LU3X31FT Single-Port 3 V 10/100 Ethernet Transceiver TX/FX

Overview

The LU3X31FT is an integrated $10 / 100 \mathrm{Mbits} / \mathrm{s}$ physical layer device with an integrated transceiver. This part was designed for 10/100 Mbits/s applications where board space, cost, and power are at a premium and stringent functional interoperability is a necessity. Operating at 3.3 V , the LU3X31FT is a powerful device for the forward migration of legacy $10 \mathrm{Mbits} / \mathrm{s}$ products and noncompliant (does not have autonegotiation) $100 \mathrm{Mbits} / \mathrm{s}$ devices. The LU3X31FT was designed from the beginning to conform fully with all pertinent specifications, from the ISO*/IEC 11801 and EIA ${ }^{\dagger} /$ TIA 568 cabling guidelines to $A N S I^{\ddagger}$ X3.263 TP-PMD to IEEE ${ }^{\S} 802.3$ Ethernet specifications.

Features

- Single-chip integrated physical layer and transceiver for 10Base-T and/or 100Base-T functions.
- IEEE 802.3 compatible 10Base-T and 100Base-T physical layer interface and ANSI X3.263 TP-PMD compatible transceiver.
- PECL interface for external FX transceiver.
- Built-in analog $10 \mathrm{Mbits} / \mathrm{s}$ receive filter, removing the need for external filters.
- Built-in 10 Mbits/s transmit filter.
- 10 Mbits/s PLL exceeding tolerances for both preamble and data jitter.

[^0]- $100 \mathrm{Mbits} / \mathrm{s}$ PLL, combined with the digital adaptive equalizer, robustly handles variations in risefall time, excessive attenuation due to channel loss, duty-cycle distortion, crosstalk, and baseline wander.
- Transmit rise-fall time manipulated to provide lower emissions, amplitude fully compatible for proper interoperability.
- Programmable scrambler seed for better FCC compliancy.
- Selectable CIM, Class II support, and powerful MII drivers for repeater applications.
- IEEE 802.3u Clause 28 compliant autonegotiation for full 10M and 100M control.
- Fully configurable via pins and management accesses.
- Extended management support with interrupt capabilities.
- PHY MIB support.
- Symbol mode option.
- Full LED support.
- Low power consumption 150 mA max.
- 80-pin MQFP and 80-pin LQFP packages.

Table of Contents

Contents Page
Overview 1
Features 1
Description 4
Pin Information 5
Functional Description 11
Media Independent Interface (MII) 11
Interface Signals 11
Operation Modes 11
Serial Management Interface 12
100Base-X Module 12
100Base-X Transmitter 13
100Base-X Receiver 15
100Base-X Link Monitor 16
100Base-TX Transceiver. 17
Transmit Drivers 17
Twisted-Pair Receiver 17
10Base-T Module 17
Operation Modes 18
Clock Synthesizer. 19
Autonegotiation 19
Reset Operation 20
PHY Address 21
Normal MII/Repeater Mode Select 21
Fiber Mode Select 21
Autonegotiation and Speed Configuration. 21
100Base-X PCS Configuration 22
MII Registers 23
dc and ac Specifications 35
Absolute Maximum Ratings 35
Clock Timing 36
Outline Diagram 47
80-Pin MQFP 47
Technical Document Types 48
Ordering Information. 49
Tables Page
Table 1. Twisted-Pair Magnetic Interface 5
Table 2. Fiber-Optic Transceiver Interface 6
Table 3. Twisted-Pair Transceiver Control 6
Table 4. MII Interface 6
Table 5. PHY Address Configuration 7
Table 6. 100Base-X PCS Configuration 7
Table 7. Autonegotiation Configuration 8
Table 8. Special Mode Configurations 8
Table 9. LED and Status Outputs 9
Table 10. Clock and Chip Reset 10
Table 11. Power and Ground 10
Table 12. Symbol Code Scrambler 14
Table 13. Autonegotiation 21

Table of Contents (continued)

Tables (continued)Table 14. MII Management Registers22
Table 15. Control Register (Register Oh) 23
Table 16. Status Register Bit Definitions (Register 1h) 25
Table 17. PHY Identifier (Register 2h) 26
Table 18. PHY Identifier (Register 3h) 27
Table 19. Autonegotiation Advertisement (Register 4h) 27
Table 20. Autonegotiation Link Partner Ability (Register 5h). 27
Table 21. Autonegotiation Expansion Register (Register 6h) 28
Table 22. Isolate Counter (Register 12h) 28
Table 23. False Carrier Counter (Register 13h) 28
Table 24. Receive Error Counter (Register 15h) 29
Table 25. PHY Control/Status Register (Register 17h) 29
Table 26. Config 100 Register (Register 18h) 30
Table 27. PHY Address Register (Register 19h) 32
Table 28. Config 10 Register (Register 1Ah) 32
Table 29. Status 100 Register (Register 1Bh) 33
Table 30. Status 10 Register (Register 1Ch) 33
Table 31. Interrupt Mask Register (Register 1Dh) 33
Table 32. Interrupt Status Register (Register 1Eh) 34
Table 33. Absolute Maximum Ratings 35
Table 34. Operating Conditions 35
Table 35. dc Characteristics 36
Table 36. System Clock (Xin) 36
Table 37. Transmit Clock (Input and Output) 37
Table 38. Management Clock 38
Table 39. MII Receive Timing 39
Table 40. MII Transmit Timing 40
Table 41. Transmit Timing 41
Table 42. Receive Timing 42
Table 43. Reset and Configuration Timing 43
Table 44. PMD Characteristics 44
Figures Page
Figure 1. LU3X31FT Block Diagram 4
Figure 2. Pin Diagram 5
Figure 3. 100Base-X Data Path 13
Figure 4. 10Base-T Module Data Path 18
Figure 5. Hardware Reset Configurations 21
Figure 6. System Timing. 36
Figure 7. Transmit Timing (Input and Output) 37
Figure 8. Management Timing 38
Figure 9. MII Receive Timing 39
Figure 10. MII Transmit Timing 40
Figure 11. Transmit Timing 41
Figure 12. Receive Timing 42
Figure 13. Reset and Configuration Timing 43
Figure 14. PMD Timing 44
Figure 15. Connection Diagrams (Frequency References) 45
Figure 16. Connection Diagrams (10/100BTX Operation) 46

Description

Figure 1. LU3X31FT Block Diagram

Pin Information

5-6780(F).ar. 2
Figure 2. Pin Diagram

Table 1. Twisted-Pair Magnetic Interface

Pin No.	Pin Name	I/O	Pin Description
64	TPTX +	O	Twisted-Pair Transmit Driver Pair. These pins are used to send 100Base-T MLT-3 signals or 10Base-T Manchester signals across UTP cable.
75	TPTX-		I
77	Twisted-Pair Receive Pair. These pins receive the high-speed serial Tream from the UTP cable.		

Pin Information (continued)

Table 2. Fiber-Optic Transceiver Interface

Pin No.	Pin Name	I/O	Pin Description
68	FOTX +	O	Fiber-Optic Transmit Driver Pair. These pins are used to transmit differen- tial PECL level NRZI data to a fiber-optic transceiver.
69	FOTX-		I
4	FORX +		
3	FORX-		Fiber-Optic Receive Pair. These pins are used to receive differential PECL level NRZI data from a fiber-optic transceiver.
1	FOSD+/SRL10	I	Fiber-Optic Signal Detect Differential Input Pair. While operating in fiber mode, these pins are used to detect whether or not the fiber-optic receive pairs are receiving valid signal levels. See Table 8 for SRL10 and ROSD-/RPTR10CLK
			RPTR10CLK descriptions. If fiber and serial 10 modes are not being used, tie pin 1 and 2 low.

Note: Smaller font indicates that the pin has multiple functions.
Table 3. Twisted-Pair Transceiver Control

Pin No.	Pin Name	I/O	Pin Description
61	REF100	I	Reference Resistor for 100 Mbits/s Twisted-Pair Driver. Connect this pin to ground through a 301 Ω resistor.
60	REF10	I	Reference Resistor for 10 Mbits/s Twisted-Pair Driver. Connect this pin to ground through a 4.64 $\mathrm{k} \Omega$ resistor.
8	TPTXTR	I	Twisted-Pair Transmitter 3-State. A high on this pin will 3-state both the twisted-pair and fiber outputs. Tie to ground in normal operation.

Table 4. MII Interface

Pin No.	Pin Name	I/O	Pin Description
23	RXDV	O	Receive Data Valid. Signals the presence of data on RXD[3:0].
24	RXER	O	Receive Error. Indicates a received coding error has occurred.
25	RXD3	O	Receive Data[3].
26	RXD2	O	Receive Data[2].
27	RXD1	O	Receive Data[1].
28	RXD0	O	Receive Data[0].
29	RXCLK	O	Receive Clock.
34	TXEN	I	Transmit Enable. Signals the presence of data on TXD[3:0].
35	TXER	I	Transmit Error. Indicates a transmit coding error has occurred.
36	TXD3	I	Transmit Data[3].
37	TXD2	I	Transmit Data[2].
38	TXD1	I	Transmit Data[1].
39	TXD0	I	Transmit Data[0].
41	TXCLK	O	Transmit Clock. This pin outputs during node mode only. For 100 Mbits/s repeater mode, all transmit related MII signals should be syn- chronized to 25 MHz clock on XIN pin. See Table 8 for 10 Mbits/s repeater mode clocking.
42	CRS/PHY[3]	I/O	Carrier Sense/PHY Address[3]. This output pin indicates the carrier sense condition. It is only active on receive while in repeater mode. See Table 5 for PHY[3] description.

[^1]Pin Information (continued)
Table 4. MII Interface (continued)

Pin No.	Pin Name	I/O	Pin Description
48	COL/FCRS/PHY[4]	I/O	Collision/False Carrier Sense. This output pin indicates collision condition in normal MII operation, indicates false carrier sense condition in repeater mode, and is squelch jabber in 10 Mbits/s mode. See Table 5 for PHY[4] description.
43	MDIO	I/O	Management Data I/O. Serial access to device config registers.
55	MDC	I	Management Data Clock. Clock for R/W of device config registers.
11	MIIENA	I	MII Enable. A logic 0 on this pin 3-states all RX interface signals of MII. This pin is intended to be used by the repeater controller to selectively enable one of the PHYs in the system. For normal MII applications, this pin is ignored.
21	MDIOINTZ/PHY[2]	I/O	MDIO Interrupt (Active-Low). The MDIO interrupt pin outputs a logic 0 pulse of 40 ns, synchronous to XIN, whenever an unmasked interrupt condi- tion is detected. Refer to management registers 1Dh and 1Eh for interrupt conditions. See Table 5 for PHY[2] description.

Note: Smaller font indicates that the pin has multiple functions.
Table 5. PHY Address Configuration

Pin No.	Pin Name	I/O	Pin Description
14	PHY[0]	I	PHY Address[4:0]. These 5 pins are detected during powerup or reset to 17
PHYY[1]	I		
initialize the PHY address used for MII management register interface. PHY			
21	PHY[2]/MDIoInTz	I/O	address 00h forces the PHY into MII isolate mode. Pull the PHY addesses
42	PHY[3]/CRS	I/O	up or down via a high-value resistor, such as 10 k Ω. PHY address pins[4:2] 48
PHY[4]/coL/FCRS	I/O		
have an internal 40 k Ω pull-down resistors. See Table 4 for MDIOINTZ, CRS,			
COL, and FCRS description.			

Note: Smaller font indicates that the pin has multiple functions.
Table 6. 100Base-X PCS Configuration

Pin No.	Pin Name	I/O	Pin Description
51	BPSCR/LEDTX/ ACTLED	I/O	Bypass Scrambler Mode. A high value on this pin during powerup or reset will bypass the scrambler/descrambler operations in 100Base-X data path. In fiber mode, this pin should be tied high. This pin has an internal $40 \mathrm{k} \Omega$ pull-down. See Table 9 for LEDTX and ACTLED description.
52	BP4B5B/LEDCOL	I/O	Bypass 4B5B Mode. A high value on this pin during powerup or reset will bypass the 4B/5B encoder of the PHY. This pin has an internal 40 k Ω pull- down. See Table 9 for LEDCOL description.
54	BPALIGN/LNKLED	I/O	Bypass Alignment Mode. A high value on this pin during powerup or reset will bypass the alignment feature of the PHY. This pin has an internal 40 k Ω pull-down. See Table 9 for LNKLED description.

[^2]
Pin Information (continued)

Table 7. Autonegotiation Configuration (Refer to Table 13.)

| Pin
 No. | Pin Name | I/O | Pin Description |
| :---: | :---: | :---: | :--- | :--- |
| 7 | AUTONEN | I | Autonegotiation Enable. A high value on this pin during powerup or reset
 will enable autonegotiation; a low value will disable it. |
| 5 | 100FDEN/CIMEN | I | 100 Full-Duplex Enable. The logic level of this pin is detected at powerup or
 reset to determine whether 100 Mbits/s full-duplex mode is available. The
 100 Mbits/s full-duplex mode is available only if NDPRTR pin is low during
 reset, indicating normal MII operation. When autonegotiation is enabled, this
 input sets the ability register bit in advertisement register 4. When autonegoti-
 ation is not enabled, this input will select the mode of operation. See Table 8
 for CIMEN description. |
| 16 | 100HDEN | I | 100 Half-Duplex Enable. The logic level of this pin is detected at powerup or
 reset to determine whether 100 Mbits/s half-duplex mode is available. When
 autonegotiation is enabled, this input sets the ability register bit in advertise-
 ment register 4. When autonegotiation is not enabled, this input will select the
 mode of operation. |
| 22 | 10FDEN/LEDSP | I/O | 10 Full-Duplex Enable. The logic level of this pin is detected at powerup or
 reset to determine whether 10 Mbits/s full-duplex mode is available. The
 10 Mbits/s full-duplex mode is available only if NDPRTR pin is low during reset
 indicating normal MII operation. When autonegotiation is enabled, this input
 sets the ability register bit in advertisement register 4. When autonegotiation
 is not enabled, this input will select the mode of operation. This pin has an
 internal 40 k Ω pull-up resistor. See Table 9 for LEDSP description. |
| 53 | 10HDEN/LEDFD/
 FEFI_EN | I/O | 10 Half-Duplex Enable. The logic level of this pin is detected at powerup or
 reset to determine whether 10 Mbits/s half-duplex mode is available. When
 autonegotiation is enabled, this input sets the ability register bit in advertise-
 ment register 4. When autonegotiation is not enabled, this input will select the
 mode of operation. This pin has an internal 40 k Ω pull-up resistor. See Table 8 |
| for FEFI_EN and Table 9 for LEDFD descriptions. | | | |

Note: Smaller font indicates that the pin has multiple functions.
Table 8. Special Mode Configurations

Pin No.	Pin Name	I/O	Pin Description
50	NDRPTR/LEDRX	I/O	Normal MII-Repeater Select. This pin is detected during powerup or reset to determine the mode of operation. If this pin is at logic high level, then the PHY will go into repeater mode; otherwise, if logic low, it will operate in normal MII mode. This pin has an internal 40 k Ω pull-down. See Table 9 for LEDRX description.
5	CIMEN/100FDEN	I	Carrier Integrity Monitor Enable. The CIM function is only used for repeater operation. If both NDRPTR pin and CIMEN pin are at logic high level during powerup or reset, then the CIM function is enabled. See Table 7 for 100FDEN description.
15	FOSEL	I	Fiber-Optic Mode Select. This pin is sensed during powerup or reset only. If this pin is detected to be at logic high level, then the LU3X31FT goes into fiber-optic mode.

Note: Smaller font indicates that the pin has multiple functions.

Pin Information (continued)

Table 8. Special Mode Configuartions (continued)

Pin No.	Pin Name	I/O	Pin Description
1	SRL10/FOSD+	I	Serial Mode Select. At powerup or reset, if FOSEL pin is pulled low and SRL10 is pulled high, then the MII interface will be operated in serial mode for $10 \mathrm{Mbits} / \mathrm{s}$ operation. Fiber-optic mode and 10 Mbits/s serial mode cannot be set at the same time. See Table 2 for FOSD+ description.
2	RPTR10CLK/ FOSD-	I/O	10 Mbits/s Repeater Clock. For 10 Mbits/s repeater mode, an external 10 MHz clock should be connected to this pin for clocking of the transmit data. See Table 2 for FOSD- description.
53	FEFI_EN/10HDEN/ LEDFD	I/O	Far-End Fault Indicator Enable. At powerup or reset, if FOSEL pin is set high, logic level of this pin is latched into bit 11 of register 18h. This pin has an internal 40 k Ω pull-up resistor. See Table 7 for 10HDEN and Table 9 for LEDFD description.

Note: Smaller font indicates that the pin has multiple functions.
Table 9. LED and Status Outputs

Pin No.	Pin Name	I/O	Pin Description		
50	LEDRX/NDRPTR	I/O	Receive LED. This output will drive a 10 mA LED if the LU3X31FT is receiv- ing data from the UTP cable. Place a 10 k Ω resistor across the LED pins if setting to nondefault mode, i.e., repeater mode, as shown in Figure 5. See Table 8 for NDRPTR description.		
51	LEDTX/ACTLED/ BPSCR	I/O	Transmit LED or Activity LED. When bit 7 of register 17h is 0, this output will drive a 10 mA LED if the LU3X31FT is transmitting data. If the control bit is set, then the LED will be driven whenever receive or transmit activity is present. Place a 10 k Ω resistor across the LED pins if setting to nondefault mode, i.e., bypass scrambler mode, as shown in Figure 5. See Table 6 for BPSCR description.		
54	LNKLED/BPALIGN	I/O	Link LED. This output will drive a 10 mA LED for as long as a valid link exists across the cable. Place a 10 k Ω resistor across the LED pins if setting to non- default mode, i.e., bypass align mode, as shown in Figure 5. See Table 6 for BPALIGN description.		
52	LEDCOL/BP4B5B	I/O	Collision LED. This output will drive a 10 mA LED whenever the LU3X31FT senses a collision has occurred. Place a 10 k resistor across the LED pins if setting to nondefault mode, i.e., bypass 4B/5B mode, as shown in Figure 5. See Table 6 for BP4B5B description.		
53	LEDFD/10HDEN/				
FEFI_EN				I/O	Full-Duplex Status. This output will drive a 10 mA LED when the LU3X31FT
:---					
is in full-duplex mode. Place a 10 k resistor across the LED pins if setting to					
nondefault mode, i.e., 10HD disable mode, as shown in Figure 5. See Table 7					
for 10HDEN and Table 8 for FEFI_EN description.	$	$			

[^3]Pin Information (continued)
Table 10. Clock and Chip Reset

Pin No.	Pin Name	I/O	Pin Description
57	XIN	I	Crystal Oscillator Input or Clock Input.
58	XOUT	O	Crystal Oscillator Feedback Output. If a single-ended external clock is connected to XIN pin, then XOUT should be grounded for minimum power consumption.
13	RSTZ	I	Reset (Active-Low). This input must be held low for a minimum of 1 ms to reset the LU3X31FT.

Table 11. Power and Ground

Plane	Vcc Pin		Associated Ground Pin	
	Name	Pin Number	Name	Pin Number
RX Analog	RXVDD1	75	RXGND1	76
	RXVDD2	80	RXGND2	79
TX Analog	TXVDD1	62	TXGND1	63
	TXVDD2	67	TXGND2	66
CS	CSVDD	71	CSGND	70
	FOVDD	72	-	-
	VDD10	73	GND10	74
Digital	VDD1	20	GND1	19
	VDD2	30	GND2	31
	-	-	GND3	40
	VDD4	45	GND4	44
	VDD5	18	GND5	12
	VDD6	47	GND6	46
	-	32	GND7	49
	VDD8	-	GND8	33
	-	10	GND9	6
	EQVDD1	EQGND1	9	
Clock	XTLVDD	56	XTLGND	59

Functional Description

The LU3X31FT integrates a 100Base-X physical sublayer (PHY), a 100Base-TX physical medium dependent (PMD) transceiver, and a complete 10Base-T module into a single chip for both $10 \mathrm{Mbits} / \mathrm{s}$ and 100 Mbits/s Ethernet operation. It also supports 100Base-FX operation with external fiber-optic transceivers. This device provides an IEEE 802.3 u compliant media independent interface (MII) to communicate between the physical signaling and the medium access control (MAC) layers for both 100Base-X and 10Base-T operations. The device is capable of operating in either full-duplex mode or half-duplex mode in either $10 \mathrm{Mbits} / \mathrm{s}$ or $100 \mathrm{Mbits} / \mathrm{s}$ operation. Operational modes can be selected by hardware configuration pins, selected by software settings of management registers, or determined by the on-chip autonegotiation logic.

The 10Base-T section of the device consists of the $10 \mathrm{Mbits} / \mathrm{s}$ transceiver module with filters and a Manchester ENDEC module.

The 100Base-X section of the device implements the following functional blocks:

- 100Base-X physical coding sublayer (PCS)
- 100Base-X physical medium attachment (PMA)
- Twisted-pair transceiver

The 100Base-X and 10Base-T sections share the following functional blocks:

- Clock synthesizer module (CSM)
- MII registers
- IEEE 802.3u autonegotiation

Each of these functional blocks is described below.

Media Independent Interface (MII)

The LU3X31FT implements an IEEE 802.3u Clause 22 compliant MII as described below.

Interface Signals

Transmit Data Interface. The MII transmit data interface comprises seven signals: TXD[3:0] are the nibble size data path, TXEN signals the presence of data on TXD, TXER indicates that a transmit coding error has occurred, and TXCLK is the transmit clock that synchronizes all the transmit signals. In node mode, TXCLK is supplied by the on-chip clock synthesizer; in $100 \mathrm{Mbits} / \mathrm{s}$ repeater mode, transmit signals are synchronized to the clock on XIN pin; in $10 \mathrm{Mbits} / \mathrm{s}$ repeater mode operation, an external clock must be
connected to the RPTR10CLK pin to synchronize the data transfer.

Receive Data Interface. The MII receive data interface comprises seven signals: RXD[3:0] are the nibble size data path, RXDV signals the presence of data on RXD, RXER indicates a received coding error, and RXCLK is the receive clock. Depending upon the operation mode, RXCLK signal is generated by the clock recovery module of either the 100Base-X or 10Base-T receiver.

Status Interface. Two status signals, COL and CRS, are generated in the LU3X31FT to indicate collision status and carrier sense status to the MAC. COL is asserted asynchronously whenever LU3X31FT is transmitting and receiving at the same time in a halfduplex operation mode. In the full-duplex mode, COL is inactive. For repeater mode operation, the COL/FCRS pin indicates false carrier sense condition. CRS is asserted asynchronously whenever there is activity on either the transmitter or the receiver. In repeater or fullduplex mode, CRS is asserted only when there is activity on the receiver.

Operation Modes

The LU3X31FT supports three operation modes and an isolate mode as described below.

100 Mbits/s Mode. For 100 Mbits/s operation, the MII operates in nibble mode with a clock rate of 25 MHz . In normal operation, the MII data at RXD[3:0] and TXD[3:0] is 4 bits wide. In bypass mode (either BYP_4B5B or BYP_ALIGN option selected), the MII data takes the form of 5-bit code-groups. The least significant 4 bits appear on TXD[3:0] and RXD[3:0] as usual, and the most significant bits (TXD[4] and RXD[4]) appear on the TXER and RXER pins, respectively.
10 Mbits/s Nibble Mode. For 10 Mbits/s nibble mode operation, the TXCLK and RXCLK operate at 2.5 MHz . The data paths are always 4 bits wide using TXD[3:0] and $\operatorname{RXD}[3: 0]$ signal lines. This mode is not supported for repeater operations.
10 Mbits/s Serial Mode. The LU3X31FT implements a serial mode for 10Base-T repeater applications. This mode is selected by pulling the SRL10 pin (pin 1) low and the FOSEL pin (pin 15) high through a $10 \mathrm{k} \Omega$ resistor during powerup or reset. When operating in this mode, the LU3X31FT accepts NRZ serial data on the TXD[0] input and provides NRZ serial data output on RXD[0] with a clock rate of 10 MHz . The unused MII inputs and outputs (TXD[3:1], RXD[3:1], and RXDV) are ignored during serial mode. The PCS control signals, CRS and COL, continue to function normally.

Functional Description (continued)

MII Isolate Mode. The LU3X31FT implements an MII isolate mode that is controlled by bit 10 of the control register (register Oh). The LU3X31FT will set this bit to one if the PHY address is set to 00000 upon powerup/ hardware reset. Otherwise, the LU3X31FT will initialize this bit to 0 . Setting the bit to 1 after powerup/reset will also put the LU3X31FT into MII isolate mode.

The isolate mode can also be activated by setting the PHY address (bits 15 through 11 of register 19h) to 0 through the serial management interface, although the content of the isolate register is not affected by the modification of PHY address.
The LU3X31FT does not respond to packet data present at TXD[3:0], TXEN, and TXER inputs and presents a high impedance on the TXCLK, RXCLK, RXDV, RXER, RXD[3:0], COL, and CRS outputs. The LU3X31FT will continue to respond to all management transactions.

Serial Management Interface

The serial management interface (SMI) is the part of the MII that is used to control and monitor status of the LU3X31FT. This mechanism corresponds to the MII specification for 100Base-X (Clause 22) and supports registers 0 through 6. Additional vendor-specific registers are implemented within the range of 16 to 31 . All the registers are described in MII Registers on page 23 of this data sheet.
Management Register Access. The SMI consists of two pins, management data clock (MDC) and management data input/output (MDIO). The LU3X31FT is designed to support an MDC frequency ranging up to the IEEE specification of 2.5 MHz . The MDIO line is bidirectional and may be shared by up to 32 devices.
The MDIO pin requires a $1.5 \mathrm{k} \Omega$ pull-up resistor which, during IDLE and turnaround periods, will pull MDIO to a logic 1 state. Each MII management data frame is 64 bits long. The first 32 bits are preamble consisting of 32 contiguous logic 1 bits on MDIO and 32 corresponding cycles on MDC. Following preamble is the start-offrame field indicated by a <01> pattern. The next field signals the operation code (OP): <10> indicates READ from MII management register operation, and <01> indicates WRITE to MII management register operation. The next two fields are PHY device address and MII management register address. Both of them are 5 bits wide, and the most significant bit is transferred first.
During READ operation, a 2-bit turnaround (TA) time spacing between register address field and data field is
provided for the MDIO to avoid contention. Following the turnaround time, a 16-bit data stream is read from or written into the MII management registers of the LU3X31FT.

The LU3X31FT supports a preamble suppression mode as indicated by a 1 in bit 6 of the basic mode status register (BMSR, address 01h). If the station management entity (i.e., MAC or other management controller) determines that all PHYs in the system support preamble suppression by returning a 1 in this bit, then the station management entity need not generate preamble for each management transaction. The LU3X31FT requires a single initialization sequence of 32 bits of preamble following powerup/hardware reset. This requirement is generally met by the mandatory pull-up resistor on MDIO or the management access made to determine whether preamble suppression is supported. While the LU3X31FT will respond to management accesses without preamble, a minimum of one idle bit between management transactions is required as specified in IEEE 802.3u.
The PHY device address for LU3X31FT is stored in the PHY address register (register address 19h). It is initialized by the five I/O pins designated as PHY[4:0] during powerup or hardware reset and can be changed afterward by writing into register address 19 h .

MDIO Interrupt. The LU3X31FT implements interrupt capability that can be used to notify the management station of certain events. It generates an active-high interrupt signal on the MDIOINTZ output pin whenever one of the interrupt status registers (register address 1Eh) becomes set while its corresponding interrupt mask register (register address 1Dh) is unmasked. Reading the interrupt status register (register 1Eh) shows the source of the interrupt and clears the interrupt output signal.
In addition to the MDIOINTZ pin, the LU3X31FT can also support the interrupt scheme used by the TI ThunderLAN MAC. This option can be enabled by setting bit 11 of register 17 h . Whenever this bit is set, the interrupt is signaled through both the MDIOINTZ pin and embedded in the MDIO signal.

100Base-X Module

The LU3X31FT implements a 100Base-X compliant PCS and PMA and 100Base-TX compliant TP-PMD as illustrated in Figure 3. Bypass options for each of the major functional blocks within the 100Base-X PCS provides flexibility for various applications. $100 \mathrm{Mbits} / \mathrm{s}$ PHY loopback is included for diagnostic purposes.

[^4]Functional Description (continued)

Figure 3. 100Base-X Data Path

100Base-X Transmitter

The 100Base-X transmitter consists of functional blocks which convert synchronous 4-bit nibble data, as provided by the MII, to a 125 Mbits/s serial data stream. This data stream may be routed either to the on-chip, twisted-pair PMD for 100Base-TX signaling, or to an external fiber-optic PMD for 100Base-FX applications. The LU3X31FT implements the 100Base-X transmit state machine as specified in the IEEE 802.3u Standard, Clause 24 and comprises the following functional blocks in its data path:

- Symbol encoder
- Scrambler block
- Parallel/serial converter and NRZ/NRZI encoder block

Symbol Encoder. The symbol encoder converts 4-bit (4B) nibble data generated by the MAC into 5-bit (5B) symbols for transmission. This conversion is required to allow control symbols to be combined with DATA symbols. Refer to the table below for 4B to 5B symbol mapping.
Following onset of the TXEN signal, the 4B/5B symbol encoder replaces the first two nibbles of the preamble from the MAC frame with a /J/K code-group pair (11000 10001) start-of-stream delimiter (SSD). The symbol encoder then replaces subsequent 4B codes with corresponding 5 B symbols. Following negation of the TXEN signal, the encoder substitutes the first two IDLE symbols with a /T/R code-group pair (01101 00111) end-of-stream delimiter (ESD) and then continuously injects IDLE symbols into the transmit data stream until the next transmit packet is detected.

Functional Description (continued)

Assertion of the TXER input while the TXEN input is also asserted will cause the LU3X31FT to substitute HALT code-groups for the 5B code derived from data present at TXD[3:0]. However, the SSD (/J/K) and ESD (/T/R) will not be substituted with HALT code-groups. Hence, the assertion of TXER while TXEN is asserted
will result in a frame properly encapsulated with the $/ \mathrm{J} / \mathrm{K}$ and /T/R delimiters which contains HALT codegroups in place of the DATA code-groups.

The 100M symbol decoder translates all invalid code groups into OEh by default. In case the ACCEPT HALT register is set (bit 5 of register 18h), the HALT codegroup (00100) is translated into 05 h instead.

Table 12. Symbol Code Scrambler

Symbol Name	5B Code [4:0]	4B Code $[3: 0]$	
0	11110	0000	DATA 0
1	01001	0001	DATA 1
2	10100	0010	DATA 2
3	10101	0011	DATA 3
4	01010	0100	DATA 4
5	01011	0101	DATA 5
6	01110	0110	DATA 6
7	01111	0111	DATA 7
8	10010	1000	DATA 8
9	10011	1001	DATA 9
A	10110	1010	DATA A
B	10111	1011	DATA B
C	11010	1100	DATA C
D	11011	1101	DATA D
E	11100	1110	DATA E
F	11101	1111	DATA F
I	11111	undefined	IDLE: interstream fill code
J	11000	0101	First start-of-stream delimiter
K	10001	0101	Second start-of-stream delimiter
T	01101	undefined	First end-of-stream delimiter
R	00111	undefined	Second end-of-stream delimiter
H	00100	undefined	HALT: transfer error
V	00000	undefined	Invalid code
V	00001	undefined	Invalid code
V	00010	undefined	Invalid code
V	00011	undefined	Invalid code
V	00101	undefined	Invalid code
V	00110	undefined	Invalid code
V	01000	undefined	Invalid code
V	01100	undefined	Invalid code
V	10000	undefined	Invalid code
V	11001	undefined	Invalid code

Functional Description (continued)

Scrambler. For 100Base-TX applications, the scrambler is required to control the radiated emissions at the media connector and on the twisted-pair cable.
The LU3X31FT implements a data scrambler as defined by the TP-PMD stream cipher function. The scrambler uses an 11-bit ciphering linear feedback shift register (LFSR) with the following recursive linear function:

$$
X[n]=X[n-11]+X[n-9] \text { (modulo } 2)
$$

The output of the LFSR is combined with the 5B data from the symbol encoder via an exclusive-OR logic function. By scrambling the data, the total energy launched onto the cable is randomly distributed over a wide frequency range.
A seed value for the scrambler function can be loaded by setting bit 4 of register 18 h . When this bit is set, the content of bits 10 though 0 of register 19h, which consists of the 5-bit PHY address and a 6-bit user seed, will be loaded into the LFSR. By specifying unique seed value for each PHY in a system, the total EMI energy produced by a repeater application can be reduced.

Parallel-to-Serial \& NRZ-to-NRZI Conversion. After the transmit data stream is scrambled, the 5 -bit codegroup is loaded into a shift register and clocked out with a 125 MHz clock into a serial bit stream. The serialized data is further converted from NRZ to NRZI format, which produces a transition on every logic 1 and no transition on logic 0 .

Collision Detect. During 100 Mbits/s half-duplex operation, a collision condition is indicated if the transmitter and receiver become active simultaneously. A collision condition is indicated by the COL pin (pin 48). For fullduplex applications, the COL signal is never asserted. A collision test register exists at address 0 , bit 7 .

100Base-X Receiver

The 100Base-X receiver consists of functional blocks required to recover and condition the $125 \mathrm{Mbits} / \mathrm{s}$ receive data stream. The LU3X31FT implements the 100Base-X receive state machine diagram as given in ANSIIIEEE Standard 802.3u, Clause 24. The $125 \mathrm{Mbits} / \mathrm{s}$ receive data stream originates from in a 100Base-TX or 100Base-FX application.

The receiver block consists of the following functional blocks:

- Clock recovery module
- NRZI/NRZ and serial/parallel decoder
- Descrambler
- Symbol alignment block
- Symbol decoder
- Collision detect block
- Carrier sense block
- Stream decoder block

Clock Recovery. The clock recovery module accepts 125 Mbits/s scrambled NRZI data stream from either the on-chip 100Base-TX receiver or from an external 100Base-FX transceiver. The LU3X31FT uses an onboard digital phase-locked loop (PLL) to extract clock information of the incoming NRZI data, which is then used to retime the data stream and set data boundaries.
After power-on or reset, the PLL locks to a free-running 25 MHz clock derived from the external clock source. When initial lock is achieved, the PLL switches to lock to the data stream, extracts a 125 MHz clock from the data, and uses it for bit framing of the recovered data.

NRZI-to-NRZ \& Serial-to-Parallel Conversion. The recovered data is converted from NRZI to NRZ and then to a 5-bit parallel format for the LU3X31FT descrambler. The 5-bit parallel data is not necessarily aligned to 4B/5B code-group's boundary.

Data Descrambling. The scrambled data is presented in groups of 5 bits (quints) to a deciphering circuit that reverses the data scrambling process performed by the transmitter. The descrambler acquires synchronization with the data stream by recognizing IDLE bursts of 40 or more bits and locking its deciphering linear feedback shift register (LFSR) to the state of the scrambling LFSR. Upon achieving synchronization, the incoming data is XORed by the deciphering LFSR and descrambled, again in groups of 5 bits (quints).
In order to maintain synchronization, the descrambler continuously monitors the validity of the unscrambled data that it generates. To ensure this, a link state monitor and a hold timer are used to constantly monitor the synchronization status. Upon synchronization of the descrambler, the hold timer starts a 722μ s countdown.

Functional Description (continued)

Upon detection of sufficient IDLE symbols within the 722μ s period, the hold timer will reset and begin a new countdown. This monitoring operation will continue indefinitely given a properly operating network connection with good signal integrity. If the link state monitor does not recognize sufficient unscrambled IDLE symbols within the $722 \mu \mathrm{~s}$ period, the entire descrambler will be forced out of the current state of synchronization and reset in order to reacquire synchronization. Register 18 h , bit 3 , can be used to extend the timer to $2000 \mu \mathrm{~s}$.

Symbol Alignment. The symbol alignment circuit in the LU3X31FT determines code word alignment by recognizing the $/ \mathrm{J} / \mathrm{K}$ delimiter pair. This circuit operates on unaligned 5 -bit data from the descrambler and is capable of finding $/ \mathrm{J} / \mathrm{K}$ at any of the five possible starting positions within the descrambled data quints. Once the /J/K symbol pair (11000 10001) is detected, subsequent data is aligned on a fixed boundary.

Symbol Decoding. The symbol decoder functions as a look-up table that translates incoming 5B symbols into 4B nibbles. The symbol decoder first detects the $/ \mathrm{J} / \mathrm{K}$ symbol pair preceded by IDLE symbols and replaces the symbol with MAC preamble. All subsequent $5 B$ symbols are converted to the corresponding 4 B nibbles for the duration of the entire packet. This conversion ceases upon the detection of the $/ T / R$ symbol pair denoting the end of stream delimiter (ESD). The translated data is presented on the RXD[3:0] signal lines with RXD[0] representing the least significant bit of the translated nibble.

Valid Data Signal. The valid data signal (RXDV) indicates that recovered and decoded nibbles are being presented on the RXD[3:0] outputs synchronous to RXCLK. RXDV is asserted when the first nibble of translated $/ \mathrm{J} / \mathrm{K}$ is ready for transfer over the media independent interface (MII). It remains active until either the /T/R delimiter is recognized, link test indicates failure, or no signal is detected. On any of these conditions, RXDV is deasserted.

Receiver Errors. The RXER signal is used to communicate receiver error conditions. While the receiver is in a state of holding RXDV asserted, the RXER will be asserted for each code word that does not map to a valid code-group.

100Base-X Link Monitor

The 100Base-X link monitor function allows the receiver to ensure that reliable data is being received. Without reliable data reception, the link monitor will halt both transmit and receive operations until such time that a valid link is detected.

The LU3X31FT performs the link integrity test as outlined in IEEE 100Base-X (Clause 24) link monitor state diagram. The link status is multiplexed with $10 \mathrm{Mbits} / \mathrm{s}$ link status to form the reportable link status bit in serial management register 1 , which is then driven to the LNKLED pin.

When persistent signal energy is detected on the network, the logic moves into a link-ready state after approximately $500 \mu \mathrm{~s}$, and waits for an enable from the autonegotiation module. When received, the link-up state is entered, and the transmit and receive logic blocks become active. Should autonegotiation be disabled, the link integrity logic moves immediately to the link-up state after entering the link-ready state.

Carrier Sense. Carrier sense (CRS) for 100 Mbits/s operation is asserted upon the detection of two noncontiguous zeros occurring within any 10-bit boundary of the receive data stream.

The carrier sense function is independent of symbol alignment. For $100 \mathrm{Mbits} / \mathrm{s}$ half-duplex operation, CRS is asserted during either packet transmission or reception. For $100 \mathrm{Mbits} / \mathrm{s}$ full-duplex operation, CRS is asserted only during packet reception. When the IDLE symbol pair is detected in the receive data stream, CRS is deasserted. In repeater mode, CRS is only asserted due to receive activity.

Bad SSD Detection. A bad start of stream delimiter (Bad SSD) is an error condition that occurs in the 100Base-X receiver if carrier is detected (CRS asserted) and a valid $/ \mathrm{J} / \mathrm{K}$ set of code groups (SSD) is not received.
If this condition is detected, then the LU3X31FT will assert RXER and present RXD[3:0] = 1110 to the MII for the cycles that correspond to received 5B codegroups until at least two IDLE code groups are detected. In addition, the false carrier counter (address 13h) will be incremented by one. Once at least two IDLE code groups are detected, RXER and CRS become deasserted.

Far-End Fault Indication. Autonegotiation provides a mechanism for transferring information from the local station to the link partner that a remote fault has occurred for 100Base-TX. Since autonegotiation is not

Functional Description (continued)

currently specified for operation over fiber, the far-end fault indication function (FEFI) provides this capability for 100Base-FX applications.

A remote fault is an error in the link that one station can detect while the other cannot. An example of this is a disconnected wire at a station's transmitter. This station will be receiving valid data and detect that the link is good via the link integrity monitor, but will not be able to detect that its transmission is not propagating to the other station. A 100Base-FX station that detects such a remote fault may modify its transmitted IDLE stream from all ones to a group of 84 ones followed by a single 0 . This is referred to as the FEFI IDLE pattern.

The FEFI function is controlled by bit 11 of register 18h. It is initialized to 1 (enabled) if the FOSEL pin is at logic high level during powerup or reset. If the FEFI function is enabled, the LU3X31FT will halt all current operations and transmit the FEFI IDLE pattern when FOSD+/FOSD- signal is deasserted following a good link indication from the link integrity monitor. Transmission of the FEFI IDLE pattern will continue until FOSD+/FOSD- signal is asserted. If three or more FEFI IDLE patterns are detected by the LU3X31FT, then bit 4 of the basic mode status register (address 01 h) is set to one until read by management. Additionally, upon detection of far-end fault, all receive and transmit MII activity is disabled/ignored.

Carrier Integrity Monitor. The carrier integrity monitor (CIM) function protects the repeater from transient conditions that would otherwise cause spurious transmission due to a faulty link. This function is required for repeater applications and is not specified for normal MII applications.

The CIM function is controlled by bit 10 of register 18 h . It is initialized to 1 (enabled) if both the NDRPTR pin (pin 50) and CIMEN (pin 5) pin are at logic high level during powerup or reset. If the CIM determines that the link is unstable, the LU3X31FT will not propagate the received data or control signaling to the MII and will ignore data transmitted via the MII. The LU3X31FT will continue to monitor the receive stream for valid carrier events. The false carrier counter (address 13h) increments each time the link is unstable, the FCRS pin (pin 48) stays high as long as error condition exists. Two back-to-back false carrier events will isolate the PHY, incrementing the associated isolate counter (address 12 h) once.

100Base-TX Transceiver

LU3X31FT implements a TP-PMD compliant transceiver for 100Base-TX operation. The differential transmit driver is shared by the 10Base-T and 100Base-TX subsystems. This arrangement results in one device that uses the same external magnetics for both the 10Base-T and the 100Base-TX transmission with simple RC component connections. The individually waveshaped 10Base-T and 100Base-TX transmit signals are multiplexed in the transmit output driver.

Transmit Drivers

The LU3X31FT 100Base-TX transmit driver implements MLT-3 translation and wave-shaping functions. The rise/fall time of the output signal is closely controlled to conform to the target range specified in the ANSI TP-PMD standard.

Twisted-Pair Receiver

For 100Base-TX operation, the incoming signal is detected by the on-chip twisted-pair receiver that comprises the differential line receiver, an adaptive equalizer, and baseline wander compensation circuits.

The LU3X31FT uses an adaptive equalizer which changes filter frequency response in accordance with cable length. The cable length is estimated based on the incoming signal strength. The equalizer tunes itself automatically for any cable length to compensate for amplitude and phase distortions incurred from the cable.

10Base-T Module

The 10Base-T Transceiver Module is IEEE 802.3 compliant. It includes the receiver, transmitter, collision, heartbeat, loopback, jabber, waveshaper, and link integrity functions, as defined in the standard. Figure 4 provides an overview for the 10Base-T module.
The LU3X31FT 10Base-T module is comprised of the following functional blocks:

- Manchester encoder and decoder
- Collision detector
- Link test function
- Transmit driver and receiver
- Serial and parallel interface
- Jabber and SQE test functions
- Polarity detection and correction

Functional Description (continued)

5-6782(F)
Figure 4. 10Base-T Module Data Path

Operation Modes

The LU3X31FT 10Base-T module is capable of operating in either half-duplex mode or full-duplex mode. In half-duplex mode, the LU3X31FT functions as an IEEE 802.3 compliant transceiver with fully integrated filtering. The COL pin signals collision, and the CRS is asserted during transmit and receive. In full-duplex mode, the LU3X31FT can simultaneously transmit and receive data. The COL signal is inactive, and CRS is asserted during receive only.

Manchester Encoder/Decoder. Data encoding and transmission begins when the transmit enable input (TXEN) goes high and continues as long as the transceiver is in good link state. Transmission ends when the transmit enable input goes low. The last transition occurs at the center of the bit cell if the last bit is a 1 , or at the boundary of the bit cell if the last bit is 0 .

Decoding is accomplished by a differential input receiver circuit and a phase-locked loop that separates the Manchester-encoded data stream into clock signals and NRZ data. The decoder detects the end of a frame when no more midbit transitions are detected. Within one and a half bit times after the last bit, carrier sense is deasserted.

Transmit Driver and Receiver. LU3X31FT integrates all the required signal conditioning functions in its 10Base-T block such that external filters are not
required. Only an isolation transformer and impedance matching resistors are needed for the 10Base-T transmit and receive interface. The internal transmit filtering ensures that all the harmonics in the transmit signal are attenuated properly.

Smart Squelch. The smart squelch circuit is responsible for determining when valid data is present on the differential receive. The LU3X31FT implements an intelligent receive squelch on the TPRX \pm differential inputs to ensure that impulse noise on the receive inputs will not be mistaken for a valid signal. The squelch circuitry employs a combination of amplitude and timing measurements (as specified in the IEEE 802.3 10Base-T standard) to determine the validity of data on the twisted-pair inputs.
The signal at the start of the packet is checked by the analog squelch circuit, and any pulses not exceeding the squelch level (either positive or negative, depending upon polarity) will be rejected. Once this first squelch level is overcome correctly, the opposite squelch level must then be exceeded within 150 ns . Finally, the signal must exceed the original squelch level within a further 150 ns to ensure that the input waveform will not be rejected.
Only after all of these conditions have been satisfied will a control signal be generated to indicate to the remainder of the circuitry that valid data is present.

Functional Description (continued)

Valid data is considered to be present until the squelch level has not been generated for a time longer than 200 ns , indicating end of packet. Once good data has been detected, the squelch levels are reduced to minimize the effect of noise causing premature end of packet detection. The receive squelch threshold level can be lowered for use in longer cable applications. This is achieved by setting bit 11 or register address 1Ah.

Carrier Sense. Carrier sense (CRS) is asserted due to receive activity once valid data is detected via the smart squelch function.
For $10 \mathrm{Mbits} / \mathrm{s}$ half-duplex operation, CRS is asserted during either packet transmission or reception.
For 10 Mbits/s full-duplex operation, the CRS is asserted only on receive activity. In repeater mode, CRS is only asserted on receive activity. CRS is deasserted following an end of packet.

Collision Detection. For half-duplex operation, a 10Base-T collision is detected when the receive and transmit channels are active simultaneously. Collisions are reported by the COL signal. If the ENDEC is transmitting when a collision is detected, the COL signal remains set for the duration of the collision.

SQE Test Function. Approximately $1 \mu \mathrm{~s}$ after the transmission of each packet, a signal quality error (SQE) signal of approximately 10 bit times is generated (internally) to indicate successful transmission. SQE is reported as a pulse on the COL signal. This function can be disabled by setting bit 12 of register 1Ah. The SQE test function is disabled in full-duplex mode.

Jabber Function. The jabber function monitors the LU3X31FT's output and disables the transmitter if it attempts to transmit a longer than legal-sized packet. If TXEN is high for greater than 24 ms , the 10Base-T transmitter will be disabled and COL will go high.
Once disabled by the jabber function, the transmitter stays disabled for the entire time that the TXEN signal is asserted. This signal has to be deasserted for approximately 256 ms (the unjab time) before the jabber function re-enables the transmit outputs and deasserts COL signal.

The jabber function can be disabled by setting bit 10 of register 1Ah.

Link Test Function. A link pulse is used to check the integrity of the connection with the remote end. If valid
link pulses are not received, the link detector disables the 10Base-T twisted-pair transmitter, receiver, and collision detection functions.
The link pulse generator produces pulses as defined in the IEEE 802.3 10Base-T standard. Each link pulse is nominally 100 ns in duration and is transmitted every 16 ms , in the absence of transmit data.

Automatic Link Polarity Detection. The LU3X31FT's 10Base-T Transceiver Module incorporates an automatic link polarity detection circuit. The inverted polarity is determined when seven consecutive link pulses of inverted polarity or three consecutive receive packets are received with inverted end of packet pulses. If the input polarity is reversed, the error condition will be automatically corrected and reported in bit 15 of register 1Ch.

The automatic link polarity detection function can be disabled by setting bit 3 of register 1Ah.

Clock Synthesizer

The LU3X31FT implements a clock synthesizer that generates all the reference clocks needed from a single external frequency source. The clock source can be a quartz crystal or a TTL level signal at $25 \mathrm{MHz} \pm$ 50 ppm, as shown in Figure 15.

Autonegotiation

The autonegotiation function provides a mechanism for exchanging configuration information between two ends of a link segment and automatically selecting the highest-performance mode of operation supported by both devices. Fast link pulse (FLP) bursts provide the signaling used to communicate autonegotiation abilities between two devices at each end of a link segment. For further detail regarding autonegotiation, refer to Clause 28 of the IEEE 802.3u specification. The LU3X31FT supports four different Ethernet protocols, so the inclusion of autonegotiation ensures that the highest-performance protocol will be selected based on the ability of the link partner.

The autonegotiation function within the LU3X31FT can be controlled either by internal register access or by the use of configuration pins. At powerup and at device reset, the configuration pins are sampled. If disabled, autonegotiation will not occur until software enables bit 12 in register 0 . If autonegotiation is enabled, the negotiation process will commence immediately.

Functional Description (continued)

When autonegotiation is enabled, the LU3X31FT transmits the abilities programmed into the autonegotiation advertisement register at address 04h via FLP bursts. Any combination of $10 \mathrm{Mbits} / \mathrm{s}, 100 \mathrm{Mbits} / \mathrm{s}$, halfduplex, and full-duplex modes may be selected. Autonegotiation controls the exchange of configuration information. Upon successful autonegotiation, the abilities reported by the link partner are stored in the autonegotiation link partner ability register at address 05h.
The contents of the autonegotiation link partner ability register are used to automatically configure to the highest-performance protocol between the local and far-end nodes. Software can determine which mode has been configured by autonegotiation by comparing the contents of register 04h and 05h and then selecting the technology whose bit is set in both registers of highest priority relative to the following list:

1. 100Base-TX full duplex (highest priority)
2. 100 Base-TX half duplex
3. 10Base-T full duplex
4. 10Base-T half duplex (lowest priority)

The basic mode control register at address 00h provides control of enabling, disabling, and restarting of the autonegotiation function. When autonegotiation is disabled, the speed selection bit (bit 13) controls switching between $10 \mathrm{Mbits} / \mathrm{s}$ or $100 \mathrm{Mbits} / \mathrm{s}$ operation, while the duplex mode bit (bit 8) controls switching between full-duplex operation and half-duplex operation. The speed selection and duplex mode bits have no effect on the mode of operation when the autonegotiation enable bit (bit 12) is set.

The basic mode status register at address 01h indicates the set of available abilities for technology types (bits 15 to 11), autonegotiation ability (bit 3), and extended register capability (bit 0). These bits are hardwired to indicate the full functionality of the LU3X31FT. The BMSR also provides status on:

1. Whether autonegotiation is complete (bit 5).
2. Whether the link partner is advertising that a remote fault has occurred (bit 4).
3. Whether a valid link has been established (bit 2).

The autonegotiation advertisement register at address 04 h indicates the autonegotiation abilities to be advertised by the LU3X31FT. All available abilities are transmitted by default, but any ability can be suppressed by writing to this register or configuring external pins.

The autonegotiation link partner ability register at address 05 h indicates the abilities of the link partner as indicated by autonegotiation communication. The contents of this register are considered valid when the autonegotiation complete bit (bit 5 , register address 01 h) is set.

Reset Operation

The LU3X31FT can be reset either by hardware or software. A hardware reset is accomplished by applying a negative pulse, with a duration of at least 1 ms , to the RSTZ pin of the LU3X31FT during normal operation. A software reset is activated by setting the RESET bit in the basic mode control register (bit 15 , register 00 h). This bit is self-clearing and, when set, will return a value of 1 until the software reset operation has completed.
Both hardware and software reset operations initialize all registers to their default values. This process includes re-evaluation of all hardware-configurable registers.
Logic levels on several I/O pins are detected during hardware reset period to determine the initial functionality of LU3X31FT. Some of these pins are used as outputs after the reset operation.
Care must be taken to ensure that the configuration setup will not interfere with normal operation. Dedicated configuration pins can be tied to Vcc or ground directly. Configuration pins multiplexed with logic-level output functions should be either weakly pulled up or weakly pulled down through resisters. Configuration pins multiplexed with LED outputs should be setup with one of the following circuits shown in Figure 5.

Functional Description (continued)

LOGIC 1 CONFIGURATION

5-6783(F).r2
Figure 5. Hardware Reset Configurations

PHY Address

During hardware reset, the logic levels of pins 48,42 , 21,17 , and 14 are latched into bits 4 through 0 of management register at address 19 h , respectively. This 5-bit address is used as the PHY address for serial management interface communication. Note that initializing the PHY address to zero automatically isolates the MII interface.

Normal MII/Repeater Mode Select

A logic 1 level on pin 50 during reset configures LU3X31FT to function as a repeater. Otherwise, this device will function in normal MII mode.

Fiber Mode Select

A logic 1 level on pin 15 during hardware reset configures $100 \mathrm{Mbits} / \mathrm{s}$ section of LU3X31FT for 100Base-FX operation.

Autonegotiation and Speed Configuration

The five pins listed in Table 13 configure the speed capability of LU3X31FT. The logic state of these pins, at powerup or reset, are latched into the advertisement register (register address 04h) for autonegotiation purpose. These pins are also used for evaluating the default value in the base mode control register (register 00h) according to Table 13.

Table 13. Autonegotiation

Configuration Pins at RESET					Registers Initial Value		
AUTOEN Pin 7	100FDEN Pin 5 (Reg 4.8)	100HDEN Pin 16 (Reg 4.7)	10FDEN Pin 22 (Reg 4.6)	10HDEN Pin 53 (Reg 4.5)	Autonegotiate Reg 0.12	Speed Reg 0.13	Duplex Reg 0.8
0	1	X	X	X	0	1	1
0	0	1	1	X	0	1	1
0	0	1	0	X	0	1	0
0	0	0	1	X	0	0	1
0	0	0	0	1	0	0	0
1	X	X	X	X	1	0	0

Functional Description (continued)

100Base-X PCS Configuration

The logic state of BPSCR, BP4B5B, and BPALIGN pins latched into bits 15, 14, and 12 of the Config 100 register at address 18 h during powerup or reset. These registers configure the functionality of 100Base-X PCS (physical coding sublayer) MII registers.

Table 14. MII Management Registers

Address	Register Name	Basic/Extended
0 h	Control Register	B
1 h	Status Register	B
$2 \mathrm{~h}-3 \mathrm{~h}$	PHY Identifier Register	E
4 h	Autonegotiation Advertisement Register	E
5 h	Autonegotiation Link Partner Ability Register	E
6 h	Autonegotiation Expansion Register	E
$7 \mathrm{~h}-\mathrm{Fh}$	IEEE Reserved	E
12 h	Isolate Counter	E
13 h	False Carrier Counter	E
15 h	Receive Error Counter	E
17 h	PHY Control/Status Register	E
18 h	Config 100 Register	E
19 h	PHY Address Register	E
1 Ah	Config 10 Register	E
1 Bh	Status 100 Register	E
1 Ch	Status 10 Register	E
1 Dh	Interrupt Mask Register	E
1 Eh	Interrupt Status Register	

MII Registers

Legend:

RO	Read only.
R/W	Read and write capable.
SC	Self-clearing.
LL	Latching low, unlatch on read.
LH	Latching high, unlatch on read.
COR	Clear on read.

Table 15. Control Register (Register Oh)

Bit(s)	Name	Description	R/W	Default
15	Reset	1—PHY Reset. 0-Normal operation. Setting this bit initiates the software reset function that resets the entire LU3X31FT device, except for the phase-locked loop circuit. It will relatch in all hardware configuration pin values and set all registers to their default values. The software reset process takes 25μ s to complete. This bit, which is self-clearing, returns a value of 1 until the reset process is complete.	$\begin{aligned} & \text { R/W } \\ & \text { SC } \end{aligned}$	Oh
14	Loopback	1—Enable loopback mode. 0-Disable loopback mode. This bit controls the PHY loopback operation that isolates the network transmitter outputs (TPTX \pm and FOTX \pm) and routes the MII transmit data to the MII receive data path. This function should only be used when autonegotiation is disabled (bit $12=0$). The specific PHY (10Base-T or 100Base-X) used for this operation is determined by bits 12 and 13 of this register.	R/W	Oh
13	Speed Selection	$1-100 \mathrm{Mbits} / \mathrm{s}$. 0-10 Mbits/s. Link speed is selected by this bit or by autonegotiation if bit 12 of this register is set (in which case, the value of this bit is ignored). At powerup or reset, this bit will be set unless AUTONEN, 100FDEN, and 100HDEN pin are all in logic low state.	R/W	Pin
12	Autonegotiation Enable	1-Enable autonegotiation process. $0-$ Disable autonegotiation process. This bit determines whether the link speed should be setup by the autonegotiation process. It is set at powerup or reset if the AUTONEN pin detects a logic 1 input level.	R/W	Pin

MII Registers (continued)

Table 15. Control Register (Register Oh) (continued)

Bit(s)	Name	Description	R/W	Default
11	Powerdown	1-Powerdown. 0-Normal operation. Setting this bit puts the LU3X31FT into powerdown mode. During the powerdown mode, TPTX \pm and all LED outputs are 3 -stated, FOTX \pm output is turned off, and the MII interface is isolated. RSTZ is used to clear this bit.	R/W	Oh
10	Isolate	1-Isolate PHY from MII. 0-Normal operation. Setting this control bit isolates the LU3X31FT from the MII, with the exception of the serial management interface. When this bit is asserted, the LU3X31FT does not respond to TXD[3:0], TXEN, and TXER inputs, and it presents a high impedance on its TXCLK, RXCLK, RXDV, RXER, RXD[3:0], COL, and CRS outputs. This bit is initialized to 0 unless the configuration pins for the PHY address are set to 00000 h during powerup or reset.	R/W	Pin
9	Restart Autonegotiation	1-Restart autonegotiation process. 0-Normal operation. Setting this bit while autonegotiation is enabled forces a new autonegotiation process to start. This bit is self-clearing and returns to 0 after the autonegotiation process is completed.	R/W, SC	Oh
8	Duplex Mode	1-Full-duplex mode. 0-Half-duplex mode. If autonegotiation is disabled, this bit determines the duplex mode for the link. At powerup or reset, this bit is set to 0 if the NDRPTR bit indicates REPEATER operation. Otherwise, this bit is set to 1 if AUTONEN pin detects a logic 0 and either 100FDEN or 10FDEN pin detects a logic 1.	R/W	Pin
7	Collision Test	1 -Enable COL signal test. 0 - Disable COL signal test. When set, this bit will cause the COL signal to be asserted in response to the assertion of TXEN.	R/W	Oh
6:0	Reserved	Not used.	RO	Oh

MII Registers (continued)
Table 16. Status Register Bit Definitions (Register 1h)

Bit(s)	Name	Description	R/W	Default
15	100Base-T4	1-Capable of 100Base-T4. 0 - Not capable of 100Base-T4. This bit is hardwired to 0 , indicating that the LU3X31FT does not support 100Base-T4.	RO	Oh
14	100Base-X Full-duplex	1-Capable of 100Base-X full-duplex mode. 0-Not capable of 100Base-X full-duplex mode. This bit is hardwired to 1 , indicating that the LU3X31FT supports 100Base-X full-duplex mode.	RO	1h
13	100Base-X Half-duplex	1-Capable of 100Base-X half-duplex mode. 0-Not capable of 100Base-X half-duplex mode. This bit is hardwired to 1 , indicating that the LU3X31FT supports 100Base-X halfduplex mode.	RO	1h
12	$10 \mathrm{Mbits} / \mathrm{s}$ Full-duplex	1-Capable of $10 \mathrm{Mbits} / \mathrm{s}$ full-duplex mode. 0-Not capable of $10 \mathrm{Mbits} / \mathrm{s}$ full-duplex mode. This bit is hardwired to 1 , indicating that the LU3X31FT supports 10Base-T full-duplex mode.	RO	1h
11	10 Mbits/s Half-duplex	1-Capable of $10 \mathrm{Mbits} / \mathrm{s}$ half-duplex mode. 0 - Not capable of $10 \mathrm{Mbits} / \mathrm{s}$ half-duplex mode. This bit is hardwired to 1 , indicating that the LU3X31FT supports 10Base-T half-duplex mode.	RO	1h
10	100Base-T2	1-Capable of 100Base-T2. 0-Not capable of 100Base-T2. This bit is hardwired to 0 indicating that the LU3X31FT does not support 100Base-T2.	RO	Oh
9:7	Reserved	Ignore when read.	RO	Oh
6	MF Preamble Suppression	1-Accepts management frames with preamble suppressed. 0 -Will not accept management frames with preamble suppressed. This bit is hardwired to 1 , indicating that the LU3X31FT accepts management frame without preamble. A minimum of 32 preamble bits are required following power-on or hardware reset. One IDLE bit is required between any two management transactions as per IEEE 802.3u specification.	RO	1h

MII Registers (continued)

Table 16. Status Register Bit Definitions (Register 1h) (continued)

Bit(s)	Name	Description	R/W	Default
5	Autonegotiation Complete	1-Autonegotiation process completed. 0-Autonegotiation process not completed. If autonegotiation is enabled, this bit indicates whether the autonegotiation process has been completed.	RO	Oh
4	Remote Fault	1-Remote fault detected. 0-Remote fault not detected. This bit is latched to 1 if the RF bit in the autonegotiation link partner ability register (bit 13 , register address 05 h) is set or the receive channel meets the far-end fault indication function criteria. It is unlatched when this register is read.	RO, LH	Oh
3	Autonegotiation Ability	1-Capable of autonegotiation. 0 - Not capable of autonegotiation. This bit defaults to 1 , indicating that the LU3X31FT is capable of autonegotiation.	RO	1h
2	Link Status	1-Link is up. 0-Link is down. This bit reflects the current state of the link-test-fail state machine. Loss of a valid link causes a 0 latched into this bit. It remains 0 until this register is read by the serial management interface.	$\begin{aligned} & \hline \text { RO, } \\ & \text { LL } \end{aligned}$	Oh
1	Jabber Detect	1-Jabber condition detected. 0-Jabber condition not detected. During 10Base-T operation, this bit indicates the occurrence of a jabber condition. It is implemented with a latching function so that it becomes set until it is cleared by a read.	$\begin{aligned} & \text { RO, } \\ & \text { LH } \end{aligned}$	Oh
0	Extended Capability	1-Extended register set. 0 - No extended register set. This bit defaults to 1 , indicating that the LU3X31FT implements extended registers.	RO	1h

Table 17. PHY Identifier (Register 2h)

Bit(s)	Name	Description	R/W	Default
$15: 0$	PHY-ID[31:16]	IEEE address.	RO	0043 h

MII Registers (continued)
Table 18. PHY Identifier (Register 3h)

Bit(s)	Name	Description	R/W	Default
$15: 10$	PHY-ID[15:10]	IEEE address.	RO	011101 b
$9: 4$	PHY-ID[9:4]	Model No.	RO	000001 b
$3: 0$	PHY-ID[3:0]	Rev. No.	RO	0001 b

Table 19. Autonegotiation Advertisement (Register 4h)

Bit(s)	Name	Description	R/W	Default
15	Next Page	1-Capable of next-page function. 0 - Not capable of next-page function. This bit is defaults to 0 indicating that LU3X31FT is not next-page capable.	RO	Oh
14	Reserved	Reserved.	RO	Oh
13	Remote Fault	1-Remote fault has been detected. 0-No remote fault has been detected. This bit is written by serial management interface for the purpose of communicating the remote fault condition to the autonegotiation link partner.	R/W	Oh
12:10	IEEE Reserved	These 3 bits default to 0 .	RO	Oh
9	Technology Ability Field for 100Base-T4	This bit defaults to 0 indicating that the LU3X31FT does not support 100BaseT4.	RO	Oh
8:5	Technology Ability Field	This 4-bit field contains the advertised ability of this PHY. At powerup or reset, the logic level of 100FDEN, 100HDEN, 10FDEN, and 10HDEN pins are latched into bits 8 through 5 , respectively.	R/W	Pin
4:0	Selector Field	These 5 bits are hardwired to 00001h indicating that the LU3X31FT supports IEEE 802.3 CSMA/CD.	RO	01h

Table 20. Autonegotiation Link Partner Ability (Register 5h)

Bit(s)	Name	Description	R/W	Default
15	Next Page	1-Capable of next-page function. 0-Not capable of next-page function.	RO	Oh
14	Acknowledge	1—- Link partner acknowledges reception of the ability data word. 0-Not acknowledged.	RO	Oh
13	Remote Fault	$1-$ Remote fault has been detected. 0-No remote fault has been detected.	RO	Oh
$12: 5$	Technology Ability Field	Supported technologies.	RO	Oh
$4: 0$	Selector Field	Encoding definitions.	RO	Oh

MII Registers (continued)
Table 21. Autonegotiation Expansion Register (Register 6h)

Bit(s)	Name	Description	R/W	Default
15:5	Reserved	Reserved.	RO	Oh
4	Parallel Detection Fault	1-Fault has been detected. O-No fault detected. This bit is set if the parallel detection fault state of the autonegotiation arbitration state machine is visited during the autonegotiation process. It will remain set until this register is read.	$\begin{aligned} & \mathrm{RO}, \\ & \mathrm{LH} \end{aligned}$	Oh
3	Link Partner Next-Page Able	1-Link partner is next-page capable. 0 -Link partner is not next-page capable. This bit indicates whether the link partner is next-page capable. It is meaningful only when the autonegotiation complete bit (bit 5 of register 1 h) is set.	RO	Oh
2	Next-Page Able	1 -Local device is next-page capable. 0 - Local device is not next-page capable. This bit defaults to 0 , indicating that LU3X31FT is not next-page able.	RO	Oh
1	Page Received	1-A new page has been received. 0-No new page has been received. This bit is latched to 1 when a new link code word page has been received. This bit is automatically cleared when the autonegotiation link partner ability register (register 05 h) is read by management interface.	$\begin{aligned} & \mathrm{RO}, \\ & \mathrm{LH} \end{aligned}$	Oh
0	Link Partner Autonegotiable	1-Link partner is autonegotiable. 0 - Link partner is not autonegotiable.	RO	Oh

Table 22. Isolate Counter (Register 12h)

Bit(s)	Name	Description	R/W	Default
$15: 8$	Reserved	Reserved.	RO	Oh
$7: 0$	CIM Isolate Counter	Number of times isolated since reset or read. May roll over depending on value of CSMODE bit (bit 13 of register 17h).	RO, COR	Oh

Table 23. False Carrier Counter (Register 13h)

Bit(s)	Name	Description	R/W	Default
$15: 0$	False Carrier Count	Number of false carrier conditions since reset or read. The counter is incremented once for each packet that has false carrier condition detected. This counter may roll over depending on value of CSMODE bit (bit 13 of register 17h).	RO, COR	Oh

MII Registers (continued)
Table 24. Receive Error Counter (Register 15h)

Bit(s)	Name	Description	R/W	Default
$15: 0$	RX Error Count	Number of receive errors since last reset. The counter is incremented once for each packet that has receive error condition detected. This counter may roll over depending on value of the CSMODE bit (bit 13 of register 17h).	RO,	Oh

Table 25. PHY Control/Status Register (Register 17h)

Bit(s)	Name	Description	R/W	Default
15	NDRPTR	1-Repeater mode. 0-Normal MII mode. This bit determines whether LU3X31FT is operating as a normal MII or a repeater. It is initialized to the logic level of NDRPTR pin (pin 50) at powerup or reset.	RO	Pin
14	FOSEL	1-Fiber mode. 0-TX mode. For 100Base-X operation, this bit determines whether LU3X31FT interfaces with the network through the internal 100BaseTX transceiver or using external fiber-optic transceiver. It is initialized to the logic level of FOSEL pin (pin 15) at powerup or reset.	RO	Pin
13	CSMODE	1 - Counter sticks at FFFFh. 0-Counters roll over. This bit controls the operation of isolate counter, false carrier counter, and receive error counters.	R/W	Oh
12	TPTXTR	1-3-state transmit pairs. 0-Normal operation. When this bit is set, the twisted-pair transmitter outputs are 3 -stated. Note that the twisted-pair transmit driver can be 3stated by either this bit or the TPTXTR pin (pin 8).	R/W	Oh
11	ThunderLAN Interrupt Enable	1-MDIO ThunderLAN interrupt enabled. 0-MDIO ThunderLAN interrupt disabled. This bit enables/disables the TI ThunderLAN interrupt mechanism.	R/W	Oh
10	MF Preamble Suppression Enable	1-MDIO preamble suppression enabled. 0-MDIO preamble suppression disabled. LU3X31FT can accept management frames without preamble as described in bit 6 of register 1 h . This bit allows the user to enable or disable the preamble suppression function.	R/W	Oh

MII Registers (continued)

Table 25. PHY Control/Status Register (Register 17h) (continued)

Bit(s)	Name	Description	R/W	Default
9	Speed Status	1—Part is in $100 \mathrm{Mbits} / \mathrm{s}$ mode. 0 - Part is in $10 \mathrm{Mbits} / \mathrm{s}$ mode. This value is not defined during the autonegotiation period.	RO	Oh
8	Duplex Status	1-Part is in full-duplex mode. 0 -Part is in half-duplex mode. This value is not defined during the autonegotiation period.	RO	Oh
7	Activity LED On		R/W	Oh
6	LEDRX Off	1—3-state LEDRX output. 0-Normal operation.	R/W	0
5	LEDTX/ACTLED Off	1-3-state LEDTX/ACTLED output. 0-Normal operation.	R/W	0
4	LNKLED Off	1-3-state LNKLED output. 0-Normal operation.	R/W	0
3	LEDCOL Off	1-3-state LEDCOL output. 0-Normal operation.	R/W	0
2	LEDFD Off	1-3-state LEDFD output. 0-Normal operation.	R/W	0
1	LEDSP Off	1—3-state LEDSP output. 0-Normal operation.	R/W	0
0	LED Pulse Stretching Disable	1-LED pulse stretching disabled. $0-$ LED pulse stretching enabled. When pulse stretching is enabled, all LED outputs are stretched to $48 \mathrm{~ms}-72 \mathrm{~ms}$.	R/W	0

Table 26. Config 100 Register (Register 18h)

Bit(s)	Name	Description	R/W	Default
15	BPSCR	1——isable scrambler/descrambler. 0-Enable scrambler/descrambler. This bit is initialized to the logic level of BPSCR pin (pin 51) at powerup or reset.	R/W	Pin
14	BP4B5B	1—Disable 4B/5B encoder/decoder. 0-Enable 4B/5B encoder/decoder. This bit is initialized to the logic level of BP4B5B pin (pin 52) at powerup or reset.	R/W	Pin
13	Reserved	Reserved.	RO	0h
12	BPALIGN	1—Pass unaligned data to MII. 0-Pass aligned data to MII. This bit is initialized to the logic level of BPALIGN pin (pin 54) at powerup or reset.	R/W	Pin

MII Registers (continued)
Table 26. Config 100 Register (Register 18h) (continued)

Bit(s)	Name	Description	R/W	Default
11	Enable FEFI	1-Enable FEFI. 0-Disable FEFI. This bit enables/disables far-end fault indicator function for 100Base-FX and 10Base-T operation. It is initialized to 1 if the logic level of the FOSEL pin (pin 15) and the FEFI_EN/10HDEN/LEDFD pin (pin 53) are both high at powerup or reset. After reset, this bit is writable if and only if the FOSEL register (bit 14 of register 17h) is set.	R/W	Pin
10	Enable CIM	1-Enable CIM. 0-Disable CIM. This bit enables/disables carrier integrity monitor function for repeater operation. It is initialized to 0 only if both NDRPTR (pin 50) and CIMEN (pin 5) pins indicate logic 1 during powerup or reset.	R/W	Pin
9	Force Good Link 100	1 -Force good link in $100 \mathrm{Mbits} / \mathrm{s}$ mode. 0-Normal operation.	R/W	Oh
8:6	Reserved	Reserved.	RO	Oh
5	Accept Halt	1-Passes HALT symbols to the MII. 0-Normal operation.	R/W	Oh
4	Load Seed	1-Loads the scrambler seed. 0-Normal operation. Setting this bit loads the user seed stored in register 19h into the 100Base-X scrambler. The content of this bit returns to 0 after the loading process is completed and no transmit is active.	R/W, SC	Oh
3	Burst Mode	1-Burst mode. 0-Normal operation. Setting this bit expands the 722μ s scrambler time-out period to $2,000 \mu \mathrm{~s}$.	R/W	Oh
2:0	Reserved	Reserved.	RO	Oh

MII Registers (continued)

Table 27. PHY Address Register (Register 19h)

Bit(s)	Name	Description	R/W	Default
$15: 11$	Reserved	Reserved.	RO	Oh
10:5	User Seed	User-modifiable seed data. When the load seed bit (bit 4 of register 18h) is set, bits 15 through 5 of this register are loaded into the 100Base-X scrambler.	R/W	21 h
$4: 0$	PHY Address	These 5 bits store the part address used by the serial management interface. PHY address of 0 has the special function of isolating the part from the MII. These bits are initialized to the logic levels of PHY[4:0] pins at powerup or reset.	R/W	Pin

Table 28. Config 10 Register (Register 1Ah)

Bit(s)	Name	Description	R/W	Default
15	10 Mbits/s Serial Mode	1 - $10 \mathrm{Mbits} / \mathrm{s}$ serial mode. 0-10 Mbits/s nibble mode. During 10Base-T operation, this bit determines whether the MII will be operating in nibble mode or serial mode. It is initialized to 0 h at powerup and reset unless the logic level of FOSEL (pin 15) is 0 and SRL10 pin (pin 1) is 1.	RO	Pin
14	Force 10 Mbits/s Good Link	1—Force 10 Mbits/s good link. 0-Normal operation.	R/W	Oh
13	Reserved	Reserved.	RO	Oh
12	SQE Disable	1-Signal quality error test disabled. 0-Normal operation.	R/W	Oh
11	Low Squelch Select	1-Low squelch level selected. 0-Normal squelch level selected.	R/W	Oh
10	Jabber Disable	1-Jabber function disabled. 0-Normal operation.	R/W	Oh
9:7	Reserved	Reserved.	RO	Oh
6	Powerdown Mode	1-Powers down the LU3X31FT completely. The part comes out of this mode after a reset is asserted and deasserted. 0-Normal operation.	R/W	Oh
5:4	Reserved	Reserved.	RO	Oh
3	Autopolarity Disable	1-Disable autopolarity function. 0-Enable autopolarity function.	R/W	Oh
2:0	Reserved	Reserved.	RO	Oh

MII Registers (continued)
Table 29. Status 100 Register (Register 1Bh)

Bit(s)	Name	Description	R/W	Default
15	Isolate Status	$1 —$ PHY is isolated (CIM). $0-$ Normal operation.	RO, LH	Oh
14	Reserved	Reserved.	RO	Oh
13	PLL Lock Status	$1-100$ Mbits/s PLL locked. $0-100 ~ M b i t s / s ~ P L L ~ n o t ~ l o c k e d . ~$	RO	Oh
12	False Carrier Status	$1-$ False carrier detected. $0-$ Normal operation.	RO, LH	Oh
$11: 0$	Reserved	Reserved.	RO	Oh

Table 30. Status 10 Register (Register 1Ch)

Bit(s)	Name	Description	R/W	Default
15	Polarity	$1 —$ Polarity of cable is swapped. 0-Polarity of cable is correct.	RO	Oh
$14: 0$	Reserved	Reserved.	RO	Oh

Table 31. Interrupt Mask Register (Register 1Dh)

Bit(s)	Name	Description	R/W	Default
15	False Carrier Status	0-Enable interrupt. 1-Disable interrupt.	R/W	Oh
14	Receiver Error Counter Full	0-Enable interrupt. 1-Disable interrupt.	R/W	Oh
13	Isolate Error Counter Full	0-Enable interrupt. 1-Disable interrupt.	R/W	Oh
12	Remote Fault	0-Enable interrupt. 1-Disable interrupt.	R/W	Oh
11	Autoneg. Complete	0-Enable interrupt. 1-Disable interrupt.	R/W	Oh
10	Link Up	0 - Enable interrupt. 1-Disable interrupt.	R/W	Oh
9	Link Down	0-Enable interrupt. 1-Disable interrupt.	R/W	Oh
8	Data Recovery 100 Lock Up	0-Enable interrupt. 1-Disable interrupt.	R/W	Oh
7	Data Recovery Lock Down	0—Enable interrupt. 1-Disable interrupt.	R/W	Oh
6:0	Reserved	Reserved.	RO	Oh

MII Registers (continued)
Table 32. Interrupt Status Register (Register 1Eh)

Bit(s)	Name	Description	R/W	Default
15	False Carrier Counter Full	1-False carrier counter has rolled over. 0-False carrier counter has not rolled over.	RO, LH	Oh
14	Receiver Error Counter Full	1-Receive error counter has rolled over 0-Receive error counter has not rolled over.	RO, LH	Oh
13	Isolate Counter Full	1-Isolate counter has rolled over. 0 - Isolate counter has not rolled over.	RO, LH	Oh
12	Remote Fault	1—Remote fault observed by PHY. 0-Remote fault not observed by PHY.	RO, LH	Oh
11	Autonegotiation Complete	1—Autonegotiation has completed. 0-Autonegotiation has not completed.	RO, LH	Oh
10	Link Up	1-Link is up. 0 - No change on link status.	RO, LH	Oh
9	Link Down	1-Link has gone down. 0-No change on link status.	RO, LH	Oh
8	Data Recovery 100 Lock Up	1-Data recovery has locked. 0-Data recovery is not locked.	RO, LH	Oh
7	Data Recovery 100 Lock Down	1-Data recovery is not locked. 0-Data recovery has locked.	RO, LH	Oh
6:0	Reserved	Reserved.	RO	Oh

dc and ac Specifications

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 33. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Ambient Operating Temperature	TA $^{\circ}$	0	70	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-65	150	${ }^{\circ} \mathrm{C}$
Maximum Supply Voltage	-	-	3.46	V
Voltage on MII Input Pins with Respect to Ground	-	-0.5	5.25	V
Voltage on Any Other Pin with Respect to Ground	-	-0.5	3.46	V

Table 34. Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Operating Supply Voltage	-	3.135	3.3	3.46	V
Power Dissipation*:					
100 Mbits/s TX	PD	-	-	140	mA
100 Mbits/s FX	PD	-	-	120	mA
10 Mbits/s	PD	-	-	150	mA
Autonegotiating	PD	-	-	30	mA

[^5]dc and ac Specifications (continued)
Table 35. dc Characteristics

Parameter	Symbol	Conditions	Min	Max	Unit
Recommended Power Supply	Vdd	-	3.0	3.6	V
	Vss	-	0.0	0.0	V
Supply Current-100Base-TX	IDD	$\mathrm{V} D \mathrm{DD}=3.3 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}$ Full-Duplex Traffic	-	148	mA
Supply Current-10Base-TX	IDD	$\mathrm{V} D \mathrm{DD}=3.3 \mathrm{~V}, \mathrm{VSS}=0.0 \mathrm{~V}$ Full-Duplex Traffic	-	156	mA
Supply Current—Autonegotiation Mode	IDD	$\begin{gathered} \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{~V} \mathrm{SS}=0.0 \mathrm{~V} \\ \text { No Link } \end{gathered}$	-	70	mA
Supply Current-100Base-FX	IDD	$\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}, \mathrm{VSS}=0.0 \mathrm{~V}$ Full-Duplex Traffic	-	120	mA
TTL Input High Voltage	VIH	$\mathrm{V} \mathrm{DD}=3.3 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}$	2.0	-	V
TTL Input Low Voltage	VIL	$\mathrm{V} \mathrm{DD}=3.3 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}$	-	0.8	V
TTL Output High-voltage MII Pins	Voh	$\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}, \mathrm{~V}$ Ss $=0.0 \mathrm{~V}$	2.4	-	V
TTL Output Low-voltage MII Pins	VoL	$\mathrm{V} \mathrm{VD}=3.3 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V}$	-	0.4	V
TTL Output High-voltage LED Pins	Voh2	$\begin{gathered} \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VSS}=0.0 \mathrm{~V} \\ \mathrm{loH}=10 \mathrm{~mA} \end{gathered}$	3.0	-	V
TTL Output Low-voltage LED Pins	VoL2	$\begin{gathered} \mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{Vss}=0.0 \mathrm{~V} \\ \mathrm{IOH}=10 \mathrm{~mA} \end{gathered}$	-	0.3	V
PECL Input High Voltage	VIHPECL	-	VDD-1.16	VDD-0.88	V
PECL Input Low Voltage	VILPECL	-	VDD-1.81	VDD-1.47	V
PECL Output High Voltage	Vohpect	-	VDD-1.02	-	V
PECL Output Low Voltage	Volpect	-	-	VDD - 1.62	V
Oscillator Input (25 MHz)	XIN	-	-50	50	ppm
Crystal Frequency Stability (25 MHz)	XIn/Xout	-	-50	50	ppm
Input Capacitance	MII CIN	-	-	8	pF

Clock Timing

Table 36. System Clock (Xin)

Symbol	Description	Min	Max	Unit
t 1	Clock High Pulse Width	17	23	ns
t 2	Clock Low Pulse Width	17	23	ns
t 3	Clock Period	39.998	40.002	ns

Xin

5-6784(F)
Figure 6. System Timing

Clock Timing (continued)

Table 37. Transmit Clock (Input and Output)

Symbol	Description	Min	Max	Unit
t1	TXCLK High Pulse Width (100 Mbits)	14	26	ns
	TXCLK High Pulse Width (10 Mbits MII)	140	260	ns
	TXCLK High Pulse Width (10 Mbits serial)	35	65	ns
t2	Xin Rise to TXCLK Rise (100 Mbits)	14	-	ns
	XIN Rise to TXCLK Rise (10 Mbits/s MII)	28	-	ns
	Xin Rise to TXCLK Rise (10 Mbits/s serial)	-	-	ns
t3	TXCLK Low Pulse Width (100 Mbits/s)	14	26	ns
	TXCLK Low Pulse Width (10 Mbits/s MII)	140	260	ns
	TXCLK Low Pulse Width (10 Mbits/s serial)	35	65	ns
t4	TXCLK Period (100 Mbits/s)*	40	40	ns
	TXCLK Period (10 Mbits/s MII)*	400	400	ns
	TXCLK Period (10 Mbits/s serial)*	100	100	ns

* Specified at ± 100 ppm.

Figure 7. Transmit Timing (Input and Output)

Clock Timing (continued)

Table 38. Management Clock

Symbol	Description	Min	Max	Unit
t 1	MDC High Pulse Width	200	-	ns
t 2	MDC Low Pulse Width	200	-	ns
t 3	MDC Period	400	-	ns
t 4	MDIO(I) Setup to MDC Rising Edge	10	-	ns
t 5	MDIO(O) Hold Time from MDC Rising Edge	10	-	ns
t 6	MDIO(O) Valid from MDC Rising Edge	0	300	ns

Figure 8. Management Timing

Clock Timing (continued)

Table 39. MII Receive Timing

Symbol	Description	Min	Max	Unit
t1	RXER, RXDV, RXD[3:0] Setup to RXCLK Rise	10	-	ns
t 2	RXER, RXDV, RXD[3:0] Hold After RXCLK Rise	10	-	ns
	RXCLK High Pulse Width (100 Mbits/s)	14	26	ns
	RXCLK High Pulse Width (10 Mbits/s MII)	140	260	ns
	RXCLK High Pulse Width (10 Mbits/s serial)	35	65	ns
$\mathrm{t4}$	RXCLK Low Pulse Width (100 Mbits/s)	14	26	ns
	RXCLK Low Pulse Width (10 Mbits/s MII)	140	260	ns
	RXCLK Low Pulse Width (10 Mbits/s serial)	35	65	ns
t5	RXCLK Period (100 Mbits/s)	40	40	ns
	RXCLK Period (10 Mbits/s MII)	400	400	ns
	RXCLK Period (10 Mbits/s serial)	100	100	ns
t6	MIIENA Deassertion to RX Valid	10	50	ns
t7	MIIENA Assertion to RX 3-State	140	-	ns

Figure 9. MII Receive Timing

Clock Timing (continued)
Table 40. MII Transmit Timing

Symbol	Description	Min	Max	Unit
t 1	TXER, TXEN, TXD[3:0] Setup to TXCLK Rise	10	-	ns
t 2	TXER, TXEN, TXD[3:0] Hold After TXCLK Rise	0	25	ns

Figure 10. MII Transmit Timing

Clock Timing (continued)

Table 41. Transmit Timing

Symbol	Description	Min	Max	Unit
t 1	TXEN Sampled to CRS High (100 Mbits/s)	0	4	bits
	TXEN Sampled to CRS High (10 Mbits/s)	-	1.5	bits
t 2	TXEN Sampled to CRS Low (100 Mbits/s)	0	16	bits
	TXEN Sampled to CRS Low (10 Mbits/s)	-	16	bits
t 3	Transmit Latency (100 Mbits/s)	6	14	bits
	Transmit Latency (10 Mbits/s)	-	-	bits
t 4	Sampled TXEN Inactive to End of Frame (100 Mbits/s)	-	17	bits
	Sampled TXEN Inactive to End of Frame (10 Mbits/s)	-	5	bits

Figure 11. Transmit Timing

Clock Timing (continued)

Table 42. Receive Timing

Symbol	Description	Min	Max	Unit
t 1	Receive Frame to Sampled Edge of RXDV (100 Mbits/s)	-	15	bits
	Receive Frame to Sampled Edge of RXDV (10 Mbits/s)	-	22	bits
	Receive Frame to CRS High (100 Mbits/s)	-	13	bits
	Receive Frame to CRS High (10 Mbits/s)	-	5	bits
$\mathrm{t3}$	End of Receive Frame to Sampled Edge of RXDV (100 Mbits/s)	-	12	bits
	End Receive Frame to Sampled Edge of RXDV (10 Mbits/s)	-	4	bits
	End of Receive Frame to CRS Low (100 Mbits/s)	13	24	bits
	End of Receive Frame to CRS Low (10 Mbits/s)	-	4.5	bits

Figure 12. Receive Timing

Clock Timing (continued)

Table 43. Reset and Configuration Timing

Symbol	Description	Min	Max	Unit
t 1	Power On to Reset High	1.0	-	ms
t 2	Reset Pulse Width	1.0	-	ms
t 3	Configuration Pin Setup	1.0	-	ms
t 4	Configuration Pin Hold	1.0	-	ms

Figure 13. Reset and Configuration Timing

Clock Timing (continued)
Table 44. PMD Characteristics

Symbol	Description	Min	Max	Unit
t1	TPTX+/TPTX- Rise Time	3.0	5.0	ns
t2	TPTX+/TPTX- Fall Time	3.0	5.0	ns
t3	TP Skew	0	500	ps
t4	FOTX+/FOTX- Rise Time	1.4	-	ns
t5	FOTX+/FOTX- Fall Time	1.4	-	ns
t6	FO Skew	-	200	ps

TPTX +

Figure 14. PMD Timing

Clock Timing (continued)

Figure 15. Connection Diagrams (Frequency References)

Clock Timing (continued)

5-6794(F).br. 3
Figure 16. Connection Diagrams (10/100BTX Operation)

Outline Diagram

80-Pin MQFP

Dimensions are in millimeters.

Technical Document Types

The following descriptions pertain to the types of individual product data sheets.
Data sheets provide a definition of the particular integrated circuit device by detailing its full electrical and physical specifications. They are intended to be the basic source of information for designers of new systems and to provide data for users requiring information on equipment troubleshooting, training, incoming inspection, equipment testing, and system design modification.
A data sheet is classified according to the following criteria:
Advance Data Sheet: An advance data sheet presents the device's proposed design architecture. It lists target specifications but may not have complete parameter values and is subject to change.
Preliminary Data Sheet: Preliminary data sheets describe the characteristics of initial prototypes.
Data Sheet: When a data sheet has the specifications of a product in full production and has complete parameter values, it is considered final and is classified as a data sheet.

Ordering Information

Device Code	Package	Temperature	Comcode
LU3X31FT-J80	80 -Pin MQFP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	108497165
LU3X31FT-TE80	$80-$-Pin LQFP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	108498171

* The outline diagram for the 80-pin LQFP package will be provided in a subsequent revision of this data sheet. Contact your Microelectronics Group Account Manager if further information is required.

For additional	information, contact your Microelectronics Group Account Manager or the following:
INTERNET:	
http://www.lucent.com/micro	
docmaster@micro.lucent.com	

Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

[^0]: * ISO is a registered trademark of The International Organization for Standardization.
 $\dagger E I A$ is a registered trademark of The Electronic Industries Association.
 $\ddagger A N S I$ is a registered trademark of The American National Standards Institute, Inc.
 § IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.

[^1]: Note: Smaller font indicates that the pin has multiple functions.

[^2]: Note: Smaller font indicates that the pin has multiple functions.

[^3]: Note: Smaller font indicates that the pin has multiple functions.

[^4]: * $T 1$ is a registered trademark and ThunderLAN is a trademark of Texas Instruments, Inc.

[^5]: * Power dissipations are specified at 3.3 V and $25^{\circ} \mathrm{C}$. This is the power dissipated by the LU3X31FT.

