 0
—Destination
DIVU Unsigned Divide (Destination)} / (Source) * * * 0
—Destination
EOR Exclusive OR Logical (Destination)&B(Soﬁrce) * *10/|0
—Destination
EORI Exclusive OR Immediate (Destination)®tmmediate Data * * 0|0
—Destination
EORIito CCR Exclusive OR Immediate (Source)@CCR~->CCR * * * *
to Condition Codes
EORI to SR Exclusive OR immediate (Source)@SR—SR * * * *
to Status Register
EXG Exchange Register Xxe>Xy - |=1—-1-
EXT Sign Extend (Destination) Sign-Extended * *1o}]o0
—Destination
IMP Jump Destination—PC -l —=1—=-1-
JSR Jump to Subroutine PC— - (SP); Destination—PC - | —==1-
LEA Load Effective Address <ea>—An i Bl Bl
LINK Link and Allocate An——(SP); SP-—>An; - |=-1-1-
SP + Displacement—SP

I 9097249 0047505 593 WA

MPU00-84

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HCO000
Table 7.2 Instruction Set (Sheet 3 of 5)
Condition
Mnemonic Description Operation Codes
Z |V]|C
LSL,LSR Logical Shift (Destination) Shifted by *10 *
<count>
—Destination
MOVE Move Data from Source | (Source)-»Destination * 0 0
to Destination
MOVE to CCR Move to Condition Code |{Source)—>CCR * * *
MOVE to SR Move to the Status (Source)—>SR * * *
Register
MOVE from SR | Move from the Status SR—Destination - | = 1-
Register
MOVE USP Move User Stack Pointer |USP—An; An—USP - ==
MOVEA Move Address {Source)—Destination - = | -
MOVEM Move Multiple Registers | Registers—Destination - | -1 -
(Source)—Registers
MOVEP Move Peripheral Data (Source)—Destination - = | -
MOVEQ Move Quick tmmediate Data—Destination * 0 0
MULS Signed Multiply (Destination) w (Source) *(o]oO
—Destination
MULU Unsigned Multiply (Destination) x (Source) * 0 0
—sDestination
NBCD Negate Decimal with 0 - {Destination)1g - x * U *
Extend —Destination
NEG Negate 0 - {Destination) * * *
—Destination
NEGX Negate with Extend 0 — {Destination) - x * * *
—Destination
NOP No Operation - R
NOT Logical Complement ~(Destination)—Destination *10]oO0
OR Inclusive OR Logical (Destination)\/(Source) * 0 o]
—Destination
ORI Inclusive OR Immediate | (Destination)y/Immediate Data * 0 0
—Destination
ORI ta CCR Inclusive OR Immediate (Source) \y CCR—>CCR * * *
to Condition Codes

B 9097249 004?506 42T WA

MPUO00-85

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA “TMP6BHC000
Table 7.2 Instruction Set (Sheet 4 of 5)
Condition
Mnemonic Description Operation Codes
N Z V C
ORI to SR Inclusive OR Immediate | (Source) vy SR—SR ol L L
to Status Register
PEA Push Effective Address <ea>—>-(SP) - =-1—-1-
RESET Reset External Device - - | =-1-1-
ROL,ROR Rotate (Without Extend) |(Destination) Rotated by * * 0 *
<count>
—Destination
ROXL,ROXR Rotate with Extend (Destination) Rotated by * * | o | *
<count>
—Destination
RTE Return from Exception (SP) + »SR; (SP) + -»PC & * * *
RTR Return and Restore (SP) + =»CC; (SP) + »PC * * * *
Condition Codes
RTS Return from Subroutine (SP) + —»PC - |-t =1-
SBCD Subtract Decimal with (Destination)1g — (Source)1g - X U * U *
Extend —Destination
Sce Set According to If ccthen 1's - =-1-1-
Condition —Destination
else 0's—Destination
STOP Load Status Register Immediate Data—SR;STOP * * * *
and Stop
sus Subtract Binary (Destination) —(Source) * * * *
—Destination
SUBA Subtract Address (Destination) —(Source) i el el
—Destination
SuUBI Subtract Inmediate (Destination) —Immediate Data * * * *
—Destination
SUBQ Subtract Quick (Destination) —Immediate Data * * * *
] —Destination
SUBX Subtract with Extend (Destination) —(source)— X * * * *
. —Destination
SWAP Swap Register Halves Register [31:16]<>Register {15:0] * *10 |0
TAS Test and Set an Operand | (Destination) Tested—CC; * *1 0|0
1-[7) OF Destination

MPUQ0-86

B 9097249 0047507 366 N

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

Table 7.2 Instruction Set (Sheet 5 of 5)

Condition
Mnemonic Description Operation Codes
X N z \ C
TRAP Trap PC—-(SSP); SR— - (SSP); - |=1=-t1-1-
(Vector)—PC
TRAPV Trap on Overflow IfV then TRAP i i el
TST Test and Operand (Destination) Tested—CC - * * 0 0
UNLK Unlink An—SP; (SP) + »An -t —=—1—=-1=-1-
— : theleft operand is moved to the right operand * ¢ affected
< : thetwo operands are exchanged - : unaffected
+ : theoperandsare added 0 : cleared
- : theright operand is subtracted from the left T set
operand U : undefined

: the operands are multiplied

: thefirst operand is divided by the second operand
: logical AND

;. logical OR

: logical exclusive OR

A< >

: relational test, true if left operand is less than
right operand
> . relational test, true if left operand is greater than
right operand
~ : logical complement

[1 : bitnumber

MPUO0OQ-87
M 9097249 004?508 2T2 A

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

7.1.2 Instruction Prefetch

The TMP68HC000 uses a two-word tightly-coupled instruction prefetch mechanism
to enhance performance. This mechanism is described in terms of the microcode
operations involved. If the execution of an instruction is defined to begin when the
microroutine for that instruction is entered, some features of the prefetch mechanism
can be described.

1) When execution of an instruction begins, the operation word and the word
following have already been fetched. The operation word is in the instruction
decoder.

2) In the case of multi-word instructions, as each additional word of the instruction is
used internally, a fetch is made to the instruction stream to replace it.

3) The last fetch for an instruction from the instruction stream is made when the
operation word is discarded and decoding is started on the next instruction.

4) If the instruction is a single-word instruction causing a branch, the second word is
not used. But because this word is fetched by the preceding instruction, it is
impossible to avoid this superfluous fetch.

5) In the case of an interrupt or trace exception, both words are not used.

6) The program counter usually points to the last word fetched from the instruction
stream.

7.2 INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruction execution times in terms
of external clock (CLK) periods. In this timing data, it is assumed that both memory
raed and write cycle times are four clock periods. Any wait states caused by a longer
memory cycle must be added to the total instruction time. The number of bus read and
write cycles for each instruction is also included with the timing data. This timing data
is enclosed in parenthesis following the execution periods and is shown as (r/w) where r
is the number of read cycles and w is the number of write cycles.

Note : The number of periods includes instruction fetch and all applicable operand
fetches and stores.

MPU00-88
R 9097249 004?509 139 W

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

7.2.1 Effective Address Operand Calculation Timing

Table 7.3 lists the number of clock periods required to compute an instruction’s
effective address. It includes fetching of any extension words, the address computation,
and fetching of the memory operand. The number of bus read and write cycles is shown

in parenthesis as (r/w) . Note there are no write cycles involved in processing the
effective address.

Table 7.3 Effective Address Calculation Times

Addressing Mode Byte, Word Long

On Register
An Data Register Direct 0 (0/0) 0 (0/0)

Address Register Direct 0 (0/0) 0 (0/0)
(An) Memory
(An) + Address Register Indirect 4(1/0) 8 (2/0)

Address Register Indirect with Postincrement 4 (1/0) 8 (2/0)
- (An) Address Register Indirect with Predecrement 6(1/0) 10 (2/0)
d16(PC) Address Register Indirect with Displacement 8 (2/0) 12 (3/0)
d8{An, Xn)* Address Register Indirect with Index 10 (2/0) 14 (3/0)
Abs.W Absolute Short 8(2/0) 12 (3/0)
Abs. L Absolute Long 12 (3/0) 16 (4/0)
d16(PQ) Program Counter with Displacement 8 (2/0) 12 (3/0)
d8(PC, Xn)* Program Counter with Index 10 (2/0) 14 (3/0)
#xxx Immediate 4(1/0) 8 (2/0)

* 1 The size of the index register (Xn) does not affect execution time.

MPU00-89
B 9097249 0047510 950 WA

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

7.2.2 Move Instruction Execution Times

Table 7.4 and 7.5 indicate the number of clock periods for the move instruction. This
data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles is shown in parenthesis as (r/w) .

Table 7.4 Move Byte and Word Instruction Excecution Times

Destination
Source
Dn An (An) (An) + —(An) [d16(An){d8{AN,Xn)*| Abs.W | Abs.L
Dn 4(10)| 41200 8(1/1)} 8(v/1)| 8(1/1)|12(2/1) 14(2/1) 12 (2/1)}| 16 (3/1)
An 4(1/0)| 4(1/0)| 8(1/1)} 8(v1)| 8(1/)|12(2/1) | 14(2/1) 12(2/1)| 16 (3/1)
(An) 8(2/0)| 820y | 122/} 12 @M {1221 | 16(3/1)| 18(3/1) | 16(3/1)| 20 (4/1)
(An) + 8(2/0)| 8(20)| 12(2/) | 122/ 12(2/1)| 16 (3/1)| 18(3/1) | 16(3/1)| 20 (4/1)
-(An) 10 (2/0) [10 (2/0) | 14 (2/1)} 14(2/1) { 14(2/1)| 18 (3/1) | 20(3/1) 18 (3/1) | 22 (4/1)
d16(An) 12(3/0) [12 (3/0) | 16 (3/1) | 16 (3/1)| 16 (3/1) | 20(4/1) | 22(4/1) | 20 (4/1)| 24 (5/1)
ds(an,Xm* | 14(3/0)| 14 (3/0) | 18 (3/1) | 18 (3/1) [18 (3/1) | 22 (ar1y | 24(471) | 22 (a/1) | 26 (5/1)
Abs.W 12(3/0) | 12 (3/0)| 16 (3/1) | 16 (3/1) | 16 (3/1) | 20 (471) | 22(4a/1) | 20 (4/1)| 24 (5/1)
Abs.L 16 (4/0) | 16 (4/0) | 20 (4/1){ 20 (4/1) | 20(4/1) | 24 (5/1) | 26(5/1) | 24(5/1) | 28 (6/1)
d16(PC) 12(3/0)] 12(3/0) | 16 (3/1) | 16 (3/1)| 16 (3/1) | 20 (4/1) | 22(4/1) | 20(4/1)] 24 (5/1)
d8(PC,Xn)* 14(3/0) | 14 (3/0) | 18(3/1) | 18 (3/1) | 18 (3/1) [22 (4/1) | 24(4/1) | 22 (4/1)| 26 (5/1)
#xxX 8(2/0)| 8(2/0)| 12(2/1){ 12(2/1)| 12(2/1)| 16 (3/1) | 18(3/1) 16 (3/1) | 20 (4/1)
* : The size of the index register (Xn) does not affect execution time.
Table 7.5 Move Long Instruction Excecution Times
Destination
Source
Dn An {An) (An)+ | —(An) [d16{ANn)|d8(An,Xn)* AbsW | Abs.L
Dn 40170y | 4(1/0)| 12(1/2){ 12(1/2) | 12 (1/2) | 16(2/2) | 18(2/2) | 16(2/2)| 20(3/2)
An 4(1/0)| 4(1/0)| 12(1/2){ 12(1/2) | 12(1/2) | 16 (2/2) | 18 (2/2) 16 (2/2) | 20 (3/2)
(An) 12 (3/0)] 12 (3/0) | 20 (3/2) | 20(3/2) | 20(3/2) | 24 (4/2) | 26 (4/2) | 24 (4/2) | 28 (5/2)
(An) + 12(3/0)| 12(3/0) | 20(3/2) | 20 (3/2) | 20(3/2) | 24 (4/2) | 26(4/2) | 24 (4/2)| 28 (5/2)
- (An) 14 (3/0) | 14 (3/0)| 22 (3/2) | 22 (3/2) | 22(3/2} | 26 (4/2) | 28(4/2) | 26{4/2)| 30(5/2)
d16(An) 16 (4/0) | 16 (4/0) | 24 (4/2) | 24 (412) | 24 (4/2) | 28 (5/2) | 30(5/2) | 28(5/2)| 32(6/2)
d8(An, Xn)* | 18 (4/0)| 18 (4/0) | 26 (4/2) | 26 (4/2) | 26 (4/2) | 30 (5/2) | 32(5/2) |30(5/2)| 34(6/2)
Abs.W 16 (4/0) | 16 (4/0) | 24 (4/2) | 24 (4/2) | 24(4/2) | 28 (5/2) | 30(5/2) | 28(5/2)| 32(6/2)
Abs.L 20(5/0) | 20 (5/0) | 28 (5/2) | 28 (5/2) | 28 (5/2) | 32 (6/2) | 34(6/2) | 32(6/2)} 36(7/2)
d16(PC) 16 (4/0) | 16 (4/0) | 24 (4/1) | 24 (412) | 24(42) | 28 (5/2) | 30(5/2) | 28(5/2)] 32 (5/2)
d8(PC, Xn)* | 18(4/0) | 18 (4/0) | 26 (4/2) | 26 (4/2) | 26 (4/2) | 30 (5/2) | 32(5/2) |[30(5/2)| 34(6/2)
XXX 12 (3/0) | 12 (3/0)} 20(3/2)| 20(3/2) | 20(3/2) | 24 (4/2) | 26 (4/2) 24 (4/2) | 28(5/2)

* ; The size of the index register (Xn) does not affect execution time.

MPU00-90
B 9097249 004?511 897 mm

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO00

7.2.3 Standard Instruction Execution Times

The number of clock periods shown in Table 7.6 indicates the time required to
perform the operations, store the results, and read the next instruction. The number of
bus read and write cycles is shown in parenthesis as (r/w) . The number of clock periods
and the number of read and write cycles must be added respectively to those of the
effective address calculation where indicated.

In Table 7.6 the headings have the following maenings:
An =address register operand
Dn=data register operand
ea=an operand specified by an effective address
M=memory effective address operand

Table 7.6 Standard Instruction Execution Times

Instruction Size op<ea>, An | op<ea>, Dn opDn, <M>
ADD BytefWord 8(1/0) + 4 (1/0) + 8 (1/11) +
Long word 6 (1/0) +** 6 (1/0) +** 12 (172) +
AND Byte, Word - 4 (1/0) + 8 (1/1) +
Ltong word - 6 (1/0) +** 12 (1/2) +
VP Byte, Word 6 (1/0) + 4 (1/0) + -
Long word 6 (1/0) + 6 (1/0) + -
DIVS bt - 158 (1/0) +* et
DIVU - — 140 (1/0) +* -
for Byte, Word — 4 (1/0) ¥** 8 (1/1) +
Long word — 8 (1/0) *** 12 (1/2) +
MULS - - 70 (1/0) +* —
MULU - - 70 (1/0) +* -
OR Byte, Word — 4 (1/0) + 8 (1/1) +
Long word - 6 (1/0) +** 12 (1/2) +
sus Byte, Word 8(1/0) + 4 (1/0) + 8 (1/1) +
Long word 6(1/0) + ** 6 (1/0) +** 12 (1/2) +
+ : add effective address calculation time
~ : word or long word only

indicates maximum value

*x The base time of six clock periods is increased to eight if the effective

address mode is register direct or immediate (effective address time

should also be added).

¢ Only available effective address mode is data register direct.

DIVS, DIVU - — The divide algorithm used by the TMPG8HC000 provides less
than 10% difference between the best and worst case timings.

MULS, MULU — The multiply algorithm requires 38 +2n clocks where n is

defined as:

d k&

MPU00-91
B 9097249 0047512 723 M

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO00

MULU :
MULS

n =the number of ones in the <ea>

. n=concatanate the <ea> with a zero as the LSB; nis The
resultant number of 10 or 01 pattern in the 17-bit source:
i.e., worst case happens when the source is $5555.

7.2.4 Immediate Instruction Execution Times

The number of clock periods shown in Table 7.7 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (r/w) . The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

In Table 7.7, the headings have the following meanings:

= immediate operand
Dn = dataregister operand
An = address register operand
M = memory operand
SR = statusregister
Table 7.7 Immediate Instruction Execution Times
instruction Size op #, Dn op #, An op#, M
ADDI Byte Word 8 (2/0) - 12 (2/1) +
Long word 16 (3/0) - 20 (3/2) +
4 (1 8(1/0) * 8 (11
ADDQ Byte Word (1/0) (1/0) (111) +
Long word 8 (1/0) 8 (1/0) 12 (1/2) +
Byte Wi 2 et 12 (21
ANDI yte Word 8 (2/0) (2/1) +
Long word 16 (3/0) - 20 (3/1) +
B — /
CMPI yte Word 8 (2/0) 8 (2/0) +
Long word 14 (3/0) - 12 (3/0) +
EORI Byte Word 8 (2/0) - 12 (211) +
Long word 16 (3/0) - 20 (3/2) +
MOVEQ Long word 4 (1/0) - —
ORI Byte Word 8 (2/0) - 12 (2/1) +
Long word 16 (3/0) . 20 (3/2) +
SUBH Byte Word 8 (2/0) - 12 (2/1) +
Long word 16 (3/0) - 20 (3/2) +
SUBQ Byte Word 4 (1/0) 8(1/0) * 8 (1/1) +
Long word 8 (1/0) 8 (1/0) 12 (172) +
+ : add effective address calculation time
* word only
MPU00-92

B 9097249 004?513 LT WA

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

7.2.5 Single Operand Instruction Execution Times

Table 7.8 indicates the number of clock periods for the single operand instructions.
The number of bus read and write cycles is shown in parenthesis as (r/w) . The number
of clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table 7.8 Single Operand Instruction Execution Times

Instruction Size Register Memory

CLR Byte, Word 4(1/0) 8 (1/1) +
Long word 6 (1/0) 12 (1/2) +

NBCD Byte 6 (1/0) 8 (1/1) +
NEG Byte, Word 4 (1/0) 8 (1/1) +
Long word 6 (1/0) 12 (1/2) +

NEGX Byte, Word 4(1/0) 8 (1/1) +
Long word 6 (1/0) 12 (1/2) +

NOT Byte, Word 4(1/0) 8 (1/1) +
Long word 6 (1/0) 12 (172) +

Sec Byte, False 4 (1/0) 8 (1/1) +
Byte, True 6 (1/0) 8 (1/1) +

TAS Byte 4 (1/0) 10 (/1) +
ST Byte, Word 4(1/0) 4 (10) +
Long word 4(1/0) 4 (1/0) +

+ . add effective address calculation time

7.2.6 Shift/Rotate [nstruction Execution Times

Table 7.9 indicates the number of clock periods for the shift and rotate instructions.
The number of bus read and write cycles is shown in parenthesis as (r/w) . The number
of clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table 7.9 Shift/Rotate Instruction Execution Times

Power ed by | Cni ner.

Instruction Size Register Memory
ASR, ASL Byte, Word 6 +2n (1/0) 8(1/1) +
Long word 8+ 2n(1/0) -
B d 6+2n(1/ 8 (1N
LSR, LSL yte, Wor +2n (1/0) (1/1) +
Long word 8 +2n (1/0) -
ROR, ROL Byte, Word 6 +2n (1/0) 8(1/1) +
Long word 8 +2n (1/0) -
. Byte, d 6+2n (1/0 811
ROXR, ROXL yte, Wor +2n (1/0) (am +
Long word 8 +2n (1/0) —
MPU00-93

B 9097249 0047514 5Tk WM

com El ectronic-Li brary Service CopyRi ght 2003

TOSHIBA TMP68HC000

+ : add effective address calculation time

n : the shiftor rotate count
7.2.7 Bit Manipulation Instruction Execution Times

Table 7.10 indicates the number of clock periods required for the bit manipulation
instructions. The number of bus read and write cycles is shown in parenthesis as (r/w).
The number of clock periods and the number of read and write cycles must be added
respectively to those of the effective address calculation where indicated.

Table 7.10 Bit Manipulation Instruction Execution Times

) Dynamic Static
Instruction Size
Register Memory Register Memory
Byte bt 81/ - 12 (211
BCHG y (1/1) + (2/1) +
Long word 8(1/0) * - 12 (2/0) * -
Byt - 81N - 12 (21
BCLR e (v + 1) +
Long word 10 (1/0) * — 14 (2/0) * -
BSET Byte - 8(1/1) + - 12 (2/7) +
Long word 8 (1/0) * - 12 (2/0) * .
Byt - 4(1/0 - 8 (2/0
BTST yte (1/0) + (2/0) +
Long word 6(1/0) - 10 (2/0) —
+ : add effective address calculation time
* . indicates maximum value

7.2.8 Conditional Instruction Execution Times

Table 7.11 indicates the number of clock periods required for the conditional
instructions. The number of bus read and write cycles is indicated in parenthesis as
(r/w) . The number of clock periods and the number of read and write cycles must be
added respectively to those of the effective address calculation where indicated.

Table 7.11 Conditional Instruction Execution Times

Instruction Displacement Branch Taken Branch Not Taken
Bec Byte 10 (2/0) 8(1/0)
Word 10 (2/0) 12 (2/0)
B 10 (2/0 -
BRA yte 0 (2/0)
Word 10 (2/0) —
Byte 18 (2/2 -
BSR y (2/2)
Word 18 (2/2) -
CC true - 12 (2/0)
DBcc
CC false 10 (2/0) 14 (3/0)

MPUO00-94
B 9097249 0047515 432 W

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Table 7.12 indicates the number of clock periods required for the jump, jump-to-
subroutine, load effective address, push effective address, and move multiple registers
instructions. The number of bus read and write cycles is shown in parenthesis as (r/w) .

Table 7.12 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instr Size (An) {An) + - (An)| d16(An) [d8(An, Xn)*| Abs.W Abs.L d16(PC) [d8(PC, Xn)*
IMP - 8 (2/0) - i 10 (2/0} 14 (3/0) 10(2/0) 12 (3/0) 10 (2/0) 14 (3/0}
JSR - 16(2/2) - - 18(2/2) 22(2/2) 18(2/2) 20(372) 18(2/2) 22(2/2)
LEA - 4 (1/0) - - 8 (2/0) 12(2/0) 8(2/2) 12 (3/0) 8(2/0) 12(2/0)
PEA - 12(172) . - 16(2/2) 20(2/2) 16(2/2) 20 (3/2) 16 (2/2) 20(2/2)
d 12 +4n 12 +4n _ 16 +4n 18 +4n 16 + 4n 20+ 4n 16+ 4n 18 + 4n
Wor (3+n/0) | (3 +n/0) (4 + n/0} {4 +n/0Q) {4+ 2n/0) (5 + n/Q) (4 +n/0) {4 + n/0)
MOVEM
M-SR | long | 12480 | 12480 | _ 16+ 8n 18+ 8n 16+ 8n 20 +8n 16+ 8n 18+ 8n
word | (3 +2n/0) | (3 +2n/0) {4+ 2n/0) {4 + 2n/0) (4+20/0) | (5+2n/0) | (4+2n/0) {4 + 2n/0)
Word 8+ 4n — 8+4n 12+ 4n 14+ 4n 12 +4n 16+ 4n - _
MOVEM (2/n) (2/n) (3/n} (3/n) 3/n) (4/n)
ROM | ong | 8+8n _ 8+8n| 12+8n 14+8n 12+8n 16+ 8n _ _
word (2/2n) (2/2n) | (3/2n) (3/2n) (3/2n} (472n)
n : the number of registers to move

the size of the index register (Xn) does not affect the instruction’s execution
time

7.2.10 Multi-Precision Instruction Execution Times

Table 7.13 indicates the number of clock periods for the multi-precision instructions.
The number of clock periods includes the time to fetch both operands, perform the
operations, store the results, and read the next instructions. The number of read and
write cycles is shown in parenthesis as (r/w) .

In Table 7.13, the headings have the following meaning:

Dn = dataregister operand
M = memory operand.

Table 7.13 Multi-Precision Instruction Execution Times

Instruction Size op Dn, Dn op M, M
ADDX Byte, Word 4(1/0) 18 (3/1)
Long word 8 (1/0) 30(5/2)
Byte, Word . 12 (3/0)

CMPM
Long word - 20 (5/0)

. w 4
SUBX Byte, Word (1/0) 18 (3/1)
Long word 8(1/0) 30 (5/2)
ABCD Byte 6 (1/0) 18 (3/1)
SBCD Byte 6 (1/0) 18 (3/1)
MPU00-95

M 9097249 004751k 379 W

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

7.2.11 Miscellaneous Instruction Execution Times

Table 7.14 and 7.15 indicate the number of clock periods for the following
miscellaneous instructions. The number of bus read and write cycles is shown in
parenthesis as (r/w) . The number of clock periods plus the number of read and write
cycles must be added to those of the effective address calculation where indicated.

Table 7.14 Miscellaneous Instruction Execution Times

Instruction Size Register Memory
ANDIi to CCR Byte 20 (3/0) -
ANDI to SR Word 20 (3/0) -

CHK - 10 (1/0) + -

EORI to CCR Byte 20 (3/0) -

EORI to SR Word 20 (3/0) -

ORI to CCR Byte 20 (3/0) -

ORI to SR Word 20 (3/0) -
MOVE from SR - 6 (1/0) 8 (171) +
MOVE to CCR — 12 (1/0) 12 (1/0) +

MOVE to SR - 12 (1/0) 12 (1/0) +

EXG - 6 (1/0) -

EXT Word 4 (1/0) -

Long word 4 (1/0) -

LINK - 16 (2/2) -
MOVE from USP - 4 (1/0) -
MOVE to USP - 4 (1/0) -

NOP - 4 (1/0) -
RESET - 132 (1/0) —

RTE - 20 (5/0) -

RTR - 20 (5/0) -

RTS - 16 (4/0) -
STOP - 4 (0/0} -
SWAP - 4 (1/0) -

TRAPV (No Trap) - 4 (1/0) -
UNLK - 12 (3/0) -
+ : add effective address calculation time
MPU00-96

M S097249 0047517 205 W

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HCO000
Table 7.15 Move Peripheral Instruction Execution Times
Instruction Size Register—Memory Memory—Register
Word 16 (2/2) 16 (4/0)
MOVEP
Long word 24 (2/4) 24 (6/0)

7.2.12 Exception Processing Execution Times

Table 7.16 indicates the number of clock periods for exception processing. The
number of clock periods includes the time for all stacking, the vector fetch, and the fetch
of the first two instruction words of the handler routine. The number of bus read and
write cycles is shown in parenthesis as (r/w) .

Table 7.16 Exception Processing Execution Times

Exception Periods
Address Error 50 (4/7)
Bus Error 50 (4/7)
CHK Instruction (Trap Taken) 44 (5/3) +
Divide by Zero 42 {5/3)
lilegal Instruction 34 (4/3)
Interrupt 44 (5/3)*
Privilege Violation 34 (4/3)
RESET** 40 (6/0)
Trace 34 (4/3)
TRAP Instruction 38 (4/3)
TRAPV Instruction (Trap Taken) 34 (4/3)
+ : add effective address calculation time
+ : Theinterrupt acknowledge cycle is assumed to take four clock

periods.

»+ : Indicates the time from when RESET and HALT are first

sampled as negated to when instruction execution starts.

MPU00-97
B 9097249 0047518 141 WW

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

8. ELECTRICAL SPECIFICATIONS

This section contains electrical specifications and associated timing information for
the TMP68HCO000.

8.1 MAXIMUM RATINGS

Value
Rating Symble Unit
TMPG8HCO000
Supply Voltage Ve ~-0.3~+6.5 \
Input Voltage Vin -0.3~+6.5
Operating Ta 0~ +70 °C
Temperature Range
Storage ~ i o
Temperature Tstg 55~ + 150 C

This device contains circitry to protect the inputs against damage due to high static
voltages or electric fields; however, it is advised that normal precautions be taken to
avoid application of any voltage higher than maximum-rated voltages to this high-
impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an
appropriate logic voltage level (e.g., either GND or Vec),

MPU00-98
B 9097249 0047519 O&s WA

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA

TMP68HCO000

8.2 DCELECTRICAL CHARACTERISTICS

(Vce=5.0V+£5%, GND =0V, Ta=0C ~ +707C: see Figures 8.1)

- TMP68HC000)
Characteristic Symbol Unit
Min Max
Input High Voltage ViH 2.0 Ve \
Input Low Voltage ViL GND-0.3 \'
Input Leakage BERR, BGACK, BR, DTACK,CLK, N - 25 A
Current 1PLO~IPL2, VPA - 2.5
(5.25V) HALT, RESET - 20
Three-State (Off State) (2.4V/0.4V) ITs) HA
Input Current AS, A1~A23, DO-D15, - 20
FCO~FC2, LDS, RAW, - 20
uDs, VMA - 20
Output High Voltage E* . VoH - \
(IOH =-400.A) E, AS, A1~A23, BG, Vce-0.75 -
DO~D15, V¢c-0.75 -
FCO-FC2, LDS, RW, Vce-0.75 -
uDs, VMA Vce-0.75 -
Output Low Voltage VoL \
(10L = 1.6mA) HALT - 0.5
(IOL=3.2mA) A1~A23,BG, FCO~FC2 - 0.5
(IOL=5.0mA) RESET - 0.5
(I0L =5.3mA) E,AS, DO~D15, - 0.5
LDS, R/W, UDS, VMA - 0.5
Current Dissipation*** f=8MHz Ip - 25 mA
f=10MHz - 30
f=12.5MHz - 35
f=16.67MHz - 50
Power Dissipation f=8MHz Pp - 0.13 w
f=10MHz - 0.16
f=12.5MHz - 0.19
f=16.67MHz - 0.26
Capacitance N - 20.0 pF
(Vin=0V, Ta=25C:
Frequency = TMHz)**
Ltoad Capacitance HALT C - 70 pF
All Others - 130

* %

‘With external pullup resistor of 1.1kQ.

Capacitance is periodically sampled rather than 100% tested.

MPU00-99

M 9097249 0047520 &TT WA

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA ' TMPGBHC000

8.3 ACELECTRICAL SPECIFICATIONS —CLOCK TIMING

teyc
tCL | | tCH
2.0V 38 \
0.8V R \
tCr —> tcf

Note: Timing measurements are referenced to and from a low voltage of 0.8 volt and high
a voltage of 2.0 volts, unless otherwise noted. The voltage swing through this range
should start outside and pass through the range such that the rise or fall will be
linear between 0.8 volt and 2.0 volts.

Figure 8.1 Clock Input Timing Diagram
8.4 ACELECTRICAL SPECIFICATION DEFINITIONS

The AC specifications presented consist of output delays, input setup and hold times,
and signal skew times. All signals are specified relative to an appropriate edge of the
clolk and possibly to one or more other signals.
~ The measurement of the AC specifications is defined by the waveforms shown in
Figure 8.2. In order to test the parameters guaranteed by TOSHIBA, inputs must be
driven to the voltage levels specified in this figure. Outputs are specified with minimum
and /or maximum limits, as appropriate, and are measured as shown in Figure 8.2.
Inputs are specified with minimum setup and hold times, and are measured as shown.
Finaly, the measurement for signal-to-signal specifications are also shown.

Note: The testing levels used to verify conformance to the AC specifications does not
affect the guaranteed DC operation of the device as specified in the DC electrical
character-istics.

MPU00-100
B 9097249 004?521 7?3 WA

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

DRIVE
TQ 2.4y
2.0v
CLK F2.0v \ 0.8v J NO.8V
A
DRIVE
ToosvT _ (B,
OUTPUT (N CLK oltiR. ooy SVoutbtacd| A
| l B i
OUTPUT (2) CLK LR 3 oo

DRIVE .
INPUT cLic 1o I e o
1605V p D,
INPUT (4) CLK) 20V VALD 20V ~ PAYEy
0.8V_INPUT 08V DRIVE
T To05v
ALLSIGNAL (5) ooy
E
F
czov
%.: 0.8V
Notes:
1 This output timing is applicable to all parameters specified relative to the rising edge of the
clock.
2 This output timing is applicable to all parameters specified relative to the falling edge of the
clock.
3 This input timing is applicable to all parameters specified relative to the rising edge of the
clock.
4 This input timing is applicable to all parameters specified relative to the falling edge of the
clock.
5 This timing is applicable to all parameters specified relative to the assertion / negation of
another signal.
Legend:
A Maximum output delay specification.
B Minimum output hold time.
C Minimum input setup time specification.
D Minimum input hold time specification.
E Signal valid to signal valid specification (maximum or minimum) .
F Signal valid to signal invalid specification (maximum to minimum) .

Figure 8.2 Drive Levels and Test Points for AC Specifications

MPU00-101
BN 9097249 0047522 L7 WA

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

-TOSHIBA TMP68HC000

8.5 ACELECTRICAL SPECIFICATIONS—READ AND WRITE CYCLES (1/4)
(Vcc =5.0V£5%, GND =0V, Ta=0~70°C; See Figure 8.3 and 8.4)

10MHz 12.5MHz 16.67MH2z
Num. Characteristic Symbol Unit
Min | Max | Min | Max | Min [Max
1 Clock Period tCYC 100 | 250 80 250 60 125 ns
2 Clock Width Low tCL 45 125 35 125 27 62.5 ns
3 Clock Width High tCH 45 125 35 125 27 | 625 ns
4 Clock Fall Time tCf - 10 - 5 - 5 ns
5 Clock Rise Time tCr - 10 - 5 - 5 ns
6 Clock Low to Address Valid tCLAV - 50 - 50 - 30 ns
6A Clock High to FC Valid 1CHFCV - 50 - 45 0 30 ns
Clock High to Address, Data Bus
. z 1 - _ _
7 High Impedance (Maximum) TCHAD 70 60 >0 ns
Clock High to Address,
8 |FCinvalid (Minimum) CHAFRL | 0 0 0 ns
91 |Clock Highto AS, DS Low tCHSL 3 50 3 40 3 30 | ns
Address Valid to AS,)
2 |29 daid) - _ -
112 | 55 Low (Read) / AS Low (Write) tAvSL | 20 15 15 ns
FC Valid to AS, DS
2 . tFCVSL - 6 - 45 -

VIAZ 1| ow (Read) /AS Low (Write) FCvsL | 70 0 ns
121 {Clock Low to AS, DS High tCLSH - 50 - 40 3 30 ns
132 |AS, DSHighto Address/ tsHaFl | 30 | - |20 - |15 | = | ns

FClInvalid
AS, DSWidth Low (Read)/
2 |82 - - -
14 S Low (Write) tSL 195 160 120 ns
14A | DS Width Low (Write) tDSL 95 - 80 - 60 - ns
152 |AS, DSWidth High tSH 105 | - 65 - 60 - ns
MPUO00-102

M 9097249 0O0Qu4?523 509 A

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

8.5 ACELECTRICAL SPECIFICATIONS —READ AND WRITE CYCLES (2/14)
(Vcc=5.0V£5%, GND =0V, Ta=0~70°C; See Figure 8.3 and 8.4)

10MHz 12.5MHz 16.67MH2
Num. Characteristic Symbol Unit
Min | Max [Min | Max | Min | Max
16 Clock High to Control Bus High 1CHCZ _ 70 B 60 _ 50 ns
Impedance .
172 | AS, DS, High to R/ W High (Read) tSHRH 30 - 20 - 15 - ns
181 {Clock High to R/W High tCHRH 0 45 0 40 0 30 ns
201 1 Clock High to R/W Low (Write) tCHRL 0 45 0 40 0 30 ns
20A2.6 [AS Low to R/ W Valid (Write) tASRV - 10 - 10 - 10 ns
212 | Address Valid to R/ W Low (Write) tAVRL 0 - 0 - 0 - ns
21A2 |FC Valid to R /W Low (Write) tFCVRL | 50 - 30 - 30 - ns
222 |R/W Low to DS Low (Write) tRLSL 50 - 30 - 30 - ns
23 CLoFk Low to Data Out Valid tCLDO _ 50 _ 50 _ 30 ns
(Write)
252 AS, !DS High to Data Out Invalid {SHDOI 30 _ 20 _ 15 _ ns
{(Write)
262 |Data Out Valid to DSLow (Write) tDOSL 30 - 20 - 15 - ns
275 Data in to Clock Low (Setup Time DICL 10 _ 10 _ 5 _ ns
on Read)
282 |AS DS High to DTACK High tSHDAH | 0 190 | o [150| o | 110 ns
{Asynchronous Hold)
(AS, DS High to Data-In Invalid
i - - -
29 (Hold Time on Read) tSHD 0 0 0 ne
MPUO00-103

B 9097249 0047524 4us W

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP6&8HC000

85 ACELECTRICAL SPECIFICATIONS—READ AND WRITE CYCLES (3/4)
(Vcc=5.0V 5%, GND =0V, Ta=0~70°C; See Figure 8.3 and 8.4)

10MHz 12.5MHz 16.67MHz
Num. Characteristic Symbol Unit
Min.| Max. |Min.| Max. | Min.| Max.
30 |AS, DS High to BERR High tSHBEH | 0 - 0 - 0 - ns
312,5 |DTACK Low to Dataln ADI | - | 65 | - | 50 | - | 50 | ns
(Setup Time)
32 |HALT and RESET Input Transition tRHr, f 0 200 0 200 - 150 ns
33 |{Clock High to BG Low tCHGL - S0 - 40 0 30 ns
34 |Clock High to BG Low tCHGH - 50 - 40 0 30 ns
35 |BR Low to BG Low BRLGL | 1.5 | 35 | 15] 35 |15 35 gg‘r
367 |BR Highto BG Low tBRHGH | 1.5 3.5 1.5 35 1.5 3.5 Seli
37 |BGACK Low to BG Low tGALGH | 1.5 3.5 1.5 35 1.5 3.5 glekr
37A8 |BGACK Low to BG Low weagrr| 20 | 10 L20 | M5 {10 |12 | ns
Clocks Clocks Clocks
38 |BG Width High tGLZ - 70 - 60 - 50 ns
— . Clk.
39 |BG Width High tGH 15| - 15| - 15| -
. . Per.
40 |Clock Low to VMA Low tCLVML - 70 - 70 - 50 ns
41 Clock Low to E Transition tCLET - 45 - 35 - 35 ns
42 | EQutputRise and Fall Time tEr, f - 15 - 15 - 15 ns
a3 VMA Low to E High tVMLEH | 150 - 90 - 80 - ns
44 | AS, DS High to VPA High tSHVPH 0 90 0 70 0 50 ns
E Low to Contrel, Address Bus
45 invalid (Address Hold Time) tELCAI 10 - - - 10 - ns

MPU00-104
M 9097249 pOu4?7525 341 I

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

8.5 ACELECTRICAL SPECIFICATIONS —READ AND WRITE CYCLES (4/4)
(Vcc=5.0V+5%, GND =0V, Ta=0~70°C; See Figure 8.3 and 8.4)

L 1T0MHz 12.5MHz 16.67MHz
Num. Characteristic Symbol Unit
Min. | Max. | Min. [Max. | Min. | Max.
46 |BGACK Width Low GAL |15 | — |15 | - | 15| ,E::
475 [Asynchronous input Setup Time tASl 10 - 10 - 5 - ns
482.3 | BERR Low to DTACK Low tBELDAL | 20 - 20 - 10 - ns
499 | AS, DS High to € Low tSHEL | -55| 55 | -45| 45 | —=35| 35 ns
50 |EWidth High tEH 350 - 280 - 220 - ns
51 E Width High tEL 550 - 440 - 340 - ns
53 [Clock High to Data Out Invalid tCHDOI 0 - 0 - 0 - ns
54 E Low to Data Out Invalid tELDOI 20 - 15 - 10 - ns
55 |R/W to DataBus Driven tRLDBD | 20 - 10 - 0 - ns
564 |[HALT/RESET Pulse Width tHRPW 10 - 10 - 10 - g;
57 |BGACKHigh to Control Bus Driven | tGASD 1.5 - 1.5 - 1.5 - ISIekr
. R Clk.
587 |[BG High to Control Bus Driven tRHSD 1.5 - 1.5 - 1.5 - por
Note :

1. For a loading capacitance of less than or equal to 50 picofarads, substract 5 nanoseconds from
the value given in the maximum columns.

. Actual value depends on period.)

. If #47 is satisfled for both DTACK and BERR, #48 may by 0 nanoseconds.

. For powder up, the MPU must be held in RESET state for 100 ms to allow stabilization of on-
chip circuitry. After the system is powered up, #56 refers to the minimum pulse width required
to reset the system.

5. If the asynchronous setup time (#47) requirements are satisfied, the DTACK low-to-data setup
time (#31) requirement can be ignored. The data must only satisfy the date-in clock-low setup
time (#27) for the following cycle.

6. When AS and R/W are equally loaded (+20%) , subtract 10 nanoseconds from the values given
in these columns.

7. The processor will nagate BG and begin driving the bus again if external arbitration logic
negates BR before asserting BGACK.

8. The minimum value must be met to guarantee proper operation. If the maximum value is
exceeded, BG may be reasserted.

9. The falling edge of 86 triggers both the negation of the strobes (AS and xDS) and the falling
edge of E. Either of these events can occur first, depending upon the loading on each signal.
Specification #49 indicates the absolute maximum skew that will occur between the rising
edge of the strobes and the falling edge of the E clock.

BN

MPU00-105
B 9097249 004752L 218 WA

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO00

These waveforms should only be referenced in regard to the edge-to-edge
measurement of the timing specifications. They are not intended as a functional
description of the input and output signals. Refer to other functional descriptions and
their related diagrams for device operation.

S0 S1 S2 S3 sS4 SS S6
ak _F N £ N/ N/
Q)
FCO-FC2 N
2=t IO
A1-A23] 4
_() > 1< — -<—®
AS _] @ 2
® Q4 [©
55/ TUDS _4 N]
«j@
R/W
: —||~—@ @
DTACK b
@— o=l |—®
@
Dataln — @ 75
B%NRR’:/?%)& F
ote
HALT /RESET 56 |
— 4—@
Asynchronous X
Inputs - 3
(NOTE 1)
Note :

1. Setup time for the asynchronous inputs IPLO~IPL2, and VPA guarantees their
recognition at the next falling edge of the clock.

2. BR need fall at this time only in order to insure being recognized at the end of this bus
cycle.

3. Timing measurements are referenced to and from a low voltage of 0.8 volt and a high
voltage 2.0 volts, unless otherwise noted. The voltage swing through this range should
start outside and pass through the the range such that the rise or fall will be linear
between 0.8 volt and 2.0 volts.

Figure 8.3 Read Cycle Timing Diagram

MPUO00-106
M 9097249 0047527 154 IH

Powered by | Cniner.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

These waveforms should only be referenced in regard to the edge-to-edge
measurement of the timing specifications. They are not intended as a functional
description of the input and output signals. Refer to other functional descriptions and
their related diagrams for device operation.

s st 2 s34 S5 6 ST (D, (B

ak _F N 7 X £ N /N 5 '3
o= M <O
FCO~FC2 N
®— —®
A1~A23 ol
__@—» foe———— :‘I— @_> le
AS @
@ ﬁ 1) — (—@
IDS/UDS A 07 —| 4G ¥ _ 145
@ @l e
RIW | N\ /
21A —{|~—G@D D)
DTACK &> :—’ y j’
1 ~«— (53
®—> -~ @) | _, Q
Data Out x p:
_ =@ —
BERR(;1235 @—] = \
-— —-»l <—
@ —o= | |t (32
HALT / RESET 3 4 b
\47
Asynchrc:‘nczltg).
(Note 1)
Note :

1. Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage
of 2.0 volts, unless otherwise noted.
The voltage swing through this range should start outside and pass through the range such
that the rise or fall will be linear between 0.8 volt 2.0 volts.

2. Because of loading variation, R/ W may be valid after AS even through both are initiated by
the rising edge of S2 (Specification 204).

Figure 8.4 Write Cycle Timing Diagram

MPU00-107
B 5097249 004?528 090 WA

Power ed by | Cnminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HC000

8.6 ACELECTRICAL SPECIFICATIONS—TMP68HC000 TO 6800 PERIPHERAL
(Vcc=5.0V+5%, GND =0V, Ta=0~70°C; See Figure 8.5 and 8.6)

o 8MHz 10MHz 12.5MHz | 16.67MHz .
Num. Characteristic Symbol Unit
Min | Max | Min | Max | Min | Max { Min | Max
121 |Glocklowto AS,DS | yeysy | - |62 | - |50 | - |40 | 3 |30 | ns
igh

181 ﬁ'i‘g’ﬂ‘ High to R/W t«cHRH | 0 | 55 | o | a5 | o |40 | o | 30 | ns
Clock High to R/ W

20" (5w (Write) tCHRL 0 55 0 45 0 40 0 30 ns
Clock Low to Data Out

23 |ysid crite) tclbo | - [62| - {50 | - |50 [- |30]ns

Data In to Clock Low
27 (Setup Time on Read) tDicL 10

AS, DS High to Data in
29 Invalid tSHDII 0 - 0 - 0 - 0 - ns
(Hold Time on Read)

a0 |Clock Low to VMA | yqiymi | - | 70 | - [70 | = | 70| - | 50 | ns
aw

Clock Low .to E :

41 Transition tCLET - 55 - 45 - 35 - 35 ns
E Output Rise and Fali _ _ _ _

42 Time tEr, f 15 15 15 15 ns

43 VMA Low to E High tVMLEH | 200 - 150 - 90 - 80 - ns

a4 ﬁ?ér?s High to VPA tsSHvPH | 0 [120| o |90 | o | 70| o | 50 | ms
E Low to Control,

45 Address Bus Invalid{ tELCAL 30 - 10 - 10 - 10 - ns
(Address Hold Time)
Asynchronous Input _ _ _ _

47 Setup Time tASH 10 10 10 5 ns

492 |AS, DS Highto E Low tSHEL -70| 70 [-55| 55 | -45| 45 | -35| 35 ns

50 E Width High tEH 450 - 350 - 280 - 220 - ns

51 E Width Low tEL 700 - 550 - 440 - 340 - ns
E Low to Data Out

54 ||nvalid) tELDOI 30 - 20 - 15 - 10 - ns

Note 1: For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds

from the value given in the maximum columns.

2: The falling edge of S6 triggers both the negation of the strobes (AS and xDS) and the
falling edge of E. Either of these events can occur first, depénding upon the loading on
each signal. Specification #49 indicates the absolute maximum skew that will occur

between the rising edge of the strobes and falling edge of the E clock.

MPUO0O-108
B 5097249 004?529 T2v HE

Power ed by | Cnminer.com El ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCC00

SO 51,52 S3 S4 W W W W W W W W wW w w w S5 56 $7 SO
S W A WA e WAVWE YAWAWAWE'Y aW/
A1~A23 —{]
E ———] <— @_)»:_‘—
- @ | T] @
R/W Vi
—v- - | <——- @] p
E \ S /1 O N
—>| [+—(22) | |- 50 =
VPA <)L (@ —>| | @ Vi
I |-— H @
— L ® @—{] |« =@
—t ><—
Data Out ——————X[F—
— <& @
Data In =

Note: Thistiming diagram is included for those who wish to design their own circuit to generate
VMA. It shows the best case possibly attainable.

Figure 8.5 TMP68HCO000 to 6800 Peripheral Timimg Diagram — Best Case

0S1S2S3SA W W W W WWWWWWWWWWWWWW WWWWW WWWS55657S0

CLK ALY
- .
Al1~A23
s (i
AS A /
R/W \
E / - Te @ — ——®
) N
47 — |t T 4—@
VA T | L © —~—® ®
— P @
VMA J«—»
—] 4——@ ! ——B' |-
Data Out L =
DataIn @_T‘__‘;: m

Note: This timing diagram is included for those who wish to design their own circuit to generate
VMA. It shows the worst case possibly attainable.

Figure 8.6 TMP68HCO000 to 6800 Peripheral Timing Diagram — Worst Case

MPUQ0-109
B 9097249 004?530 749 W

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68HCO000

8.7 ACELECTRICAL SPECIFICATIONS —~BUS ARBITRATION
(Vce =5.0V+£5%, GND =0V, Ta=0~70°C; See Figure 8.7)

8MHz 10MHz 12.5MHz 16.67MHz
Num. Characteristic Symbol Unit
Min | Max | Min | Max [Min | Max | Min | Max
Clock High to Address,
7 |DataBusHigh tCHADZ | - 80 - 70 - 60 - 50 ns
Impedance
16 |Clock High to Control | ey | _ | g0 | = | 70 | - | 60 | - | 50 | ns
Bus High Impedance
33 |Clock Highto BG Low | tCHGL - 62 - 50 - 40 0 30 ns
34 |{Clock High to BG High { tCHGH - 62 - 50 - 40 0 30 ns
35 |BRLowtoBG Low tBRLGL | 1.5 35 {15 35 (15| 35 (15| 35 lf'e'j
361 |BR Highto BG High tBKHGH | 1.5 | 35 | 15| 35 | 15| 35 [15| 35 g'ekr'
37 |BGACKLowtoBG tGALGH | 1.5 | 35 |15 35 15| 35 |15 35 |S
High Per.
BGACK Low to BR 1.5 1.5 1.5 1.5
2 ALB
37A High 1G RH} 20 Clocks 20 Clocks 20 Clocks 10 Clocks ns
BG Low to Control,
3g |Address DataBus iz | - | 8 | - | 70 | - | 60 | - | 50 | ns
High Impedance
(AS High)
S . Clk.
39 |BG Width High tGH 1.5 - 1.5 - 1.5 - 1.5 - Per
46 BGACK Width Low tGAL 1.5 - 1.5 - 1.5 - 1.5 - SIQI:
47 |Asynchronous Inputl yaq | qo | - 10| - [0 | - [5] - |ns
Setup Time
BGACK High to Clk.
57 Control Bus Driven tGABD | 1.5 - 1.5 15 - 1.5 Per.
581 BG High to Control tGHBD | 15 _ is _ 15 _ 15 _ Clk.
Bus Driven Per.

Note: 1. The processor will negate BG and begin driving the bus again if external
arbitration logic negates BR before asserting BGACK.
2. The minimum value must to guarantee proper operation. If the maximum value is
exceeded, BG may be reasserted.

MPUQ0-110
B 9097249 004?531 bL&S I

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

TOSHIBA TMP68BHC000

The waveforms shown in Figures 8.9, 8.10, and 8.11 should only be referenced in
regard to the edge-to-edge measurement of the timing specifications. They are not
intended as a functional description of the input and output signals. Refer to other
functional descriptions and their related diagrams for device operation.

Strobes,

i .
R/W—_./_-‘

|
BGACK —\ '

—®— @ @ —
86 N / -
cLK S\

Note :

Setup time to the clock (#47) for the asynchronous imputs BERR, BGACK,
BR, DTACK, TPLO~IPLZ and VPA guarantees their recognition at the
next falling edge of the clock.

Figure 8.7 Bus Arbitration Diagram

MPU00-111
B 9097249 004?532 511 WA

Powered by | Cnminer.comEl ectronic-Library Service CopyRi ght 2003

