Version 1.3

16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90370 Series

MB90372/F372/V370

■ DESCRIPTION

The MB90370 series is a line of general-purpose, 16-bit microcontrollers designed for those applications which require high-speed real-time processing. The instruction set is designed to be optimized for controller applications which inheriting the AT architecture of $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ series and allow a wide range of control tasks to be processed efficiently at high speed.
A built-in LPC interface, serial IRQ and PS/2 interface simplifies communication with host CPU and PS/2 devices in computer system. Moreover, SMbus compliant $I^{2} \mathrm{C}$, comparator for battery control and A/D converter implements the smart battery control. With these features, the MB90370 series matches itself as keyboard controller with smart battery control.

While inheriting the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{* 1}$ family, the instruction set for the $\mathrm{F}^{2} \mathrm{MC}$-16LX CPU core of the MB90370 series incorporates additional instructions for high-level languages, supports extended addressing modes, and contains enhanced multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, the MB90370 has an on-chip 32-bit accumulator which enables processing of long-word data.
Notes: *1: F²MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.
*2: Purchase of Fujitsu ${ }^{2} \mathrm{C}$ components conveys a license under the Philips ${ }^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

FEATURES

- Clock
- Embedded PLL clock multiplication circuit
- Operating clock (PLL clock) can selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of 4 MHz to 16 MHz)
- Minimum instruction execution time of 62.5 ns (at oscillation of 4 MHz , four times the PLL clock, operation at Vcc of 3.3 V)
- CPU addressing space of 16 Mbytes
- Internal 24-bit addressing
- Instruction set optimized for controller applications
- Rich data types (bit, byte, word, long word)
- Rich addressing mode (23 types)

MB90370 Series

- High code efficiency
- Enhanced precision calculation realized by the 32-bit accumulator
- Instruction set designed for high level language (C) and multi-task operations
- Adoption of system stack pointer
- Enhanced pointer indirect instructions
- Barrel shift instructions
- Program patch function (2 address pointer)
- Improved execution speed
- 4-byte instruction queue
- Powerful interrupt function
- Priority level programmable : 8 levels
- 32 factors of stronger interrupt function
- Automatic data transmission function independent of CPU operation
- Extended intelligent I/O service function (El²OS)
- Maximum 16 channels
- Low-power consumption (standby) mode
- Sleep mode (mode in which CPU operating clock is stopped)
- Timebase timer mode (mode in which operations other than timebase timer and watch timer are stopped)
- Stop mode (mode in which all oscillations are stopped)
- CPU intermittent operation mode
- Watch mode
- Package
- LQFP-144 (FPT-144P-M12 : 0.4 mm pitch)
- Process
- CMOS technology

PRODUCT LINEUP

Parameter Part number	MB90V370	MB90F372	MB90372
Classification	-	Flash type ROM	Mask ROM
ROM size	-	64K Bytes	
RAM size	15.7K Bytes	6 K Bytes	
CPU function	Number of instruction Minimum execution time Addressing mode Data bit length Maximum memory space	```:351 : 62.5 ns / 4 MHz (PLL x 4) :23 :1,8,16 bits :16 MBytes```	
I/O port	I/O port (N-channel) I/O port (CMOS) I/O port (CMOS with pull-up contro Total	$: 16$ $: 72$ $: 32$ $: 120$	
16-bit reload timer	Reload timer $: 4$ channelsReload mode, single-shot mode or event count mode selectable		
16-bit PPG timer	PPG timer $: 3$ channelsPWM mode or single-shot mode selectable		
Bit decoder	Bit decoder : 1 channel		
Parity generator	Parity generator $: 1$ channel Selectable odd/even parity		
PS/2 interface	PS/2 interface 4 selectable sampling clocks $: 3$ channels		
LPC interface	LPC bus interface $: 1$ channel Universal peripheral Interface $: 4$ channels GA20 output control $:$ for UPI channel 0 only Data buffer array $: 48$ bytes		
Serial IRQ controller	Serial IRQ request $: 6$ channels LPC clock monitor / control		
UART	With full-duplex double buffer (variable data length) Clock asynchronized or clock synchronized transmission (with start and stop bits) can be selectively used		
$1^{2} \mathrm{C}$	$1^{2} \mathrm{C}$ (SMbus compliant) $: 1$ channelSupport $I^{2} \mathrm{C}$ bus of PHILIPS and the SMbus proposed by Intel $I^{2} \mathrm{C}$ bus Selectable packet error check Timeout detection function		
Multi-address ${ }^{12} \mathbf{C}$	Multi-address ${ }^{2} \mathrm{C}$ (SMbus compliant) : 1 channel Support I ${ }^{2} \mathrm{C}$ bus of PHILIPS and the SMbus proposed by Intel $I^{2} \mathrm{C}$ bus Selectable packet error check Timeout detection function 6 addresses support ALERT function		
Bridge circuit	Three bus connection routes can be switched by $1^{2} \mathrm{C} /$ multi-address $1^{2} \mathrm{C}$		

Parameter	MB90V370 number	MB90F372	MB90372
Comparator	A comparator that can change the hysteresis width is contained Battery voltage, mounting/dismounting and instantaneous interruption can be detected Parallel and serial charging/discharging		

MB90370 Series

Parameter Part number	MB90V370	MB90F372	MB90372
External interrupt	6 independent channels Selectable causes	: Rise/fall edge, fall edge, "L" level or "H" level	
Key-on wake-up interrupt	8 independent channels Causes	: "L" level	
8/10-bit A/D converter	8/10-bit resolution Conversion time	: 12 channels : Less than $6.13 \mu \mathrm{~S}$ (16 MHz internal clock)	
8-bit D/A converter	8 -bit resolution	: 2 channels	
LCD controller/driver	Up to 9 SEG x 4 COM Selectable LCD output or CMOS I/O port		
Low-power consumption	Stop mode / Sleep mode / CPU intermittent operation mode / Watch mode		
Process	CMOS		
Package	PGA256	LQFP-144 (FPT-144P-M12: 0.4 mm pitch)	
Operating voltage	3.0~3.6 V @ 16 MHz *		

*: Varies with conditions such as the operating frequency (see Section "■ ELECTRICAL CHARACTERISTICS"). Assurance for the MB90V370 is given only for operation with a tool at power supply voltage of 3.0 V to 3.6 V , an operating temperature of 0 to $+25^{\circ} \mathrm{C}$, and an operating frequency of 1 MHz to 16 MHz .

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90V370	MB90F372	MB90372
PGA256	\bigcirc	X	X
FPT-144P-M12	X	\bigcirc	\bigcirc

: Available
X : Not available
Note: For more information about each package, see Section "■ PACKAGE DIMENSIONS".

■ DIFFERENCES AMONG PRODUCTS

Memory size

In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V370 does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V370, images from FF4000н to FFFFFF н are mapped to bank 00, and FF0000н to FF3FFFн are mapped to bank FF only. (This setting can be changed by the development tool configuration.)
- In the MB90372/F372, images from FF4000н to FFFFFFн are mapped to bank 00, and FF0000н to FF3FFFH are mapped to bank FF only.

MB90370 Series

■ PIN ASSIGNMENT

MB90370 Series

PIN DESCRIPTION

Pin no.	Pin name	I/O circuit	Pin status during reset	Function
LQFP-144				
128,129	X0,X1	A	Oscillating	Main oscillation input pins.
20,21	X0A,X1A	A	Oscillating	Sub-clock oscillation input pins.
17	RST	B	Reset input	External reset input pin.
58, 57, 56	MDO ~ 2	C	Mode input	Input pin for operation mode specification. Connect this pin directly to Vcc or Vss.
$109 \sim 116$	P00 ~ P07	D	General-purpose I/O ports.	
	KSIO ~ KSI7			Can be used as key-on wake-up interrupt input channel $0 \sim 7$. Input is enabled when 1 is set in EICR: ENO ~ 7 in standby mode.
117 ~ 124	P10 ~ P17	E		General-purpose I/O ports.
125, 130~136	P20 ~ P27	E		General-purpose I/O ports.
137 ~ 143	P30 ~ P36	E		General-purpose I/O ports.
144	P37	E		General-purpose I/O ports.
	ADTG			External trigger input pin (ADTG) for the A/D converter.
1	P40	F		General-purpose N-ch open-drain I/O port.
	PSCKO			Serial clock I/O pin for PS/2 interface channel 0 . This function is selected when PS/2 interface channel 0 is enabled.
2	P41	F		General-purpose N-ch open-drain I/O port.
	PSDA0			Serial data I/O pin for PS/2 interface channel 0 . This function is selected when PS/2 interface channel 0 is enabled.
3	P42	F		General-purpose N-ch open-drain I/O port.
	PSCK1		Port input	Serial clock I/O pin for PS/2 interface channel 1. This function is selected when PS/2 interface channel 1 is enabled.
	P43	F		General-purpose N-ch open-drain I/O port.
4	PSDA1			Serial data I/O pin for PS/2 interface channel 1. This function is selected when PS/2 interface channel 1 is enabled.
5	P44	F		General-purpose N-ch open-drain I/O port.
	PSCK2			Serial clock I/O pin for PS/2 interface channel 2. This function is selected when PS/2 interface channel 2 is enabled.
6	P45	F		General-purpose N-ch open-drain I/O port.
	PSDA2			Serial data I/O pin for PS/2 interface channel 2. This function is selected when PS/2 interface channel 2 is enabled.
7	P46	G		General-purpose N -ch open-drain I/O port.
	$\overline{\text { CLKRUN }}$			LPC clock status / restart request I/O pin for serial IRQ controller. This function is selected when serial IRQ and LPC clock restart request is enabled.
8	P47	H		General-purpose I/O port.
	SERIRQ			Serial IRQ data I/O pin for serial IRQ controller. This function is selected when serial $I R Q$ is enabled.

(Continued)

MB90370 Series

Pin no.	Pin name	I/O circuit	Pin status during reset	Function
LQFP-144				
37	PB3	K	Comparator input	General-purpose I/O ports.
	VSI1			Battery 1 indicator monitoring input in comparator circuit.
38	PB4	K		General-purpose I/O ports.
	VOL2			Battery 2 power instantaneous interruption monitoring input in comparator circuit.
39	PB5	K		General-purpose I/O ports.
	VSI2			Battery 2 indicator monitoring input in comparator circuit.
40	PB6	K		General-purpose I/O ports.
	VOL3			Battery 3 power instantaneous interruption monitoring input in comparator circuit.
41	PB7	K		General-purpose I/O ports.
	VSI3			Battery 3 indicator monitoring input in comparator circuit.
$45 \sim 47$	PC0 ~ PC2	L	Comparator input or A/D input	General-purpose I/O ports.
	SW1 ~ SW3			Battery 1 ~ 3 mount / dismount detection input in comparator circuit.
	ANO ~ AN2			A / D converter analog input pin $0 \sim 2$. This function is enabled when the analog input specification is enabled (ADER1).
$48 \sim 52$	PC3 ~ PC7	M	A/D input	General-purpose I/O ports.
	AN3 ~ AN7			A/D converter analog input pin $3 \sim 7$. This function is enabled when the analog input specification is enabled (ADER1).
53, $59 \sim 61$	PD0 ~ PD3	M		General-purpose I/O ports.
	AN8 ~ AN11			A/D converter analog input pin 8 ~ 11. This function is enabled when the analog input specification is enabled (ADER2).
$62 \sim 63$	PD4 ~ PD5	N	Port input	General-purpose I/O ports.
	DA1 ~ DA2			D/A converter analog output 1 ~ 2. This function is selected when D/A converted is enabled.
64, 92	PD6 ~ PD7	H		General-purpose I/O port.
	$\begin{gathered} \text { PPG2 ~ } \\ \text { PPG3 } \end{gathered}$			Output pin for PPG channel 2 ~ 3. This function is selected when PPG channel $2 \sim$ 3 output is enabled.
74	PE0	0		General-purpose I/O port.
	SEGO			Segment output pin for LCD controller/driver. This function is selected when LCD segment output is enabled.
	TIN1			External clock input pin for reload timer 1.
75	PE1	0		General-purpose I/O port.
	SEG1			Segment output pin for LCD controller/driver. This function is selected when LCD segment output is enabled.
	TO1			Event output pin for reload timer 1.
76	PE2	0		General-purpose I/O port.
	SEG2			Segment output pin for LCD controller/driver. This function is selected when LCD segment output is enabled.
	TIN2			External clock input pin for reload timer 2.

MB90370 Series

Pin no.	Pin name	I/O circuit	Pin status during reset	Function
77	PE3	0	Port input	General-purpose I/O port.
	SEG3			Segment output pin for LCD controller/driver. This function is selected when LCD segment output is enabled.
	TO2			Event output pin for reload timer 2.
78	PE4	0		General-purpose I/O port.
	SEG4			Segment output pin for LCD controller/driver. This function is selected when LCD segment output is enabled.
	TIN3			External clock input pin for reload timer 3.
79	PE5	0		General-purpose I/O port.
	SEG5			Segment output pin for LCD controller/driver. This function is selected when LCD segment output is enabled.
	TO3			Event output pin for reload timer 3.
80	PE6	0		General-purpose I/O port.
	SEG6			Segment output pin for LCD controller/driver. This function is selected when LCD segment output is enabled.
	TIN4			External clock input pin for reload timer 4.
81	PE7	0		General-purpose I/O port.
	SEG7			Segment output pin for LCD controller/driver. This function is selected when LCD segment output is enabled.
	TO4			Event output pin for reload timer 4.
	PFO	P		General-purpose I/O port.
82	SEG8			Segment output pin for LCD controller/driver. This function is selected when LCD segment output is enabled.
$83 \sim 86$	PF1 ~ PF4	P		General-purpose I/O port.
	$\begin{aligned} & \text { COMO ~ } \\ & \text { COM3 } \end{aligned}$			COM output pin for LCD controller/driver. This function is selected when LCD COM output is enabled.
87 ~ 89	PF5 ~ PF7	Q	Power input	General-purpose I/O port.
	V1 ~ V3			Power input pin for LCD controller/driver. This function is selected when external voltage divider is enabled.
42	AVCC	R	Power input	Vcc power input pin for analog circuits.
43	AVR	S		Vref+ input pin for the A/D converter. This voltage must not exceed Vcc. Vref- is fixed to AVSS.
44	AVSS	R		Vss power input pin for analog circuits.
29	CVCC	R	Power input	Vcc power input pin for analog circuits.
30	CVRH1	R		Standard power input pin of the comparator.
31	CVRH2	R		
32	CVRL	R		
33	CVSS	R		Vss power input pin for analog circuits.
19,55,91,127	Vss	-	Power input	Power (0 V) input pin.
18,54,90,126	Vcc	-		Power (3.3 V) input pin.

MB90370 Series

I/O CIRCUIT TYPE

Classification	Type	Remarks
A		Main/Sub clock (main/sub clock crystal oscillator) - At an oscillation feedback resistor of approximately 1 $\mathrm{M} \Omega$
B		- Hysteresis input - Pull-up resistor approximately $50 \mathrm{k} \Omega$
C	\square	- Hysteresis input
D		- CMOS output - Hysteresis input - Selectable pull-up resistor approximately $50 \mathrm{k} \Omega$ - lot $=4 \mathrm{~mA}$
E		- CMOS output - CMOS input - Selectable pull-up resistor approximately $50 \mathrm{k} \Omega$ - $\mathrm{loL}=4 \mathrm{~mA}$
F		- N-ch open-drain output - Hysteresis input - lo $=4 \mathrm{~mA}$ - 5 V tolerant

MB90370 Series

Classification	Type	Remarks
G		- N-ch open-drain output - CMOS input - lol $=4 \mathrm{~mA}$
H		- CMOS output - CMOS input - $\mathrm{loL}=4 \mathrm{~mA}$
1		- CMOS output - Hysteresis input - $\mathrm{loL}=4 \mathrm{~mA}$
J		- N-ch open-drain output - CMOS input - $\mathrm{loL}=4 \mathrm{~mA}$ - 5 V tolerant
K		- CMOS output - CMOS input - Comparator input - $\mathrm{loL}=4 \mathrm{~mA}$

Classification	Type	Remarks
L		- CMOS output - CMOS input - Comparator input - A/D analog input - $\mathrm{loL}=4 \mathrm{~mA}$
M		- CMOS output - CMOS input - A/D analog input - $\mathrm{loL}=4 \mathrm{~mA}$
N		- CMOS output - CMOS input - D/A analog output - $\mathrm{loL}=4 \mathrm{~mA}$
0		- CMOS output - CMOS input - Segment output - $\mathrm{loL}=4 \mathrm{~mA}$

MB90370 Series

Classification	Type	Remarks
P		- CMOS output - CMOS input - Segment output - $\mathrm{loL}=12 \mathrm{~mA}$
Q		- CMOS output - CMOS input - LCD driving power supply - lol = 12 mA
R		- Power supply input protection circuit
S		- A/D converter reference voltage (AVR) input pin with protection circuit
T		- N-ch open-drain output - CMOS input - lol $=4 \mathrm{~mA}$ - 5 V tolerant

HANDLING DEVICES

- Be sure that the maximum rated voltage is not exceeded (latch-up prevention).

A latch-up may occur on a CMOS IC if a voltage higher than Vcc or lower than Vss is applied to an input or output pin other than medium-to-high voltage pins. A latch-up may also occur if a voltage higher than the rating is applied between V_{cc} and $\mathrm{V}_{\text {ss. }}$. A latch-up causes a rapid increase in the power supply current, which can result in thermal damage to an element. Take utmost care that the maximum rated voltage is not exceeded.

When turning the power on or off to analog circuits, be sure that the analog supply voltages (AVcc, CVcc, AVR, CVRH1, CVRH2 and CVRL) and analog input voltage do not exceed the digital supply voltage (V_{cc}).

- Stabilize the supply voltages

Even within the operation guarantee range of the $\mathrm{V}_{c c}$ supply voltage, a malfunction can be caused if the supply voltage undergoes a rapid change. For voltage stabilization guidelines, the Vcc ripple fluctuations (P-P value) at commercial frequencies (50 to 60 Hz) should be suppressed to " 10% " or less of the reference $V_{c c}$ value. During a momentary change such as when switching a supply voltage, voltage fluctuations should also be suppressed so that the "transient fluctuation rate" is $0.1 \mathrm{~V} / \mathrm{ms}$ or less.

- Power-on

To prevent a malfunction in the built-in voltage drop circuit, secure " $50 \mu \mathrm{~s}$ (between 0.2 V and 1.8 V)" or more for the voltage rise time during power-on.

- Treatment of unused input pins

An unused input pin may cause a malfunction if it is left open. Every unused input pin should be pulled up or down.

- Treatment of A / D converter, D / A converter and comparator power pin

When the A/D converter, D/A converter and comparator is not used, connect the pins as follows: $A V \mathrm{cc}=\mathrm{CV}$ cc $=\mathrm{Vcc}, \mathrm{AV}$ ss $=\mathrm{AVR}=\mathrm{CV}$ ss $=\mathrm{CVRL}=\mathrm{CVRH} 1=\mathrm{CVRH} 2=\mathrm{V} s \mathrm{~s}$.

- Notes on external clock

When an external clock is used, the oscillation stabilization wait time is required at power-on reset or at cancellation of sub-clock mode or stop mode. As shown in diagram below, when an external clock is used, connect only the X0 pin and leave the X1 pin open.

MB90370 Series

- Power supply pins

When a device has two or more V_{cc} or $\mathrm{V}_{\text {ss }}$ pins, the pins that should have equal potential are connected within the device in order to prevent a latch-up or other malfunction. To reduce extraneous emission, to prevent a malfunction of the strobe signal due to an increase in the group level, and to maintain the local output current rating, connect all these power supply pins to an external power supply and ground them.
The current source should be connected to the $V_{c c}$ and $V_{s s}$ pins of the device with minimum impedance. It is recommended that a bypass capacitor of about $0.1 \mu \mathrm{~F}$ be connected near the terminals between V_{cc} and V_{ss}.

- Analog power-on sequence of A / D converter, D/A converter and comparator

The power to the A/D converter, D/A converter and comparator (AVcc, CVcc, AVR, CVRH1, CVRH2 and CVRL) and analog inputs (ANO ~ AN11, VOL1 ~ 3, VSI1 ~ 3, SW1 ~ 3, DCIN and DCIN2) must be turned on after the power to the digital circuits $\left(\mathrm{V}_{\mathrm{cc}}\right)$ is turned on. When turning off the power, turn off the power to the digital circuits (Vcc) after turning off the power to the A/D converter, D/A converter, comparator and analog inputs. When the power is turned on or off, AVR should not exceed AVcc. And CVRH1, CVRH2 and CVRL should not exceed $C V$ cc. Also, when a pin that is used for A / D analog input is also used as an input port, the input voltage should not exceed $A V c c$. And when comparator analog input is also used as an input port, the input voltage should not exceed CVcc. (The power to the analog circuits and the power to the digital circuits can be simultaneously turned on or off.)

BLOCK DIAGRAM

MB90370 Series

MEMORY MAP

Model	Address \#1	Address \#2	Address \#3
MB90372	FF0000н	004000н	001900н
MB90F372	FF0000н	004000н	001900н
MB90V370	FF0000 ${ }^{*}{ }^{11}$	004000 ${ }^{* 1}$	003FCOH

*1: The MB90V370 does not contain ROM. Assume that the development tool uses these area for its ROM decode areas.

Notes:

- If single-chip mode (without ROM mirroring function) is selected, see Chapter 31, "ROM Mirroring Function Selection Module" of the MB90370 series H/W manual.
- ROM data in the FF bank can be seen as an image in the higher 00 bank to validate the small model C compiler. Because addresses of the 16 low-order bits in the FF bank are the same, the table in ROM can be referenced without the "far" specification. For example, when 00 COOOH is accessed, the contents of ROM at FFCOOOн are actually accessed. The ROM area in the FF bank exceeds 48 kilobytes, and all areas cannot be seen as images in the 00 bank. Because ROM data from FF4000н to FFFFFFF is seen as an image at 004000н to 00FFFFH, the ROM data table should be stored in the area from FF4000н to FFFFFFFн.

F²MC-16LX CPU PROGRAMMING MODEL

- Dedicated registers

MB90370 Series

- General-purpose registers

- Processor status (PS)

$$
\begin{aligned}
& \begin{array}{|c|c|c|c|c|c|c|c|}
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline- & \mathrm{I} & \mathrm{~S} & \mathrm{~T} & \mathrm{~N} & \mathrm{Z} & \mathrm{~V} & \mathrm{C} \\
\hline
\end{array} \\
& \text { Default value } \Rightarrow \quad-\quad 0 \quad 1 \quad X \quad X \quad X \quad X \quad X \\
& \begin{array}{l|l|l|l|l|l}
\hline \text { B4 } & \text { B3 } & \text { B2 } & \text { B1 } & \text { B0 } & \text { : RP } \\
\hline
\end{array} \\
& \text { Default value } \Rightarrow \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
& \text { Default value } \Rightarrow \begin{array}{cc|c|c|}
\hline \text { ILM2 } & \text { ILM1 } & \text { ILM0 } \\
: 0 & 0 & 0 & 0
\end{array} \quad \begin{array}{c}
\text { ILM } \\
\end{array}
\end{aligned}
$$

■ I/O MAP

Address	Abbreviation	Register	$\begin{aligned} & \text { Byte } \\ & \text { access } \end{aligned}$	Word access	Resource name	Initial value
000000н	PDR0	Port 0 data register	R/W	R/W	Port 0	Х XXXXXXX
000001н	PDR1	Port 1 data register	R/W	R/W	Port 1	XXXXXXXX ${ }_{\text {в }}$
000002н	PDR2	Port 2 data register	R/W	R/W	Port 2	XXXXXXXX
000003н	PDR3	Port 3 data register	R/W	R/W	Port 3	XXXXXXXX ${ }_{\text {B }}$
000004 ${ }_{\text {H }}$	PDR4	Port 4 data register	R/W	R/W	Port 4	X1111111в
000005	PDR5	Port 5 data register	R/W	R/W	Port 5	XXXXXXXX ${ }_{\text {¢ }}$
000006н	PDR6	Port 6 data register	R/W	R/W	Port 6	
000007н	PDR7	Port 7 data register	R/W	R/W	Port 7	XXXXXXXXв
000008н	PDR8	Port 8 data register	R/W	R/W	Port 8	-----111в
000009н	PDR9	Port 9 data register	R/W	R/W	Port 9	--111111в
00000 А	PDRA	Port A data register	R/W	R/W	Port A	$-X X X X X X X$ в
00000Вн	PDRB	Port B data register	R/W	R/W	Port B	XXXXXXXX
$00000 \mathrm{CH}_{\text {¢ }}$	PDRC	Port C data register	R/W	R/W	Port C	XXXXXXXX
$00000 \mathrm{D}_{\text {н }}$	PDRD	Port D data register	R/W	R/W	Port D	XXXXXXXX ${ }_{\text {B }}$
00000Ен	PDRE	Port E data register	R/W	R/W	Port E	XXXXXXXX ${ }_{\text {¢ }}$
00000F\%	PDRF	Port F data register	R/W	R/W	Port F	
000010 ${ }_{\text {н }}$	DDR0	Port 0 direction register	R/W	R/W	Port 0	00000000в
000011н	DDR1	Port 1 direction register	R/W	R/W	Port 1	00000000в
000012н	DDR2	Port 2 direction register	R/W	R/W	Port 2	00000000в
000013н	DDR3	Port 3 direction register	R/W	R/W	Port 3	00000000в
000014н	DDR4	Port 4 direction register	R/W	R/W	Port 4	0------в
000015 ${ }_{\text {н }}$	DDR5	Port 5 direction register	R/W	R/W	Port 5	00000000в
000016н	DDR6	Port 6 direction register	R/W	R/W	Port 6	00000000в
000017 ${ }_{\text {H }}$	DDR7	Port 7 direction register	R/W	R/W	Port 7	00000000в
000018н	PGDR	Parity generator data register	R/W	R/W		
000019н	PGCSR	Parity generator control status register	R/W	R/W	Parity generator	X------0в
00001 Ан	DDRA	Port A direction register	R/W	R/W	Port A	-0000000в
00001 Вн	DDRB	Port B direction register	R/W	R/W	Port B	00000000в
$00001 \mathrm{CH}_{\text {H }}$	DDRC	Port C direction register	R/W	R/W	Port C	00000000в
00001 Dн	DDRD	Port D direction register	R/W	R/W	Port D	00000000в

MB90370 Series

(Continued)

Address	Abbreviation	Register	$\begin{gathered} \text { Byte } \\ \text { access } \end{gathered}$	Word access	Resource name	Initial value
00001Ен	DDRE	Port E direction register	R/W	R/W	Port E	00000000в
00001FH	DDRF	Port F direction register	R/W	R/W	Port F	00000000в
000020н	SMR1	Serial mode register 1	R/W	R/W	UART1	00000-00в
000021H	SCR1	Serial control register 1	R/W	R/W		00000100в
000022н	$\begin{aligned} & \hline \text { SIDR1/ } \\ & \text { SODR1 } \end{aligned}$	Input data register 1 / Output data register 1	R/W	R/W		ХХХХХХХХв
000023н	SSR1	Serial status register 1	R/W	R/W		00001000в
000024	M2CR1	Mode 2 control register 1	R/W	R/W		----1000в
000025	CDCR1	Clock division control register 1	R/W	R/W	Communication prescaler 1	00--0000в
000026	ENIR	Interrupt / DTP enable register	R/W	R/W	DTP/external interrupt	--000000в
000027	EIRR	Interrupt / DTP cause register	R/W	R/W		--XXXXXXв
000028н	ELVR	Request level setting register	R/W	R/W		00000000в
000029н			R/W	R/W		----0000в
00002Ан	ADER1	Analog input enable register 1	R/W	R/W	Port C, A/D	11111111в
00002Вн	ADER2	Analog input enable register 2	R/W	R/W	Port D, A/D	----1111в
00002С ${ }_{\text {н }}$	BRSR	Bridge circuit selection register	R/W	R/W	Bridge circuit	--000000в
00002D	ADC0	A/D control register	R/W	R/W	8/10-bit A/D converter	00000000в
00002Ен	ADCR0	A/D data register	R	R		XXXXXXXX
00002F ${ }_{\text {H }}$	ADCR1		R/W	R/W		00000-ХХв
000030	ADCS0	A/D control status register	R/W	R/W		00-------в
000031H	ADCS1		R/W	R/W		00000000в
000032н	SICRL	Serial interrupt request register	R/W	R/W	Serial IRQ	00000000в
000033	SICRH	Serial interrupt control register	R/W	R/W		00000000в
000034	SIFR1	Serial interrupt frame number register 1	R/W	R/W		--000000в
000035	SIFR2	Serial interrupt frame number register 2	R/W	R/W		--000000 ${ }_{\text {B }}$
000036	SIFR3	Serial interrupt frame number register 3	R/W	R/W		--000000в
000037 ${ }^{\text {H }}$	SIFR4	Serial interrupt frame number register 4	R/W	R/W		--000000в
000038	PDCRL1	PPG1 down counter register	-	R	16-bit PPG timer (CH1)	11111111в
000039н	PDCRH1		-	R		11111111в
00003Ан	PCSRL1	PPG1 period setting register	-	W		XXXXXXXX
00003Вн	PCSRH1		-	W		XXXXXXXX
00003C	PDUTL1	PPG1 duty setting register	-	W		ХХХХХХХХв
00003D	PDUTH1		-	W		XXXXXXXX
00003Ен	PCNTL1	PPG1 control status register	R/W	R/W		--000000в
00003FH	PCNTH1		R/W	R/W		00000000в

MB90370 Series

(Continued)

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
000040	PDCRL2	PPG2 down counter register	-	R	16-bit PPG timer (CH2)	11111111 ${ }_{\text {b }}$
000041н	PDCRH2		-	R		11111111в
000042н	PCSRL2	PPG2 period setting register	-	W		XXXXXXXX
000043	PCSRH2		-	W		XXXXXXXX ${ }_{\text {в }}$
000044	PDUTL2		-	W		XXXXXXXX
000045	PDUTH2		-	W		XXXXXXXX
000046	PCNTL2		R/W	R/W		--000000в
000047	PCNTH2		R/W	R/W		00000000в
000048	PDCRL3		-	R	16-bit PPG timer (CH3)	11111111в
000049	PDCRH3		-	R		11111111в
00004Ан	PCSRL3	PPG3 period setting register	-	W		XXXXXXXX
00004Вн	PCSRH3		-	W		XXXXXXXX
00004 CH	PDUTL3	PPG3 duty setting register	-	W		XXXXXXXX
00004D	PDUTH3		-	W		XXXXXXXX ${ }_{\text {в }}$
00004Ен	PCNTL3	PPG3 control status register	R/W	R/W		--000000в
00004FH	PCNTH3		R/W	R/W		00000000в
000050н	PSCR0	PS/2 interface control register 0	R/W	R/W	3-channel PS/2 interface	0--00000в
000051н	PSSR0	PS/2 interface status register 0	R/W	R/W		00000000в
000052н	PSCR1	PS/2 interface control register 1	R/W	R/W		0--00000в
000053н	PSSR1	PS/2 interface status register 1	R/W	R/W		00000000в
000054н	PSCR2	PS/2 interface control register 2	R/W	R/W		0--00000в
000055	PSSR2	PS/2 interface status register 2	R/W	R/W		00000000в
000056	PSDR0	PS/2 interface data register 0	R/W	R/W		00000000в
000057 ${ }^{\text {H }}$	PSDR1	PS/2 interface data register 1	R/W	R/W		00000000в
000058н	PSDR2	PS/2 interface data register 2	R/W	R/W		00000000в
000059н	PSMR	PS/2 interface mode register	R/W	R/W		----0000в
00005Ан	DAT0	D/A converter data register 0	R/W	R/W	D/A converter	XXXXXXXX
00005Вн	DAT1	D/A converter data register 1	R/W	R/W		XXXXXXXX ${ }_{\text {в }}$
00005CH	DACR0	D/A control register 0	R/W	R/W		-------0в
00005D	DACR1	D/A control register 1	R/W	R/W		-------0в

MB90370 Series

(Continued)

Address	Abbreviation	Register	$\begin{aligned} & \text { Byte } \\ & \text { access } \end{aligned}$	Word access	Resource name	Initial value
00005Ен	UPAL1	UPI1 address register (lower)	R/W	R/W	LPC interface	XXXXXXXХв
00005FH	UPAH1	UPI1 address register (upper)	R/W	R/W		XXXXXXXX
000060H	UPAL2	UPI2 address register (lower)	R/W	R/W		XXXXXXXX
000061н	UPAH2	UPI2 address register (upper)	R/W	R/W		XXXXXXXXв
000062н	UPAL3	UPI3 address register (lower)	R/W	R/W		XXXXXXXX ${ }_{\text {¢ }}$
000063н	UPAH3	UPI3 address register (upper)	R/W	R/W		XXXXXXXXв
000064н	UPCL	UPI control register (lower)	R/W	R/W		00000000 в
000065 ${ }^{\text {H }}$	UPCH	UPI control register (upper)	R/W	R/W		-000-000в
000066	UPDIO/ UPDOO	UPIO data input register / data output register	R/W	R/W		ХХХХХХХХХв
000067H	UPS0	UPIO status register	R/W	R/W		00000000в
000068 ${ }^{\text {+ }}$	$\begin{aligned} & \hline \text { UPDI1/ } \\ & \text { UPDO1 } \end{aligned}$	UPI1 data input register / data output register	R/W	R/W		ХХХХХХХХХв
000069	UPS1	UPI1 status register	R/W	R/W		00000000в
00006Ан	UPDI2/ UPDO2	UPI2 data input register / data output register	R/W	R/W		ХХХХХХХХв
00006Bн	UPS2	UPI2 status register	R/W	R/W		00000000в
00006CH	$\begin{aligned} & \text { UPDI3/ } \\ & \text { UPDO3 } \end{aligned}$	UPI3 data input register / data output register	R/W	R/W		ХХХХХХХХХв
00006D	UPS3	UPI3 status register	R/W	R/W		00000000в
00006Eн	LCR	LPC control register	R/W	R/W		-----000в
00006F\%	ROMM	ROM mirroring function selection register	W	W	ROM mirroring function	-------1в
000070н	TMCSRL1	Timer control status register CH1 (lower)	R/W	R/W	16-bit reload timer (CH 1)	00000000в
000071н	TMCSRH1	Timer control status register CH1 (upper)	R/W	R/W		----0000в
000072н	TMR1/ TMRD1	16-bit timer/reload register CH 1	-	R/W		XXXXXXXXB
000073н			-	R/W		XXXXXXXX ${ }_{\text {¢ }}$
000074	TMCSRL2	Timer control status register CH2 (lower)	R/W	R/W	16-bit reload timer (CH 2)	00000000в
000075	TMCSRH2	Timer control status register CH2 (upper)	R/W	R/W		----0000в
000076н	TMR2/ TMRD2	16-bit timer/reload register CH 2	-	R/W		XXXXXXXX
000077 ${ }^{\text {H }}$			-	R/W		ХХХХХХХХв

(Continued)

Address	Abbreviation	Register	$\begin{aligned} & \text { Byte } \\ & \text { access } \end{aligned}$	Word access	Resource name	Initial value
000078H	TMCSRL3	Timer control status register CH3 (lower)	R/W	R/W	16-bit reload timer (CH3)	00000000в
000079 ${ }^{\text {H }}$	TMCSRH3	Timer control status register CH3 (upper)	R/W	R/W		----0000в
00007Ан	TMR3/TMRD3	16-bit timer/reload register CH 3	-	R/W		XXXXXXXX
00007Bн			-	R/W		XXXXXXXX
00007CH	TMCSRL4	Timer control status register CH4 (lower)	R/W	R/W	16-bit reload timer (CH 4)	00000000в
00007Dн	TMCSRH4	Timer control status register CH 4 (upper)	R/W	R/W		----0000в
00007Eн	TMR4/TMRD4	16-bit timer/reload register CH 4	-	R/W		XXXXXXXX
00007 FH			-	R/W		XXXXXXXX
000080 ${ }_{\text {H }}$	IBCRL	${ }^{2} \mathrm{C}$ bus control register (lower)	R/W	R/W	$1^{2} \mathrm{C}$	----0000в
000081н	IBCRH	$1^{2} \mathrm{C}$ bus control register (upper)	R/W	R/W		00000000в
000082н	IBSRL	${ }^{12} \mathrm{C}$ bus status register (lower)	R	R		00000000в
000083н	IBSRH	$\mathrm{I}^{2} \mathrm{C}$ bus status register (upper)	R/W	R/W		--000000в
000084H	IDAR	$1^{2} \mathrm{C}$ data register	R/W	R/W		XXXXXXXX
000085	IADR	$1^{2} \mathrm{C}$ address register	R/W	R/W		-XXXXXXХв
000086H	ICCR	$1^{2} \mathrm{C}$ clock control register	R/W	R/W		0-000000 ${ }_{\text {в }}$
000087 ${ }^{\text {r }}$	ITCR	$1^{2} \mathrm{C}$ timeout control register	R/W	R/W		-0-00000в
000088н	ITOC	${ }^{2} \mathrm{C}$ timeout clock register	R/W	R/W		00000000в
000089н	ITOD	$I^{2} \mathrm{C}$ timeout data register	R/W	R/W		00000000в
00008Ан	ISTO	$1^{2} \mathrm{C}$ slave timeout register	R/W	R/W		00000000в
00008Bн	IMTO	$1^{2} \mathrm{C}$ master timeout register	R/W	R/W		00000000в
00008CH	RDR0	Port 0 pull-up resistor setting register	R/W	R/W	Port 0	00000000в
00008D	RDR1	Port 1 pull-up resistor setting register	R/W	R/W	Port 1	00000000в
00008Ен	RDR2	Port 2 pull-up resistor setting register	R/W	R/W	Port 2	00000000в
00008F\%	RDR3	Port 3 pull-up resistor setting register	R/W	R/W	Port 3	00000000в
$\begin{gathered} 000090_{\mathrm{H}} \\ \sim 9 \mathrm{D}_{\mathrm{H}} \end{gathered}$	Prohibited area					
00009Ен	PACSR	Program address detect control status register	R/W	R/W	Address match detection	00000000в
00009F\%	DIRR	Delayed interrupt cause / clear register	R/W	R/W	Delayed interrupt	-------0в

MB90370 Series

(Continued)

Address	Abbreviation	Register	$\begin{aligned} & \text { Byte } \\ & \text { access } \end{aligned}$	Word access	Resource name	Initial value
0000AOH	LPMCR	Low-power consumption mode register	R/W	R/W	Low-power consumption	00011000в
0000A1н	CKSCR	Clock selection register	R/W	R/W	control register	$11111100{ }_{\text {B }}$
$\begin{gathered} \text { 0000А2н } \\ \sim \text { АЗ } \end{gathered}$	Prohibited area					
0000A4H	CKMC	Clock modulation control register	R/W	R/W	Clock modulation	-------0в
$\begin{gathered} 0000 \mathrm{~A} 5 \mathrm{H} \\ \sim \mathrm{~A} 7 \mathrm{H} \end{gathered}$	Prohibited area					
0000A8H	WDTC	Watchdog control register	R/W	R/W	Watchdog timer	X-XXX111в
0000A9н	TBTC	Timebase timer control register	R/W	R/W	Timebase timer	1--00100в
0000AAн	WTC	Watch timer control register	R/W	R/W	Watch timer	10001000в
0000 AB н	Prohibited area					
0000ACH	EICR	Wake-up interrupt control register	R/W	R/W	Wake-up interrupt	00000000в
0000AD ${ }_{\text {H }}$	EIFR	Wake-up interrupt flag register	R/W	R/W		-------0в
0000АЕн	FMCS	Flash memory control status register	R/W	R/W	Flash memory interface circuit	00010000в
0000AFH	Prohibited area					
0000B0н	ICR00	Interrupt control register 00	R/W	R/W	Interrupt controller	00000111в
0000B1н	ICR01	Interrupt control register 01	R/W	R/W		00000111в
0000В2н	ICR02	Interrupt control register 02	R/W	R/W		00000111в
0000ВВ ${ }_{\text {¢ }}$	ICR03	Interrupt control register 03	R/W	R/W		00000111в
0000B4н	ICR04	Interrupt control register 04	R/W	R/W		00000111в
0000B5	ICR05	Interrupt control register 05	R/W	R/W		00000111в
0000B6н	ICR06	Interrupt control register 06	R/W	R/W		00000111в
0000B7 ${ }_{\text {H }}$	ICR07	Interrupt control register 07	R/W	R/W		00000111в
0000В88	ICR08	Interrupt control register 08	R/W	R/W		00000111в
0000B9н	ICR09	Interrupt control register 09	R/W	R/W		00000111в
0000ВАн	ICR10	Interrupt control register 10	R/W	R/W		00000111в
0000BBн	ICR11	Interrupt control register 11	R/W	R/W		00000111в
$0000 \mathrm{BC} \mathrm{H}^{\text {¢ }}$	ICR12	Interrupt control register 12	R/W	R/W		00000111в
0000BDн	ICR13	Interrupt control register 13	R/W	R/W		00000111в
0000BEн	ICR14	Interrupt control register 14	R/W	R/W		00000111в
0000BF\%	ICR15	Interrupt control register 15	R/W	R/W		00000111в

MB90370 Series

(Continued)

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
0000COH	MBCRL	$\mathrm{MI}^{2} \mathrm{C}$ bus control register (lower)	R/W	R/W	MI ${ }^{2} \mathrm{C}$	----0000в
0000C1н	MBCRH	$\mathrm{MI}^{2} \mathrm{C}$ bus control register (upper)	R/W	R/W		00000000в
0000C2H	MBSRL	$\mathrm{MI}^{2} \mathrm{C}$ bus status register (lower)	R	R		00000000в
0000С3н	MBSRH	$\mathrm{MI}^{2} \mathrm{C}$ bus status register (upper)	R/W	R/W		--000000в
0000C4H	MDAR	$\mathrm{MI}^{2} \mathrm{C}$ data register	R/W	R/W		XXXXXXXX ${ }_{\text {в }}$
0000C5H	MALR	$\mathrm{MI}^{2} \mathrm{C}$ alert register	R/W	R/W		----0000в
0000C6н	MADR1	$\mathrm{MI}^{2} \mathrm{C}$ address register 1	R/W	R/W		$-X X X X X X X B$
0000C7H	MADR2	$\mathrm{MI}^{2} \mathrm{C}$ address register 2	R/W	R/W		$-X X X X X X X$ в
0000C8H	MADR3	$\mathrm{MI}^{2} \mathrm{C}$ address register 3	R/W	R/W		$-X X X X X X X$ в
0000C9н	MADR4	$\mathrm{MI}^{2} \mathrm{C}$ address register 4	R/W	R/W		$-X X X X X X X ~$
0000САн	MADR5	$\mathrm{MI}^{2} \mathrm{C}$ address register 5	R/W	R/W		$-X X X X X X X ~ \$ ~$
0000 CBH	MADR6	$\mathrm{MI}^{2} \mathrm{C}$ address register 6	R/W	R/W		-XXXXXXX
0000ССн	MCCR	$\mathrm{MI}^{2} \mathrm{C}$ clock control register	R/W	R/W		0-000000в
0000 CDH	MTCR	M ${ }^{2} \mathrm{C}$ timeout control register	R/W	R/W		-0-00000 ${ }_{\text {в }}$
0000СЕн	MTOC	M ${ }^{2} \mathrm{C}$ timeout clock register	R/W	R/W		00000000в
0000CFH	MTOD	$\mathrm{MI}^{2} \mathrm{C}$ timeout data register	R/W	R/W		00000000в
0000D0н	MSTO	M ${ }^{2} \mathrm{C}$ slave timeout register	R/W	R/W		00000000в
0000D1н	MMTO	$\mathrm{MI}^{2} \mathrm{C}$ master timeout register	R/W	R/W		00000000в
0000D2н	SMR2	Serial mode register 2	R/W	R/W	UART2	00000-00в
0000D3н	SCR2	Serial control register 2	R/W	R/W		00000100в
0000D4H	$\begin{aligned} & \text { SIDR2/ } \\ & \text { SODR2 } \end{aligned}$	Input data register 2 / output data register 2	R/W	R/W		XXXXXXXX в $^{\text {¢ }}$
0000D5	SSR2	Status register 2	R/W	R/W		00001000в
0000D6н	M2CR2	Mode 2 control register 2	R/W	R/W		----1000в
0000D7H	CDCR2	Clock division control register 2	R/W	R/W	Communication prescaler 2	00--0000в

MB90370 Series

(Continued)

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
0000D8н	COCRL	Comparator control register (lower)	R/W	R/W	Voltage comparator	--000000в
0000D9н	COCRH	Comparator control register (upper)	R/W	R/W		00011111в
0000DAн	COSRL1	Comparator status register 1 (lower)	R/W	R/W		00000000в
0000 DB н	COSRH1	Comparator status register 1 (upper)	R/W	R/W		--000000в
0000DCн	CICRL	Comparator interrupt control register (lower)	R/W	R/W		00000000в
0000DD	CICRH	Comparator interrupt control register (upper)	R/W	R/W		--000000в
0000DEн	COSRL2	Comparator status register 2 (lower)	R	R		XXXXXXXX
0000DF	COSRH2	Comparator status register 2 (upper)	R	R		--XXXXXX
0000EОн	CIER	Comparator input enable register	R/W	R/W		---11111в
0000E1H	BDR	Bit data register	R/W	R/W	Bit decoder	----xXXXв
0000Е2н	BRRL	Bit result register (lower)	R	R		XXXXXXXX
0000ЕЗн	BRRH	Bit result register (upper)	R	R		XXXXXXXX ${ }_{\text {B }}$
0000E4H	SMR3	Serial mode register 3	R/W	R/W	UART3	00000-00в
0000E5	SCR3	Serial control register 3	R/W	R/W		00000100в
0000E6н	SIDR3/ SODR3	Input data register 3 / output data register 3	R/W	R/W		XXXXXXXX
0000E7H	SSR3	Status register 3	R/W	R/W		00001000в
0000Е8н	M2CR3	Mode 2 control register 3	R/W	R/W		----1000в
0000E9н	CDCR3	Clock division control register 3	R/W	R/W	Communication prescaler 3	00-0000в
0000ЕАн	PDL3	Port 3 data latch register	R/W	R/W	Port 3 data latch	00000000в
$\underset{\sim}{\sim} \underset{\sim}{0000 \text { EDH }}$	Prohibited area					
0000EEн	LCRL	LCD control register 0	R/W	R/W	LCD controller /driver driver	00010000в
0000EFH	LCRH	LCD control register 1	R/W	R/W		00000000в
$\underset{\sim}{\text { OOOOFOH }}$	VRAM	LCD display RAM	R/W			XXXXXXXX ${ }_{\text {B }}$
$\underset{\sim}{\sim} \underset{\sim}{000057 H}$	Prohibited area					
	External area					

(Continued)

Address	Abbreviation	Register	$\begin{aligned} & \text { Byte } \\ & \text { access } \end{aligned}$	Word access	Resource name	Initial value
001FFOH	PADR0	Program address detection register 0	R/W	R/W	Address match detection	ХХХХХХХХХв
001FF1н		Program address detection register 1	R/W	R/W		ХХХХХХХХХв
001FF2н		Program address detection register 2	R/W	R/W		ХХХХХХХХХв
001FF3 ${ }_{\text {H }}$	PADR1	Program address detection register 3	R/W	R/W		ХХХХХХХХХв
001FF4 ${ }_{\text {H }}$		Program address detection register 4	R/W	R/W		ХХХХХХХХв
001FF5 ${ }_{\text {H }}$		Program address detection register 5	R/W	R/W		ХХХХХХХХХв

MB90370 Series

(Continued)

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
003FC0 ${ }_{\text {н }}$	UDRLO	UP data register 0 (lower)	R/W	R/W	LPC data buffer array	XXXXXXXXв
003FC1H	UDRH0	UP data register 0 (upper)	R/W	R/W		XXXXXXXX
003FC2н	UDRL1	UP data register 1 (lower)	R/W	R/W		XXXXXXXX
003FC3 ${ }^{\text {¢ }}$	UDRH1	UP data register 1 (upper)	R/W	R/W		XXXXXXXX
003FC4н	UDRL2	UP data register 2 (lower)	R/W	R/W		XXXXXXXX
003FC5 ${ }_{\text {H }}$	UDRH2	UP data register 2 (upper)	R/W	R/W		XXXXXXXX ${ }_{\text {¢ }}$
003FC6 ${ }^{\text {H }}$	UDRL3	UP data register 3 (lower)	R/W	R/W		XXXXXXXX
003FC7H	UDRH3	UP data register 3 (upper)	R/W	R/W		XXXXXXXX
003FC8H	UDRL4	UP data register 4 (lower)	R/W	R/W		XXXXXXXX
003FC9н	UDRH4	UP data register 4 (upper)	R/W	R/W		XXXXXXXX
003FCA	UDRL5	UP data register 5 (lower)	R/W	R/W		XXXXXXXX
003FCBн	UDRH5	UP data register 5 (upper)	R/W	R/W		XXXXXXXX
003FCCH	UDRL6	UP data register 6 (lower)	R/W	R/W		XXXXXXXX
003FCD	UDRH6	UP data register 6 (upper)	R/W	R/W		XXXXXXXX
003FCEн	UDRL7	UP data register 7 (lower)	R/W	R/W		XXXXXXXX
003FCFH	UDRH7	UP data register 7 (upper)	R/W	R/W		XXXXXXXX
003FDOH	UDRL8	UP data register 8 (lower)	R/W	R/W		XXXXXXXX
003FD1н	UDRH8	UP data register 8 (upper)	R/W	R/W		XXXXXXXXB
003FD2н	UDRL9	UP data register 9 (lower)	R/W	R/W		XXXXXXXX
003FD3н	UDRH9	UP data register 9 (upper)	R/W	R/W		XXXXXXXX
003FD4н	UDRLA	UP data register A (lower)	R/W	R/W		XXXXXXXX
003FD5 ${ }_{\text {H }}$	UDRHA	UP data register A (upper)	R/W	R/W		XXXXXXXX
003FD6н	UDRLB	UP data register B (lower)	R/W	R/W		XXXXXXXX
003FD7н	UDRHB	UP data register B (upper)	R/W	R/W		XXXXXXXX
003FD8 ${ }_{\text {н }}$	UDRLC	UP data register C (lower)	R/W	R/W		XXXXXXXX
003FD9н	UDRHC	UP data register C (upper)	R/W	R/W		XXXXXXXX
003FDAн	UDRLD	UP data register D (lower)	R/W	R/W		XXXXXXXX
003FDBн	UDRHD	UP data register D (upper)	R/W	R/W		XXXXXXXX ${ }_{\text {в }}$
003FDCH	UDRLE	UP data register E (lower)	R/W	R/W		XXXXXXXX
003FDD ${ }_{\text {H }}$	UDRHE	UP data register E (upper)	R/W	R/W		ХХХХХХХХХ
003FDEн	UDRLF	UP data register F (lower)	R/W	R/W		XXXXXXXX
003FDF ${ }_{\text {H }}$	UDRHF	UP data register F (upper)	R/W	R/W		ХХХХХХХХХв
003FE0н	DNDL0	DOWN data register 0 (lower)	R	R		XXXXXXXX
003FE1H	DNDH0	DOWN data register 0 (upper)	R	R		XXXXXXXX
003FE2н	DNDL1	DOWN data register 1 (lower)	R	R		XXXXXXXX
003FE3н	DNDH1	DOWN data register 1 (upper)	R	R		XXXXXXXX

(Continued)

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
003FE4 ${ }^{\text {H }}$	DNDL2	DOWN data register 2 (lower)	R	R	LPC data buffer array	XXXXXXXX
003FE5 ${ }_{\text {H }}$	DNDH2	DOWN data register 2 (upper)	R	R		ХХХХХХХХ
003FE6н	DNDL3	DOWN data register 3 (lower)	R	R		XXXXXXXX
003FE7 ${ }_{\text {H }}$	DNDH3	DOWN data register 3 (upper)	R	R		ХХХХХХХХВ
003FE8 ${ }^{\text {¢ }}$	DNDL4	DOWN data register 4 (lower)	R	R		XXXXXXXX
003FE9н	DNDH4	DOWN data register 4 (upper)	R	R		XXXXXXXX
003FEAн	DNDL5	DOWN data register 5 (lower)	R	R		ХХХХХХХХв
003FEBн	DNDH5	DOWN data register 5 (upper)	R	R		XXXXXXXX
003FECH	DNDL6	DOWN data register 6 (lower)	R	R		XXXXXXXX
003FED ${ }_{\text {н }}$	DNDH6	DOWN data register 6 (upper)	R	R		XXXXXXXX
003FEEн	DNDL7	DOWN data register 7 (lower)	R	R		ХХХХХХХХв
003FEFH	DNDH7	DOWN data register 7 (upper)	R	R		XXXXXXXX
003FFF0н	DBAAL	Data buffer array address register (lower)	R/W	R/W		Х XXXXXXХв $^{\text {¢ }}$
003FF1н	DBAAH	Data buffer array address register (upper)	R/W	R/W		ХХХХХХХХв
$\begin{gathered} \text { 003FF2H }^{\sim} \\ \sim 003 F F F_{H} \end{gathered}$	Prohibited area					

- Meaning of abbreviations used for reading and writing

R/W: Read and write enabled
R: Read-only
W: Write-only

- Explanation of initial values

0 : The bit is initialized to 0 .
1: The bit is initialized to 1.
X : The initial value of the bit is undefined.
$-:$ The bit is not used. Its initial value is undefined.

- Instruction using IO addressing e.g. MOV A, io, is not supported for registers area 003 FCO но 003 FFF .

MB90370 Series

INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt cause	El2OS support	Interrupt vector			Interrupt control register		Priority *2
		Number		Address	ICR	Address	
Reset	X	\#08	08н	FFFFDC ${ }_{\text {н }}$	-	-	High
INT9 instruction	X	\#09	09н	FFFFD8	-	-	
Exception processing	X	\#10	ОАн	FFFFD4 ${ }_{\text {н }}$	-	-	
A/D converter conversion termination	0	\#11	ОВн	FFFFD0н			
Timebase timer	Δ	\#12	ОСн	FFFFCCH	ICR	O00B0H	
UPI0 IBF / LPC reset	Δ	\#13	0Dн	FFFFC8 ${ }_{\text {н }}$	ICR01	0000B1*1	
UPI1 IBF	Δ	\#14	0Ен	FFFFC4 ${ }_{\text {H }}$	CR01	000 B н	
UPI2 IBF	Δ	\#15	OFH	FFFFC0 ${ }_{\text {H }}$	CR	0000B2	
UPI3 IBF	Δ	\#16	10H	FFFFBCH	CR	000B2r	
DTP/ext. interrupt channels 0/1 detection	0	\#17	11н	FFFFB8	ICR03	0000B3**	
DTP/ext. interrupt channels $2 / 3$ detection	0	\#18	12н	FFFFB4 ${ }_{\text {H }}$		-000В	
DTP/ext. interrupt channels $4 / 5$ detection	0	\#19	13н	FFFFB0 ${ }_{\text {н }}$	ICR04	000B4	
Wake-up interrupt detection	Δ	\#20	14H	FFFFACH	,	000 ${ }^{\text {+ }}$	
UPI0/1/2/3 OBE	Δ	\#21	15 ${ }^{\text {¢ }}$	FFFFA8 ${ }_{\text {н }}$	ICR05	0000B5 ${ }^{+2}$	
16-bit PPG timer 1	\bigcirc	\#22	16н	FFFFA4 ${ }_{\text {н }}$	ICROS	0000В5н	
PS/2 interface 0/1	Δ	\#23	17H	FFFFAOH	R06	0000B6	
PS/2 interface 2	Δ	\#24	18H	FFFF9C ${ }_{\text {н }}$	ICRO6	0000B6	
Watch timer	Δ	\#25	19н	FFFF98 ${ }_{\text {н }}$	R07	0000B7 ${ }^{+1}$	
$1^{2} \mathrm{C}$ transfer complete / bus error	Δ	\#26	$1 \mathrm{AH}^{\text {¢ }}$	FFFF94 ${ }_{\text {¢ }}$	ICR07	0000B7 ${ }^{\text {² }}$	
16-bit PPG timer 2/3	\bigcirc	\#27	1Bн	FFFFF90н	ICR08	0000B8**	
Voltage comparator 1	Δ	\#28	1 CH	FFFF8C	ICR08	0000B8'	
$\mathrm{MI}^{2} \mathrm{C}$ transfer complete / bus error	Δ	\#29		FFFF88	R09	0000B9 ${ }^{-1}$	
Voltage comparator 2	Δ	\#30	1Ен	FFFF84н	IRO9	0000В9н	
$1^{2} \mathrm{C}$ timeout / standby wake-up	Δ	\#31	1FH	FFFFF80	ICR10	$0000 \mathrm{BA}{ }^{*}{ }^{*}$	
16-bit reload timer 1/2 underflow	\bigcirc	\#32	20н	FFFF7CH	ICR10	о000ВАн	
$\mathrm{MI}^{2} \mathrm{C}$ timeout / standby wake-up	Δ	\#33	21H	FFFF78		0000BB**	
16-bit reload timer 3/4 underflow	0	\#34	22H	FFFFF74	ICR	0000BB	
UART1 receive	\bigcirc	\#35	23H	FFFFF70	ICR12	$0000 \mathrm{BC}{ }^{*}$	
UART1 send	Δ	\#36	24H	FFFF6CH	ICR12	оо00ВСн	
UART2 receive	\bigcirc	\#37	25	FFFF68 ${ }_{\text {H }}$	ICR13	$0000 \mathrm{BD}{ }^{* 1}$	
UART2 send	Δ	\#38	26н	FFFF64	ICR13	0000BD ${ }^{\text {+ }}$	
UART3 receive	\bigcirc	\#39	27H	FFFFF60			
UART3 send	Δ	\#40	28н	FFFF5CH	ICR14	0000ВЕн	
Flash memory status	Δ	\#41	29н	FFFF58 ${ }_{\text {н }}$	ICR15		V
Delayed interrupt generator module	Δ	\#42	2 2н $^{\text {}}$	FFFF54 ${ }_{\text {H }}$	ICR15	$0000 \mathrm{BFH}^{+1}$	Low

O: Can be used and interrupt request flag is cleared by $\mathrm{EI}^{2} \mathrm{OS}$ interrupt clear signal.
X: Cannot be used.
๑: Can be used and support the $\mathrm{El}^{2} \mathrm{OS}$ stop request.
Δ : Can be used.

MB90370 Series

*1: - For peripheral functions that share the ICR register, the interrupt level will be the same.

- If the extended intelligent I/O service is to be used with a peripheral function that shares the ICR register with another peripheral function, the service can be started by either of the function. And if $\mathrm{El}^{2} \mathrm{OS}$ clear is supported, both interrupt request flags for the two interrupt causes are cleared by $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal. It is recommended to mask either of the interrupt request during the use of $\mathrm{El}^{2} \mathrm{OS}$.
- EI2OS service cannot be started multiple times simultaneously. Interrupt other than the operating interrupt is masked during $\mathrm{El}^{2} \mathrm{OS}$ operation. It is recommended to mask either of the interrupt requests during the use of $\mathrm{El}^{2} \mathrm{OS}$.
*2: This priority is applied when interrupts of the same level occur simultaneously.

MB90370 Series

- PERIPHERAL RESOURCES

1. Low-power Consumption Control Circuit

The MB90370 series has the following CPU operating mode selected by the configuration of an operating clock and clock operation control.

- Clock Mode

- PLL clock mode

In this mode, a PLL clock that is a multiple of the oscillation clock (HCLK) is used to operate the CPU and peripheral functions.

- Main clock mode

In this mode, the main clock, with the oscillation clock (HCLK) frequency divided by 2 is used to operate the CPU and peripheral functions. In the main clock mode, the PLL multiplier circuit is inactive.

- Sub-clock mode

In this mode, the sub-clock, with the sub-clock (SCLK) frequency divided by 4 is used to operate the CPU and peripheral functions. In the sub-clock mode, the main clock and PLL multiplier circuit are inactive.

Reference

For the clock mode, see Section 4.4 "Clock Mode" of the MB90370 series H/W manual.

- CPU Intermittent Operating Mode

In this mode, the CPU is operated intermittently while high-speed clock pluses are supplied to peripheral functions, thereby reducing power consumption. In this mode, intermittent clock pulses are supplied only to the CPU while it is accessing a register, internal memory, peripheral function, or external unit.

- Standby Mode

In this mode, the low-power consumption control circuit stops supplying the clock to the CPU (sleep mode) or the CPU and peripheral functions (timebase timer mode) or stops the oscillation clock itself (stop mode), thereby reducing power consumption.

- PLL sleep mode

The PLL sleep mode is activated to stop the CPU operating clock in the PLL clock mode. Components excluding the CPU operate on the PLL clock.

- Main sleep mode

The main sleep mode is activated to stop the CPU operating clock in the main clock mode. Components excluding the CPU operate on the main clock.

- Sub-sleep mode

The sub-sleep mode is activated to stop the CPU operating clock in the sub-clock mode. Components excluding the CPU operate on the divided-by-four sub-clock.

- Timebase timer mode

The timebase timer mode causes the operation of functions, excluding the oscillation clock, timebase timer, and watch timer, to stop. All functions other than the timebase timer and watch timer are inactivated.

MB90370 Series

- Watch mode and main watch mode

The watch mode and main watch mode operates the watch timer only. The sub-clock operates but the main clock and PLL multiplier circuit stop.

- Stop mode

The stop mode causes the oscillation to stop. All functions are inactivated.

Note

Because the stop mode turns the oscillation clock off, data can be retained by the lowest power consumption.

(1) Register configuration

Clock Selection Register	15	14	13	12	11	10	9	8 ¢	Bit number CKSCR
Address: 0000A1H	SCM	MCM	WS1	WS0	SCS	MCS	CS1	CSO	
Read/write \Rightarrow Initial value \quad ¢	R	R	R/W	R/W	R/W	R/W	R/W	R/W	
	1	1	1	1	1	1	0	0	
Lower Power Consumption Mode Control Register									
	7	6	5	4	3	2	1	0 <	Bit number
Address: 0000A0 ${ }_{\text {H }}$	STP	SLP	SPL	RST	TMD	CG1	CG0	Reserved	LPMCR
Read/write \leftrightharpoons	W	W	R/W	W	W	R/W	R/W	R/W	
Initial value $\Rightarrow>$	0	0	0	1	1	0	0	0	

MB90370 Series

(2) Block diagram

2. I / O Ports

(1) Outline of I/O ports

Each I/O port outputs data from the CPU to the I/O pins or inputs signals from the I/O pins to the CPU as directed by the port data register (PDR). Each CMOS I/O port can also designate the direction of a data flow (input or output) at the I/O pins in bit units using the port data direction register (DDR). Or N-channel open-drain port can designate the direction of a data flow (input or output) at the I/O pins in bit units using the port data register (PDR). The function of each port and the resources using it are described below:

- Port 0 : General-purpose I/O port/resource (Key-on wake-up interrupt)
- Port 1 : General-purpose I/O port
- Port 2 : General-purpose I/O port
- Port 3 : General-purpose I/O port/resource (A/D converter external trigger)
- Port 4 : General-purpose I/O port/resource (PS/2 interface / serial IRQ controller)
- Port 5 : General-purpose I/O port/resource (LPC interface)
- Port 6 : General-purpose I/O port/resource (DTP / UART1)
- Port 7 : General-purpose I/O port/resource (UART1 / UART2 / UART3 / PPG1)
- Port 8 : General-purpose I/O port/resource (Multi-address $I^{2} \mathrm{C}$)
- Port 9 : General-purpose I/O port/resource (I2C / Multi-address ${ }^{2}{ }^{2} \mathrm{C}$)
- Port A : General-purpose I/O port/resource (Comparator)
- Port B : General-purpose I/O port/resource (Comparator)
- Port C : General-purpose I/O port/resource (Comparator / A/D converter)
- Port D : General-purpose I/O port/resource (A/D converter / D/A converter / PPG2 / PPG3)
- Port E : General-purpose I/O port/resource (Reload timer1~4/LCD controller)
- Port F : General-purpose I/O port/resource (LCD controller)

(2) Register configuration

Register	Read/Write	Address	Initial value
Port 0 data register (PDRO)	R/W	000000н	ХХХХХХХХв
Port 1 data register (PDR1)	R/W	000001H	XXXXXXXX
Port 2 data register (PDR2)	R/W	000002н	XXXXXXXX
Port 3 data register (PDR3)	R/W	000003н	XXXXXXXX
Port 4 data register (PDR4)	R/W	000004н	X1111111в
Port 5 data register (PDR5)	R/W	000005H	XXXXXXXX
Port 6 data register (PDR6)	R/W	000006н	XXXXXXXX
Port 7 data register (PDR7)	R/W	000007н	XXXXXXXXв
Port 8 data register (PDR8)	R/W	000008н	-----111в
Port 9 data register (PDR9)	R/W	000009н	--111111в
Port A data register (PDRA)	R/W	00000 Ан	$-X X X X X X X$ в
Port B data register (PDRB)	R/W	00000Вн	XXXXXXXX
Port C data register (PDRC)	R/W	00000 CH	XXXXXXXX
Port D data register (PDRD)	R/W	00000D	XXXXXXXX
Port E data register (PDRE)	R/W	00000Ен	XXXXXXXX
Port F data register (PDRF)	R/W	00000FH	XXXXXXXX
Port 0 data direction register (DDR0)	R/W	000010 ${ }^{\text {H}}$	00000000в

MB90370 Series

Register	Read/Write	Address	Initial value
Port 1 data direction register (DDR1)	R/W	000011н	00000000в
Port 2 data direction register (DDR2)	R/W	000012н	00000000в
Port 3 data direction register (DDR3)	R/W	000013н	00000000в
Port 4 data direction register (DDR4)	R/W	000014H	0-------в
Port 5 data direction register (DDR5)	R/W	000015	00000000в
Port 6 data direction register (DDR6)	R/W	000016н	00000000в
Port 7 data direction register (DDR7)	R/W	000017 ${ }^{\text {H }}$	00000000в
Port A data direction register (DDRA)	R/W	00001 Ан	-0000000в
Port B data direction register (DDRB)	R/W	00001Вн	00000000в
Port C data direction register (DDRC)	R/W	00001 CH	00000000в
Port D data direction register (DDRD)	R/W	00001D	00000000в
Port E data direction register (DDRE)	R/W	00001Ен	00000000в
Port F data direction register (DDRF)	R/W	00001FH	00000000в
Analog data input enable register (ADER1)	R/W	00002Ан	11111111в
Analog data input enable register (ADER2)	R/W	00002Вн	----1111в
Comparator input enable register (CIER)	R/W	0000E0н	---11111в
LCD control register 1 (LCRH)	R/W	0000EFH	00000000в
Port 0 pull-up resistor setting register (RDR0)	R/W	00008Сн	00000000в
Port 1 pull-up resistor setting register (RDR1)	R/W	00008D	00000000в
Port 2 pull-up resistor setting register (RDR2)	R/W	00008Ен	00000000в
Port 3 pull-up resistor setting register (RDR3)	R/W	00008Fн	00000000в
Port 3 data latch register (PDL3)	R/W	0000EAн	00000000в

R/W: Read/write enabled
R : Read-only
X : Undefined

- : Not used

(3) Block diagram of I/O ports

- Block diagram of port 0 pins

- Block diagram of port 1 pins

MB90370 Series

- Block diagram of port 2 pins

- Block diagram of port 3 pins

- Block diagram of port 47 pin

- Block diagram of port 46 pin

MB90370 Series

- Block diagram of port 45 ~ 40 pins

- Block diagram of port 5 pins

- Block diagram of port 6 pins

- Block diagram of port 7 pins

MB90370 Series

- Block diagram of port 8 pins

- Block diagram of port 9 pins

- Block diagram of port A pins

- Block diagram of port B pins

MB90370 Series

- Block diagram of port C7 ~ C3 pins

- Block diagram of port C2 ~ C0 pins

- Block diagram of port D7 ~ D6 pins

- Block diagram of port D5 ~ D4 pins

MB90370 Series

- Block diagram of port D3 ~ D0 pins

- Block diagram of port E pins

- Block diagram of port F7 ~ F5 pins

- Block diagram of port F4 ~ F0 pins

MB90370 Series

3. Timebase timer

The timebase timer is an 18-bit free-running counter (timebase counter) that counts up in synchronization with the internal count clock (one-half of the source oscillation).

Features of timebase timer :

- Interrupt generated when counter overflow
- El²OS supported
- Interval timer function :

An interrupt generated at four different time intervals

- Clock supply function :

Four different clock can be selected as watchdog timer's count clock
Supply clock for oscillation stabilization

(1) Register configuration

Timebase Timer Control Register

Address: 0000A9 ${ }_{\text {H }}$	15	14	13	12	11	10	9	8	Bit number
	Reserved	-	-	TBIE	TBOF	TBR	TBC1	TBC0	TBTC
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 1 \end{gathered}$	-	-	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} W \\ 1 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

(2) Block diagram of timebase timer

MB90370 Series

4. Watchdog timer

The watchdog timer is a 2-bit counter that uses the timebase timer's supply clock as the count clock. After activation, if the watchdog timer is not cleared within a given period, the CPU will be reset.

- Features of watchdog timer :

Reset CPU at four different time intervals
Status bits to indicate the reset causes

(1) Register configuration of watchdog timer

Watchdog Timer Control Register

Address: 0000A8H	7	6	5	4	3	2	1	0	$<$ Bit number
	PONR	-	WRST	ERST	SRST	WTE	WT1	WTO	WDTC
Read/write	R	-	R	R	R	W	W	W	
Initial value	X		X	X	X	1	1	1	

(2) Block diagram of watchdog timer

MB90370 Series

5. Watch timer

The watch timer is a 15-bit timer that uses sub-clocks and can generate an interval interrupt. It can also be used as the watchdog timer clock source and sub-clock oscillation wait time.

Features of the watch timer :

- Provides the watchdog timer clock source
- Sub-clock oscillation stabilization wait timer function
- Interval timer function that generates interrupts in a given cycle
(1) Register configuration of watch timer

Watch Timer Control Register

	7	6	5	4	3	2	1	0	< Bit number WTC
Address: 0000AAн	WDCS	SCE	WTIE	WTOF	WTR	WTC2	WTC1	WTC0	
Read/write Initial value	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 1 \end{gathered}$	$\begin{gathered} R \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \hline R / W \\ 0 \end{gathered}$	W 1	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	

(2) Block diagram of watch timer

MB90370 Series

6. 16-bit PPG timer (x 3)

The 16-bit PPG (Programmable Pulse Generator) timer consists of a 16-bit down counter, prescaler, 16-bit period setting register, 16-bit duty setting register, 16-bit control register and a PPG output pin.

Features of 16 -bit PPG timer :

- 8 types of counter operation clock ($\phi, \phi / 2, \phi / 4, \phi / 8, \phi / 16, \phi / 32, \phi / 64, \phi / 128$) can be selected (ϕ is the machine clock)
- An interrupt is generated when there is a trigger or an counter borrow or when PPG rising (normal polarity) / PPG falling (inverted polarity)
- PPG output operation

The 16-bit PPG timer can output pulse waveforms with variable period and duty ratio. Also, it can be used as D/A converter in conjunction with an external circuit.
(1) Register configuration of PPG timer

MB90370 Series

(Continued)

PPG Duty Setting Buffer Register (Upper)

PPG Duty Setting Buffer Register (Lower)
Address: ch1 00003CH ch2 000044 ch3 $00004 \mathrm{CH}_{\mathrm{H}}$

Read/write \Rightarrow	W	W	W	W	W	W	W	W
Initial value \Rightarrow	X							

PPG Control Status Register (Upper)

			15	14	13	12	11	10	9	< Bit number
Address:	ch1 00003FH ch2 000047H ch3 00004FH	\cdots]	\%	-	-	\%		-	PCNTH1 ~ 3
		CNTE	STGR	MDSE	RTRG	CKS2	CKS1	CKSO	PGMS	
	Read/wr Initial valu	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

PPG Control Status Register (Lower)

Note : Registers PDCR1 ~ 3, PCSR1 ~ 3 and PDUT1 ~ 3 are word access only

MB90370 Series

(2) Block diagram of PPG timer

MB90370 Series

7. 16-bit reload timer (x 4)

The 16-bit reload timer provides two operating mode, internal clock mode and event count mode. In each operating mode, the 16-bit down counter can be reloaded (reload mode) or stopped when underflow (one-shot mode).
Output pins TO1 ~ TO4 are able to output different waveform according to the counter operating mode. TO1 ~ TO4 toggles when counter underflow if counter is operated as reload mode. TO1 ~ TO4 output specified level ("H" or " L ") when counter is counting if the counter is in one-shot mode.

Features of the 16-bit reload timer :

- Interrupt generated when timer underflow
- EI²OS supported
- Internal clock operating mode :

Three internal count clocks can be selected
Counter can be activated by software or external trigger (signal at TIN1 ~ TIN4 pin)
Counter can be reloaded or stopped when underflow after activated

- Event count operating mode :

Counter counts down by one when specified edge at TIN1 ~ TIN4 pin
Counter can be reloaded or stopped when underflow

(1) Register configuration of reload timer

Timer Control Status Register (Upper)

Address:	ch1 000071	15	14	13	12	11	10	9	8	$\begin{aligned} & \text { Bit number } \\ & \text { TMCSRH1~4 } \end{aligned}$
	ch3 000079	-	-	-	-	CSL1	CSLO	MOD2	MOD1	
	Chead/write					R/W	R/W	R/W	R/W	
	Initial value	-				0	0	0	0	

Timer Control Status Register (Lower)
Address: ch1 000070

ch1 000070н	7	65		4	3	2	1	0	< Bit number
ch3 000078 ch4 00007 CH_{H}	MOD0	OUTE	OUTL	RELD	INTE	UF	CNTE	TRG	TMCSRL1 ~ 4
Read/write	R/W								
Initial value	0	0	0	0	0	0	0	0	

16-bit Timer Register / 16-bit Reload Register (Upper)

16-bit Timer Register / 16-bit Reload Register (Lower)
Address: ch1 000072H
ch2 000076
ch3 00007А ch4 00007Ен

Read/write
Initial value \Rightarrow

(2) Block diagram of reload timer

*1 This register includes channel 1,2,3 and 4. The register enclosed in < and > indicates the channel 2,3 and 4 register.
*2 Interrupt number, channel 1 and 2 share one interrupt number, channel 3 and 4 share another

MB90370 Series

8. $I^{2} C$

The ${ }^{2} \mathrm{C}$ (Inter IC Bus) interface is a simple structure bidirectional bus consisting of two wires : a serial data line (SDA) and a serial clock line (SCL). Among the devices connected with these two wires, information is transmitted to one another. By recognizing the unique address of each device, it can operate as a transmitting or receiving device in accordance with the function of each device. Among these devices, the master/slave relation is established.
The $I^{2} \mathrm{C}$ interface can connect two or more devices to the bus provided the upper limit of the bus capacitance does not exceed 400 pF . It is a full-fledged multi-master bus equipped with collision detection and communication adjustment procedures designed to avoid the destruction of data if two or more masters attempt to start data transfer simultaneously.

The communication adjustment procedure permits only one master to control the bus when two or more masters attempt to control the bus so that messages are not lost or the contents of messages are not changed. Multimaster means that multiple masters attempt to control the bus simultaneously without losing messages.
This ${ }^{2} \mathrm{C}$ interface includes MCU standby mode wake-up function, and a CRC-8 calculator that performs automatic Packet Error Code (PEC) generation and verification.
(1) Register configuration of $\mathrm{I}^{2} \mathrm{C}$

(Continued)

(Continued)

$I^{2} \mathrm{C}$ Address Register

${ }^{12} \mathrm{C}$ Clock Control Register

	7	6	5	4	3	2	1	0	Bit number
Address: 000086 ${ }^{\text {H }}$	DMBP	-	EN	CS4	CS3	CS2	CS1	CSO	ICCR
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$		$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

${ }^{1}$ 'C Timeout Control Register

$1^{2} \mathrm{C}$ Timeout Clock Register

	7	6	5	4	3	2	1	0	Bit number
Address: 000088н	C7	C6	C5	C4	C3	C2	C1	C0	ITOC
Read/write	R/W								
Initial value	0	0	0	0	0	0	0	0	

$1^{2} \mathrm{C}$ Timeout Data Register

	15	14	13	12	11	10	9	8		Bit number ITOD
Address: 000089 ${ }_{\text {H }}$	D7	D6	D5	D4	D3	D2	D1	D0		
Read/write Initial value	R/W 0	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$		

${ }^{2} \mathrm{C}$ Slave Timeout Register

	7	6	5	4	3	2	1	0	Bit number ISTO
Address: 00008Ан	S6	S6	S5	S4	S3	S2	S1	So	
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	R/W	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

${ }^{2}{ }^{2} \mathrm{C}$ Master Timeout Register

Address: 00008Bн

Read/write \Rightarrow	R/W							
Initial value \Rightarrow	0	0	0	0	0	0	0	0

MB90370 Series

(2) Block diagram of $\mathrm{I}^{2} \mathrm{C}$

9. $\mathrm{MI}^{2} \mathrm{C}$

The Multi-address $I^{2} \mathrm{C}$ (Inter IC Bus) interface is a simple structure bidirectional bus consisting of two wires : a serial data line (SDA) and a serial clock line (SCL). Among the devices connected with these two wires, information is transmitted to one another. By recognizing the unique address of each device, it can operate as a transmitting or receiving device in accordance with the function of each device. Among these devices, the master/ slave relation is established.
The Multi-address ${ }^{2} \mathrm{C}$ interface can connect two or more devices to the bus provided the upper limit of the bus capacitance does not exceed 400 pF . It is a full-fledged multi-master bus equipped with collision detection and communication adjustment procedures designed to avoid the destruction of data if two or more masters attempt to start data transfer simultaneously. This macro provides 6 addresses to implement the multi-address function.
The communication adjustment procedure permits only one master to control the bus when two or more masters attempt to control the bus so that messages are not lost or the contents of messages are not changed. Multimaster means that multiple masters attempt to control the bus simultaneously without losing messages.
This Multi-address $I^{2} \mathrm{C}$ interface includes MCU standby mode wake-up function, and a CRC-8 calculator that performs automatic Packet Error Code (PEC) generation and verification.
(1) Register configuration of $\mathrm{MI}^{2} \mathrm{C}$

(Continued)

MB90370 Series

(Continued)

Multi-address $\mathrm{I}^{2} \mathrm{C}$ Alert Register

Multi-address $\mathrm{I}^{2} \mathrm{C}$ Address Register 1/3/5

Multi-address $\mathrm{I}^{2} \mathrm{C}$ Address Register 2/4/6
Address ch2: 0000C7H
Address ch4:0000C9н
Address ch6:0000CB ${ }_{\text {H }}$
Read/write \Rightarrow
Initial value \Rightarrow

Multi-address $1^{2} \mathrm{C}$ Clock Control Register

	7	6	5	4	3	2	1	0	< Bit number
Address: 0000CCH	DMBP	-	EN	CS4	CS3	CS2	CS1	CSO	MCCR
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	-	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

Multi-address $\mathrm{I}^{2} \mathrm{C}$ Timeout Control Register

Multi-address $\mathrm{I}^{2} \mathrm{C}$ Timeout Clock Register

	7	6	5	4	3	2	1	0	Bit number MTOC
Address: 0000CEн	C7	C6	C5	C4	C3	C2	C1	C0	
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

Multi-address $I^{2} \mathrm{C}$ Timeout Data Register

(Continued)

Multi-address $\mathrm{I}^{2} \mathrm{C}$ Slave Timeout Register

	7	6	5	4	3	2	1	0	Bit number
Address: 0000D0н	S6	S6	S5	S4	S3	S2	S1	S0	MSTO
Read/write Initial value	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

Multi-address $\mathrm{I}^{2} \mathrm{C}$ Master Timeout Register

MB90370 Series

(2) Block diagram of $\mathrm{MI}^{2} \mathrm{C}$

MB90370 Series

10. Bridge circuit

The bridge circuit can switch the I/O path of each port to $\mathrm{I}^{2} \mathrm{C}$ or Multi-address $\mathrm{I}^{2} \mathrm{C}$.
(1) Register configuration of bridge circuit

(2) Block diagram of bridge circuit

MB90370 Series

11. Comparator

This comparator circuit monitors voltage of up to three batteries and automatically controls electric discharge. Either parallel discharge or sequential discharge can be selected.

- Parallel discharge control

In parallel discharge control, all batteries are allowed to discharge when power is not being supplied from the AC adapter.

- If power is being supplied from the AC adapter, the permission/prohibition of discharge for batteries is controlled by software.
- Sequential discharge control

In sequential discharge control, the comparator controls discharge in a specified order, while monitoring intermittent interruption of power, voltage level, and mount/dismount of batteries, when power is not being supplied from the AC adapter.

- If power is being supplied from the AC adapter, the permission/prohibition of discharge for batteries is controlled by software.
- Up to three batteries can be controlled, and the order of discharge can be selected.
- The affect of intermittent interruption of power is automatically filtered.
- Mount/dismount of batteries is automatically detected and discharge is controlled.
- Battery voltage is monitored, and if battery voltage is below the specified voltage, change over to the next battery is automatically done.

(1) Register configuration of comparator

Comparator Control Register (Lower)

Comparator Control Register (Upper)

Comparator Status Register 1 (Lower)

Comparator Status Register 1 (Upper)

Comparator Interrupt Control Register (Lower)

MB90370 Series

(Continued)

Comparator Interrupt Control Register (Upper)

Comparator Status Register 2 (Lower)

Comparator Status Register 2 (Upper)

Comparator Input Enable Register

(2) Block diagram of comparator

MB90370 Series

12. UART (x 3)

The UART (Universal Asychronous Receiver Transmitter) is a serial I/O port for asynchronous (start-stop) communication or clock-synchronous communication.

The UART has the following features :

- Full-duplex double buffering
- Capable of asynchronous (start-stop bit) and CLK-synchronous communications
- Support for the multiprocessor mode
- Various method of baud rate generation :
- External clock input possible
- Internal clock (a clock supplied from 16-bit reload timer can be used)
- Embedded dedicated baud rate generator

Operation	Baud rate
Asynchronous	$76923 / 38461 / 19230 / 9615 / 500 \mathrm{~K} / 250 \mathrm{~K}$ bps
CLK synchronous	$16 \mathrm{M} / 8 \mathrm{M} / 4 \mathrm{M} / 2 \mathrm{M} / 1 \mathrm{M} / 500 \mathrm{~K}$ bps

- Error detection functions (parity, framing, overrun)
- NRZ (Non Return to Zero) signal format
- Interrupt request :
- Receive interrupt (receive complete, receive error detection)
- Transmit interrupt (transmission complete)
- Transmit / receive conforms to extended intelligent I/O service (EI²OS)

(1) Register configuration of UART

Serial Mode Register
Address: ch1 000020^{H} ch2 0000D2H
ch3 0000 E 4 H

Serial Control Register

UART Input Data Register / Output Data Register

Address:	ch1 000022н ch2 0000D4H ch3 0000Е6н	7		6	5	4	3	2	1	< Bit number
		-								
		D7	D6	D5	D4	D3	D2	D1	D0	SODR1/2/3
	Read/wr Initial val	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{V} \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{M} \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	R/W X	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	

UART Status Register

Clock Division Control Register

Mode 2 Control Register

Address:	ch1 000024 ch2 0000D6 ch3 0000E8H	7			6	5	4	3	1		< Bit number M2CR1/2/3
			-	-	-	-	SCKL	M2L2	M2L1	M2L0	
	Read/write		-	-	-	-	R/W	R/W	R/W	R/W	
	Initial value		-	-	-		1	0	0	0	

MB90370 Series

(2) Block diagram of UART

MB90370 Series

13. LCD controller/driver

The LCD (Liquid Crystal Display) controller/driver function displays the contents of a display data memory directly to the LCD panel by segment and common outputs.

- Up to nine segment outputs (SEG0 to SEG8) and four common outputs (COM0 to COM3) may be used.
- Built-in display RAM.
- Three selectable duty ratios ($1 / 2,1 / 3$, and $1 / 4$). Not all duty ratios are available with all bias settings, however.
- Either the main or sub-clock can be selected as the drive clock.
- LCD can be driven directly.

Table below shows the duty ratios available with each bias setting.

Part number	Bias	$\mathbf{1 / 2}$ duty ratio	$\mathbf{1 / 3}$ duty ratio	$\mathbf{1 / 4}$ duty ratio
MB90370 series	$1 / 2$ bias	\circ	X	X
	$1 / 3$ bias	X	\circ	\circ

○: Recommended mode
X : Do not use

(1) Register configuration of LCD

LCDC Control Register (Upper)

Address:	0000EFH	15	14	13	12	11	10	9	8		Bit number
		SS4	VS	CS1	CSO	SS3	SS2	SS1	SS0		LCRH
	Read/wr Initial val	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$		

LCDC Control Register (Lower)

Address: 0000ЕЕн	7	6	5	4	3	2	1	0	Bit number LCRL
	CSS	LCEN	VSEL	BK	MS1	MS0	FP1	FP0	
Read Initial	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	R/W	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

MB90370 Series

(2) Block diagram of LCD

14. A/D converter

The A/D (Analog to Digital) converter converts the analog voltage input to an analog input pin (input voltage) to a digital value.

The converter has the following features:

- The minimum conversion time is $6.13 \mu \mathrm{~s}$ (for a machine clock of 16 MHz ; includes the sampling time).
- The minimum sampling time is $3.75 \mu \mathrm{~s}$ (for a machine clock of 16 MHz).
- The converter uses the RC-type successive approximation conversion method with a sample and hold circuit.
- A resolution of 10 bits or 8 bits can be selected.
- Up to twelve channels for analog input pins can be selected by a program.
- Various conversion mode :
- Single conversion mode : Selectively convert one channel.
- Scan conversion mode : Continuously convert multiple channels. Maximum of 12 selectable channels.
- Continuous conversion mode : Repeatedly convert specified channels.
- Stop conversion mode : Convert one channel then halt until the next activation. (Enables synchronization of the conversion start timing.)
- At the end of A / D conversion, an interrupt request can be generated and $E I^{2} O S$ can be activated.
- In the interrupt-enabled state, the conversion data protection function prevents any part of the data from being lost through continuous conversion.
- The conversion can be activated by software, 16 -bit reload timer 4 (rise edge) and ADTG.

(1) Register configuration of A/D converter

Analog Input Enable Register 2

Analog Input Enable Register 1

	7	6	5	4	3	2	1	0	Bit number ADER1
Address: 00002A H $^{\text {H }}$	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 1 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 1 \end{gathered}$	R/W	$\begin{gathered} \text { R/W } \\ 1 \end{gathered}$	R/W 1	$\begin{gathered} \text { R/W } \\ 1 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 1 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 1 \end{gathered}$	

A/D Control Status Register 1

	15	14	13	12	11	10	9	8	Bit number ADCS1
Address: 000031H	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	RESV	
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	R/W 0	R/W	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} W \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

A./D Control Status Register 0

(Continued)

MB90370 Series

(Continued)
A/D Control Register

	15	14	13	12	11	10	9	8	Bit number ADC0
Address: 00002D	ANS3	ANS2	ANS1	ANSO	ANE3	ANE2	ANE1	ANEO	
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	R/W 0	R/W 0	R/W	R/W 0	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

A/D Data Register (Upper)

	15	14	13	12	11	10	9	8		it number
Address: 00002F ${ }_{\text {H }}$	S10	ST1	STO	CT1	CTO	-	D9	D8		ADCR1

Read/write \Rightarrow	R/W	W	W	W	W	-	R
Initial value \Rightarrow	0	0	0	0	0	-	X

A/D Data Register (Lower)

	7	6	5	4	3	2	1	0	Bit number
Address: 00002Eн	D7	D6	D5	D4	D3	D2	D1	D0	ADCR0
Read/write	R	R	R	R	R	R	R	R	
Initial value	X	X	X	X	X	X	X	X	

(2) Block diagram of A/D converter

MB90370 Series

15. D/A converter

The D/A (Digital to Analog) converter is used to generate an analog output from an 8-bit digital input. By setting the enable bit in the D/A control register (DACR) to 1, it will enable the corresponding D/A output channel. Hence, setting this bit to 0 will disable that channel.
If D/A output is disabled, the analog switch inserted to the output of each D/A converter channel in series is turned off. In the D/A converter, the bit is cleared to 0 and the direct-current path is shut off. The above is also true in the stop mode.
The output voltage of the D/A converter ranges from 0 V to $255 / 256 \times \mathrm{DVR}$. To change the output voltage range, adjust the DVR voltage externally.
The D/A converter output does not have the internal buffer amplifier. The analog switch (= 100Ω) is inserted to the output in series. To apply load to the output externally, estimate a sufficient stabilization time.

Table below lists the theoretical values of output voltage of the D/A converter.

Value written to DA07 to DA00 and DA17 to DA10	Theoretical value of output voltage
00_{H}	$0 / 256 \times \mathrm{DVR}(=0 \mathrm{~V})$
01_{H}	$1 / 256 \times \mathrm{DVR}$
02_{H}	$2 / 256 \times$ DVR
$:$	$:$
FD_{H}	$253 / 256 \times$ DVR
FE_{H}	$254 / 256 \times$ DVR
FF_{H}	$255 / 256 \times \mathrm{DVR}$

MB90370 Series

(1) Register configuration of D/A converter

D/A converter register 1

Bit	15	14	13	12	11	10	9	8	DAT1
Address:00005Bн	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10	
Read/write	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \hline \text { R/W } \\ X \end{gathered}$	

D/A converter register 0

D/A control register 1

D/A control register 0

(2) Block diagram of D/A converter

MB90370 Series

16. LPC interface

The LPC (Low Pin Count) interface consists of an LPC bus interface, universal parallel interface (UPI x 4 channels), gate address A20 function and LPC data buffer array. By using the LPC bus interface and UPI, data can be exchanged with an external host CPU synchronously via an external LPC bus.

- LPC bus interface

The LPC bus interface provides direct access of host CPU to UPI.

- It supports I/O read and I/O write cycle only. Other cycle types will be ignored.
- It supports LPC clock running at 33 MHz .
- Universal parallel interface, UPI x 4 channels

The UPI is used to exchange parallel data to serial data in LPC bus with host CPU.

- An 8-bit data will be transmitted or received.
- A buffer function is available for independent input and output.
- The I/O buffer status can be output externally through LPC bus interface.
- Gate address A20 function for UPI channel 0

The GA20 (Gate Address A20) is intended to implement the memory management in a PC architecture. This allows the access to the extended memory needed by the operating system. On-chip logic is provided to speed up the generation of GA20.

- Data buffer array

The data buffer array is consisted of 32 bytes UP data register and 16 bytes DOWN data register to speed up the data transfer between MCU and external host through LPC bus.
(1) Register configuration of LPC bus interface register

```
LPC Control Register
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & \(\diamond\) Bit number \\
\hline 00006Eн & - & - & - & - & - & LRF & LRIE & LPE & LCR \\
\hline Read/writ Initial valu & - & - & - & - & - & \[
\begin{gathered}
\text { R/W } \\
0
\end{gathered}
\] & \[
\begin{gathered}
\text { R/W } \\
0
\end{gathered}
\] & \[
\begin{gathered}
\text { R/W } \\
0
\end{gathered}
\] & \\
\hline
\end{tabular}
```


(2) Register configuration of UPI registers

UPI Address Register (Upper)

UPI Address Register (Lower)

UPI Control Register (Upper)

Address: 000065_{H}

UPI Control Register (Lower)

Address: 000064	7	6	5	4	3	2	1	0	< Bit number UPCL
	DBAE	UPE1	IBFE1	OBEE1	GA20E	UPE0	IBFEO	OBEEO	
Read/write Initial value	R/W								
	0	0	0	0	0	0	0	0	

UPI Status Register
Address: ch0 000067H

UPI Data Input Register / Data Output Register
Address: ch0 000066н ch1 000068
ch2 00006 A

$\begin{array}{lcccccccc}\text { Read/write } \Rightarrow & \text { R/W } \\ \text { Initial value } \Rightarrow & X & X & X & X & X & X & X & X\end{array}$

MB90370 Series

(3) Register configuration of LPC data buffer registers

Data Buffer Array Address Register (Upper)

Address: 003FF1H		15	14	13	12	11	10	9	8	Bit number DBAAH
		DA15	DA14	DA13	DA12	DA11	DA10	DA09	DA08	
	Read/w Initial	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{aligned} & \text { R/W } \\ & X \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \mathrm{X} \end{aligned}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	

Data Buffer Array Address Register (Lower)

UP Data Register (upper)
Address: ch0 003FC1H

UP Data Register (lower)
Address: ch0 003FCOH

DOWN Data Register (upper)
Address: ch0 003FE1H

DOWN Data Register (lower)
Address: ch0 003FEOH

ch0 003FEOH ch1 003FE2H ch7 003FEEн	7		6	5	4	3	2	1	0	< Bit number
	\cdots	1	\%	1	\cdots	-	\%	1		
	DN07	DN06	DN05	DN04	DN03	DN02	DN01	DN00		DNDLO ~ 7
Read/wr	R	R	R	R	R	R	R	R		
Initial val	X	X	X	X	X	X	X	X		

(Continued)

MB90370 Series

(Continued)

Index Register									
	7	6	5	4	3	2	1	0	> Bit number
Address: -	-	-	IX05	IX04	IX03	IX02	IX01	IX00	IXR
Read/write 5 Initial values \Rightarrow	—	-	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	
Data Port Register	7	6	5	4	3	2	1		\checkmark Bit number
Address: -	DP07	DP06	DP05	DP04	DP03	DP02	DP01	DP00	DPR
Read/write \Rightarrow Initial value \Rightarrow	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	

(4) Block diagram of LPC interface

MB90370 Series

17. Serial IRQ controller

The serial IRQ controller consists of a 6-channel serial IRQ control circuit and an LPC clock monitor / control circuit. By using this serial IRQ controller, host interrupt requests can be transferred serially through a single signal wire (SERIRQ), synchronized with the LPC clock.

- 6-channel serial IRQ control circuit
- The 6-channel serial IRQ control circuit consists of a serial interrupt control register (SICR), 4 serial interrupt frame number registers (SIFR1 ~ 4), a protocol state machine and a serial interrupt data latch and output control.
- For channel OA, OB and $1 \sim 3$, if SICR : OBE bit (OBF controlled enable bit) $=0$, then serial IRQ can be controlled by software setting of SICR : IRR bit. If SICR : OBE bit = 1 , then software control is disabled and serial IRQ is controlled by OBF flag (Output buffer full flag) from LPC UPIO ~ 3 .
- For channel 4, serial IRQ can be controlled by software setting of SICR : IRR bit.
- For channel OA and OB, additional enable bit (SICR : ENOA/OB bit) can be used to latch and keep the OBF0 or IRROA/OB bit status.
- The serial interrupt data latch transfers serial IRQs serially according to their frame number. The frame number for channel 0A is fixed to "IRQ1", for channel 0B is fixed to "IRQ12", and the frame number for channel $1 \sim 4$ are software programmable (IRQ1 ~ 15, and IRQ21 ~ 31) by setting the SIFR1 ~ 4.
- By monitoring the SERIRQ and the LPC clock pin, the protocol state machine can detect the START frame condition. Then it starts counting the DATA frame and transfers its serial IRQs through SERIRQ. Finally it can switch to continuous/quiet mode operation by determine the STOP frame condition.
- The serial interrupt output control support both continuous and quiet mode operation. In continuous mode operation, only the host can initiate the serial IRQs transfer; In quiet mode operation, both the host and slave (e.g. the serial IRQ controller) can initiate the serial IRQs transfer.
- LPC clock monitor / control circuit
- The LPC clock monitor / control circuit consists of a clock-run monitor / control circuit. By monitoring the clock-run pin ($\overline{\mathrm{CLKRUN}}$), the clock monitor / control circuit can determine whether the host has stopped LPC clock in quiet mode operation or not. If LPC clock is stopped and the controller want to initiate the serial IRQs transfer, then it can request the host to restart the LPC clock by controlling the $\overline{\mathrm{CLKRUN}}$ pin.

(1) Register configuration of serial IRQ controller

Serial Interrupt Control Register (Lower)

	7	6	5	4	3	2	1	0	\checkmark Bit number
Address: 000032 ${ }^{\text {H}}$	ENOB	ENOA	IRR4	IRR3	IRR2	IRR1	IRROB	IRROA	SICRL
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	

Serial Interrupt Control Register (Upper)

Serial Interrupt Frame Number Register 1

Serial Interrupt Frame Number Register 2

Serial Interrupt Frame Number Register 3

Serial Interrupt Frame Number Register 4

MB90370 Series

(2) Block diagram of the serial IRQ controller

MB90370 Series

(3) Block diagram of the 6-channel serial IRQ control circuit

MB90370 Series

(4) Block diagram of the LPC clock monitor / control circuit

18. 3-channel PS/2 interface

The 3-channel PS/2 interface consists of 3 individual channels of PS/2 interface that can be operated concurrently. PS/2 interface is a two wires, bidirectional serial bus providing economical way for data exchange between host (keyboard controller) and device (keyboard / mouse etc).

(1) Register configuration of 3-channel PS/2 interface

PS/2 Interface Mode Register

PS/2 Interface Data Register (Ch 1)

PS/2 Interface Data Register (Ch 0, Ch 2)

PS/2 Interface Status Register
 $\begin{array}{lllllllll}\text { Read/write } \Rightarrow & \mathrm{R} / \mathrm{W} \\ \text { Initial value } \Rightarrow & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

PS/2 Interface Control Register

Address: ch0 000050H ch1 000052 н ch2 000054
$\begin{array}{lllllll}\text { Read/write } \Rightarrow & R / W & \text { R } \\ \text { Initial value } \Rightarrow & \text { R/W } & R / W & R / W & R / W & R / W\end{array}$

MB90370 Series

(2) Block diagram of 3-channel PS/2 interface

(3) Block diagram of PS/2 interface transmission/reception circuit (1 channel)

MB90370 Series

19. Parity generator

The parity generator is a simple circuit that generates odd / even parity based on the input data. It consists of a parity generator data register (PGDR), an odd / even parity generation logic and a parity generator control status register (PGCSR).
An 8-bit data can be loaded into PGDR, then the parity generator will generate odd / even parity based on the input data. Either odd or even parity can be generated by setting the PGCSR.

For odd parity generation, if the number of " 1 " s in the PGDR is even number, then the parity bit in PGCSR will be set to " 1 ", otherwise the parity bit will be set to " 0 ".

For even parity generation, if the number of " 1 "s in the PGDR is even number, then the parity bit in PGCSR will be set to " 0 ", otherwise the parity bit will be set to " 1 ".
Table shows some examples of odd / even parity generation.

Input data	Parity bit (odd parity)	Parity bit (even parity)
00000000_{B}	1	0
01010101_{B}	1	0
10000000_{B}	0	1
1010 1011 $_{\mathrm{B}}$	0	1

(1) Register configuration of parity generator

Parity Generator Data Register

	7	6	5	4	3	2	1	0	Bit number
Address : 000018H	D7	D6	D5	D4	D3	D2	D1	D0	PGDR
Read/write \Rightarrow Initial value \Rightarrow	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{aligned} & \text { R/W } \\ & X \end{aligned}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	

Parity Generator Control Status Register

(2) Block diagram of parity generator

MB90370 Series

20. Bit decoder

The bit decoder is a simple one-hot decoder that can be used together with the keyscan inputs. It consists of a bit data register (BDR), a decoder logic and a bit result register (BRR). A 4-bit encoded data can be loaded into BDR, then the decoder logic will decode the data and store the 16 -bit resulted data into BRR. Below shows the decoder's logic table.

4-bit encoded data	16-bit resulted data
OH	0000000000000001 в
1H	000000000000 0010в
2 H	000000000000 0100в
3H	000000000000 1000в
4 H	000000000001 0000в
5 H	000000000010 0000в
6 H	000000000100 0000в
7H	000000001000 0000в
8 H	000000010000 0000в
9 ¢	000000100000 0000в
Ан	000001000000 0000в
Вн	000010000000 0000в
CH	000100000000 0000в
Dн	001000000000 0000в
EH	010000000000 0000в
F_{H}	1000000000000000 в

(1) Register configuration of bit decoder

Bit Data Register	15	14	13	12	11	10	9	8	< Bit number
Address : 0000E1H	-	-	-	-	D3	D2	D1	D0	BDR
Read/write \Rightarrow Initial value \Rightarrow					$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \text { R/W } \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \text { R/W } \\ X \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { X } \end{gathered}$	
Bit Result Register (Upper)									
	15	14	13	12	11	10	9	8	- Bit number
Address: 0000E3H	R15	R14	R13	R12	R11	R10	R9	R8	BRRH
Read/write \Rightarrow Initial value $\Rightarrow>$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{X} \end{aligned}$								
Bit Result Register (Lower)									
Address : 0000E2н	7	6	5	4	3	2	1	0	Bit number
	R7	R6	R5	R4	R3	R2	R1	R0	BRRL
Read/write \Rightarrow	R	R	R	R	R	R	R	R	
Initial value \Rightarrow	X	X	X	X	X	X	X	X	

(2) Block diagram of bit decoder

MB90370 Series

21. Wake-up interrupt

The wake-up interrupt circuit detects the signals of the "L" levels input to the external interrupt pins and to generate interrupt request to the CPU. These interrupts can wake up the CPU from standby mode.

Wake-up interrupt pins:	8 pins (P00/KSIO to P07/KSI7).
Wake-up interrupt sources:	"L" level signal input to a wake-up interrupt pin.
Interrupt control:	Enables or disables to input wake-up interrupt controlled by wake-up interrupt control register (EICR).
Interrupt flag:	IRQ flag bit of wake-up interrupt flag register (EIFR). Flag set when there is an IRQ.
Interrupt request:	Interrupt request \#20 is generated if any enabled external interrupt pin goes LOW.

(1) Register configuration of wake-up interrupt

(2) Block diagram of wake-up interrupt

22. DTP/External interrupts

The DTP (Data Transfer Peripheral)/external interrupt circuit is activated by the signal supplied to a DTP/external interrupt pin. The CPU accepts the signal using the same procedure it uses for normal hardware interrupts and generates external interrupts or activates the extended intelligent I/O service (EI2OS).
Features of DTP/External interrupt :

- Total 6 external interrupt channels
- Two request levels ("H" and "L") are provided for the intelligent I/O service
- Four request levels (rise/fall edge, fall edge, "H" level and "L" level) are provided for external interrupt requests

(1) Register configuration

DTP/Interrupt Source Register									
	15	14	13	12	11	10	9	8	Bit number EIRR
Address: 000027н	-	-	ER5	ER4	ER3	ER2	ER1	ER0	
Read/write \Rightarrow Initial value \Rightarrow			$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	
DTP/Interrupt Enable Register ${ }_{7}$		6	5	4	3	2	1	0	Bit number
Address: 000026н	-	-	EN5	EN4	EN3	EN2	EN1	ENO	ENIR
Read/write c Initial value	-		$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	
Request Level Setting Register (Upper)									
	15	14	13	12	11	10	9	8	Bit number
Address: 000029н	-	-	-	-	LB5	LA5	LB4	LA4	ELVRH
Read/write Initial value	\qquad		-	-	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	
Request Level Setting Reg	ter (Lo								
	7	6	5	4	3	2	1	0	Bit number
Address: 000028H	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	ELVRL
Read/write Initial value	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \text { R/W } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{R} / \mathrm{W} \\ 0 \end{gathered}$	

MB90370 Series

(2) Block diagram of DTP/External interrupts

MB90370 Series

23. Delayed interrupt generation module

The delayed interrupt generation module is used to generate a task switching interrupt. Interrupt requests to the F^{2} MC-16LX CPU can be generated and cleared by software using this module.
(1) Register configuration

Delayed Interrupt Generator Module Register

(2) Block diagram

MB90370 Series

24. ROM correction function

When an address matches the value set in the address detection register, the instruction code to be loaded into the CPU is forced to be replaced with the INT9 instruction code (01н). When executing a set instruction, the CPU executes the INT9 instruction. The address match detection function is implemented by processing using the INT9 interrupt routine.
The device contains two address detection registers, each provided with a compare enable bit. When the value set in the address detection register matches an address and the interrupt enable bit is " 1 ", the instruction code to be loaded into the CPU is forced to be replaced with the INT9 instruction code.

(1) Register configuration

Program Address Detection Register 0 (Upper Byte)

Program Address Detection Register 0 (Middle Byte)

Program Address Detection Register 0 (Lower Byte)

(Continued)

MB90370 Series

(Continued)
Program Address Detection Register 1 (Upper Byte)

Program Address Detection Register 1 (Middle Byte)

Program Address Detection Register 1 (Lower Byte)

(2) Block diagram

MB90370 Series

25. ROM mirroring function selection module

The ROM mirroring function selection module can select what the FF bank allocated the ROM sees through the 00 bank according to register settings.
(1) Register configuration

ROM Mirror Function Selection Register

(2) Block diagram

26. 512 K bit flash memory

The 512K bit flash memory is allocated in the FEн to FFн banks on the CPU memory map. Like masked ROM, flash memory is read-accessible and program-accessible to the CPU using the flash memory interface circuit. The flash memory can be programmed/erased by the instruction from the CPU via the flash memory interface circuit. The flash memory can therefore be reprogrammed (updated) while still on the circuit board under integrated CPU control, allowing program code and data to be improved efficiently. Note that sector operations such as "enable sector protect" cannot be used.

Features of 512K bit flash memory :

- 64 K words $x 8$ bits $/ 32 \mathrm{~K}$ words x 16 bits ($16 \mathrm{~K}+8 \mathrm{~K}+8 \mathrm{~K}+32 \mathrm{~K}$) sector configuration
- Automatic program algorithm (same as the Embedded Algorithm* : MBM29F400TA)
- Installation of the deletion temporary stop/delete restart function
- Write/delete completion detected by the data polling or toggle bit
- Write/delete completion detected by the CPU interrupt
- Compatibility with the JEDEC standard-type command
- Each sector deletion can be executed (Sectors can be freely combined)
- Number of write/delete operations 10,000 times guaranteed
* : Embedded Algorithm is a trademark of Advanced Micro Devices, Inc.

(1) Register configuration

Flash Memory Control Status Register									
	7	6	5	4	3	2	1	- 〕	Bit number
Address: 0000AEн	INTE	RDYINT	WE	RDY	Reserved	LPM1	Reserved	LPM0	FMCS
$\begin{array}{lc} \text { Read/write } \Rightarrow & R / W \\ \text { Initial value } \Rightarrow & 0 \end{array}$		R/W	R/W	R	W	R/W	W	R/W	
		0	0	1	0	0	0	0	

MB90370 Series

(2) Sector configuration of 512K bit flash memory

The 512 K bit flash memory has the sector configuration illustrated below. The addresses in the illustration are the upper and lower addresses of each sector.
When accessed from the CPU, SA0 and SA1 to SA3 are allocated in the FF bank registers, respectively.

Flash memory	CPU address	*Writer address
SA3 (16 Kbytes)	FFFFFFF $_{\text {H }}$	7FFFF ${ }_{H}$
	FFCOOOH	7 COOO H
SA2 (8 Kbytes)	FFBFFFF	7BFFFH
	FFA000 ${ }_{\text {H }}$	$7 \mathrm{A000} \mathrm{H}$
SA1 (8 Kbytes)	FF9FFFH	79 FFF H
	FF8000H	78000^{H}
SA0 (32 Kbytes)	$\mathrm{FF}^{\text {FFFF }} \mathrm{H}$	77 FFF H
	FFOOOOH	70000

* : Writer addresses correspond to CPU addresses when data is programmed in flash memory by a parallel writer. Writer addresses are used to program/erase data using a general-purpose writer.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=\mathrm{CV} \mathrm{Vss}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss -0.3	Vss +4.0	V	
	CV cc	Vss -0.3	V ss +4.0	V	$\mathrm{V}_{\mathrm{cc}} \geq \mathrm{CV} \mathrm{ccc}^{* 1}$
	AVcc	Vss - 0.3	Vss +4.0	V	V cc $\geq \mathrm{AV}$ cc * ${ }^{\text {* }}$
A/D converter reference input voltage	AVR	Vss - 0.3	$\mathrm{V} s \mathrm{~s}+4.0$	V	AV cc $\geq \mathrm{AVR}, \mathrm{AVR} \geq \mathrm{AV}$ ss
Comparator reference input voltage	CVRH1 CVRH2 CVRL	Vss - 0.3	$V \mathrm{ss}+4.0$	V	CV cc \geq CVRH1, CVRH1 $\geq \mathrm{CV}_{\text {ss }}$ CVcc \geq CVRH2, CVRH2 \geq CVss CV cc $\geq \mathrm{CVRL}, \mathrm{CVRL} \geq \mathrm{CV}$ ss
LCD power supply voltage	V1 ~ V3	Vss - 0.3	Vss +4.0	V	V1 to V3 must not exceed Vcc
Input voltage	V_{11}	Vss - 0.3	$\mathrm{V} s \mathrm{~s}+4.0$	V	All pins except P40 ~ P45, P80 ~ P82, P90 ~ P95 *2
	V_{12}	Vss -0.3	Vss +6.0	V	P40 ~ P45, P80 ~ P82, P90 ~ P95
Output voltage	Vo	Vss -0.3	Vss +4.0	V	'2
Maximum clamp current	Iclamp	-2.0	+2.0	mA	*
Total maximum clamp current	$\Sigma \mid$ Iclamp\|	-	20	mA	$* 4$
"L" level maximum output current	loL1	-	10	mA	All pins except PF0 ~ PF7*3
	loL2	-	20	mA	PF0 ~ PF7*3
"L" level average output current	lolav1	-	4	mA	All pins except PF0 ~ PF7 Average output current = operating current \times operating efficiency
	lolav2	-	12	mA	PF0 ~ PF7 Average output current = operating current \times operating efficiency
"L" level total maximum output current	Σ lo	-	100	mA	
" L " level total average output current	Elolav	-	50	mA	Average output current = operating current \times operating efficiency
"H" level maximum output current	Іон	-	-10	mA	${ }^{3}$
"H" level average output current	lohav	-	-3	mA	Average output current = operating current \times operating efficiency
" H " level total maximum output current	Σ loн	-	-100	mA	
" H " level total average output current	Σ Iohav	-	-50	mA	Average output current = operating current \times operating efficiency
Power consumption	PD	-	200	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

MB90370 Series

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1 : Set $A V c c, C V c c$ and $V_{c c}$ at the same voltage. Take care so that AVR, CVRH1, CVRH2 and CVRL do not exceed $\mathrm{V} c \mathrm{c}+0.3 \mathrm{~V}$ when the power is turned on.
*2 $: V_{1}$ and V_{o} shall never exceed $V c c+0.3 V$.
*3 : The maximum output current is a peak value for a corresponding pin.
*4 : - Use within recommended operating conditions.

- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a $+B$ signal is input when the microcontroller power supply is off (not fixed at $0 V$), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to poerate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept $+B$ signal input.
- Sample recommended circuits:

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

$(\mathrm{Vss}=\mathrm{AV} \mathrm{ss}=\mathrm{CV} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage *2	Vcc	3.0 *1	3.6	V	Normal operation assurance range
	CV cc	3.3	3.6	V	
	Vcc	1.8	3.6	V	Retains the RAM state in stop mode
A/D converter reference input voltage *3	AVR	0	AVcc	V	Normal operation assurance range
LCD power supply voltage	V1 ~ V3	Vss	Vcc	V	V1 ~ V3 pins (The optimum value is dependent on the LCD element in use.)
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

*1 : The operating voltage varies with the operation frequency.
*2 : Set $A V \mathrm{cc}, \mathrm{CV} \mathrm{cc}$ and Vcc at the same voltage.
*3 : Take care so that AVR, CVRH1, CVRH2 and CVRL do not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$ when power is turned on.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90370 Series

3. DC Characteristics

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	VIH	$\begin{aligned} & \text { P10 ~ P17 } \\ & \text { P20 ~ P27 } \\ & \text { P30 ~ P37 } \\ & \text { P46 ~ P47 } \\ & \text { P50 ~ P57 } \\ & \text { PA0 ~ PA6 } \\ & \text { PB0 ~ PB7 } \\ & \text { PC0 ~ PC7 } \\ & \text { PD0 ~ PD7 } \\ & \text { PF0 ~ PF7 } \end{aligned}$		0.7 Vcc	-	Vcc +0.3	V	CMOS input pins
	VIHS	$\begin{aligned} & \text { P00 ~ P07 } \\ & \text { P60 ~ P67 } \\ & \text { P70 ~ P77 } \\ & \frac{\text { PE0 }}{\text { RST PT }^{2}} \end{aligned}$		0.8 Vcc	-	V cc +0.3	V	CMOS hysteresis input pins
	Vihs5	P40 ~ P45		0.8 Vcc	-	$\mathrm{V} s \mathrm{~s}+5.5$	V	5 V tolerant CMOS hysteresis input pins
	Vıн5	P82		0.7 Vcc	-	Vss +5.5	V	5 V tolerant CMOS input pin
	VIHSM	$\begin{aligned} & \hline \text { P80 ~ P81 } \\ & \text { P90 ~ P95 } \end{aligned}$	-	2.1	-	Vss +5.5	V	SMbus input pins
	Vінм	MD0 ~ MD2		Vcc-0.3	-	$\mathrm{V} c \mathrm{c}+0.3$	V	Mode pins
"L" level input voltage	VIL	$\begin{aligned} & \text { P10 ~ P17 } \\ & \text { P20 ~ P27 } \\ & \text { P30 ~ P37 } \\ & \text { P46 ~ P47 } \\ & \text { P50 ~ P57 } \\ & \text { P82 } \\ & \text { PA0 ~ PA6 } \\ & \text { PB0 ~ PB7 } \\ & \text { PC0 ~ PC7 } \\ & \text { PD0 ~ PD7 } \\ & \text { PF0 ~ PF7 } \end{aligned}$		Vss - 0.3	-	0.3 Vcc	V	CMOS input pins
	Vııs	$\begin{aligned} & \text { P00 ~ P07 } \\ & \text { P40 ~ P45 } \\ & \text { P60 ~ P67 } \\ & \text { P70 ~ P77 } \\ & \frac{\text { PE0 }}{\text { RST PE }} \end{aligned}$		Vss - 0.3	-	0.2 Vcc	V	CMOS hysteresis input pins
	Vilsm	$\begin{aligned} & \text { P80 ~ P81 } \\ & \text { P90 ~ P95 } \end{aligned}$		Vss -0.3	-	0.8	V	SMbus input pins
	VILM	MD0 ~ MD2		Vss - 0.3	-	Vss +0.3	V	Mode pins

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Open-drain output pin application voltage	V ${ }_{\text {b }}$	$\begin{aligned} & \text { P40 ~ P45 } \\ & \text { P80 ~ P82 } \\ & \text { P90 ~ P95 } \end{aligned}$	-	Vss - 0.3	-	Vss +5.5	V	
	V ${ }_{\text {d }}$	P46		Vss -0.3	-	V cc +0.3	V	
" H " level output voltage	Voh1	All port pins except P40 ~ P46 P80 ~ P82 P90~P95 PF0 ~ PF7	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{oH} 1}=-4.0 \mathrm{~mA} \end{aligned}$	V cc-0.5	-	-	V	
	Vон2	PF0 ~ PF7	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH} 2}=-8.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{cc}}-0.5$	-	-	V	
"L" level output voltage	Vol1	All port pins except PF0 ~ PF7	$\mathrm{loL1}=4.0 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	PF0 ~ PF7	$\mathrm{loL2}=12.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-Z output leakage current)	IIL	All input pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	5	$\mu \mathrm{A}$	
Open-drain output leakage current	Ileak	$\begin{aligned} & \hline \text { P40 ~ P46 } \\ & \text { P80 ~ P82 } \\ & \text { P90 ~ P95 } \end{aligned}$	-	-	-	5	$\mu \mathrm{A}$	

MB90370 Series

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current*	Icc	Vcc		-	37	45	mA	MB90F372
			Internal operation at 16 MHz	-	30	TBD	mA	MB90372
	Iccs		$\mathrm{V} c \mathrm{c}=3.3 \mathrm{~V}$, Internal operation at 16 MHz , In sleep mode	-	15	20	mA	
	Iccl		$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V},$ External 32 kHz , Internal operation at 8 kHz , In sub-clock mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	23	80	$\mu \mathrm{A}$	
	Iccıs		Vcc $=3.3 \mathrm{~V}$, External 32 kHz , Internal operation at 8 kHz , In sub-clock sleep mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	10	50	$\mu \mathrm{A}$	
	Iccwat		Vcc $=3.3 \mathrm{~V}$, External 32 kHz, Internal operation at 8 kHz , In watch mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	1.5	30	$\mu \mathrm{A}$	
Power supply current*	Icct	Vcc	$\mathrm{V} c \mathrm{c}=3.3 \mathrm{~V}$, Internal operation at 16 MHz , In timebase timer mode	-	1.3	2	mA	
	Іссн		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \\ & \text { In stop mode, } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-	1	20	$\mu \mathrm{A}$	
Input capacitance	Cin	All input pins except Vcc, $\mathrm{AVcc}, \mathrm{CV} \mathrm{cc}$, $\mathrm{V}_{\mathrm{ss}}, \mathrm{AV}_{\mathrm{ss}}, \mathrm{CV}$ ss	-	-	10	80	pF	
LCD divided resistance	Rlcd		Between V_{cc} and V3 at $\mathrm{Vcc}=3.3 \mathrm{~V}$	100	200	400	$k \Omega$	
		-	Between V3 and V2 Between V2 and V1 Between V1 and Vss at $\mathrm{Vcc}=3.3 \mathrm{~V}$	50	100	200		

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
$\begin{aligned} & \text { COM0 ~ COM3 } \\ & \text { output } \\ & \text { impedance } \end{aligned}$	Rvcom	COM0 ~ COM3	$\mathrm{V} 1 \sim \mathrm{~V} 3=3.3 \mathrm{~V}$	-	-	5	k Q	
$\begin{aligned} & \text { SEG0 ~ SEG8 } \\ & \text { output } \\ & \text { impedance } \end{aligned}$	Rvseg	SEG0 ~ SEG8		-	-	5	k ת	
LCD leakage current	Llcdl	$\begin{aligned} & \text { V1 ~ V3 } \\ & \text { COM0 ~ COM3 } \\ & \text { SEG0 ~ SEG8 } \end{aligned}$	-	-	-	± 1	$\mu \mathrm{A}$	
Pull-up resistance	Rup	$\begin{aligned} & \text { P00 ~ P07 } \\ & \text { P10 ~P17 } \\ & \text { P20 ~P27 } \\ & \frac{\text { P30 } \sim \text { P37 }}{\text { RST }} \end{aligned}$	-	25	50	100	$\mathrm{k} \Omega$	
Pull-down resistance	Roown	MD2	-	25	50	100	$k \Omega$	$\begin{aligned} & \text { MB90V370, } \\ & \text { MB90372 } \\ & \text { only } \end{aligned}$

*: The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice. The power supply current is measured with an external clock.

MB90370 Series

4. AC Characteristics

(1) Clock Timings

(1)	$\left(V_{c c}=\right.$	$A V_{c c}=C V_{c c}$	$=3.0 \mathrm{~V} \text { to }$	$6 \mathrm{~V}, \mathrm{Vs}$	$=A V_{s s}$	$C V_{s s}=$	$0 \text { V, }$	$\left.\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)$
Parameter		Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min.	Typ.	Max.	Unit	Remarks
	$\mathrm{F}_{\text {ch }}$	X0, X1		3	-	16	MHz	Crystal oscillator
Clock frequency	F_{ch}	X0, X1		3	-	32	MHz	External clock
	FcL	X0A, X1A		-	32.768	-	kHz	
	thcyl	X0, X1		31.25	-	333	ns	
	tıCyL	X0A, X1A		-	30.5	-	$\mu \mathrm{s}$	
Frequency fluctuation rate locked*	$\Delta \mathrm{f}$	-		-	-	5	\%	
	$\begin{aligned} & \text { Pwh } \\ & \mathrm{PwL}^{2} \end{aligned}$	X0	-	5	-	-	ns	Recommend duty ratio of 30% to 70%
put clock pulse widn	Pwhl Pwll	X0A		-	15.2	-	$\mu \mathrm{s}$	Recommend duty ratio of 30% to 70%
Input clock rise/fall time	$\begin{aligned} & \mathrm{tcR} \\ & \mathrm{tcF} \end{aligned}$	X0		-	-	5	ns	External clock operation
Internal operating clock	fCP	-		1.5	-	16	MHz	Main clock operation
frequency	flcp	-		-	8.192	-	kHz	Sub-clock operation
Internal operating clock	tcp	-		62.5	-	666	ns	Main clock operation
cycle time	tıcp	-		-	122.1	-	$\mu \mathrm{s}$	Sub-clock operation

*: The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

$$
\Delta f=\frac{|\alpha|}{\mathrm{fo}} \times 100(\%)
$$

Center frequency

$\mathrm{X} 0, \mathrm{X} 1$ clock timing

X0A, X1A clock timing

MB90370 Series

- PLL operation guarantee range

Relationship between internal operating clock frequency and power supply voltage

Relationship between oscillating frequency and internal operating clock frequency

The AC ratings are measured for the following measurement reference voltages:

- Input signal waveform

Hysteresis input pin

CMOS input pin

SMbus input pin
2.1 V
0.8 V

- Output signal waveform

Output pin

MB90370 Series

(2) Reset Input Timing
$\left(\mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=\mathrm{CV} \mathrm{cc}=3.0 \mathrm{~V}\right.$ to 3.6 V , $\mathrm{V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=\mathrm{CV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
				16 tcp	-	ns	Normal operation
Reset input time	trstı	$\overline{\text { RST }}$	-	Oscillation time of oscillator* +16 tcp	-	ms	In stop mode and sub-clock mode

* : Oscillation time of oscillator is the time to reach to 90% of the oscillation amplitude from stand still. In the crystal oscillator, the oscillation time is between several ms to tens of ms . In FAR/ceramic oscillator, the oscillation time is between hundreds of $\mu \mathrm{s}$ to several ms . In the external clock, the oscillation time is 0 ms .
- In stop mode

MB90370 Series

(3) Power-on Reset

$$
\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=\mathrm{CV} \mathrm{cc}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=\mathrm{CV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Power supply rise time	t_{R}	Vcc*	-	-	50	ms	
Power supply cut-off time	toff	Vcc*		1	-	ms	Due to repeated operations

* : Vcc must be kept lower than 0.2 V before power-on.

Note: The above values are used for causing a power-on reset.
Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.
Note: Make sure that power supply rises within the selected oscillation stabilization time. If the power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB90370 Series

(4) UART1 to UART3

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	UCK1 ~ UCK3	$C L=80 \mathrm{pF}+1 \mathrm{TTL}$ for an output pin of internal shift clock mode	8 tcp	-	ns	
UCK $\downarrow \rightarrow$ UO delay time	tstov	$\begin{gathered} \text { UCK1 ~ UCK3 } \\ \text { UO1 ~ UO3 } \end{gathered}$		-80	80	ns	
Valid UI \rightarrow UCK \uparrow	tivsh	$\begin{gathered} \text { UCK1 ~ UCK3 } \\ \text { UI1 ~ UI3 } \end{gathered}$		100	-	ns	
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	$\begin{gathered} \hline \text { UCK1 ~ UCK3 } \\ \text { UI1 ~ UI3 } \end{gathered}$		tcp	-	ns	
Serial clock "H" pulse width	tshsL	UCK1 ~ UCK3	$\mathrm{CL}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$ for an output pin of external shift clock mode	4 tcp	-	ns	
Serial clock "L" pulse width	tsLsH	UCK1 ~ UCK3		4 tcp	-	ns	
UCK $\downarrow \rightarrow$ UO delay time	tslov	$\begin{gathered} \text { UCK1 ~ UCK3 } \\ \text { UO1 ~ UO3 } \end{gathered}$		-	150	ns	
Valid UI \rightarrow UCK \uparrow	tivsH	$\begin{gathered} \text { UCK1 } \sim \text { UCK3 } \\ \text { UI1 } \sim \text { UI3 } \end{gathered}$		60	-	ns	
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	$\begin{gathered} \text { UCK1 ~ UCK3 } \\ \text { UI1 ~ UI3 } \end{gathered}$		60	-	ns	

Note : - These are AC ratings in the CLK synchronous mode.

- C_{L} is the load capacitance value connected to pins while testing.
- tcp is the internal operating clock cycle time.
- Internal shift clock mode

- External shift clock mode

MB90370 Series

(5) Resources Input Timing

$$
\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Vc}=\mathrm{CV} \mathrm{cc}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=\mathrm{CV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Max.			
Timer input pulse width	ttiwh tтiwL	TIN1 ~ TIN4	-	4 tcp	-	ns	

(6) Trigger Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	ttrgh ttrgl	$\begin{gathered} \text { ADTG } \\ \text { INTO } \sim \text { INT5 } \\ \text { KSIO } \sim \text { KSI7 } \end{gathered}$	-	5 tcp	-	ns	Normal operation
				1	-	$\mu \mathrm{s}$	Stop mode

(7) $\mathrm{I}^{2} \mathrm{C} / \mathrm{MI}^{2} \mathrm{C}$ Timing

	($\mathrm{Vcc}=\mathrm{A}$	$=\mathrm{CV}$ cc	0 V to 3.6 V, Vss	s $=\mathrm{CVss}=0.0 \mathrm{~V}, \mathrm{~T}$	40	to $+85^{\circ} \mathrm{C}$
				lue		
Parameter	Symbol	Pin name	Min.	Max.		Rem
Start condition output	tsta	$\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$	tcp (mxn/2-1)-20	tcp (mxn/2-1) + 20	ns	Master mode
Stop condition output	tsto	$\begin{aligned} & \hline \mathrm{SCL} \\ & \mathrm{SDA} \end{aligned}$	tcp (mxn/2 + 3)-20	tcp $(\mathrm{m} \times \mathrm{n} / 2+3)+20$	ns	Master mode
Start condition detect	tsta	$\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$	tcp +40	-	ns	
Stop condition detect	tsto	$\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$	tcp +40	-	ns	
Restart condition output	tstasu	$\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$	tcp $(\mathrm{mxn} / 2+3)-20$	tcp $(\mathrm{mxn} / 2+3)+20$	ns	Master mode
Restart condition detect	tstasu	$\begin{aligned} & \text { SCL } \\ & \text { SDA } \end{aligned}$	tcp +40	-	ns	
SCL output " L " width	tow	SCL	tcp x m x n/2-20	tcp $\times \mathrm{mxn} / 2+20$	ns	Master mode
SCL output "H" width	tнıg	SCL	tcp (mxn/2 + 2) - 20	tcp $(\mathrm{mxn} / 2+2)+20$	ns	Master mode
SDA output delay	too	SDA	tcp \times 3-20	tcp $\times 3+20$	ns	
SDA output setup time		SDA	tcp \times m x n/2-20	-	ns	${ }^{1}$
after interrupt	toosu	SDA	tcp \times 4-20	-	ns	* 2
SCL input "L" pulse	tow	SCL	tcp $\times 3+40$	-	ns	
SCL input "H" pulse	thigh	SCL	tcp +40	-	ns	
SDA output setup time	tsu	SDA	40	-	ns	
SDA hold time	tho	SDA	0	-	ns	

Note

- tcp is the internal operating clock cycle time.
- m is the setting bit of shift clock oscillation defined in the "ICCR register (CS4 ~ CS3)" and "MCCR register (CS4 ~ CS3)". Please refer to the MB90370 series H/W manual for details.
- n is the setting bit of shift clock oscillation defined in the "ICCR register (CS2 ~ CSO)" and "MCCR register (CS2 ~ CS0)". Please refer to the MB90370 series H/W manual for details.
- toosu is shown in the interrupt time is longer than the "L" width of SCL.
- SDA and SCL output value is specified on condition that the rise/fall time is " 0 ns ".
*1: At the stop condition or transferring of next byte.
*2: After setting register bit IBCRH : SCC at restart.

MB90370 Series

- Data transmit (master / slave)

- Data receive (master / slave)

MB90370 Series

(8) PS/2 Interface Timing

$\left(\mathrm{V} c \mathrm{cc}=\mathrm{AV} \mathrm{cc}=\mathrm{CV} \mathrm{cc}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
PSCK clock cycle time	tpcyc	$\begin{aligned} & \text { PSCKO ~ } 2 \\ & \text { PSDAO ~ } 2 \end{aligned}$	-	4 tcp	-	-	ns	
PSCK $\downarrow \rightarrow$ PSDA	tplov	$\begin{aligned} & \text { PSCKO ~ } 2 \\ & \text { PSDAO ~ } 2 \end{aligned}$	Transmission Mode	2 tcp	-	-	ns	
$\begin{aligned} & \text { Valid PSDA } \rightarrow \\ & \text { PSCK } \downarrow \end{aligned}$	tpivsh	$\begin{aligned} & \text { PSCKO ~ } 2 \\ & \text { PSDAO ~ } 2 \end{aligned}$	Reception Mode	1 tcp	-	-	ns	
PSCK $\downarrow \rightarrow$ valid PSDA hold time	tpH\|	$\begin{aligned} & \text { PSCKO ~ } 2 \\ & \text { PSDA0 ~ } 2 \end{aligned}$		1 tcp	-	-	ns	
PSCK clock "H" pulse width	tpHsL	$\begin{aligned} & \text { PSCKO ~ } 2 \\ & \text { PSDA0 ~ } 2 \end{aligned}$	-	2 tcp	-	-	ns	
PSCK clock "L" pulse width	tPLSH	$\begin{aligned} & \text { PSCKO ~ } 2 \\ & \text { PSDA0 ~ } 2 \end{aligned}$		2 tcp	-	-	ns	

Note: tcp is the internal operating clock cycle time.

MB90370 Series

(9) LPC Timing

$\left(\mathrm{V}\right.$ cc $=\mathrm{AV}$ cc $=\mathrm{CV} \mathrm{cc}=3.0 \mathrm{~V}$ to 3.6 V, $\mathrm{V}_{\text {ss }}=\mathrm{AV}$ ss $=\mathrm{CV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$								
Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
LCLK cycle time	tcycle	-	-	30	-	-	ns	
LCLK high time	tHIGH	-	-	12	-	-	ns	
LCLK low time	tıow	-	-	12	-	-	ns	

LCLK AC timing

LAD, $\overline{\text { LFRAME }}$, GA20 AC timing

MB90370 Series

5. A/D Converter Electrical Characteristics

$\left(2.7 \mathrm{~V} \leq \mathrm{AVR}-\mathrm{AV} \mathrm{ss}, \mathrm{V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=\mathrm{CV} \mathrm{cc}=3.0 \mathrm{~V}\right.$ to 3.6 V , $\mathrm{V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=\mathrm{CV} s \mathrm{~s}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Non-linear error	-	-	-	-	± 2.5	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vot	ANO ~ AN11	$\begin{gathered} \mathrm{AV} \mathrm{Ss}_{-}- \\ 1.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \mathrm{A} \mathrm{Vss}_{\mathrm{ss}}+ \\ 0.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \hline \mathrm{AV} \text { ss + } \\ 5.5 \mathrm{LSB} \\ \hline \mathrm{AVss}+ \\ 2.5 \mathrm{LSB} \end{gathered}$	mV	For MB90V370 For MB90F372/372
Full-scale transition voltage	$V_{\text {fst }}$	$\begin{aligned} & \hline \text { ANO ~ } \\ & \text { AN11 } \end{aligned}$	$\begin{gathered} \hline \text { AVR - } \\ \text { 3.5 LSB } \end{gathered}$	$\begin{gathered} \hline \text { AVR - } \\ \text { 1.5 LSB } \end{gathered}$	$\begin{gathered} \hline \text { AVR + } \\ 0.5 \mathrm{LSB} \end{gathered}$	mV	
Conversion time	-	-	3.1	-	-	$\mu \mathrm{s}$	Actual value is specified as a sum of values specified in ADCR0 : CT1, CT0 and ADCR0 : ST1, ST0. Be sure that the setting value is greater than the min value
Sampling period	-	-	2	-	-	$\mu \mathrm{s}$	Actual value is specified in ADCR0 : ST1, ST0 bits. Be sure that the setting value is greater than the min value
Analog port input current	Iain	ANO ~ AN11	-	0.1	10	$\mu \mathrm{A}$	
Analog input voltage	$V_{\text {AIN }}$	ANO ~ AN11	AVss	-	AVR	V	
Reference voltage	-	AVR	AVss +2.7	-	AV ${ }_{\text {cc }}$	V	
Power supply current	IA_{A}	AVcc	-	1.4	6.4	mA	
	ІАн		-	-	5	$\mu \mathrm{A}$	
Reference voltage supply current	IR	AVR	-	94	300	$\mu \mathrm{A}$	
	IRH		-	-	5	$\mu \mathrm{A}$	
Offset between channels	-	ANO ~ AN11	-	-	4	LSB	

*: The current when the A / D converter is not operating or the $C P U$ is in stop mode (for $V_{c c}=A V c c=A V R=3.0 \mathrm{~V}$).

6. A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter.
Linearity error: The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 11111110" \leftrightarrow "11 1111 1111") from actual conversion characteristics.
Differential linearity error : The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value.
Total error : The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

MB90370 Series

(Continued)

MB90370 Series

7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions.
Output impedance values of the external circuit of $4 \mathrm{k} \Omega$ or lower are recommended.
When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.
When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient.

- Equipment of analog input circuit model

R : about $1.9 \mathrm{k} \Omega$
C : about 32.3 pF

Note: Listed values must be considered as standards.

- Error

The smaller the $|A V R-A V s s|$, the greater the error would become relatively.
8. D/A Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{Cc}=\mathrm{CV} \mathrm{cc}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=\mathrm{CV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	-	-	-	8	-	bit	
Differential linearity error	-	-		-	-	± 0.9	LSB	
Non-linearity error	-	-		-	-	± 1.5	LSB	
Conversion time	-	-		-	0.6	-	$\mu \mathrm{s}$	
Analog output impedance	-	-		2.0	2.9	3.8	$k \Omega$	
Power supply	love	AV ${ }_{\text {cc }}$		-	-	460	$\mu \mathrm{A}$	
Current	lovas	AV ${ }_{\text {cc }}$		-	0.1	-	$\mu \mathrm{A}$	D/A stops

[^0]
MB90370 Series

9. Comparator Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=\mathrm{CV} \mathrm{Cc}_{\mathrm{cc}}=3.3 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=\mathrm{CV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Reference voltage	-	CVRH2	-	1.1	-	2.9	V	
		CVRH1		CVRL	-	2.9	V	
		CVRL		1.1	-	CVRH1	V	
Reference voltage supply current	Icr	CVRH2 CVRH1 CVRL	-	-	-	± 1	$\mu \mathrm{A}$	
Comparator supply current	Icv	CVcc	-	-	-	50	$\mu \mathrm{A}$	active
				-	-	10	$\mu \mathrm{A}$	inactive
Analog input voltage	V ${ }_{\text {IH }}$	DCIN DCIN2 VOL1 ~ 3 VSI1 ~ 3	-	CVss	-	CVcc	V	

10. Serial IRQ Electrical Characteristics

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	$\mathrm{V}_{\text {IH }}$	-	-	0.7 V cc	-	Vcc	V	
"L" level input voltage	VIL	-	-	Vss	-	0.3 Vcc	V	
"H" level output voltage	Voн	-	-	Vcc - 0.5	-	-	V	
"L" level output voltage	Voı	-	-	-	-	0.4	V	

11. Flash Memory Program/Erase Characteristics

Parameter	Condition	Value			Unit	Remarks
		Min.	Typ.	Max.		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} \end{aligned}$	-	1	15	s	Excludes 00 H programming prior to erasure
Chip erase time		-	4	-	S	Excludes 00 H programming prior to erasure
Word (16 bit width) programing time		-	16	3,600	$\mu \mathrm{s}$	Except for the over head time of the system
Program/Erase cycle	-	10,000	-	-	V	

MB90370 Series

EXAMPLE CHARACTERISTICS (MB90F372)

- Power Supply Current

(Continued)

MB90370 Series

(Continued)

INSTRUCTIONS (351 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters:Indicate the bit width within the instruction code.
\#	Indicates the number of bytes.
~	Indicates the number of cycles. m : When branching n : When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
B	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the " \sim " column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z : Transfers " 0 ". X : Extends with a sign before transferring. - : Transfers nothing.
AH	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers $00_{\text {H }}$ to AH. X : Transfers 00^{H} or FF н to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction. - : No change. S : Set by execution of instruction. R : Reset by execution of instruction.
S	
T	
N	
Z	
V	
C	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

- Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16 -bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.
For each byte of the instruction being executed, a program on a memory connected to an 8 -bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased.
When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done \times the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

MB90370 Series

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL and AH
$\begin{aligned} & \mathrm{AH} \\ & \mathrm{AL} \end{aligned}$	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FF\%)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
$\begin{gathered} \hline \text { disp8 } \\ \text { disp16 } \end{gathered}$	8-bit displacement 16-bit displacement
bp	Bit offset
$\begin{aligned} & \text { vct4 } \\ & \text { vct8 } \end{aligned}$	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel	PC relative addressing
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
00	R0	RW0	RLO	Register direct	
01	R1	RW1	(RLO)		
02	R2	RW2	RL1	"ea" corresponds to byte, word, and	
03	R3	RW3	(RL1)	long-word types, starting from the left	
04	R4	RW4	RL2		-
05	R5	RW5	(RL2)		
06	R6	RW6	RL3		
07	R7	RW7	(RL3)		
08	@RW0 @RW1 @RW2 @RW3			Register indirect	
09					0
0A					0
0B					
OC	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	
0D					0
OE					0
0F					
10	@RW0 + disp8			Register indirect with 8-bit	
11	@RW1 + disp8			displacement	
12	@RW2 + disp8				
13	@RW3 + disp8				1
14	@RW4 + disp8				1
15	@RW5 + disp8				
16	@RW6 + disp8 @RW7 + disp8				
17					
18	@RW0 + disp16			Register indirect with 16-bit	
19	@RW1 + disp16			displacement	2
1A	@RW2 + disp16 @RW3 + disp16				2
1B					
1 C	@RW0 + RW7			Register indirect with index	0
1D	@RW1 + RW7			Register indirect with index	0
1E	@PC + disp16			PC indirect with 16-bit displacement	2
1F	addr16			Direct address	2

Note : The number of bytes in the address extension is indicated by the "+" symbol in the "\#" (number of bytes) column in the tables of instructions.

MB90370 Series

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	(a)	Number of register accesses for each type of addressing
		Number of execution cycles for each type of addressing	
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0 C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \text { @RW0 + RW7 } \\ & \text { @RW1 + RW7 } \\ & \text { @PC + disp16 } \\ & \text { addr16 } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$

Note : "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Compensation Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b) byte		(c) word		(d) long	
	Cycles	Access	Cycles	Access	Cycles	Access
Internal register	+0	1	+0	1	+0	2
Internal memory even address	+0	1	+0	1	+0	2
Internal memory odd address	+0	1	+2	2	+4	4
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.
Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: - When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1		s	T	N	z	v	c	RMw
MOV	A, dir	2	3	0	(b)	byte $($ A $) \leftarrow$ (dir)	Z		-		-	-			-	-	-
MOV	A, addr16	3	4	0	(b)	byte $(\mathrm{A}) \leftarrow($ addr 16$)$	Z	*	-	-	-	-	*	*	-	-	-
MOV	A, Ri	1	2	1	0	byte $(A) \leftarrow($ Ri)	Z		-		-	-		*	-	-	-
MOV	A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	Z	*	-	-	-	-	*	*	-	-	-
MOV	A, eam	2+	$3+(a)$	0	(b)	byte $(A) \leftarrow($ eam $)$	Z	*	-	-	-	-	*	*	-	-	-
MOV	A, io	2	(a)	0	(b)	byte (A) \leftarrow (io)	Z	*	-		-	-	*	*	-	-	-
MOV	A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	Z		-		-	-	*	*	-	-	-
MOV	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	Z	-	-		-	-	*	*	-	-	-
MOV	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	Z		-		-	-	*	*	-	-	-
MOVN	A, \#imm4	1	1	0	0	byte $(A) \leftarrow$ imm 4	Z	*	-		-	-	R	*	-	-	-
MOVX	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	X		-		-	-		*	-	-	-
MOVX	A, addr16	3	4	0	(b)	byte $($ A $) \leftarrow$ (addr16)	X		-		-	-	*	*	-	-	-
MOVX	A, Ri	2	2	1	0	byte (A) \leftarrow (Ri)	X	*	-		-	-			-	-	-
MOVX	A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	X		-		-	-	*	*	-	-	-
MOVX	A, eam	2+	$3+$ (a)	0	(b)	byte $($ A $) \leftarrow$ (eam)	X		-		-	-		*	-	-	-
MOVX	A, io	2	3	0	(b)	byte $(A) \leftarrow$ (io)	X		-		-	-	*	*	-	-	-
MOVX	A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	X	*	-		-	-			-	-	-
MOVX	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	X	-	-		-	-	*	*	-	-	-
MOVX	A,@RWi+disp8	2	5	1	(b)	byte $($ A $) \leftarrow$	X		-		-	-	*	*	-	-	-
MOVX	A, @RLi+disp8	3	10	2	(b)	$\begin{aligned} & \text { ((RWi)+disp8) } \\ & \text { byte }(\mathrm{A}) \leftarrow((\text { RLi)+disp8) } \end{aligned}$	X	*	-		-	-	*	*	-	-	-
MOV	dir, A	2	3	0	(b)		-	-	-		-	-	*	*	-	-	-
MOV	addr16, A	3	4	0	(b)	byte (dir) $\leftarrow(\mathrm{A})$	-	-	-		-	-	*		-	-	-
MOV	Ri, A	1	2	1	0	byte (addr16) \leftarrow (A)	-	-	-		-	-	*	*	-	-	-
MOV	ear, A	2	2	1	0	byte (Ri) $\leftarrow(A)$	-	-	-		-	-		*	-	-	-
MOV	eam, A	2+	$3+$ (a)	0	(b)	byte (ear) $\leftarrow(A)$	-	-	-		-	-			-	-	-
MOV	io, A	2	3	0	(b)	byte (eam) $\leftarrow(A)$	-	-	-		-	-	*		-	-	-
MOV	@RLi+disp8, A	3	10	2	(b)	byte (io) \leftarrow (A)	-	-	-		-	-	*	*	-	-	-
MOV	Ri, ear	2	3	2	0	byte ((RLi) +disp8) $\leftarrow(\mathrm{A})$	-	-	-		-	-			-	-	-
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (Ri) \leftarrow (ear)	-	-	-		-	-	*	*	-	-	-
MOV	ear, Ri	2	4	2	0	byte (Ri) \leftarrow (eam)	-	-	-		-	-		*	-	-	-
MOV	eam, Ri	2+	5+ (a)	1	(b)	byte (ear) $\leftarrow(\mathrm{Ri})$	-	-			-	-	*	*	-	-	-
MOV	Ri, \#imm8	2	2	1	0	byte (eam) \leftarrow (Ri)	-	-	-		-	-	*	-	-	-	-
MOV	io, \#imm8	3	5	0	(b)	byte (Ri) \leftarrow imm8	-	-	-		-	-	-	-	-	-	-
MOV	dir, \#imm8	3	5	0	(b)	byte (io) \leftarrow imm8	-	-	-		-	-	-	-	-	-	-
MOV	ear, \#imm8	3		1	0	byte (dir) \leftarrow imm8	-	-	-		-	-	*	*	-	-	-
MOV	eam, \#imm8	3+	4+ (a)	0	(b)	byte (ear) \leftarrow imm8	-	-	-		-	-	-	-	-	-	-
MOV	@AL, AH					byte $($ eam $) \leftarrow$ imm8											
/MOV	@A, T	2	3	0	(b)		-	-	-		-	-	*	*	-	-	-
						byte $((\mathrm{A})) \leftarrow(\mathrm{AH})$											
XCH	A, ear	2	4	2	0		Z	-	-		-	-	-	-	-	-	-
XCH	A, eam	2+	5+ (a)	0	$2 \times$ (b)	byte (A) \leftrightarrow (ear)	Z	-	-		-	-	-	-	-	-	-
XCH	Ri, ear	2	7	4	0	byte (A) \leftrightarrow (eam)	-	-	-		-	-	-	-	-	-	-
XCH	Ri, eam	2+	9+ (a)	2	$2 \times$ (b)	byte $(\mathrm{Ri}) \leftrightarrow$ (ear) byte (Ri) $\leftrightarrow(\mathrm{eam})$	-	-	-		-	-	-	-	-	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90370 Series

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	z	v	C	RMW
MOVW A, dir	2	3	0	(c)	word $(A) \leftarrow$ (dir)	-		-	-	-			-	-	-
MOVW A, addr16	3	4	0	(c)	word $(A) \leftarrow$ (addr16)	-	*	-	-	-	*	*	-	-	-
MOVW A, SP	1	1	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	*	-	-	-	*	*	-	-	-
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow($ RWi)	-		-	-	-	*	*	-	-	-
MOVW A, ear	2	2	1	0	word (A) \leftarrow (ear)	-	*	-	-	-	*	*	-	-	-
MOVW A, eam	2+	$3+$ (a)	0	(c)	word $(A) \leftarrow($ eam $)$	-	*	-	-	-	*	*	-	-	-
MOVW A, io	2	,	0	(c)	word (A) \leftarrow (io)	-	*	-	-	-	*	*	-	-	-
MOVW A, @A	2	3	0	(c)	word $(A) \leftarrow((A))$	-	-	-	-	-	*	*	-	-	-
MOVW A, \#imm16	3	2	0	0	word $(\mathrm{A}) \leftarrow$ imm16	-	*	-	-	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	5	1	(c)	word $(\mathrm{A}) \leftarrow(($ RWi) + disp8)	-	*	-	-	-	*	*	-	-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	-		-	-	-		*	-	-	-
MOVW dir, A	2	3	0	(c)	word (dir$) \leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	-
MOVW addr16, A	3	4	0	(c)	word (addr16) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOVW SP, A	1	1	0	0	word (SP) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOVW RWi, A	1	2		0	word $(\mathrm{RWi}) \leftarrow(\mathrm{A})$	-	-	-	-	-		*	-	-	-
MOVW ear, A	2	2	1	0	word (ear) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVW eam, A	2+	$3+$ (a)	0	(c)	word (eam) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOVW io, A	2	3	0	(c)	word (io) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOVW @RWi+disp8, A	2	5	1	(c)	word $(($ RWi) + disp8 $) \leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOVW @RLi+disp8, A	3	10	2	(c)	word ((RLi) +disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOVW RWi, ear	2	3	2	(0)	word (RWi) \leftarrow (ear)	-	-	-	-	-		*	-	-	-
MOVW RWi, eam	2+	4+ (a)	1	(c)	word (RWi) $\leftarrow(\mathrm{eam})$	-	-	-	-	-		*	-	-	-
MOVW ear, RWi	2	4	2	0	word (ear) $\leftarrow(\mathrm{RWi})$	-	-	-	-	-		*	-	-	-
MOVW eam, RWi	2+	$5+$ (a)	1	(c)	word (eam) $\leftarrow(\mathrm{RWi})$	-	-	-	-	-		*	-	-	-
MOVW RWi, \#imm16	3	(a)		0	word (RWi) \leftarrow imm16	-	-	-	-	-			-	-	-
MOVW io, \#imm16	4	5	0	(c)	word (io) \leftarrow imm16	-	-	-	-	-	-	-	-	-	-
MOVW ear, \#imm16	4	2	1	0	word (ear) \leftarrow imm16	-	-	-	-	-		*	-	-	-
MOVW eam, \#imm16	4+	4+ (a)	0	(c)	word (eam) \leftarrow imm16	-	-	-	-	-	-	-	-	-	-
MOVW @AL, AH /MOVW@A, T	2	3	0	(c)	word $((A)) \leftarrow(\mathrm{AH})$	-	-	-	-						
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-
XCHW A, eam	2+	$5+$ (a)	0	$2 \times$ (c)	word $(A) \leftrightarrow$ (eam)	-	-	-	-	-	-	-	-	-	-
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-
XCHW RWi, eam	2+	$9+$ (a)	2	$2 \times$ (c)	word (RWi) \leftrightarrow (eam)	-		-	-	-		-	-	-	-
MOVL A, ear	2	(a)	2	0	long (A) \leftarrow (ear)	-	-	-	-	-		*	-	-	-
MOVL A, eam	2+	$5+$ (a)	0	(d)	long $(A) \leftarrow($ eam $)$	-		-		-					-
MOVL A, \#imm32	5	3	0	0	long $(A) \leftarrow$ imm32	-	-	-	-	-		*	-	-	-
MOVL ear, A	2	4	2	0	long (ear) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOVL eam, A	2+	$5+$ (a)	0	(d)	long (eam) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#		RG	B	Operation	LH	AH	1	S	T	N	z		c	RMW
D A,\#imm8	2	2	0	0	byte $(A) \leftarrow(A)+$ imm8	Z	-	-	-	-					
ADD A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)+($ dir $)$	Z	-	-	-	-	*				-
ADD A, ear	2	3	1	0	byte $(A) \leftarrow(A)+($ ear $)$	Z	-	-	-	-					-
ADD A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	-	*	*			-
ADD ear, A	2	3	2	0	byte (ear) \leftarrow (ear) + (A)	-	-		-	-	*	*			
ADD eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)+(\mathrm{A})$	Z	-	-	-	-	*	*			
ADDC A	1	,	0	0	byte $(A) \leftarrow(A H)+(A L)+(C)$	Z	-	-	-	-					
ADDC A, ear	2	(a)	1	0	byte $(A) \leftarrow(A)+($ ear $)+(C)$	Z	-	-	-	-	*	*			
ADDC A, eam	2+	$4+$ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)+(\mathrm{C})$	Z	-		-	-	*	*			
ADDDC A	+	(a)	0	0	byte (A) $\leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$ (decimal)	Z	-	-	-	-		*			
SUB A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$-imm8	Z	-	-	-	-	*	*			
SUB A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)-($ dir $)$	Z	-	-	-	-		*			
SUB A, ear	2	3	1	0	byte $(A) \leftarrow(A)-$ (ear)	Z	-		-	-		*			
SUB A, eam	2+	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-($ eam $)$	Z	-	-	-	-		*			-
SUB ear, A	2	3	2	0	byte (ear) \leftarrow (ear) - (A)	-	-		-	-		*			-
SUB eam, A	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)-(A)$	-	-		-	-		*			
SUBC A	1	2	0	0	byte $(A) \leftarrow(A H)-(A L)-(C)$	Z	-		-	-		*			
SUBC A, ear		3	1	(b)	byte $(A) \leftarrow(A)-($ ear $)-(C)$	Z	-		-	-		*			
SUBC A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)-(C)$	Z	-	-	-	-	*	*			-
SUBDC A	1	(a)	0	0	byte (A) $\leftarrow(\mathrm{AH})-(\mathrm{AL})-$ (C) (decimal)	Z	-		-	-	*	*			
ADDW A		2	0	0	Word $(A) \leftarrow(A H)+(A L)$	-	-		-	-					-
ADDW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)$	-	-		-	-					
ADDW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)$	-	-		-	-					
ADDW A, \#imm16	3	,	0	0	word $(A) \leftarrow(A)+$ imm 16	-	-	-	-	-		*			-
ADDW ear, A	2	3	2	0	word (ear) \leftarrow (ear) $+(\mathrm{A})$	-	-		-	-		*			
ADDW eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)+(A)$	-	-		-	-					
ADDCW A, ear	2	3	1	0	word $(A) \leftarrow(A)+(e a r)+(C)$	-	-		-	-					
ADDCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)+$	-	-			-		*			-
SUBW A	1	2	0	0		-	-			-					
SUBW A, ear	2	3	1	0	word $(A) \leftarrow(A H)-(A L)$	-	-		-	-					
SUBW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ ear $)$	-	-		-	-		*			
SUBW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)-($ eam $)$	-	-		-	-					
SUBW ear, A	2	3	2	0	word $(A) \leftarrow(A)$-imm16	-	-		-	-					
SUBW eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (ear) \leftarrow (ear) - (A)	-	-	-	-	-		*			
SUBCW A, ear		3	1	0	word (eam) $\leftarrow($ eam $)-(A)$	-	-		-	-		*			-
SUBCW A, eam	2+	4+ (a)	0	(c)	$\begin{aligned} & \text { word }(A) \leftarrow(A)-(e a r)-(C) \\ & \text { word }(A) \leftarrow(A)-(\text { eam })-(C) \end{aligned}$	-	-		-	-	*	*			
ADDL A, ear	2	6	2	0	long $(A) \leftarrow(A)+$ (ear)	-	-	-	-	-					-
ADDL A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-					
ADDL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)+$ imm32	-	-		-	-	*	*			
SUBL A, ear	2	6	2	0	long $(A) \leftarrow(A)-$ ear)	-	-	-	-	-	*	*			
SUBL A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-	*	*			-
SUBL A, \#imm32	5	(a)	0	0	long $(A) \leftarrow(A)$-imm32	-	-	-	-	-	*	*	*		-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90370 Series

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
INC	ear	2	2	2	0	byte (ear) \leftarrow (ear) +1	-	-	-	-	-		*	*	-	-
INC	eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte $($ eam $) \leftarrow($ eam $)+1$	-	-	-	-	-	*	*	*	-	*
DEC	ear	2	3	2	0	byte (ear) $\leftarrow($ ear $)-1$	-	-	-	-	-	*	*	*	-	-
DEC	eam	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam) -1	-	-	-	-	-	*	*	*	-	*
INCW	ear	2	3	2	0	word (ear) \leftarrow (ear) +1	-	-	-	-	-	*	*	*	-	-
INCW	eam	2+	$5+$ (a)	0	$2 \times$ (c)	word $($ eam $) \leftarrow(e a m)+1$	-	-	-	-	-	*	*	*	-	*
DECW	ear	2	3	2	0	word (ear) \leftarrow (ear) -1	-	-	-	-	-	*	*	*	-	-
DECW	eam	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)-1$	-	-	-	-	-	*	*	*	-	*
INCL	ear	2	7	4	0	long (ear) $\leftarrow($ ear $)+1$	-	-	-	-	-	*	*	*	-	-
INCL	eam	2+	$9+$ (a)	0	$2 \times(\mathrm{d})$	long (eam) $\leftarrow($ eam $)+1$	-	-	-	-	-	*	*	*	-	*
DECL		2	7	4	0	long (ear) $\leftarrow($ ear $)-1$	-	-	-	-	-	*	*	*	-	-
DECL	eam	2+	$9+$ (a)	0	$2 \times$ (d)	long (eam) $\leftarrow($ eam $)-1$	-	-	-	-	-	*	*	*	-	*

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	C	RMw
CMP A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMP A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	$3+$ (a)	0	(b)	byte $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	0	byte $(A) \leftarrow$ imm8	-	-	-	-	-	*	*	*	*	-
CMPW A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-		*		*	-
CMPW A, ear	2	2	1	0	word (A) $\leftarrow($ ear $)$	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	$3+$ (a)	0	(c)	word (A) \leftarrow (eam)	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*	*	-
CMPL A, ear	2	6	2	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPL A, eam	2+	$7+$ (a)	0	(d)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPL A, \#imm32	5	3	0	0	word $(\mathrm{A}) \leftarrow$ imm32	-	-	-	-	-	*	*	*	*	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90370 Series

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
DIVU A	1	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	-	-	-	-	-	-	-	*	*	-
DIVU A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	-	-	-	-	-	-	-	*	*	-
DIVU A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVUW A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
MULU A	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW A	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+(\mathrm{a})$ when the result is zero, $9+(\mathrm{a})$ when an overflow occurs, and $19+(\mathrm{a})$ normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+(\mathrm{a})$ normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

* 8 : 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+$ (a) when byte (eam) is zero, and $9+(\mathrm{a})$ when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+(\mathrm{a})$ when word (eam) is zero, and $13+(\mathrm{a})$ when word (eam) is not zero.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90370 Series

Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	onic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	C	RMW
DIV	A	2	*1	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	Z	-	-	-	-	-	-	*	*	-
DIV	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	Z	-	-	-	-	-	-	*	*	-
DIV	A, eam	$2+$	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	Z	-	-	-	-	-	-	*	*	-
DIVW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU	A	2	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	$2+$	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A	2	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	$2+$	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.
*2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.
*3: Set to $4+$ (a) when the division-by- $0,11+$ (a) or $22+$ (a) for an overflow, and $23+$ (a) for normal operation.
*4: Positive dividend: Set to 4 when the division-by-0, 10 or 29 for an overflow, and 30 for normal operation. Negative dividend: Set to 4 when the division-by-0, 11 or 30 for an overflow and 31 for normal operation.
*5: Positive dividend:Set to $4+$ (a) when the division-by- $0,11+$ (a) or $30+$ (a) for an overflow, and $31+(a)$ for normal operation.
Negative dividend: Set to $4+$ (a) when the division-by- $0,12+(a)$ or $31+(a)$ for an overflow, and $32+(a)$ for normal operation.
*6: When the division-by-0, (b) for an overflow, and $2 \times(\mathrm{b})$ for normal operation.
*7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10: Set to $4+(a)$ when byte (eam) is zero, $13+(a)$ when the result is positive, and $14+(a)$ when the result is negative.
*11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13: Set to $4+(\mathrm{a})$ when word (eam) is zero, $17+$ (a) when the result is positive, and $20+(\mathrm{a})$ when the result is negative.

Notes: - When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.

- When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
- For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 6 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
AND	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ and imm8	-		-	-	-			R	-	-
AND	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
AND	A, eam	2+	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and (eam)	-	-	-	-	-	*	*	R	-	-
AND	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) and (A)	-		-	-	-	*	*	R	-	-
AND	eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) and (A)	-	-	-	-	-	*	*	R	-	
OR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ or imm8	-	-	-	-	-	*	*	R	-	-
OR	A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ or (ear)	-	-	-	-	-	*	*	R	-	-
OR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
OR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	-
OR	eam, A	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam) or (A)	-		-	-	-	*	*	R	-	
XOR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ xor imm8	-		-	-	-	*		R	-	-
XOR	A, ear	2	3	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ xor (ear)	-		-	-	-	*	*	R	-	-
XOR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-		-	-	-	*	*	R	-	-
XOR	ear, A	2	(2	0	byte (ear) \leftarrow (ear) xor (A)	-		-	-	-	*	*	R	-	-
XOR	eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) xor (A)	-	-	-	-	-	*	*	R	-	*
NOT	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-	*	*	R	-	-
NOT	ear	2	3	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-		*	R	-	-
NOT	eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*
ANDW		1	2	0	0	word $(A) \leftarrow(A H)$ and (A)	-	-	-	-	-			R	-	-
ANDW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-	*	*	R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
ANDW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ANDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
ANDW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) and (A)	-	-	-	-	-			R	-	
ORW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ or (A)	-	-	-	-	-	*	*	R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-	*	*	R	-	
ORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-		*	R	-	-
ORW	A, eam	2+	4+ (a)	0	(c)	word (A) $\leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	-
ORW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) or (A)	-	-	-	-	-	*	*	R	-	*
XORW		1	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-	-	-	-	-	*	*	R	-	-
XORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-			R	-	-
XORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XORW	ear, A	2	3	2	0	word (ear) $\leftarrow(\mathrm{ear}) \operatorname{xor}(\mathrm{A})$	-	-	-	-	-	*	*	R	-	-
XORW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ xor (A)	-	-	-	-	-	*	*	R	-	*
NOTW		1	2	0	0	word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-	*	*	R	-	-
NOTW	ear	2	3	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOTW	eam	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90370 Series

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	z	v	C	RMw
ANDL	A, ear	2		2	0	long $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-			R	-	-
ANDL	A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ORL	A, ear	2	6	2	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORL	A, eam	2+	$7+$ (a)	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
XORL	A, ea	2	6	2	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORL	A, eam	2+	$7+(\mathrm{a})$	0	(d)	long $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
NEG A	1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*	*	-
NEG ear NEG eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\stackrel{3}{5+(a)}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(b) \end{gathered}$	byte (ear) $\leftarrow 0$ - (ear) byte (eam) $\leftarrow 0-$ (eam)	-	-	-	-	-	*	*	*	*	*
NEGW A	1	2	0	0	word $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*	*	*	*	-
NEGW ear NEGW eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$	word (ear) $\leftarrow 0$ - (ear) word $($ eam $) \leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	*	*	*

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	S	T	N	z	v	C	RMw
NRML A, R0	2	$* 1$	1	0	long (A) \leftarrow Shift until first digit is " byte (RO$)$ C Current shift count	-	-	-	-	-	-	$*$	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{R} 0)$ in all other cases (shift count).
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 18 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
RORC A	2	2	0	0	byte $($ A $) \leftarrow$ Right rotation with carry	-	-	-	-	-			-	*	-
ROLC A	2	2	0	0	byte (A) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC eam	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-	*	*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	-
ROLC eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-		*
ASR A, RO	2	*1	1	0	byte (A) \leftarrow Arithmetic right barrel shift ($A, R 0$)	-	-	-	-	*	*	*	-	*	-
LSR A, R0	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSL A, R0	2	$*_{1}$	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	-	-	-	-		*	*	-	*	-
LSRW A/SHRW A	1	2	0	0	word (A) \leftarrow Logical right shift (A, 1 bit)	-	-	-	-	*	R	*	-	*	-
LSLW A/SHLW A	1	2	0	0	word (A) \leftarrow Logical left shift (A, 1 bit)	-	-	-	-	-	*	*	-		-
ASRW A, R0	2	*1	1	0	word (A) \leftarrow Arithmetic right barrel shift (A,	-	-	-	-	*	*	*	-	*	-
LSRW A, RO	2	*1	1	0	R0)	-	-	-	-	*	*	*	-	*	-
LSLW A, RO	2	*1	1	0	word (A) \leftarrow Logical right barrel shift (A, RO) word (A) \leftarrow Logical left barrel shift (A, RO)	-	-	-	-	-	*	*	-	*	-
ASRL A, R0	2	*2	1	0	long (A) \leftarrow Arithmetic right shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSLL A, RO	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-

*1: 6 when $R 0$ is $0,5+(R 0)$ in all other cases.
*2: 6 when $R 0$ is $0,6+(R 0)$ in all other cases.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90370 Series

Table 19 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	z	v	c	RMW
BZ/BEQ rel	2	*1	0	0	Branch when (Z) = 1	-	-	-	-	-	-	-	-	-	-
BNZ/BNE rel	2	*1	0	0	Branch when (Z) $=0$	-	-	-	-	-	-	-	-	-	-
BC/BLO rel	2	${ }^{*}$	0	0	Branch when (C) $=1$	-	-	-	-	-	-	-	-	-	-
BNC/BHS rel	2	${ }^{*}$	0	0	Branch when (C) $=0$	-	-	-	-	-	-	-	-	-	-
BN rel	2	*1	0	0	Branch when (N) $=1$	-	-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	0	Branch when (N) $=0$	-	-	-	-	-	-	-	-	-	-
BV rel	2	*1	0	0	Branch when (V) $=1$	-	-	-	-	-	-	-	-	-	-
BNV rel	2	${ }^{* 1}$	0	0	Branch when (V) $=0$	-	-	-	-	-	-	-	-	-	-
BT rel	2	*1	0	0	Branch when (T) $=1$	-	-	-	-	-	-	-	-	-	-
BNT rel	2	*1	0	0	Branch when (T) $=0$	-	-	-	-	-	-	-	-	-	-
BLT rel	2	${ }^{* 1}$	0	0	Branch when (V) xor (N) $=1$	-	-	-	-	-	-	-	-	-	-
BGE rel	2	*1	0	0	Branch when (V) xor (N) $=0$	-	-	-	-	-	-	-	-	-	-
BLE rel	2	*1	0	0	Branch when ((V) xor (N$)$) or $(\mathrm{Z})=1$	-	-	-	-	-	-	-	-	-	-
BGT rel	2	*1	0	0	Branch when ((V) xor (N$)$) or (Z$)=0$	-	-	-	-	-	-	-	-	-	-
BLS rel	2	*1	0	0	Branch when (C) or $(Z)=1$	-	-	-	-	-	-	-	-	-	-
BHI rel	2	${ }^{* 1}$	0	0	Branch when (C) or $(\mathrm{Z})=0$	-	-	-	-	-	-	-	-	-	-
BRA rel	2	*1	0	0	Branch unconditionally	-	-	-	-	-	-	-	-	-	-
JMP @A	1	2	0	0	word (PC) $\leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
JMP addr16	3	3	0	0	word (PC) \leftarrow addr16	-	-	-	-	-	-	-	-	-	-
JMP @ear	2	3	1	0	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	-
JMP @eam	2+	4+ (a)	0	(c)	word (PC) $\leftarrow($ eam $)$	-	-	-	-	-	-	-	-	-	-
JMPP @ear*3	2	5	2	(word (PC) $\leftarrow(\mathrm{ear}),(\mathrm{PCB}) \leftarrow(\mathrm{ear}+2)$	-	-	-	-	-	-	-	-	-	-
JMPP @eam*3	2+	$6+$ (a)	0	(d)	word $(\mathrm{PC}) \leftarrow(\mathrm{eam}),(\mathrm{PCB}) \leftarrow(\mathrm{eam}+2)$	-	-	-	-	-	-	-	-	-	-
JMPP addr24	4	4	0	0	word $(\mathrm{PC}) \leftarrow$ ad24 0 to 15 , (PCB) \leftarrow ad24 16 to 23	-	-	-	-	-	-	-	-	-	-
CALL @ear*4	2	6	1	(c)	word (PC) \leftarrow (ear)	-	-	-	-	-	-	-	-	-	-
CALL @eam*4	2+	$7+$ (a)	0	$2 \times$ (c)	word (PC) $\leftarrow($ eam)	-	-	-	-	-	-	-	-	-	
CALL addr16*5	3	6	0	(c)	word (PC) \leftarrow addr 16	-	-	-	-	-	-	-	-	-	-
CALLV \#vct4 *5		7	0	$2 \times$ (c)	Vector call instruction	-	-	-	-	-	-	-	-	-	-
CALLP @ear*6	2	10	2	$2 \times$ (c)	word (PC) \leftarrow (ear) 0 to 15, $(\mathrm{PCB}) \leftarrow($ ear $) 16$ to 23	-	-	-	-	-	-	-	-	-	-
CALLP @eam *6	2+	11+ (a)	0	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15 , $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23	-	-	-	-	-	-	-	-	-	-
CALLP addr24 *7	4	10	0	2× (c)	word (PC) \leftarrow addr0 to 15, (PCB) \leftarrow addr16 to 23	-	-	-	-	-	-	-	-	-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times(\mathrm{c})$
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90370 Series

Table 20 Branch 2 Instructions [19 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
CBNE A, \#imm8, rel	3	*1	0	0	Branch when byte $(A) \neq$ imm8	-	-	-	-	-				*	-
CWBNE A, \#imm16, rel	4	*1	0	0	Branch when word $(\mathrm{A}) \neq$ imm16	-	-	-	-	-	*	*		*	-
CBNE ear, \#imm8, rel	4	*2	1	0	Branch when byte (ear) $=$ imm8	-	-	-	-	-	*	*		*	-
CBNE eam, \#imm8, rel* ${ }^{* 10}$	4+	*3	0	(b)	Branch when byte (eam) \neq imm8	-	-	-	-	-	*	*		*	-
CWBNE ear, \#imm16, rel	5	*4	1	0	Branch when word (ear) $=$ imm16	-	-	-	-	-	*	*		*	-
CWBNE eam, \#imm16, re**10	5+	*3	0	(c)	Branch when word (eam) \neq imm16	-	-	-	-	-	*	*		*	-
DBNZ ear, rel	3	*5	2	0	Branch when byte (ear) $=$ (ear) -1 , and (ear) $\neq 0$	-	-	-	-	-	*	*		-	-
DBNZ eam, rel	3+	*6	2	$2 \times$ (b)	Branch when byte $($ eam $)=$ (eam) - 1, and (eam) $\neq 0$	-	-	-	-	-	*	*		-	*
DWBNZ ear, rel	3	*5	2	0	Branch when word (ear) $=$ (ear) -1 , and (ear) $\neq 0$	-	-	-	-	-	*	*		-	-
DWBNZ eam, rel	3+	*6	2	$2 \times$ (c)	Branch when word (eam) = (eam) - 1, and (eam) $\neq 0$	-	-	-	-	-	*			-	*
INT \#vct8	2	20	0	$8 \times$ (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
INT addr16	3	16	0	$6 \times$ (c)	Software interrupt	-	-	R	S	-	-	-	-	-	-
INTP addr24	4	17	0	6x (c)	Software interrupt	-	-	R	S	-	-	-	-	-	
INT9	1	20	0	$8 \times(\mathrm{c})$	Software interrupt	-	-	R	S	-	-	-	-	-	-
RETI	1	15	0	*7	Return from interrupt	-	-		*	*	*	*		*	-
LINK \#local8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and	-	-	-	-	-	-	-	-	-	-
UNLINK	1	5	0	(c)	allocate local pointer area At constant entry, retrieve old frame pointer from stack.	-	-	-	-	-	-	-	-	-	-
RET *8	1	4	0	(c)	Return from subroutine	-	-	-	-	-	-	-	-	-	-
RETP *9	1	6	0	(d)	Return from subroutine	-	-	-	-	-	-	-	-	-	-

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+(\mathrm{a})$ when branching, $6+(\mathrm{a})$ when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+(a)$ when branching, $7+(a)$ when not branching
*7: Set to $3 \times(\mathrm{b})+2 \times$ (c) when an interrupt request occurs, and $6 \times(\mathrm{c})$ for return.
*8: Retrieve (word) from stack
*9: Retrieve (long word) from stack
*10: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90370 Series

Table 21 Other Control Instructions (Byte/Word/Long Word) [28 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH		AH	1	s	T	N	z	v	c	RMw
PUSHW A	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-		-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{AH})$	-		-	-	-	-	-	-	-	-	-
PUSHW PS	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{PS})$	-		-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*5	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-		-	-	-	-	-	-	-	-	-
POPW A	1	3	0	(c)	word $(A) \leftarrow((S P)),(S P) \leftarrow(S P)+2$	-		*	-	-	-	-	-	-	-	-
POPW AH	,	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})$), (SP) $\leftarrow(\mathrm{SP})+2$	-		-	-	-	-	-	-	-	-	-
POPW PS	1	4	0	(c)	word (PS) $\leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-		-	*	*	*	*	*	*	*	-
POPW rlst	2	*2	*5	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP}) \mathrm{)},(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-		-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	6× (c)	Context switch instruction	-		-	*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ and imm8	-		-	*	*	*	*	*	*	*	-
OR CCR, \#imm8	2	3	0	0	byte $(C C R) \leftarrow(C C R)$ or imm8	-		-	*	*	*	*	*	*	*	-
MOV RP, \#imm8	2	2	0	0	byte (RP) ヶimm8	-		-	-	-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	0	byte (ILM) ヶimm8	-		-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2	3	1	0	word (RWi) \leftarrow ear	-		-	-	-	-	-	-	-	-	-
MOVEA RWi, eam	2+	$2+$ (a)	1	0	word (RWi) ¢eam	-		-	-	-	-	-	-	-	-	-
MOVEA A, ear	2	1	0	0	word(A) $¢$ ear	-			-	-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+$ (a)	0	0	word $(A) \leftarrow$ eam	-			-	-	-	-	-	-	-	-
ADDSP \#imm8	2		0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ ext (imm8)	-		-	-	-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ imm16	-		-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $(\mathrm{A}) \leftarrow($ brgl $)$	Z			-	-	-	*		-	-	-
MOV brg2, A	2	1	0	0	byte (brg2) $\leftarrow(\mathrm{A})$	-		-	-	-	-	*		-	-	-
NOP	1	1	0	0	No operation	-		-	-	-	-	-	-	-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space	-		-	-	-	-	-	-	-	-	-
DTB		1	0	0	Prefix code for accessing DT space	-		-	-	-	-	-	-	-	-	-
PCB	1	,	0	0	Prefix code for accessing PC space	-		-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-		-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-		-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-		-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states
*2: $7+3 \times$ (pop count) $+2 \times$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+$ (push count) $-3 \times$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count \times (c), or push count \times (c)
*5: Pop count or push count.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 22 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	,	s	T		N	z	v	c	Rmw
MOVB A, dir:bp	3	5	0	(b)	byte $(\mathrm{A}) \leftarrow$ (dir:bp) b	Z				-	-			*	-	-	-
MOVB A, addr16:bp	4	5	0	(b)	byte $(\mathrm{A}) \leftarrow($ addr16:bp) b	Z	*		-	-	-		*	*	-	-	-
MOVB A, io:bp	3	4	0	(b)	byte $(\mathrm{A}) \leftarrow$ (io:bp) b	Z	*		-	-	-		*	*	-	-	-
MOVB dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-		-	-	-		*	*	-	-	*
MOVB addr16:bp, A	4	7	0	$2 \times$ (b)	bit (addr16:bp) $b \leftarrow(A)$	-	-		-	-	-		*	*	-	-	*
MOVB io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $b \leftarrow(A)$	-	-	-	-	-	-		*	*	-	-	*
SETB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$	-	-		-	-	-		-	-	-	-	*
SETB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$	-	-		-	-	-		-	-	-	-	*
SETB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$	-	-		-	-	-		-	-	-	-	*
CLRB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$	-	-	-		-	-		-	-	-	-	*
CLRB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-	-		-	-	-		-	-	-	-	*
CLRB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-		-	-	-		-	-	-	-	*
BBC dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $b=0$	-	-	-	-	-	-		-	*	-	-	-
BBC addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) b=0	-	-	-	-	-	-		-	*	-	-	-
BBC io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $\mathrm{b}=0$	-	-		-	-	-		-	*	-	-	-
BBS dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $b=1$	-	-	-		-	-		-	*	-	-	-
BBS addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $\mathrm{b}=1$	-	-		-	-	-		-	*	-	-	-
BBS io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b=1$	-	-		-	-	-		-	*	-	-	-
SBBS addr16:bp, rel	5	*3	0	$2 \times(\mathrm{b})$	Branch when (addr16:bp) $\mathrm{b}=1$, bit $=1$	-	-	-	-	-	-		-	*	-	-	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=1$	-	-	-	-	-	-		-	-	-	-	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) b $=0$	-	-	-		-	-		-	-	-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 23 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow(A) 8$ to 15	-	-	-	-	-	-	-	-	-	-
SWAPW	1	2	0	0	word $(A H) \leftrightarrow(A L)$	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	*	-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90370 Series

Table 24 String Instructions [10 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ \leftarrow @AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*5	*3	Byte transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*5	* 4	Byte retrieval (@AH+)-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*5	* 4	Byte retrieval (@AH-) - AL, counter = RWO	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	$6 \mathrm{~m}+6$	*5	*3	Byte filling @AH $+\leftarrow A L$, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	* 6	Word transfer @AH+ ¢@AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*8	*6	Word transfer @AH- ¢@AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-) - AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 \mathrm{~m}+6$	*8	*6	Word filling @AH $+\leftarrow A L$, counter = RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n : Loop count
*1: 5 when RW0 is $0,4+7 \times($ RW0) for count out, and $7 \times \mathrm{n}+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times($ RW 0) in any other case
*3: (b) $\times($ RW0 $)+(b) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times n$
*5: $2 \times($ RW0 $)$
${ }^{*} 6:(\mathrm{c}) \times(\mathrm{RWO})+(\mathrm{c}) \times(\mathrm{RWO})$ when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times n$
*8: $2 \times(\mathrm{RW} 0)$
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 6, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

ORDERING INFORMATION

Part number	Package	Remarks
MB90F372PMT-G	144-pin Plastic LQFP MB90372PMT-G-XXX	(FPT-144P-M12)

MB90370 Series

PACKAGE DIMENSIONS

144-pin plastic LQFP

(FPT-144P-M12)

	144-pin plastic LQFP	Lead pitch	0.40 mm	
		Package width x package length	16.0×16.0 mm	
		Lead shape	Gullwing	
		Sealing method	Plastic mold	
		Mounting height	1.70 mm MAX	
		Weight	0.88g	
Dimensions mm (inches)				
Dimensions in mm (inches)				

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Marketing Division
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1,
Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3353
Fax: +81-3-5322-3386
http://edevice.fujitsu.com/
North and South America
FUJITSU MICROELECTRONICS AMERICA, INC. 3545 North First Street,
San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am-5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag,
Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fme.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-6281-0770
Fax: +65-6281-0220
http://www.fmal.fujitsu.com/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280

Korea

Tel: +82-2-3484-7100
Fax: +82-2-3484-7111
http://www.fmk.fujitsu.com/

F0208

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: * : With load capacitance is 20 pF .

