

mos integrated circuit $\mu PD784031Y$

16-/8-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD784031Y is based on the μ PD784031 with an I²C bus control function appended, and is ideal for applications in audio-visual systems.

The μ PD784031Y is a ROM-less version of μ PD784035Y and 784036Y.

The functions are explained in detail in the following User's Manual. Be sure to read this manual when designing your system.

 μ PD784038, 784038Y Subseries User's Manual - Hardware : U11316E 78K/IV Series User's Manual - Instruction : U10905E

FEATURES

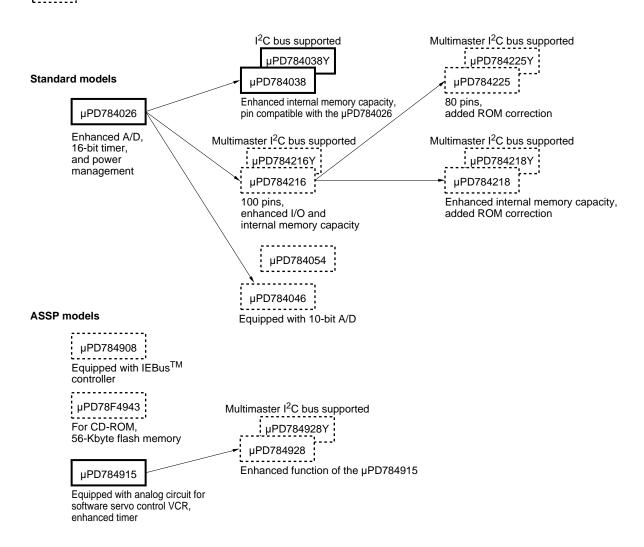
- 78K/IV Series
- Pin-compatible with μPD78234 Subseries, μPD784026 Subseries, and μPD784038 Subseries
- Minimum instruction execution time: 125 ns (@ 32-MHz operation)
- I/O ports: 46
- Serial interface: 3 channels
 UART/IOE (3-wire serial I/O): 2 channels
 CSI (3-wire serial I/O, 2-wire serial I/O, I²C bus):
 1 channel
- PWM output: 2 outputs

- Timer/counter
 - 16-bit Timer/counter x 3 units
 16-bit Timer x 1 unit
- Standby function
 - HALT/STOP/IDLE mode
- Clock division function
- Watchdog timer: 1 channel
- A/D converter: 8-bit resolution x 8 channels
 D/A converter: 8-bit resolution x 2 channels
- Supply voltage: VDD = 2.7 to 5.5 V

APPLICATION FIELDS

Cellular phones, cordless phones, audio-visual systems, etc.

ORDERING INFORMATION


	Part Number	Package	Internal ROM (Bytes)	Internal RAM (Bytes)
	μPD784031YGC-3B9	80-pin plastic QFP (14 x 14 mm, thickness 2.7 mm)	None	2048
τ	μ PD784031YGC-8BT	80-pin plastic QFP (14 x 14 mm, thickness 1.4 mm)	None	2048
	μPD784031YGK-BE9	80-pin plastic TQFP (fine pitch) (12 x 12 mm)	None	2048

The information in this document is subject to change without notice.

*78K/IV SERIES PRODUCT DEVELOPMENT

: Under mass production

FUNCTIONS

Item		Function				
Number of basic in (mnemonics)	nstructions	113				
General-purpose register		8 bits x 16 registers x 8 banks, or 16 bits x 8 registers x 8 banks (memory mapping)				
Minimum instruction time	on execution	125 ns/250 ns/50	0 ns/1000 ns (at 32 MHz)			
Internal memory	ROM	None				
	RAM	2048 bytes				
Memory space		1 Mbytes with pro	ogram and data spaces combined			
I/O port	Total	46				
	Input	8				
	I/O	34				
	Output	4				
Pins with	Pins with pull-	32				
ancillary	up resistor					
function Note	LEDs direct	8				
Turicuon	drive output					
	Transistor	8				
	direct drive					
Real-time output p	ort	4 bits x 2, or 8 bit	s x 1			
Timer/counter		Timer/counter 0:	Timer register x 1	Pulse output		
			Capture register x 1	Toggle output		
		(40 kits)	Compare register x 2	PWM/PPG output		
		(16 bits)		One-shot pulse output		
		Timer/counter 1:	Timer register x 1 Capture register x 1	Pulse output • Real-time output (4 bits x 2)		
		(8/16 bits)	Capture/compare register x 1	Real-time output (4 bits x 2)		
		(6, 10 2.10)	Compare register x 1			
		Timer/counter 2:		Pulse output		
			Capture register x 1	Toggle output		
		(8/16 bits)	Capture/compare register x 1 Compare register x 1	PWM/PPG output		
		Timer 3: (8/16 bits)	Timer register x 1 Compare register x 1			
PWM output		12-bit resolution	x 2 channels			
Serial interface		UART/IOE (3-wire CSI (3-wire serial	e serial I/O) : 2 o I I/O, 2-wire serial I/O, I ² C bus) : 1 o	channels (on-chip baud rate generator) channel		
A/D converter		8-bit resolution x 8 channels				
D/A converter		8-bit resolution x 2 channels				
Watchdog timer		1 channel				
Standby		HALT/STOP/IDLE mode				
Interrupt	Hardware source	24 (internal: 17, e	external: 7 (variable sampling clock	input: 1))		
	Software source	BRK instruction, I	BRKCS instruction, operand error			
	Non-maskable	Internal: 1, external: 1				
	Maskable	Internal: 16, external: 6				
		4 programmable priority levels				
		3 processing styles: vectored interrupt/macro service/context switching				
Supply voltage		$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	I			
Package		80-pin plastic QF	P (14 x 14 mm, thickness 2.7 mm)			
		80-pin plastic QFP (14 x 14 mm, thickness 1.4 mm)				
		80-pin plastic TQFP (fine pitch) (12 x 12 mm)				

Note The pins with ancillary function are included in the I/O pins.

*

CONTENTS

1.	DIFFE	RENCES AMONG MODELS IN μ PD784038Y SUBSERIES	6
2.	MAJO	R DIFFERENCES FROM μ PD784026 SUBSERIES AND μ PD78234 SUBSERIES	7
3.	PIN C	ONFIGURATION (Top View)	8
4.	BLOC	K DIAGRAM	10
5.	PIN I	FUNCTION	11
	5.1	Port Pins	. 11
	5.2	Non-port Pins	. 12
	5.3	Types of Pin I/O Circuits and Connections for Unused Pins	14
6.	CPU	ARCHITECTURE	
	6.1	Memory Space	
	6.2	CPU Registers	
		6.2.1 General-purpose registers	
		6.2.2 Control registers	
		6.2.3 Special function registers (SFRs)	21
7.	PER	IPHERAL HARDWARE FUNCTIONS	26
	7.1	Ports	. 26
	7.2	Clock Generation Circuit	. 27
	7.3	Real-time Output Port	. 29
	7.4	Timer/Counter	. 30
	7.5	PWM Output (PWM0, PWM1)	
	7.6	A/D Converter	
	7.7	D/A Converter	
	7.8	Serial Interface	
		7.8.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)	
		7.8.2 Clocked serial interface (CSI)	
	7.9	Edge Detection Function	
	7.10	Watchdog Timer	40
8.		RRUPT FUNCTION	
	8.1	Interrupt Sources	
	8.2	Vectored Interrupt	
	8.3	Context Switching	
	8.4	Macro Service	
	8.5	Application Example of Macro Service	. 45

9.	LOC	AL BUS INTERFACE4	
	9.1	Memory Expansion	
	9.2	Memory Space	48
	9.3	Programmable Wait	
		Pseudo Static RAM Refresh Function	
	9.5	Bus Hold Function	49
10.	STAI	NDBY FUNCTION	50
11.	RESI	ET FUNCTION	51
		RUCTION SET	
13.	ELEC	CTRICAL SPECIFICATIONS	57
14.	PAC	KAGE DRAWINGS	77
15.	REC	OMMENDED SOLDERING CONDITIONS	30
APF	PEND	X A. DEVELOPMENT TOOLS	32
APF	PEND	X B. RELATED DOCUMENTS	84

1. DIFFERENCES AMONG MODELS IN μ PD784038Y SUBSERIES

The only difference among the μ PD784031Y, 784035Y, 784036Y, 784037Y, and 784038Y lies in the internal memory capacity.

The μ PD78P4038Y is provided with a 128-Kbyte one-time PROM or EPROM instead of the mask ROM of the μ PD784035Y, 784036Y, 784037Y, and 784038Y. These differences are summarized in Table 1-1.

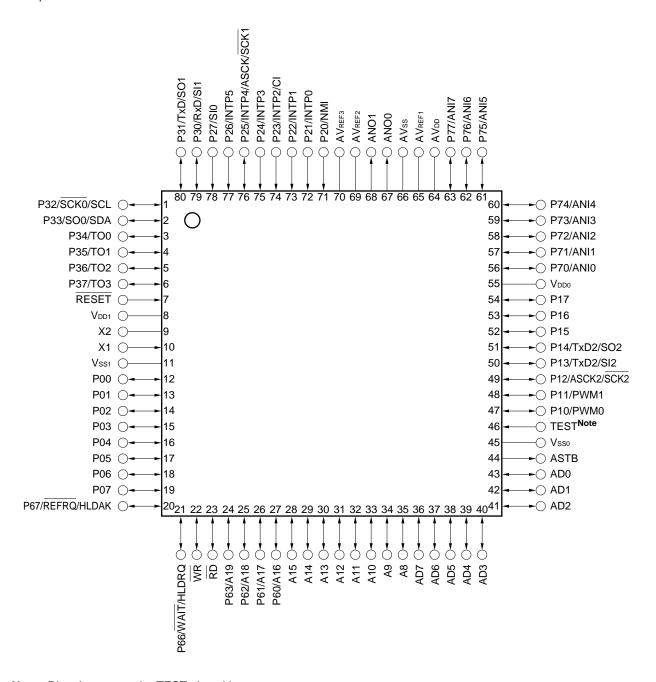
Table 1-1. Differences among Models in μ PD784038Y Subseries

Part Number	μPD784031Y	μPD784035Y	μPD784036Y	μPD784037Y	μPD784038Y	μPD78P4038Y
Item						
Internal ROM	None	48 Kbytes	64 Kbytes	96 Kbytes	128 Kbytes	128 Kbytes
		(mask ROM)	(mask ROM)	(mask ROM)	(mask ROM)	(one-time PROM
						or EPROM)
Internal RAM	2048 bytes			3584 bytes	4352 bytes	
Package	80-pin plastic QFP (14 x 14 mm, thickness 2.7 mm)					
. 33.1330	80-pin plastic QFP (14 x 14 mm, thickness 1.4 mm) 80-pin plastic TQFP (fine pitch) (12 x 12 mm)					80-pin ceramic WQFN (14 x 14 mm)

 \star

2. MAJOR DIFFERENCES FROM μ PD784026 SUBSERIES AND μ PD78234 SUBSERIES

Series Name		μPD784038Y Subseries	μPD784026 Subseries	μPD78234 Subseries
Item		μPD784038 Subseries		
Number of basic instructions (mnemonics)		113		65
Minimum instructio	n execution time	125 ns (@ 32-MHz operation)	160 ns (@ 25-MHz operation)	333 ns (@ 12-MHz operation)
Memory space (pro	ogram/data)	1 Mbytes combined		64 Kbytes/1 Mbytes
Timer/counter		16-bit timer/counter x 1 8-/16-bit timer/counter x 2 8-/16-bit timer x 1		16-bit timer/counter x 1 8-bit timer/counter x 2 8-bit timer x 1
Clock output functi	on	Provided		None
Watchdog timer		Provided		None
Serial interface		UART/IOE (3-wire serial I/O) x 2 channels CSI (3-wire serial I/O, 2-wire serial I/O, I ² C bus ^{Note}) x 1 channel	UART/IOE (3-wire serial I/O) x 2 channels CSI (3-wire serial I/O, SBI) x 1 channel	UART x 1 channel CSI (3-wire serial I/O, SBI) x 1 channel
Interrupt	Context switching	Provided	None	
	Priority	4 levels	2 levels	
Standby function		HALT/STOP/IDLE mode	HALT/STOP mode	
Operating clock		Selectable from fxx/2, fxx/4, fx	Fixed to fxx/2	
Pin function	MODE pin	None		Specifies ROM-less mode (always high level with µPD78233 and 78237)
	TEST pin	Device test pin Usually, low level		None
Package		80-pin plastic QFP (14 x 14 mm, thickness 2.7 mm) 80-pin plastic QFP (14 x 14 mm, thickness 1.4 mm) 80-pin plastic TQFP (fine pitch) (12 x 12 mm) 80-pin ceramic WQFN (14 x 14 mm): µPD78P4038Y and	80-pin plastic QFP (14 x 14 mm, thickness 2.7 mm) 80-pin plastic TQFP (fine pitch) (12 x 12 mm): μPD784021 only 80-pin ceramic WQFN (14 x 14 mm): μPD78P4026 only	80-pin plastic QFP (14 x 14 mm, thickness 2.7 mm) 94-pin plastic QFP (20 x 20 mm) 84-pin plastic QFJ (1150 x 1150 mil) 94-pin ceramic WQFN (20 x 20 mm): µPD78P238 only


Note μ PD784038Y Subseries only

*

3. PIN CONFIGURATION (Top View)

- 80-pin plastic QFP (14 x 14 mm, thickness 2.7 mm) μPD784031YGC-3B9
- 80-pin plastic QFP (14 x 14 mm, thickness 1.4 mm)
 μPD784031YGC-8BT
 - 80-pin plastic TQFP (fine pitch) (12 x 12 mm) μPD784031YGK-BE9

Note Directly connect the TEST pin to Vsso.

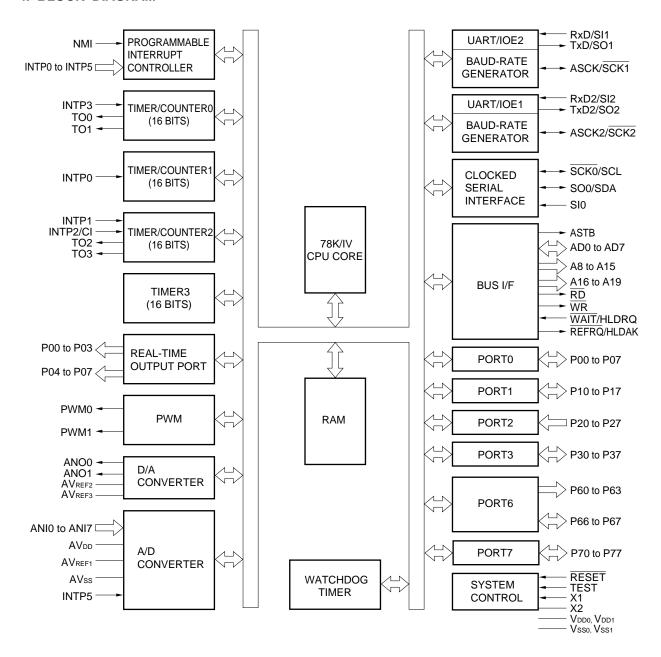
A8 to A19 : Address Bus P70 to P77 : Port7

AD0 to AD7 : Address/Data Bus PWM0, PWM1 : Pulse Width Modulation Output

ANI0 to ANI7 : Analog Input $\overline{\text{RD}}$: Read Strobe ANO0, ANO1 : Analog Output $\overline{\text{REFRQ}}$: Refresh Request

ASCK, ASCK2 : Asynchronous Serial Clock RESET : Reset

ASTB : Address Strobe RxD, RxD2 : Receive Data SCK0 to SCK2 AV_DD : Analog Power Supply : Serial Clock AVREF1 to AVREF3 : Reference Voltage SCL : Serial Clock **AVss** : Analog Ground SDA : Serial Data CI : Clock Input SI0 to SI2 : Serial Input HLDAK : Hold Acknowledge SO0 to SO2 : Serial Output **HLDRQ** : Hold Request **TEST** : Test


INTP0 to INTP5 : Interrupt from Peripherals TO0 to TO3 : Timer Output

TxD, TxD2 NMI : Non-maskable Interrupt : Transmit Data P00 to P07 : Port0 $V_{\text{DD0}},\,V_{\text{DD1}}$: Power Supply P10 to P17 : Port1 Vsso, Vss1 : Ground WAIT P20 to P27 : Port2 : Wait

P30 to P37 : Port3 $\overline{\text{WR}}$: Write Strobe P60 to P63, P66, P67 : Port6 X1, X2 : Crystal

4. BLOCK DIAGRAM

5. PIN FUNCTION

5.1 Port Pins

Pin Name	I/O	Alternate Function	Function
P00 to P07	I/O	_	Port 0 (P0): • 8-bit I/O port • Can be used as real-time output port (4 bits x 2). • Can be set in input or output mode bitwise. • Pins set in input mode can be connected to internal pull-up resistors by software. • Can drive transistor.
P10	I/O	PWM0	Port 1 (P1):
P11		PWM1	8-bit I/O port Con he get in input or output made hituing
P12		ASCK2/SCK2	 Can be set in input or output mode bitwise. Pins set in input mode can be connected to internal pull-up
P13		RxD2/SI2	resistors by software.
P14		TxD2/SO2	Can drive LEDs.
P15 to P17		_	
P20	Input	NMI	Port 2 (P2):
P21		INTP0	8-bit input port
P22		INTP1	• P20 cannot be used as general-purpose port pin (non-maskable interrupt). However, its input level can be checked by interrupt
P23		INTP2/CI	routine.
P24		INTP3	P22 through P27 can be connected to internal pull-up resistors
P25		INTP4/ASCK/SCK1	by software in 6-bit units. • P25/INTP4/ASCK/SCK1 pin can operate as SCK1 output pin if
P26		INTP5	so specified by CSIM1.
P27		SIO	
P30	I/O	RxD/S1	Port 3 (P3):
P31		TxD/SO1	8-bit I/O port
P32		SCK0/SCL	 Can be set in input or output mode bitwise. Pins set in input mode can be connected to internal pull-up
P33		SO0/SDA	resistors by software.
P34 to P37		TO0 to TO3	
P60 to P63	I/O	A16 to A19	Port 6 (P6):
P66		WAIT/HLDRQ	P60 through P63 is dedicated ports for output. P86 and P87 and be estimated ports for output made hituring.
P67		REFRQ/HLDAK	 P66 and P67 can be set in input or output mode bitwise. Pins set in input mode can be connected to internal pull-up resistors by software.
P70 to P77	I/O	AN10 to AN17	Port 7 (P7): • 8-bit I/O port • Can be set in input or output mode bitwise.

5.2 Non-port Pins

Pin Name	I/O	Alternate Function		Function
TO0 to TO3	Output	P34 to P37	Timer output	
CI	Input	P23/INTP2	Count clock input to timer/co	ounter 2
RxD	Input	P30/SI1	Serial data input (UART0)	
RxD2		P13/SI2	Serial data input (UART2)	
TxD	Output	P31/SO1	Serial data output (UART0)	
TxD2		P14/SO2	Serial data output (UART2)	
ASCK	Input	P25/INTP4/SCK1	Baud rate clock input (UART	¯0)
ASCK2		P12/SCK2	Baud rate clock input (UART	
SDA	I/O	P33/SO0	Serial data input/output (2-w	rire serial I/O, I ² C bus)
SI0	Input	P27	Serial data input (3-wire seri	al I/O0)
SI1		P30/RxD	Serial data input (3-wire seri	al I/O1)
SI2		P13/RxD2	Serial data input (3-wire seri	al I/O2)
SO0	Output	P33/SDA	Serial data output (3-wire se	rial I/O0)
SO1		P31/TxD	Serial data output (3-wire se	rial I/O1)
SO2		P14/TxD2	Serial data output (3-wire se	rial I/O2)
SCK0	I/O	P32/SCL	Serial clock input/output (3-v	vire serial I/O0)
SCK1		P25/INTP4/ASCK	Serial clock input/output (3-v	vire serial I/O1)
SCK2		P12/ASCK2	Serial clock input/output (3-v	vire serial I/O2)
SCL		P32/SCK0	Serial clock input/output (2-v	vire serial I/O, I ² C bus)
NMI	Input	P20	External interrupt requests	_
INTP0		P21		Count clock input to timer/counter 1 Capture trigger signal of CR11 or CR12
INTP1		P22		Count clock input to timer/counter 2 Capture trigger signal of CR22
INTP2		P23/CI		Count clock input to timer/counter 2 Capture trigger signal of CR21
INTP3		P24		Count clock input to timer/counter 0 Capture trigger signal of CR02
INTP4		P25/ASCK/SCK1		_
INTP5		P26		Conversion start trigger input to A/D converter
AD0 to AD7	I/O	_	Time-division address/data b	ous (for external memory connection)
A8 to A15	Output	_	Higher address bus (for exte	,
A16 to A19	Output	P60 to P63	,	ss is extended (for external memory connection)
RD	Output	_	Read strobe to external men	
WR	Output	_	Write strobe to external men	•
WAIT	Input	P66/HLDRQ	Wait insertion	•
REFRQ	Output	P67/HLDAK	Refresh pulse output to exte	rnal pseudo static memory
HLDRQ	Input	P66/WAIT	Bus hold request input	•
HLDAK	Output	P67/REFRQ	Bus hold acknowledge outpu	ut
ASTB	Output	-		livision address (A0 through A7)

Pin Name	I/O	Alternate Function	Function
RESET	Input		Chip reset
X1	Input	_	Crystal connection for system clock oscillation
X2	_		(Clock can also be input to X1.)
ANI0 to ANI7	Input	P70 to P77	Analog voltage input to A/D converter
ANO0, ANO1	Output	_	Analog voltage output from D/A converter
AV _{REF1}	_	_	Reference voltage to A/D converter
AVREF2, AVREF3			Reference voltage to D/A converter
AV _{DD}			A/D converter power supply
AVss			A/D converter GND
V _{DD0} Note 1			Power supply of port
V _{DD1} Note 1			Power supply except for port
. VSS0Note 2			GND of port
VSS1 Note 2			GND except for port
TEST			Directly connect to Vsso (IC test pin).

Notes 1. Provide the same potential to V_{DD0} and V_{DD1} .

2. Provide the same potential to Vsso and Vss1.

5.3 Types of Pin I/O Circuits and Connections for Unused Pins

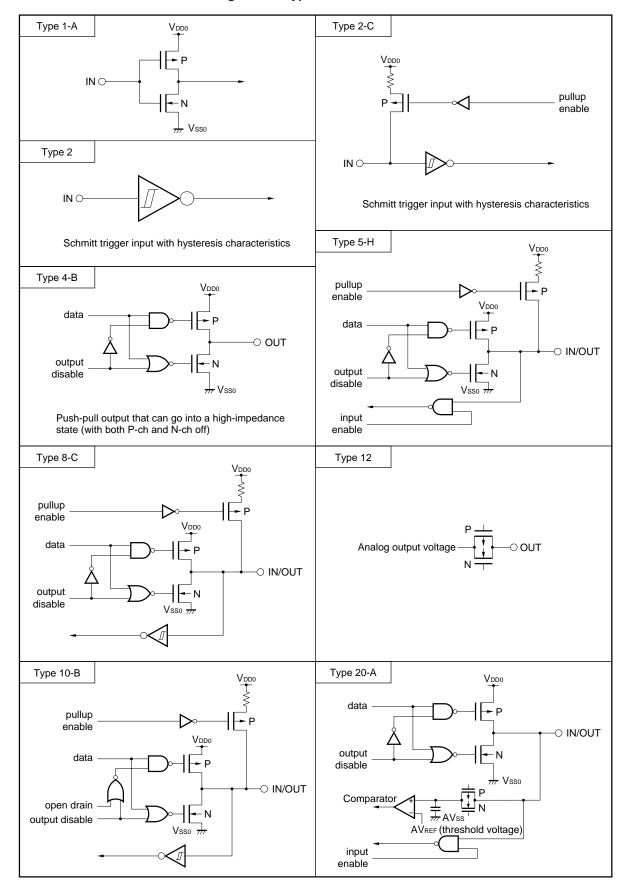
Table 5-1 shows types of pin I/O circuits and the connections for unused pins. For the input/output circuit of each type, refer to Figure 5-1.

Table 5-1. Types of Pin I/O Circuits and Connections for Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection for Unused Pins
P00 to P07	5-H	I/O	Input: Connect to VDD0.
P10/PWM0 P11/PWM1			Output: Open
P12/ASCK2/SCK2	8-C		
P13/RxD2/SI2	5-H		
P14/TxD2/SO2			
P15 to P17			
P20/NMI	2	Input	Connect to VDD0 or VSS0.
P21/INTP0			
P22/INTP1	2-C		Connect to VDDO.
P23/INTP2/CI			
P24/INTP3			
P25/INTP4/ASCK/SCK1	8-C	I/O	Input: Connect to VDD0.
			Output: Open
P26/INTP5	2-C	Input	Connect to V _{DD0} .
P27/SI0			
P30/RxD/SI1	5-H	I/O	Input: Connect to VDDO.
P31/TxD/SO1			Output: Open
P32/SCK0/SCL	10-B		
P33/SO0/SDA			
P34/TO0 to P37/TO3	5-H		
AD0 to AD7			
A8 to A15		Output Note	Open
P60/A16 to P63/A19			
RD			
WR			
P66/WAIT/HLDRQ		I/O	Input: Connect to VDD0.
P67/REFRQ/HLDAK			Output: Open
P70/ANI0 to P77/ANI7	20-A		Input: Connect to VDD0 or VSS0. Output: Open
ANO0, ANO1	12	Output	Open
ASTB	4-B		

Note I/O circuit type of these pins is 5-H. However these pins perform only as output by an internal circuit.

Table 5-1. Types of Pin I/O Circuits and Connections for Unused Pins (2/2)


Pin Name	I/O Circuit Type	I/O	Recommended Connection for Unused Pins
RESET	2	Input	-
TEST	1-A		Directly connect to Vsso.
AVREF1 to AVREF3	_		Connect to Vsso.
AVss			
AV _{DD}			Connect to V _{DD0} .

Caution Connect an I/O pin whose input/output mode is unstable to V_{DD0} via a resistor of several 10 k Ω (especially if the voltage on the reset input pin rises higher than the low-level input level on power application or when the mode is switched between input and output by software).

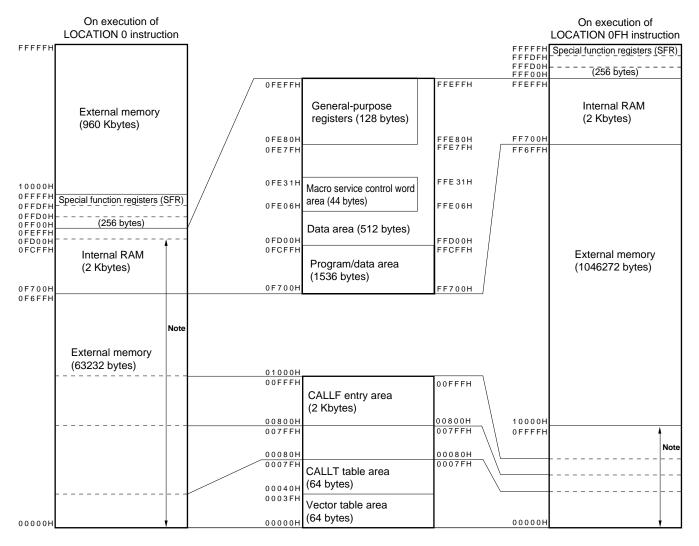
Remark Because the circuit type numbers shown in the above table are commonly used with all the models in the 78K Series, these numbers of some models are not serial (because some circuits are not provided to some models).

Figure 5-1. Types of Pin I/O Circuits

6. CPU ARCHITECTURE

6.1 Memory Space

A memory space of 1 Mbytes can be accessed. Mapping of the internal data area (special function registers and internal RAM) can be specified the LOCATION instruction. The LOCATION instruction must be always executed after reset cancellation, and must not be used more than once.


(1) When LOCATION 0 instruction is executed

The internal data area is mapped in 0F700H to 0FFFFH.

(2) When LOCATION 0FH instruction is executed

The internal data area is mapped in FF700H to FFFFFH.

Figure 6-1. Memory Map of μ PD784031Y

Note Base area and entry area for reset or interrupt. However, the internal RAM area is not used as a reset entry area.

6.2 CPU Registers

6.2.1 General-purpose registers

Sixteen 8-bit general-purpose registers are available. Two 8-bit registers can be also used in pairs as a 16-bit register. Of the 16-bit registers, four can be used in combination with an 8-bit register for address expansion as 24-bit address specification registers.

Eight banks of these registers are available which can be selected by using software or the context switching function. The general-purpose registers except V, U, T, and W registers for address expansion are mapped to the internal RAM.

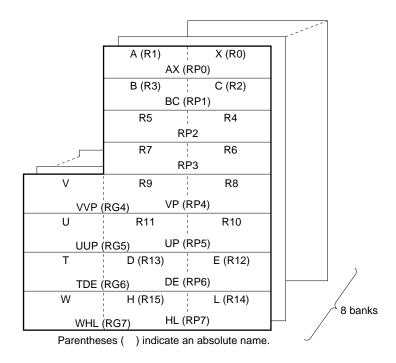
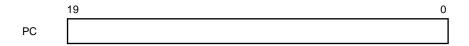


Figure 6-2. General-purpose Register Format

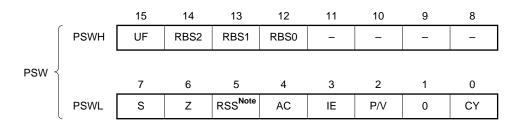
Caution Registers R4, R5, R6, R7, RP2, and RP3 can be used as X, A, C, B, AX, and BC registers, respectively, by setting the RSS bit of the PSW to 1. However, use this function only for recycling the program of the 78K/III Series.



6.2.2 Control registers

(1) Program counter (PC)

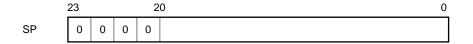
The program counter is a 20-bit register whose contents are automatically updated when the program is executed.


Figure 6-3. Program Counter (PC) Format

(2) Program status word (PSW)

This register holds the statuses of the CPU. Its contents are automatically updated when the program is executed.

Figure 6-4. Program Status Word (PSW) Format


Note This flag is provided to maintain compatibility with the 78K/III Series. Be sure to clear this flag to 0, except when the software for the 78K/III Series is used.

(3) Stack pointer (SP)

This is a 24-bit pointer that holds the first address of the stack.

Be sure to write 0 to the higher 4 bits of this pointer.

Figure 6-5. Stack Pointer (SP) Format

6.2.3 Special function registers (SFRs)

The special function registers, such as the mode registers and control registers of the internal peripheral hardware, are registers to which special functions are allocated. These registers are mapped to a 256-byte space of addresses 0FF00H through 0FFFH^{Note}.

Note On execution of the LOCATION 0 instruction. FFF00H through FFFFH on execution of the LOCATION 0FH instruction.

Caution Do not access an address in this area to which no SFR is allocated. If such an address is accessed by mistake, the μ PD784031Y may be in the deadlock status. This deadlock status can be cleared only by inputting the reset signal.

Table 6-1 lists the special function registers (SFRs). The meanings of the symbols in this table are as follows:

•	Symbol	Symbol indicating an SFR. This symbol is reserved for NEC's assembler (RA78K4).
		It can be used as an sfr variable by the #pragma sfr command with the C compiler
		(CC78K4).

R/W: Read/write
R: Read-only
W: Write-only

• Bit units for manipulation Bit units in which the value of the SFR can be manipulated.

SFRs that can be manipulated in 16-bit units can be described as the operand sfrp of an instruction. To specify the address of this SFR, describe an even

address.

SFRs that can be manipulated in 1-bit units can be described as the operand of a

bit manipulation instruction.

Table 6-1. Special Function Registers (SFRs) (1/4)

Address ^{Note}	Special Function Register (SFR) Name		Symbol		R/W	Bit Units for Manipulation			After Reset
						1 bit	8 bits	16 bits	
0FF00H	Port 0		P0		R/W	√	√	_	Undefined
0FF01H	Port 1		P1			√	√	_	
0FF02H	Port 2		P2		R	√	√	-	
0FF03H	Port 3		РЗ		R/W	√	√	-	
0FF06H	Port 6		P6			√	√	_	00H
0FF07H	Port 7		P7			√	√	-	Undefined
0FF0EH		Port 0 buffer register L	P0L			√	√	-	
0FF0FH	Port 0 buffer register H		РОН			√	√	_	
0FF10H	Compare register (time	er/counter 0)	CR00)		_	-	√	
0FF12H	Capture/compare regis	ster (timer/counter 0)	CR01			_	_	√	
0FF14H	Compare register L (tir	mer/counter 1)	CR10	CR10W		_	√	√	
0FF15H	Compare register H (ti	mer/counter 1)	_			-	-		
0FF16H	Capture/compare register L (timer/counter 1)		CR11	CR11W		-	√	√	
0FF17H	Capture/compare register H (timer/counter 1)		_			_	_		
0FF18H	Compare register L (timer/counter 2)		CR20	CR20W		-	√	√	
0FF19H	Compare register H (ti	mer/counter 2)	_			_	_		
0FF1AH	Capture/compare regis	ster L (timer/counter 2)	CR21	CR21W		-	√	V	
0FF1BH	Capture/compare regis	ster H (timer/counter 2)	_			_	_		
0FF1CH	Compare register L (tir	mer 3)	CR30	CR30W		_	√	√	
0FF1DH	Compare register H (ti	mer 3)	_			_	_		
0FF20H	Port 0 mode register		РМО			√	√	_	FFH
0FF21H	Port 1 mode register		PM1			√	√	_	
0FF23H	Port 3 mode register		РМ3			√	√	_	
0FF26H	Port 6 mode register		PM6			√	√	_	
0FF27H	Port 7 mode register		PM7			√	√	_	
0FF2EH	Real-time output port control register		RTPO			√	√	_	00H
0FF30H	Capture/compare cont	rol register 0	CRC)		_	√	_	10H
0FF31H	Timer output control re	egister	тос			√	√	_	00H
0FF32H	Capture/compare cont	rol register 1	CRC1			_	√	_	
0FF33H	Capture/compare cont	rol register 2	CRC2			_	√	_	10H

Note When the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, "F0000H" is added to this value.

Table 6-1. Special Function Registers (SFRs) (2/4)

Address ^{Note 1}	s ^{Note 1} Special Function Register (SFR) Name Symbol		R/W	Bit Unit	After Reset				
					1 bit	8 bits	16 bits		
0FF36H	Capture register (timer/counter 0)	CR02	!	R	_	_	√	0000H	
0FF38H	Capture register L (timer/counter 1)	CR12	CR12W		_	√	√		
0FF39H	Capture register H (timer/counter 1)	_			_	_			
0FF3AH	Capture register L (timer/counter 2)	CR22	CR22W		_	√	√		
0FF3BH	Capture register H (timer/counter 2)	_			_	-			
0FF41H	Port 1 mode control register	PMC ²	1	R/W	√	√	_	00H	
0FF43H	Port 3 mode control register	PMC:	3		√	√	_		
0FF4EH	Pull-up resistor option register	PUO			√	√	_		
0FF50H	Timer register 0	TMO		R	_	_		0000H	
0FF51H					_	_			
0FF52H	Timer register 1	TM1	TM1W		_	√	√		
0FF53H		_	1		_	-			
0FF54H	Timer register 2	TM2	TM2W		_	V	√		
0FF55H		_			_	_			
0FF56H	Timer register 3	ТМЗ	TM3W			V	V		
0FF57H		_			-				
0FF5CH	Prescaler mode register 0	PRM)	R/W	-	V	_	11H	
0FF5DH	Timer control register 0	TMC)		√	V	_	00H	
0FF5EH	Prescaler mode register 1	PRM ²	1		_	V	_	11H	
0FF5FH	Timer control register 1	TMC			V	√	_	00H	
0FF60H	D/A conversion value setting register 0	DACS	SO		_	√	_		
0FF61H	D/A conversion value setting register 1	DACS	S1		_	V	_		
0FF62H	D/A converter mode register	DAM			V	√	_	03H	
0FF68H	A/D converter mode register	ADM			√	√	_	00H	
0FF6AH	A/D conversion result register	ADCF	₹	R	_	V	_	Undefined	
0FF70H	PWM control register	PWM	С	R/W	√	√	_	05H	
0FF71H	PWM prescaler register	PWP	R		-	√	_	00H	
0FF72H	PWM modulo register 0	PWM	0				V	Undefined	
0FF74H	PWM modulo register 1	PWM	1				√		
0FF7DH	One-shot pulse output control register	OSPO	OSPC		V	V	_	00H	
0FF80H	I ² C bus control register	IICC	IICC		V	V	_		
0FF81H	Prescaler mode register for serial clock	SPRI	SPRM		_	√	_	04H	
0FF82H	Clocked serial interface mode register	CSIM			V	V	-	00H	
0FF83H	Slave address register	SVA		R/WNote 2	√Note 3	√	_	01H	

Notes 1. When the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, "F0000H" is added to this value.

- 2. Bit 0 is read-only.
- 3. Only bit 0 can be manipulated in bit units.

Table 6-1. Special Function Registers (SFRs) (3/4)

AddressNote 1	Special Function Register (SFR) Name	Symbol	R/W	Bit Unit	s for Mani	oulation	After Reset
				1 bit	8 bits	16 bits	
0FF84H	Clocked serial interface mode register 1	CSIM1	R/W	√	√	_	00H
0FF85H	Clocked serial interface mode register 2	CSIM2		√	√	_	
0FF86H	Serial shift register	SIO		-	√	_	
0FF88H	Asynchronous serial interface mode register	ASIM		√	√	_	
0FF89H	Asynchronous serial interface mode register 2	ASIM2		√	√	_	
0FF8AH	Asynchronous serial interface status register	ASIS	R	√	√	_	
0FF8BH	Asynchronous serial interface status register 2	ASIS2		√	√	_	
0FF8CH	Serial receive buffer: UART0	RXB		_	√	_	Undefined
	Serial transmit shift register: UART0	TXS	W	_	√	_	
	Serial shift register: IOE1	SIO1	R/W	_	√	_	
0FF8DH	Serial receive buffer: UART2	RXB2	R	_	√	_	
	Serial transmit shift register: UART2	TXS2	W	_	√	_	
	Serial shift register: IOE2	SIO2	R/W	_	√	_	
0FF90H	Baud rate generator control register	BRGC		_	√	_	00H
0FF91H	Baud rate generator control register 2	BRGC2		_	√	_	
0FFA0H	External interrupt mode register 0	INTM0		√	√	_	
0FFA1H	External interrupt mode register 1	INTM1		√	√	_	
0FFA4H	Sampling clock select register	SCS0		_	√	_	
0FFA8H	In-service priority register	ISPR	R	√	√	-	
0FFAAH	Interrupt mode control register	IMC	R/W	√	√	_	80H
0FFACH	Interrupt mask register 0L	MK0L MK0		√	√	√	FFFFH
0FFADH	Interrupt mask register 0H	мкон		√	√		
0FFAEH	Interrupt mask register 1L	MK1L		√	√	_	FFH
0FFC0H	Standby control register	STBC		-	√Note 2	-	30H
0FFC2H	Watchdog timer mode register	WDM		-	√Note 2	-	00H
0FFC4H	Memory expansion mode register	MM		√	√	_	20H
0FFC5H	Hold mode register	HLDM		√	√	_	00H
0FFC6H	Clock output mode register	CLOM		√	√	_	
0FFC7H	Programmable wait control register 1	PWC1		_	√	_	AAH
0FFC8H	Programmable wait control register 2	PWC2		_	_	√	AAAAH

Notes 1. When the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, "F0000H" is added to this value.

2. Data can be written by using only dedicated instructions such as MOV STBC, #byte and MOV WDM, #byte, and cannot be written with any other instructions.

Table 6-1. Special Function Registers (SFRs) (4/4)

Address ^{Note}	Special Function Register (SFR) Name	Symbol	R/W	Bit Units for Manipulation			After Reset
				1 bit	8 bits	16 bits	
0FFCCH	Refresh mode register	RFM	R/W	√	√	_	00H
0FFCDH	Refresh area specification register	RFA		√	√	_	
0FFCFH	Oscillation stabilization time specification register	OSTS		_	√	_	
0FFD0H to 0FFDFH	External SFR area	-		√	V	_	_
0FFE0H	Interrupt control register (INTP0)	PIC0		√	√	_	43H
0FFE1H	Interrupt control register (INTP1)	PIC1		V	√	_	
0FFE2H	Interrupt control register (INTP2)	PIC2		√	√	_	
0FFE3H	Interrupt control register (INTP3)	PIC3		√	√	_	
0FFE4H	Interrupt control register (INTC00)	CIC00		√	√	_	
0FFE5H	Interrupt control register (INTC01)	CIC01		√	√	_	
0FFE6H	Interrupt control register (INTC10)	CIC10		√	√	_	
0FFE7H	Interrupt control register (INTC11)	CIC11		V	√	_	
0FFE8H	Interrupt control register (INTC20)	CIC20		V	√	_	
0FFE9H	Interrupt control register (INTC21)	CIC21		√	√	_	
0FFEAH	Interrupt control register (INTC30)	CIC30		√	√	_	
0FFEBH	Interrupt control register (INTP4)	PIC4		V	√	_	
0FFECH	Interrupt control register (INTP5)	PIC5		√	√	_	
0FFEDH	Interrupt control register (INTAD)	ADIC		√	√	_	
0FFEEH	Interrupt control register (INTSER)	SERIC		√	√	_	
0FFEFH	Interrupt control register (INTSR)	SRIC		√	√	_	
	Interrupt control register (INTCSI1)	CSIIC1		√	√	_	
0FFF0H	Interrupt control register (INTST)	STIC		√	√	_	
0FFF1H	Interrupt control register (INTCSI)	CSIIC		√	√	_	
0FFF2H	Interrupt control register (INTSER2)	SERIC2		√	√	_	
0FFF3H	Interrupt control register (INTSR2)	SRIC2		√	√	_	
	Interrupt control register (INTCSI2)	CSIIC2		√	√	_	
0FFF4H	Interrupt control register (INTST2)	STIC2		√	√	_	
0FFF5H	Interrupt control register (INTSPC)	SPCIC		√	√	_	

Note When the LOCATION 0 instruction is executed. When the LOCATION 0FH instruction is executed, "F0000H" is added to this value.

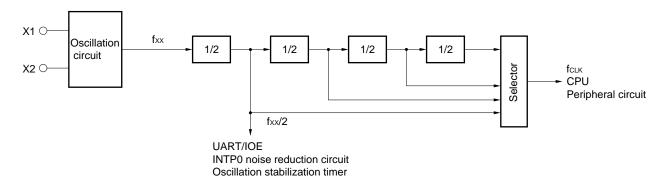
7. PERIPHERAL HARDWARE FUNCTIONS

7.1 Ports

The ports shown in Figure 7-1 are provided to make various control operations possible. Table 7-1 shows the function of each port. Ports 0 through 6 can be connected to internal pull-up resistors by software when inputting.

P00 Port 0 P07 P10 Port 1 P17 P20 to P27 Port 2 P30 Port 3 P37 P60 Port 6 P63 P66 P67 P70 Port 7 P77

Figure 7-1. Port Configuration

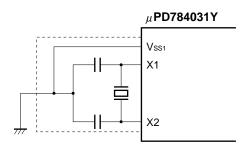

Table 7-1. Port Functions

Port Name	Pin Name	Function	Specification of Pull-up Resistor Connection by Software
Port 0	P00 to P07	 Can be set in input or output mode in 1-bit units. Can operate as 4-bit real-time output port (P00 through P03 and P04 through P07). Can drive transistor. 	All port pins in input mode
Port 1	P10 to P17	Can be set in input or output mode in 1-bit units. Can drive LEDs.	All port pins in input mode
Port 2	P20 to P27	Input port	In 6-bit units (P22 through P27)
Port 3	P30 to P37	Can be set in input or output mode in 1-bit units.	All port pins in input mode
Port 6	P60 to P63	• Output only	All port pins in input mode
Port 7	P66, P67	 Can be set in input or output mode in 1-bit units. Can be set in input or output mode in 1-bit units. 	_
POIL /	P70 10 P77	• Can be set in input or output mode in 1-bit units.	_

7.2 Clock Generation Circuit

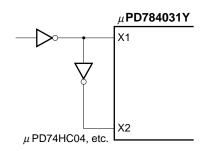
An on-chip clock generation circuit necessary for operation is provided. This clock generation circuit has a divider circuit. If high-speed operation is not necessary, the internal operating frequency can be lowered by the divider circuit to reduce the current consumption.

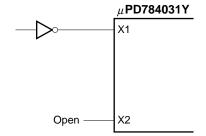
Figure 7-2. Block Diagram of Clock Generation Circuit


Remark fxx: oscillation frequency or external clock input

fclk: internal operating frequency

Figure 7-3. Example of Using Oscillation Circuit


(1) Crystal/ceramic oscillation



(2) External clock

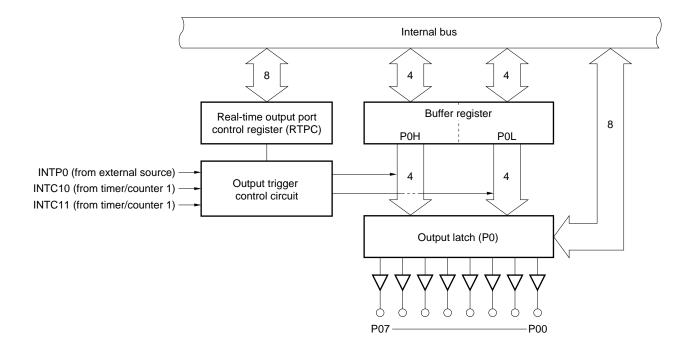
• EXTC bit of OSTS = 1

• EXTC bit of OSTS = 0

Caution When using the clock oscillation circuit, wire the dotted portion in the above figure as follows to avoid adverse influences of wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- . Do not route the wiring in the vicinity of lines through which a high alternating current flows.
- Always keep the potential at the ground point of the capacitor in the oscillation circuit the same as Vss1. Do not ground to a ground pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

μ**PD784031Y**


7.3 Real-time Output Port

The real-time output port outputs data stored in a buffer in synchronization with the coincidence interrupt generated by timer/counter 1 or with an external interrupt. As a result, pulses without jitter can be output.

The real-time output port is therefore ideal for applications where arbitrary patterns must be output at specific intervals (such as open loop control of a stepping motor).

The real-time output port mainly consists of port 0 and port 0 buffer registers (P0H and P0L) as shown in Figure 7-4.

Figure 7-4. Block Diagram of Real-time Output Port

7.4 Timer/Counter

Three units of timers/counters and one unit of timer are provided.

Because a total of seven interrupt requests are supported, these timers/counters and timer can be used as seven units of timers/counters.

Table 7-2. Operations of Timers/Counters

	Name	Timer/Counter 0	Timer/Counter 1	Timer/Counter 2	Timer 3
Item					
Count width	8 bits	-	V	V	\checkmark
	16 bits	V	V	V	\checkmark
Operation	Interval timer	2ch	2ch	2ch	1ch
mode	External event counter	$\sqrt{}$	V	V	_
	One-shot timer	_	_	V	_
Function	Timer output	2ch	_	2ch	_
	Toggle output	V	_	V	_
	PWM/PPG output	V	_	V	_
	One-shot pulse output ^{Note}	V	_	_	_
	Real-time output	_	V	_	_
	Pulse width measurement	1 input	1 input	2 inputs	_
	Number of interrupt requests	2	2	2	1

Note The one-shot pulse output function makes a pulse output level active by software and inactive by hardware (interrupt request signal).

This function is different in nature from the one-shot timer function of timer/counter 2.

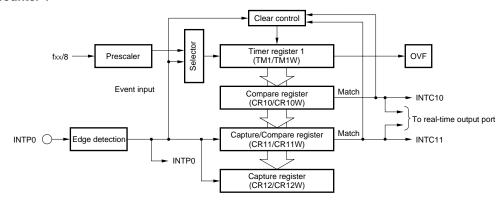
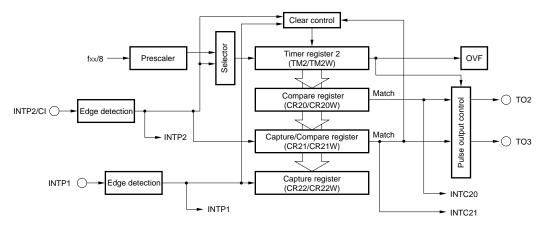
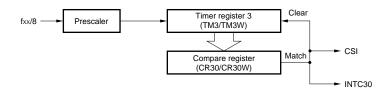


Figure 7-5. Block Diagram of Timers/Counters


Timer/counter 0


Timer/counter 1

Timer/counter 2

Timer 3

Remark OVF: overflow flag

7.5 PWM Output (PWM0, PWM1)

Two channels of PWM (pulse width modulation) output circuits with a resolution of 12 bits and a repeat frequency of 62.5 kHz (fclk = 16 MHz) are provided. Both these PWM output channels can select a high or low level as the active level. These outputs are ideal for controlling the speed of a DC motor.

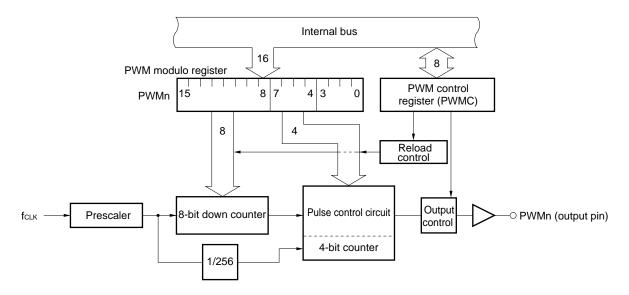


Figure 7-6. Block Diagram of PWM Output Unit

Remark n = 0 or 1

7.6 A/D Converter

An analog-to-digital (A/D) converter with eight multiplexed inputs (ANI0 through ANI7) is provided.

This A/D converter is of successive approximation type. The result of conversion is retained by an 8-bit A/D conversion result register (ADCR). Therefore, high-speed, high-accuracy conversion can be performed (conversion time: approx. 7.5 μ s at fcLk = 16 MHz).

A/D conversion can be started in either of the following two modes:

- Hardware start: Conversion is started by trigger input (INTP5).
- Software start: Conversion is started by setting a bit of the A/D converter mode register (ADM).

After started, the A/D converter operates in the following modes:

- Scan mode: Two or more analog inputs are sequentially selected, and data to be converted are obtained from all the input pins.
- Select mode: Only one analog input pin is used to continuously obtain converted values.

These operation modes and whether starting or stopping the A/D converter are specified by the ADM.

When the result of conversion is transferred to the ADCR, interrupt request INTAD is generated. By using this request and macro service, the converted values can be successively transferred to the memory.

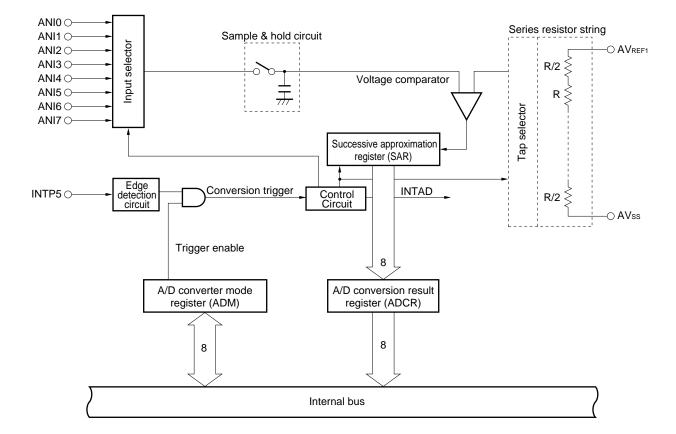


Figure 7-7. Block Diagram of A/D Converter

7.7 D/A Converter

Two circuits of digital-to-analog (D/A) converters are provided. These D/A converters are of voltage output type and have a resolution of 8 bits.

The conversion method is of R-2R resistor ladder type. By writing a value to be output to an 8-bit D/A conversion value setting register (DACSn: n = 0 or 1), an analog value is output to the ANOn (n = 0 or 1) pin. The output voltage range is determined by the voltage applied across the AVREF2 and AVREF3 pins.

Because the output impedance is high, no current can be extracted from the output. If the impedance of the load is low, insert a buffer amplifier between the load and output pin.

The ANOn pin goes into a high-impedance state while the $\overline{\text{RESET}}$ signal is low. After releasing reset, DACSn is cleared to 0.

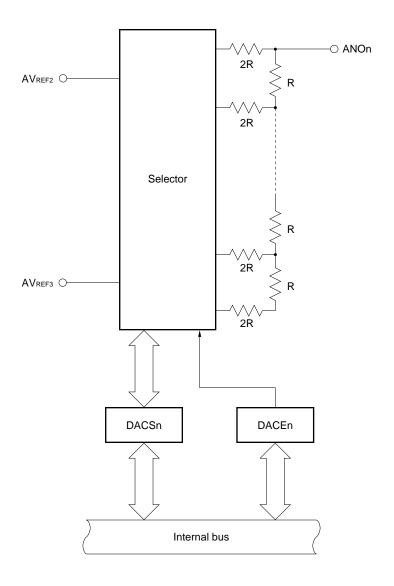
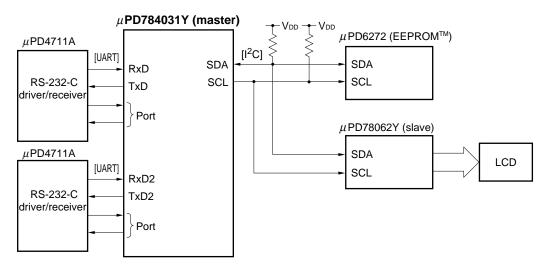


Figure 7-8. Block Diagram of D/A Converter

Remark n = 0 or 1

7.8 Serial Interface


Three independent serial interface channels are provided.

- Asynchronous serial interface (UART)/3-wire serial I/O (IOE) x 2
- Clocked serial interface (CSI) x 1
 - 3-wire serial I/O (IOE)
 - 2-wire serial I/O (IOE)
 - I²C bus interface (I²C)

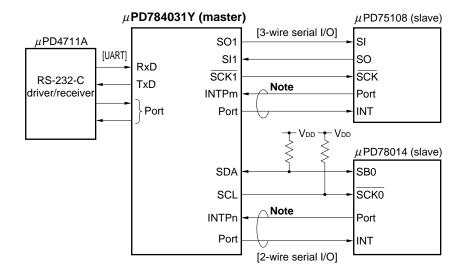

Therefore, communication with an external system and local communication within the system can be simultaneously executed (refer to **Figure 7-9**).

Figure 7-9. Example of Serial Interface

(a) $UART + I^2C$

(b) UART + 3-wire serial I/O + 2-wire serial I/O

Note Handshake line

7.8.1 Asynchronous serial interface/3-wire serial I/O (UART/IOE)

Two channels of serial interfaces that can select an asynchronous serial interface mode and 3-wire serial I/O mode are provided.

(1) Asynchronous serial interface mode

In this mode, data of 1 byte following the start bit is transferred or received.

Because an on-chip baud rate generator is provided, a wide range of baud rates can be set.

Moreover, the clock input to the ASCK pin can be divided to define a baud rate.

When the baud rate generator is used, a baud rate conforming to the MIDI standard (31.25 kbps) can be also obtained.

Internal bus Receive buffer RXB, RXB2 Receive shift Transmit shift TXS, TXS2 RxD, RxD2 C register register TxD, TxD2 🔾 INTSR, INTSR2 Transmit control Receive control ► INTST, INTST2 parity append INTSER, parity check INTSER2 Baud rate generator 1/2m Selector fxx/2 $1/2^{n+1}$ ASCK, ASCK2 1/2m

Figure 7-10. Block Diagram in Asynchronous Serial Interface Mode

Remark fxx: oscillation frequency or external clock input

n = 0 through 11 m = 16 through 30

(2) 3-wire serial I/O mode

In this mode, the master device starts transfer by making the serial clock active and transfers 1-byte data in synchronization with this clock.

This mode is used to communicate with a device having the conventional clocked serial interface. Basically, communication is established by using three lines: one serial clock (\overline{SCK}) and two serial data (SI and SO) lines. Generally, to check the communication status, a handshake line is necessary.

Internal bus Direction control circuit SIO1, SIO2 SI1, SI2 Shift register Output latch SO1, SO2 (Interrupt signal INTCSI1, SCK1, SCK2 Serial clock counter generation circuit INTCSI2 1/2^{n + 1} 1/m fxx/2 Selector Serial clock control circuit

Figure 7-11. Block Diagram in 3-wire Serial I/O Mode

Remark fxx: oscillation frequency or external clock input

n = 0 through 11

m = 1 or 16 through 30

7.8.2 Clocked serial interface (CSI)

In this mode, the master device starts transfer by making the serial clock active and communicates 1-byte data in synchronization with this clock.

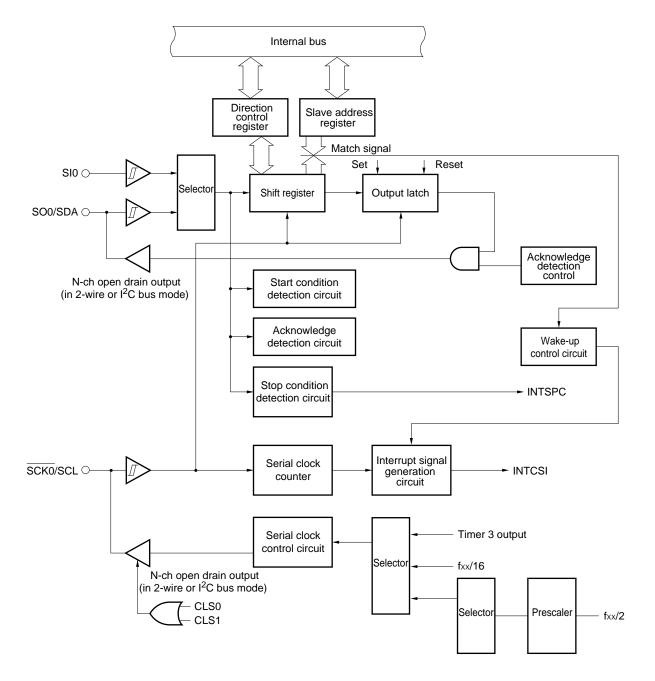


Figure 7-12. Block Diagram of Clocked Serial Interface

Remark fxx: oscillation frequency or external clock input

(1) 3-wire serial I/O mode

This mode is to communicate with devices having the conventional clocked serial interface.

Basically, communication is established in this mode with three lines: one serial clock (SCK0) and two serial data (SI0 and SO0) lines.

Generally, a handshake line is necessary to check the communication status.

(2) 2-wire serial I/O mode

This mode is to transfer 8-bit data by using two lines: serial clock (SCL) and serial data bus (SDA). Generally, a handshake line is necessary to check the communication status.

(3) I²C (Inter IC) bus mode

This mode is to communicate with devices conforming to the I²C bus format.

This mode is to transfer 8-bit data with two or more devices by using two lines: serial clock (SCL) and serial data bus (SDA).

During transfer, a "start condition", "data", and "stop condition" can be output onto the serial data bus. During reception, these data can be automatically detected by hardware.

7.9 Edge Detection Function

The interrupt input pins (NMI and INTP0 through INTP5) are used not only to input interrupt requests but also to input trigger signals to the internal hardware units. Because these pins operate at an edge of the input signal, they have a function to detect an edge. Moreover, a noise reduction circuit is also provided to prevent erroneous detection due to noise.

Pin Name	Detectable Edge	Noise Reduction
NMI	Either of rising or falling edge	By analog delay
INTP0 to INTP3	Either or both of rising and falling edges	By clock sampling Note
INTP4, INTP5		By analog delay

Note INTP0 can select a sampling clock.

7.10 Watchdog Timer

A watchdog timer is provided to detect a hang up of the CPU. This watchdog timer generates a non-maskable interrupt unless it is cleared by software within a specified interval time. Once enabled to operate, the watchdog timer cannot be stopped by software. Whether the interrupt by the watchdog timer or the interrupt input from the NMI pin takes precedence can be specified.

fclk/2²¹
fclk/2²⁰
fclk/2¹⁹
fclk/2¹⁷
Clear signal

Figure 7-13. Block Diagram of Watchdog Timer

8. INTERRUPT FUNCTION

As the servicing in response to an interrupt request, the three types shown in Table 8-1 can be selected by program.

Table 8-1. Servicing of Interrupt Request

Servicing Mode	Entity of Servicing	Servicing	Contents of PC and PSW
Vector interrupt	Software	Branches and executes servicing routine (servicing is arbitrary).	Saves to and restores from stack.
Context switching		Automatically switches register bank, branches and executes servicing routine (servicing is arbitrary).	Saves to or restores from fixed area in register bank.
Macro service	Firmware	Executes data transfer between memory and I/O (servicing is fixed).	Retained

8.1 Interrupt Sources

Table 8-2 shows the interrupt sources available. As shown, interrupts are generated by 24 types of sources, execution of the BRK instruction or BRKCS instruction, or an operand error.

The priority of interrupt servicing can be set to four levels, so that nesting can be controlled during interrupt servicing and that which of the two or more interrupts that simultaneously occur should be serviced first. When the macro service function is used, however, nesting always proceeds.

The default priority is the priority (fixed) of the service that is performed if two or more interrupt requests, having the same request, simultaneously generate (refer to **Table 8-2**).

Table 8-2. Interrupt Sources

Type	Default		Source	Internal/	Macro Service
	Priority	Name	Trigger	External	
Software	_	BRK instruction BRKCS instruction	Instruction execution	_	_
		Operand error	If result of exclusive OR between byte of operand and byte is not FFH when MOV STBC, #byte, MOV WDM, #byte, or LOCATION instruction is executed		
Non-maskable	-	NMI	Detection of pin input edge	External	_
		WDT	Overflow of watchdog timer	Internal	
Maskable	0 (highest)	INTP0	Detection of pin input edge (TM1/TM1W capture trigger, TM1/TM1W event counter input)	External	V
	1	INTP1	Detection of pin input edge (TM2/TM2W capture trigger, TM2/TM2W event counter input)		
	2	INTP2	Detection of pin input edge (TM2/TM2W capture trigger, TM2/TM2W event counter input)		
	3	INTP3	Detection of pin input edge (TM0 capture trigger, TM0 event counter input)		
	4	INTC00	Generation of TM0-CR00 match signal	Internal	√
	5	INTC01	Generation of TM0-CR01 match signal		
	6	INTC10	Generation of TM1-CR10 match signal (in 8-bit operation mode) Generation of TM1W-CR10W match signal (in 16-bit operation mode)		
	7	INTC11	Generation of TM1-CR11 match signal (in 8-bit operation mode) Generation of TM1W-CR11W match signal (in 16-bit operation mode)		
	8	INTC20	Generation of TM2-CR20 match signal (in 8-bit operation mode) Generation of TM2W-CR20W match signal (in 16-bit operation mode)		
	9	INTC21	Generation of TM2-CR21 match signal (in 8-bit operation mode) Generation of TM2W-CR21W match signal (in 16-bit operation mode)		
	10	INTC30	Generation of TM3-CR30 match signal (in 8-bit operation mode) Generation of TM3W-CR30W match signal (in 16-bit operation mode)		
	11	INTP4	Detection of pin input edge	External	√
	12	INTP5	Detection of pin input edge		
	13	INTAD	End of A/D conversion (transfer of ADCR)	Internal	√
	14	INTSER	Occurrence of ASI0 reception error		_
	15	INTSR	End of ASI0 reception or CSI1 transfer		√
		INTCSI1			
	16	INTST	End of ASI0 transfer		
	17	INTCSI	End of CSI1 transfer		
	18	INTSER2	Occurrence of ASI2 reception error		_
	19	INTSR2	End of ASI2 reception or CSI2 transfer		√
		INTCSI2			
	20	INTST2	End of ASI2 transfer		
	21 (lowest)	INTSPC	I ² C bus stop condition interrupt		

Remark ASI: asynchronous serial interface

CSI: clocked serial interface

8.2 Vectored Interrupt

Execution branches to a servicing routing by using the memory contents of a vector table address corresponding to the interrupt source as the address of the branch destination.

So that the CPU performs interrupt servicing, the following operations are performed:

• On branching : Saves the status of the CPU (contents of PC and PSW) to stack

• On returning : Restores the status of the CPU (contents of PC and PSW) from stack

To return to the main routine from an interrupt service routine, the RETI instruction is used. The branch destination address is in a range of 0 to FFFFH.

Table 8-3. Vector Table Address

Interrupt Source	Vector Table Address
BRK instruction	003EH
Operand error	003CH
NMI	0002H
WDT	0004H
INTP0	0006H
INTP1	0008H
INTP2	000AH
INTP3	000CH
INTC00	000EH
INTC01	0010H
INTC10	0012H
INTC11	0014H
INTC20	0016H
INTC21	0018H
INTC30	001AH
INTP4	001CH
INTP5	001EH
INTAD	0020H
INTSER	0022H
INTSR	0024H
INTCSI1	
INTST	0026H
INTCSI	0028H
INTSER2	002AH
INTSR2	002CH
INTCSI2	
INTST2	002EH
INTSPC	0030H

8.3 Context Switching

When an interrupt request is generated or when the BRKCS instruction is executed, a predetermined register bank is selected by hardware. Context switching is a function that branches execution to a vector address stored in advance in the register bank, and to stack the current contents of the program counter (PC) and program status word (PSW) to the register bank.

The branch address is in a range of 0 to FFFFH.

Register bank n 0000B (0 to 7)<7> Transfer Register bank n (n = 0 to 7) PC19 to 16 PC15 to 0 Α Χ В С <6> Exchange R5 R4 <2> Save (bits 8 through 11 R7 R6 of temporary register) <5> Save ٧ VΡ UP U <3> Switching of register bank Temporary register (RBS0 to RBS2 \leftarrow n) Т D Е <4> / RSS ← 0 \ W Н L <1> Save \IE **PSW**

Figure 8-1. Context Switching Operation when Interrupt Request is Generated

8.4 Macro Service

This function is to transfer data between memory and a special function register (SFR) without intervention by the CPU. A macro service controller accesses the memory and SFR in the same transfer cycle and directly transfers data without loading it.

Because this function does not save or restore the status of the CPU, or load data, data can be transferred at high speeds.

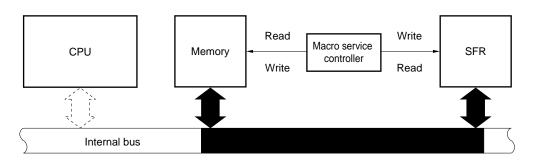
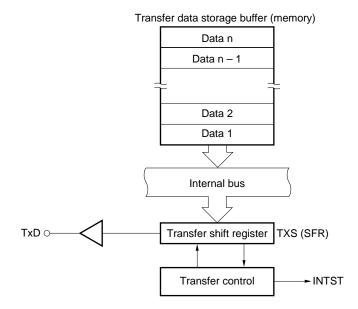
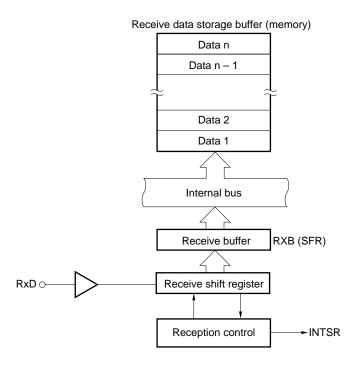



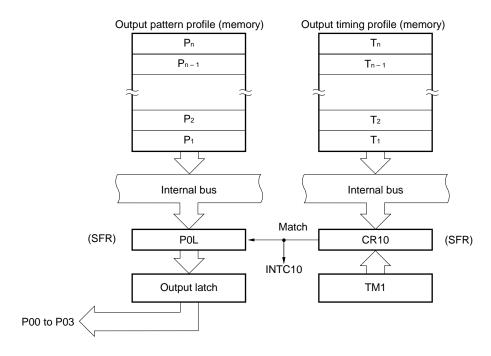
Figure 8-2. Macro Service


8.5 Application Example of Macro Service

(1) Transfer of serial interface

Each time macro service request INTST is generated, the next transfer data is transferred from memory to TXS. When data n (last byte) has been transferred to TXS (when the transfer data storage buffer has become empty), vectored interrupt request INTST is generated.

(2) Reception of serial interface



Each time macro service request INTSR is generated, the receive data is transferred from RXB to memory. When data n (last byte) has been transferred to memory (when the receive data storage buffer has become full), vectored interrupt request INTSR is generated.

(3) Real-time output port

INTC10 and INTC11 serve as the output triggers of the real-time output port. The macro services for these can set the following output pattern and intervals simultaneously. Therefore, INTC10 and INTC11 can control two stepping motors independently of each other. They can also be used for PWM output or to control DC motors.

Each time macro service request INTC10 is generated, the pattern and timing are transferred to the buffer register (P0L) and compare register (CR10), respectively. When the contents of the timer register 1 (TM1) coincide with those of CR10, INTC10 is generated again, and the contents of P0L are transferred to the output latch. When Tn (last byte) has transferred to CR10, vectored interrupt request INTC10 is generated.

The same applies to INTC11.

9. LOCAL BUS INTERFACE

The local bus interface can connect an external memory or I/O (memory mapped I/O) and support a memory space of 1 Mbytes (refer to **Figure 9-1**).

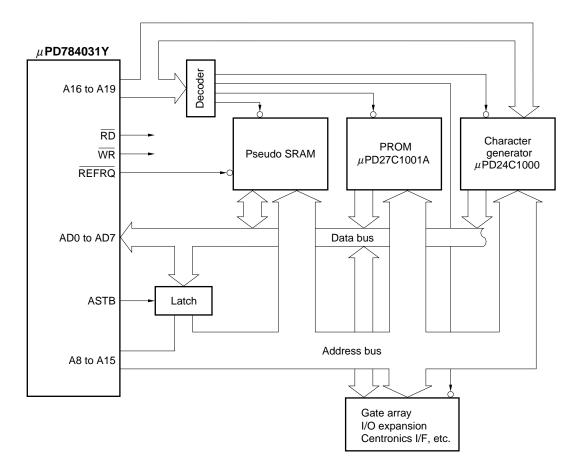
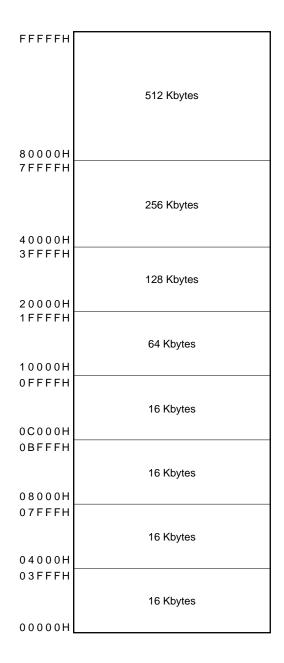


Figure 9-1. Example of Local Bus Interface

9.1 Memory Expansion


The memory capacity can be expanded in seven steps, from 256 bytes to 1 Mbytes, by connecting an external program memory and data memory.

9.2 Memory Space

The 1-Mbyte memory space is divided into eight spaces of logical addresses. Each space can be controlled by using the programmable wait function and pseudo static RAM refresh function.

Figure 9-2. Memory Space

9.3 Programmable Wait

The memory space can be divided into eight spaces and wait states can be independently inserted in each of these spaces while the \overline{RD} and \overline{WR} signals are active. Even when a memory with a different access time is connected, therefore, the efficiency of the entire system does not drop.

In addition, an address wait function that extends the active period of the ASTB signal is also provided so as to have a sufficient address decode time (this function can be set to the entire space).

9.4 Pseudo Static RAM Refresh Function

The following refresh operations can be performed:

• Pulse refresh : A bus cycle that outputs a refresh pulse to the REFRQ pin at a fixed cycle is inserted. The

 $\frac{\text{memory}}{\text{REFRQ}} \text{ pin while a specified memory space is accessed. Therefore, the normal memory}$

access is not kept to wait by the refresh cycle.

• Power-down self-refresh: The low level is output to the REFRQ pin in the standby mode to retain the contents of the

pseudo static RAM.

9.5 Bus Hold Function

A bus hold function is provided to facilitate connection of a DMA controller. When a bus hold request signal (HLDRQ) is received from an external bus master, the address bus, address/data bus, and ASTB, $\overline{\text{RD}}$, and $\overline{\text{WR}}$ pins go into a high-impedance state when the current bus cycle has been completed. This makes the bus hold acknowledge (HLDAK) signal active, and releases the bus to the external bus master.

Note that, while the bus hold function is used, the external wait function and pseudo static RAM refresh function cannot be used.

10. STANDBY FUNCTION

This function is to reduce the power dissipation of the chip, and can be used in the following modes:

- HALT mode: Stops supply of the operating clock to the CPU. This mode is used in combination with the normal operation mode for intermittent operation to reduce the average power dissipation.
- IDLE mode : Stops the entire system with the oscillation circuit continuing operation. The power dissipation in this mode is close to that in the STOP mode. However, the time required to restore the normal program operation from this mode is almost the same as that from the HALT mode.
- STOP mode: Stops the oscillator and thereby to stop all the internal operations of the chip. Consequently, the power dissipation is minimized with only leakage current flowing.

These modes are programmable.

The macro service can be started from the HALT mode.

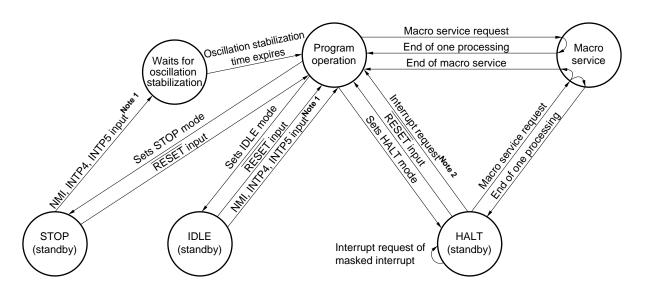


Figure 10-1. Transition of Standby Status

Notes 1. When INTP4 and INTP5 are not masked

2. Only interrupt requests that are not masked

Remark Only the externally input NMI is valid. The watchdog timer cannot be used to release the standby mode (STOP/IDLE mode).

11. RESET FUNCTION

When the low level is input to the $\overline{\text{RESET}}$ pin, the internal hardware is initialized (reset status). When the $\overline{\text{RESET}}$ pin goes high, the following data are set to the program counter (PC).

Lower 8 bits of PC: contents of address 0000H
 Middle 8 bits of PC: contents of address 0001H

• Higher 4 bits of PC: 0

Program execution is started from a branch destination address which is the contents of the PC. Therefore, the system can be reset and started from any address.

Set the contents of each register by program as necessary.

The RESET input circuit has a noise reduction circuit to prevent malfunctioning due to noise. This noise reduction circuit is a sampling circuit by analog delay.

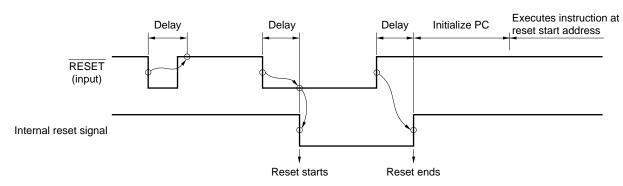


Figure 11-1. Accepting Reset Signal

Assert the RESET signal active until the oscillation stabilization time (approx. 40 ms) elapses to execute a power-ON reset operation.

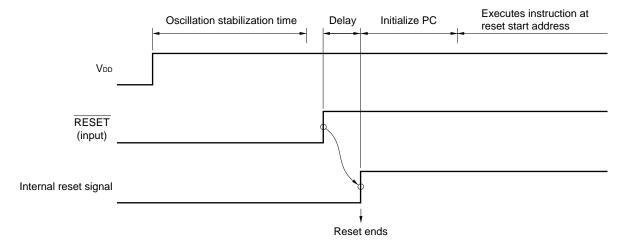


Figure 11-2. Power-ON Reset Operation

12. INSTRUCTION SET

(1) 8-bit instructions (The instructions in parentheses are combinations realized by describing A as r) MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, SHR, SHL, ROR4, DBNZ, PUSH, POP, MOVM, XCHM, CMPME, CMPMNE, CMPMNC, CMPMC, MOVBK, XCHBK, CMPBKE, CMPBKNE, CMPBKNC, CMPBKC, CHIKL, CHKLA

Table 12-1. Instruction List by 8-bit Addressing

Second Operand First Operand	#byte	А	r r'	saddr saddr'	sfr	!addr16 !!addr24	mem [saddrp] [%saddrg]	r3 PSWL PSWH	[WHL+]	n	None ^{Note 2}
A	(MOV) ADD ^{Note} 1	(MOV) (XCH) (ADD)Note 1	MOV XCH (ADD) ^{Note 1}	(MOV)Note 6 (XCH)Note 6 (ADD)Note 1,6	MOV (XCH) (ADD) ^{Note 1}	(MOV) (XCH) ADD ^{Note 1}	MOV XCH ADD ^{Note 1}	MOV	(MOV) (XCH) (ADD) ^{Note 1}		
r	MOV ADD ^{Note} 1	(MOV) (XCH) (ADD) ^{Note 1}	MOV XCH ADD ^{Note} 1	MOV XCH ADD ^{Note} 1	MOV XCH ADD ^{Note} 1	MOV XCH				RORNote 3	MULU DIVUW INC DEC
saddr		(MOV)Note 6		MOV XCH ADD ^{Note 1}							INC DEC DBNZ
sfr	MOV ADD ^{Note} 1	MOV (ADD) ^{Note 1}	MOV ADDNote 1								PUSH POP CHKL CHKLA
!addr16 !!addr24	MOV	(MOV) ADDNote 1	MOV								
mem [saddrp] [%saddrg]		MOV ADD ^{Note 1}									
mem3											ROR4 ROL4
r3 PSWL PSWH	MOV	MOV									
B, C											DBNZ
STBC, WDM	MOV										
[TDE+] [TDE-]		(MOV) (ADD)Note 1 MOVMNote 4							MOVBK ^{Note 5}		

- Notes 1. The operands of ADDC, SUB, SUBC, AND, OR, XOR, and CMP are the same as that of ADD.
 - 2. Either the second operand is not used, or the second operand is not an operand address.
 - 3. The operands of ROL, RORC, ROLC, SHR, and SHL are the same as that of ROR.
 - 4. The operands of XCHM, CMPME, CMPMNE, CMPMNC, and CMPMC are the same as that of MOVM.
 - 5. The operands of XCHBK, CMPBKE, CMPBKNE, CMPBKNC, and CMPBKC are the same as that of MOVBK.
 - 6. The code length of some instructions having saddr2 as saddr in this combination is short.

(2) 16-bit instructions (The instructions in parentheses are combinations realized by describing AX as rp)
MOVW, XCHW, ADDW, SUBW, CMPW, MULUW, MULW, DIVUX, INCW, DECW, SHRW, SHLW, PUSH, POP,
ADDWG, SUBWG, PUSHU, POPU, MOVTBLW, MACW, MACSW, SACW

Table 12-2. Instruction List by 16-bit Addressing

Second Operand	#word	AX	rp	saddrp	sfrp	!addr16	mem	[WHL+]	byte	n	None ^{Note 2}
			rp'	saddrp'		!!addr24	[saddrp]				
First Operand							[%saddrg]				
AX	(MOVW)	(MOVW)	(MOVW)	(MOVW)Note 3	MOVW	(MOVW)	MOVW	(MOVW)			
	ADDWNote 1	(XCHW)	(XCHW)	(XCHW)Note 3	(XCHW)	XCHW	XCHW	(XCHW)			
		(ADD)Note 1	(ADDW)Note 1	(ADDW)Note 1,3	(ADDW)Note 1						
rp	MOVW	(MOVW)	MOVW	MOVW	MOVW	MOVW				SHRW	MULWNote 4
	ADDW ^{Note 1}	(XCHW)	XCHW	XCHW	XCHW					SHLW	INCW
		(ADDW)Note 1	ADDWNote 1	ADDWNote 1	ADDWNote 1						DECW
saddrp	MOVW	(MOVW)Note 3	MOVW	MOVW							INCW
	ADDWNote 1	(ADDW)Note 1	ADDWNote 1	XCHW							DECW
				ADDW ^{Note 1}							
sfrp	MOVW	MOVW	MOVW								PUSH
	ADDW ^{Note 1}	(ADDW)Note 1	ADDWNote 1								POP
!addr16	MOVW	(MOVW)	MOVW						MOVTBLW		
!!addr24											
mem		MOVW									
[saddrp]											
[%saddrg]											
PSW											PUSH
											POP
SP	ADDWG										
	SUBWG										
post											PUSH
											POP
											PUSHU
											POPU
[TDE+]		(MOVW)						SACW			
byte											MACW
											MACSW

Notes 1. The operands of SUBW and CMPW are the same as that of ADDW.

- 2. Either the second operand is not used, or the second operand is not an operand address.
- 3. The code length of some instructions having saddrp2 as saddrp in this combination is short.
- 4. The operands of MULUW and DIVUX are the same as that of MULW.

(3) 24-bit instructions (The instructions in parentheses are combinations realized by describing WHL as rg) MOVG, ADDG, SUBG, INCG, DECG, PUSH, POP

Table 12-3. Instruction List by 24-bit Addressing

Second Operand	#imm24	WHL	rg	saddrg	!!addr24	mem1	[%saddrg]	SP	None ^{Note}
			rg'						
First Operand									
WHL	(MOVG)	(MOVG)	(MOVG)	(MOVG)	(MOVG)	MOVG	MOVG	MOVG	
	(ADDG)	(ADDG)	(ADDG)	ADDG					
	(SUBG)	(SUBG)	(SUBG)	SUBG					
rg	MOVG	(MOVG)	MOVG	MOVG	MOVG				INCG
	ADDG	(ADDG)	ADDG						DECG
	SUBG	(SUBG)	SUBG						PUSH
									POP
saddrg		(MOVG)	MOVG						
!!addr24		(MOVG)	MOVG						
mem1		MOVG							
[%saddrg]		MOVG							
SP	MOVG	MOVG							INCG
									DECG

Note Either the second operand is not used, or the second operand is not an operand address.

(4) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR, BFSET

Table 12-4. Bit Manipulation Instructions

Second Operand	CY	saddr.bit sfr.bit	/saddr.bit /sfr. bit	None ^{Note}
		A.bit X.bit	/A.bit /X.bit	
		PSWL.bit PSWH.bit	/PSWL.bit /PSWH.bit	
		mem2.bit	/mem2.bit	
First Operand		!addr16.bit !!addr24.bit	/!addr16.bit /!!addr24.bit	
CY		MOV1	AND1	NOT1
		AND1	OR1	SET1
		OR1		CLR1
		XOR1		
saddr.bit	MOV1			NOT1
sfr.bit				SET1
A.bit				CLR1
X.bit				BF
PSWL.bit				вт
PSWH.bit				BTCLR
mem2.bit				BFSET
!addr16.bit				
!!addr24.bit				

Note Either the second operand is not used, or the second operand is not an operand address.

(5) Call and return/branch instructions

CALL, CALLF, CALLT, BRK, RET, RETI, RETB, RETCS, RETCSB, BRKCS, BR, BNZ, BNE, BZ, BE, BNC, BNL, BC, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, BH, BF, BT, BTCLR, BFSET, DBNZ

Table 12-5. Call and Return/Branch Instructions

Operand of Instruction	\$addr20	\$!addr20	!addr16	!!addr20	rp	rg	[rp]	[rg]	!addr11	[addr5]	RBn	None
Address												
Basic instruction	BC ^{Note}	CALL	CALL	CALL	CALL	CALL	CALL	CALL	CALLF	CALLF	BRKCS	BRK
	BR	BR	BR	BR	BR	BR	BR	BR				RET
			RETCS									RETI
			RETCSB									RETB
Compound instruction	BF											
	вт											
	BTCLR											
	BFSET											
	DBNZ											

Note The operands of BNZ, BNE, BZ, BE, BNC, BNL, BL, BNV, BPO, BV, BPE, BP, BN, BLT, BGE, BLE, BGT, BNH, and BH are the same as BC.

(6) Other instructions

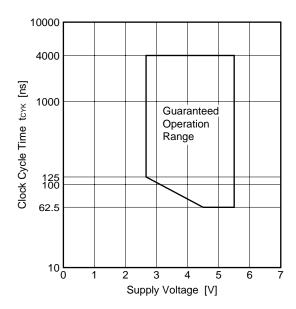
ADJBA, ADJBS, CVTBW, LOCATION, SEL, NOT, EI, DI, SWRS

★ 13. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +7.0	V
	AV _{DD}		AVss to V _{DD} + 0.5	V
	AVss		-0.5 to +0.5	V
Input voltage	Vı		-0.5 to V _{DD} + 0.5	V
Output voltage	Vo		-0.5 to V _{DD} + 0.5	V
Output current low-level	loL	1 pin	15	mA
		Total of output pins	100	mA
Output current high-level	Іон	1 pin	-10	mA
		Total of output pins	-100	mA
Reference input voltage to A/D converter	AV _{REF1}		-0.5 to V _{DD} + 0.3	V
Reference input voltage	AV _{REF2}		-0.5 to V _{DD} + 0.3	V
to D/A converter	AV _{REF3}		-0.5 to V _{DD} + 0.3	V
Operating ambient temperature	Та		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

Caution The product quality may be damaged even if a value of only one of the above parameters exceeds the absolute maximum rating or any value exceeds the absolute maximum rating for an instant. That is, the absolute maximum rating is a rating value which may cause a product to be damaged physically. The absolute maximum rating values must therefore be observed in using the product.



Operating Condition

• Operating ambient temperature (T_A) : -40 to +85°C • Rise, fall time (t_r, t_f) (unspecified pins) : 0 to 200 μ s

• Supply voltage and clock cycle time : refer to Figure 13-1

Figure 13-1. Supply Voltage and Clock Cycle Time

Capacitance ($T_A = 25^{\circ}C$, $V_{DD} = V_{SS} = 0 V$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cı	f = 1 MHz			10	pF
Output capacitance	Со	Unmeasured pins returned to			10	pF
I/O capacitance	Сю	0 V.			10	pF

Oscillator Characteristics (TA = -40 to +85°C, VDD = +4.5 to 5.5 V, Vss = 0 V)

Resonator	Recommended Circuit	Parameter	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	V _{SS1} X1 X2 C1 — C2	Oscillation frequency (fxx)	4	32	MHz
External clock	V4 V0	X1 input frequency (fx)	4	32	MHz
	X1 X2	X1 input rise, fall time (txR, txF)	0	10	ns
	HCMOS inverter	X1 input high-/low-level width (twxн, twxь)	10	125	ns

Caution When using the clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss1. Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

Oscillator Characteristics (TA = -40 to +85°C, VDD = +2.7 to 5.5 V, Vss = 0 V)

Resonator	Recommended Circuit	Parameter	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator	Vss1 X1 X2 C1 — C2	Oscillation frequency (fxx)	4	16	MHz
External clock	X1 X2	X1 input frequency (fx) X1 input rise, fall time (txR, txF)	0	16	MHz
	HCMOS inverter	X1 input high-/low-level width (twxн, twxL)	10	125	ns

Caution When using the clock oscillator, wiring in the area enclosed with the dotted line should be carried out as follows to avoid an adverse effect from wiring capacitance.

- Wiring should be as short as possible.
- Wiring should not cross other signal lines.
- Wiring should not be placed close to a varying high current.
- The potential of the oscillator capacitor ground should be the same as Vss1. Do not ground it to the ground pattern in which a high current flows.
- Do not fetch a signal from the oscillator.

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = +2.7 to 5.5 V, Vss = AVss = 0 V) (1/2)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input voltage low-level	V _{IL1}	Except for pins shown in Notes 1, 2, 3, 4, 6	-0.3		0.3V _{DD}	V
	V _{IL2}	Pins shown in Notes 1, 2, 3, 4, 6	-0.3		0.2V _{DD}	V
	VIL3	$V_{DD} = +5.0 \text{ V} \pm 10 \%$ Pins shown in Notes 2, 3, 4	-0.3		+0.8	V
Input voltage high-level	V _{IH1}	Except for pins shown in Notes 1, 6	0.7V _{DD}		V _{DD} + 0.3	V
	V _{IH2}	Pins shown in Notes 1, 6	0.8V _{DD}		V _{DD} + 0.3	V
	VIH3	$V_{DD} = +5.0 \text{ V} \pm 10 \%$ Pins shown in Notes 2, 3, 4	2.2		V _{DD} + 0.3	V
Output voltage low-level	V _{OL1}	IoL = 2 mA Except for pins shown in Note 6			0.4	V
	V _{OL2}	IoL = 3 mA Pins shown in Note 6			0.4	V
		IoL = 6 mA Pins shown in Note 6			0.6	V
	Vol3	V_{DD} = +5.0 V ± 10 % I_{DL} = 8 mA Pins shown in Notes 2, 5			1.0	V
Output voltage high-level	V _{OH1}	lон = −2 mA	V _{DD} - 1.0			V
	Voн2	V_{DD} = +5.0 V ± 10 % I_{OH} = -5 mA Pins shown in Note 4	VDD - 1.4			V
X1 input current low-level	lıL	$EXTC = 0$ $0 \ V \le V_1 \le V_{1L2}$			-30	μΑ
X1 input current high-level	Іін	$\begin{aligned} &EXTC = 0 \\ &V_{IH2} \leq V_{I} \leq V_{DD} \end{aligned}$			+30	μΑ

Notes 1. X1, X2, RESET, P12/ASCK2/SCK2, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK/SCK1, P26/INTP5, P27/SI0, TEST

- **2.** AD0 to AD7, A8 to A15
- 3. P60/A16 to P63/A19, \overline{RD} , \overline{WR} , P66/ \overline{WAIT} /HLDRQ, P67/ \overline{REFRQ} /HLDAK
- **4.** P00 to P07
- **5.** P10 to P17
- **6.** P32/SCK0/SCL, P33/SO0/SDA

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = +2.7 to 5.5 V, Vss = AVss = 0 V) (2/2)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
Input leakage current	lu	$0 \text{ V} \le V_1 \le V_{DD}$ Except for X1 pin when EXTC = 0				±10	μΑ
Output leakage current	ILO	$0 \text{ V} \leq \text{Vo} \leq \text{Vdd}$				±10	μΑ
V _{DD} supply current	I _{DD1}	Operating mode			25	45	mA
			fxx = 16 MHz V _{DD} = +2.7 to 3.3 V		12	25	mA
	I _{DD2}	HALT mode	fxx = 32 MHz $V_{DD} = +5.0 \text{ V} \pm 10 \%$		13	26	mA
			fxx = 16 MHz V _{DD} = +2.7 to 3.3 V		8	12	mA
	Іррз	IDLE mode (EXTC = 0)	fxx = 32 MHz V _{DD} = +5.0 V ± 10 %			12	mA
			fxx = 16 MHz V _{DD} = +2.7 to 3.3 V			8	mA
Pull-up resistor	RL	Vı = 0 V		15		80	kΩ

AC Characteristics (TA = -40 to +85°C, VDD = AVDD = +2.7 to 5.5 V, Vss = AVss = 0 V)

(1) Read/write operation (1/2)

Parameter	Symbol	Test	Conditions	MIN.	MAX.	Unit
Address setup time	t sast	V _{DD} = +5.0 V ± ′	10 %	(0.5 + a) T – 15		ns
				(0.5 + a) T – 31		ns
ASTB high-level width	t wsTH	V _{DD} = +5.0 V ± ′	10 %	(0.5 + a) T – 17		ns
				(0.5 + a) T – 40		ns
Address hold time (from ASTB↓)	t HSTLA	V _{DD} = +5.0 V ±	10 %	0.5T - 24		ns
				0.5T - 34		ns
Address hold time (from RD↑)	t hra			0.5T – 14		ns
Address $\rightarrow \overline{RD} \downarrow$ delay time	t dar	V _{DD} = +5.0 V ± ′	10 %	(1 + a) T – 9		ns
				(1 + a) T – 15		ns
Address float time (from RD↓)	t fra				0	ns
Address → data input time	t DAID	V _{DD} = +5.0 V ±	10 %		(2.5 + a + n) T – 37	ns
					(2.5 + a + n) T – 52	ns
ASTB↓ → data input time	t DSTID	V _{DD} = +5.0 V ±	10 %		(2 + n) T – 40	ns
					(2 + n) T – 60	ns
$\overline{RD} \downarrow \to data$ input time	torid	V _{DD} = +5.0 V ± ′	10 %		(1.5 + n) T – 50	ns
					(1.5 + n) T – 70	ns
$ASTB\!\!\downarrow \to \overline{RD}\!\!\downarrow delay\ time$	t dstr			0.5T – 9		ns
Data hold time (from RD↑)	thrid			0		ns
$\overline{RD}\!\!\uparrow \to address\ active\ time$	t dra	After program	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	0.5T – 8		ns
		read		0.5T - 12		ns
		After data	V _{DD} = +5.0 V ± 10 %	1.5T – 8		ns
		read		1.5T – 12		ns
$\overline{RD}\!\!\uparrow \to ASTB\!\!\uparrow delay time$	t DRST			0.5T – 17		ns
RD low-level width	twrl	V _{DD} = +5.0 V ±	10 %	(1.5 + n) T – 30		ns
				(1.5 + n) T – 40		ns
Address hold time (from WR↑)	thwa			0.5T – 14		ns
	tdaw	V _{DD} = +5.0 V ± ′	10 %	(1 + a) T – 5		ns
				(1 + a) T – 15		ns
$ASTB\!\!\downarrow \to data$ output delay time	tostod	V _{DD} = +5.0 V ± ′	10 %		0.5T + 19	ns
					0.5T + 35	ns
$\overline{ m WR}\!\downarrow ightarrow$ data output delay time	towod				0.5T – 11	ns
$ASTB\!\!\downarrow \to \overline{WR}\!\!\downarrow outputdelaytime$	t DSTW			0.5T - 9		ns

Remark T: TCYK (system clock cycle time)

a: 1 in address wait, 0 in the other conditions

 \boldsymbol{n} : the number of wait (n $\geq 0)$

(1) Read/write operation (2/2)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
Data setup time (to WR↑)	tsodw	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	(1.5 + n) T – 30		ns
			(1.5 + n) T – 40		ns
Data hold time (from WR↑)Note	thwod	V _{DD} = +5.0 V ± 10 %	0.5T - 5		ns
			0.5T - 25		ns
$\overline{\mathrm{WR}}\!\!\uparrow \to \mathrm{ASTB}\!\!\uparrow \mathrm{delay}$ time	towst		0.5T – 12		ns
WR low-level width	twwL	V _{DD} = +5.0 V ± 10 %	(1.5 + n) T – 30		ns
			(1.5 + n) T – 40		ns

Note The data hold time includes the time to hold V_{OH1} and V_{OL1} in the load condition of $C_L = 50$ pF, $R_L = 4.7$ k Ω .

Remark T: Tcyk (system clock cycle time)

n: the number of wait ($n \ge 0$)

(2) Bus hold timing

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
$HLDRQ \!\! \uparrow \! \to float \; delay \; time$	t FHQC			(6 + a + n) T + 50	ns
$HLDRQ \! \uparrow \to HLDAK \! \uparrow$	t dhqhhah	V _{DD} = +5.0 V ± 10 %		(7 + a + n) T + 30	ns
delay time				(7 + a + n) T + 40	ns
Float → HLDAK↑ delay time	t DCFHA			1T + 30	ns
$HLDRQ\!\!\downarrow \to HLDAK\!\!\downarrow$	t dhqlhal	V _{DD} = +5.0 V ± 10 %		2T + 40	ns
delay time				2T + 60	ns
$HLDAK\!\!\downarrow \to active \; delay \; time$	t dhac	V _{DD} = +5.0 V ± 10 %	1T – 20		ns
			1T – 30		ns

Remark T: TCYK (system clock cycle time)

a: 1 in address wait, 0 in the other conditions

n: the number of wait ($n \ge 0$)

(3) External wait timing

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
$Address \to \overline{WAIT} \!\!\downarrow input\ time$	t DAWT	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		(2 + a) T – 40	ns
				(2 + a) T – 60	ns
$ASTB\!\!\downarrow \to \overline{WAIT}\!\!\downarrow input\ time$	tostwt	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		1.5T – 40	ns
				1.5T – 60	ns
$ASTB\!\!\downarrow \to \overline{WAIT} \ hold \ time$	thstwth	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	(0.5 + n) T + 5		ns
			(0.5 + n) T + 10		ns
$ASTB\!\!\downarrow \to \overline{WAIT}\!\!\uparrow delay time$	t DSTWTH	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		(1.5 + n) T – 40	ns
				(1.5 + n) T – 60	ns
$\overline{RD} \!\downarrow \to \overline{WAIT} \!\downarrow input\ time$	t DRWTL	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		T – 50	ns
				T – 70	ns
$\overline{RD} \downarrow \to \overline{WAIT} \downarrow hold time$	t HRWT	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	nT + 5		ns
			nT + 10		ns
$\overline{RD} \!\!\downarrow \to \overline{WAIT} \!\!\uparrow delay time$	t DRWTH	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		(1 + n) T – 40	ns
				(1 + n) T – 60	ns
$\overline{WAIT} \uparrow \to data \; input \; time$	towtid	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		0.5T - 5	ns
				0.5T – 10	ns
$\overline{WAIT} \uparrow \rightarrow \overline{WR} \uparrow$ delay time	t DWTW		0.5T		ns
$\overline{\text{WAIT}} \uparrow \rightarrow \overline{\text{RD}} \uparrow \text{ delay time}$	t DWTR		0.5T		ns
$\overline{WR}\!\!\downarrow \to \overline{WAIT}\!\!\downarrow input\ time$	towwtl	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		T – 50	ns
				T – 75	ns
$\overline{WR}\!\!\downarrow \to \overline{WAIT}$ hold time	tнwwт	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	nT + 5		ns
			nT + 10		ns
$\overline{WR}{\downarrow} o \overline{WAIT}{\uparrow}$ delay time	t DWWTH	$V_{DD} = +5.0 \text{ V} \pm 10 \%$		(1 + n) T – 40	ns
				(1 + n) T – 70	ns

Remark T: TCYK (system clock cycle time)

a: 1 in address wait, 0 in the other conditions

n: the number of wait $(n \ge 0)$

(4) Refresh timing

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
Random read/write cycle time	t RC		3T		ns
REFRQ low-level pulse width	twrfql	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	1.5T – 25		ns
			1.5T – 30		ns
$ASTB\!\!\downarrow \to \overline{REFRQ}$ delay time	tostrfq		0.5T - 9		ns
$\overline{RD}\!\!\uparrow\to \overline{REFRQ}$ delay time	tdrrfq		1.5T – 9		ns
$\overline{WR}\!\!\uparrow \to \overline{REFRQ}$ delay time	towrfq		1.5T – 9		ns
$\overline{REFRQ} \!\!\uparrow \to ASTB$ delay time	tdrfqst		0.5T - 15		ns
REFRQ high-level pulse width	twrfqh	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	1.5T – 25		ns
			1.5T – 30		ns

Remark T: TCYK (system clock cycle time)

Serial Operation (TA = -40 to +85°C, VDD = +2.7 to 5.5 V, AVss = Vss = 0 V)

(1) CSI

Parameter	Symbol		Test Conditions	MIN.	MAX.	Unit
Serial clock cycle time (SCK0)	tcysk0	Input	External clock when SCK0, SO0 are CMOS input/output	10/fxx + 380		ns
		Output		Т		μs
Serial clock low-level width (SCK0)	twskLo	Input	External clock when SCK0, SO0 are CMOS input/output	5/fxx + 150		ns
		Output		0.5T - 40		μs
Serial clock high-level width (SCK0)	twsкно	Input	External clock when SCK0, SO0 are CMOS input/output	5/fxx + 150		ns
		Output		0.5T - 40		μs
SI0 setup time (to SCK0↑)	tsssko			40		ns
SI0 hold time (from SCK0↑)	thssk0			5/fxx + 40		ns
SO0 output delay time (from SCK0↓)	tosbsk1	CMOS push-pull output (3-wire serial I/O mode)		0	5/fxx + 150	ns
	tdsbsk2		rain output serial I/O mode), $R_L = 1 \text{ k}\Omega$	0	5/fxx + 400	ns

Remarks 1. The values shown in the table above are those in the condition of $C_L = 100 \text{ pF}$.

2. T $\,$: serial clock cycle set by the software. The minimum value is 16/fxx.

3. fxx: oscillation frequency

(2) I²C

Parameter	Symbol	Standard Mode I ² C Bus fxx = 4 to 32 MHz		High-speed M	Unit	
		MIN.	MAX.	MIN.	MAX.	
SCL clock frequency	fscL	0	100	0	400	kHz
Low status hold time of SCL clock	tLOW	4.7		1.3		μs
High status hold time of SCL clock	thigh	4.0		0.6		μs
Data hold time	thd ; DAT	300		300	900	ns
Data setup time	tsu ; DAT	250		100		ns
SDA, SCL signal rise time	tR		1000	20 + 0.1Cb	300	ns
SDA, SCL signal fall time	tF		300	20 + 0.1Cb	300	ns
Load capacitance of each bus line	Cb		400		400	pF

(3) IOE1, IOE2

Parameter	Symbol		Test Conditions	MIN.	MAX.	Unit
Serial clock cycle time	tcysk1	Input	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	250		ns
(SCK1, SCK2)				500		ns
		Output	Internal 16 frequency division	Т		ns
Serial clock low-level width	twskL1	Input	V _{DD} = +5.0 V ± 10 %	85		ns
$(\overline{SCK1}, \overline{SCK2})$				210		ns
		Output	Internal 16 frequency division	0.5T - 40		ns
Serial clock high-level width	twskH1	Input	V _{DD} = +5.0 V ± 10 %	85		ns
(SCK1, SCK2)				210		ns
		Output	Internal 16 frequency division	0.5T – 40		ns
SI1, SI2 setup time (to SCK1, SCK2↑)	tsssk1			40		ns
SI1, SI2 hold time (from SCK1, SCK2↑)	thssk1			40		ns
SO1, SO2 output delay time (from SCK1, SCK2↓)	tososk			0	50	ns
SO1, SO2 output hold time (from SCK1, SCK2↑)	thsosk	When tr	ansferring data	0.5tcүsк1 — 40		ns

Remarks 1. The values shown in the table above are those in the condition of $C_L = 100 \text{ pF}$.

2. T: serial clock cycle set by the software. The minimum value is 16/fxx.

(4) UART, UART2

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
ASCK clock input cycle time	tcyask	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	125		ns
			250		ns
ASCK clock low-level width	twaskl	$V_{DD} = +5.0 \text{ V} \pm 10 \%$	52.5		ns
			85		ns
ASCK clock high-level width	twaskh	V _{DD} = +5.0 V ± 10 %	52.5		ns
			85		ns

Other Operations

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
NMI low-level width	twnil		10		μs
NMI high-level width	twnih		10		μs
INTP0 low-level width	twitol		3tcysmp + 10		ns
INTP0 high-level width	twiтон		3tcysmp + 10		ns
INTP1 to INTP3, CI low-level width	twiT1L		3tсүсри + 10		ns
INTP1 to INTP3, CI high-level width	t wiT1H		3tсүсри + 10		ns
INTP4, INTP5 low-level width	twit2L		10		μs
INTP4, INTP5 high-level width	t WIT2H		10		μs
RESET low-level width	twrsl		10		μs
RESET high-level width	twrsh		10		μs

Remark tcysmp: sampling clock set by the software

tcycpu: CPU operation clock set by the software

A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = AVREF1 = +2.7 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8			bit
Total error ^{Note}					1.0	%
Linearity error ^{Note}					0.8	%
Quantization error					±1/2	LSB
Conversion time	tconv	FR = 1	120			tсүк
		FR = 0	180			tсүк
Sampling time	t SAMP	FR = 1	24			tсүк
		FR = 0	36			tсүк
Analog input voltage	VIAN		-0.3		AVREF1 + 0.3	V
Analog input impedance	RAN			1000		MΩ
AVREF1 current	Alref1			0.5	1.5	mA
AV _{DD} supply current	Aldd1	fxx = 32 MHz, CS = 1		2.0	5.0	mA
	Aldd2	STOP mode, CS = 0		1.0	20	μΑ

Note Quantization error is not included. This is expressed in proportion to the full-scale value.

Remark tcyk: system clock cycle time

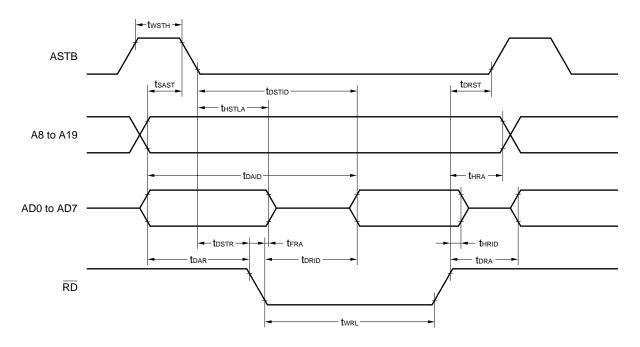
D/A Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = +2.7 to 5.5 V, Vss = AVss = 0 V)

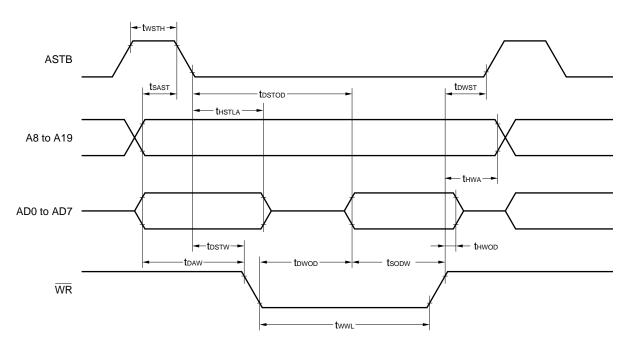
Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Resolution				8			bit
Total error		Load condition 4 MΩ, 30 pF	V _{DD} = AV _{DD} = AV _{REF2} = +2.7 to 5.5 V AV _{REF3} = 0 V			0.6	%
			V _{DD} = AV _{DD} = +2.7 to 5.5 V AV _{REF2} = 0.75V _{DD} AV _{REF3} = 0.25V _{DD}			0.8	%
		Load condition 2 MΩ, 30 pF	VDD = AVDD = AVREF2 = +2.7 to 5.5 V AVREF3 = 0 V			0.8	%
		V _{DD} = AV _{DD} = +2.7 to 5.5 V AV _{REF2} = 0.75V _{DD} AV _{REF3} = 0.25V _{DD}			1.0	%	
Settling time		Load condition 2 MΩ, 30 pF				10	μs
Output resistance	Ro	DACS0, 1 = 55 H			10		kΩ
Analog reference voltage	AV _{REF2}			0.75V _{DD}		V _{DD}	V
	AV _{REF3}			0		0.25V _{DD}	V
AVREF2, AVREF3 resistance value	RAIREF	DACS0, 1 = 55 H		4	8		kΩ
Reference supply input current	Alref2			0		5	mA
	Alref3			- 5		0	mA

Data Retention Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	V _{DDDR}	STOP mode	2.5		5.5	V
Data retention current	IDDDR	V _{DDDR} = +2.7 to 5.5 V		10	50	μΑ
		V _{DDDR} = +2.5 V		2	10	μΑ
V _{DD} rise time	t rvd		200			μs
V _{DD} fall time	t FVD		200			μs
V _{DD} hold time (from setting STOP mode)	thvd		0			ms
STOP release signal input time	tdrel		0			ms
Oscillation stabilization wait time	twait	Crystal resonator	30			ms
		Ceramic resonator	5			ms
Input voltage low-level	VIL	Specified pins ^{Note}	0		0.1VDDDR	V
Input voltage high-level	ViH		0.9VDDDR		VDDDR	V

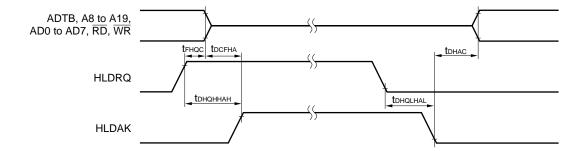
Note RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK/SCK1, P26/INTP5, P27/SI0, P32/SCK0/SCL, and P33/SO0/SDA pins


AC Timing Test Point

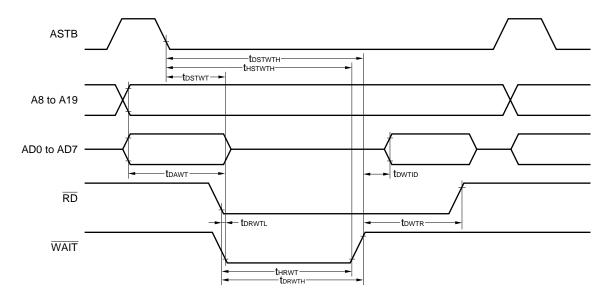


Timing Waveform

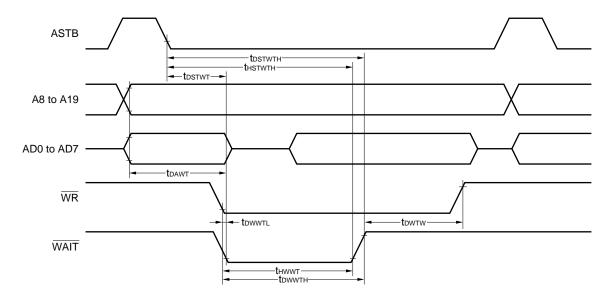
(1) Read operation



(2) Write operation

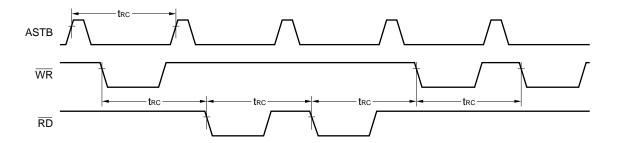


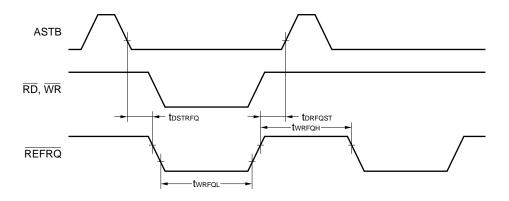
Hold Timing



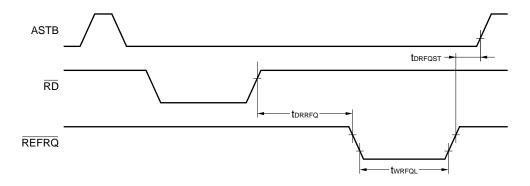
External WAIT Signal Input Timing

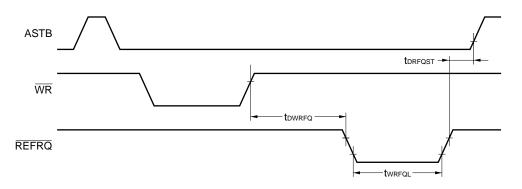
(1) Read operation


(2) Write operation

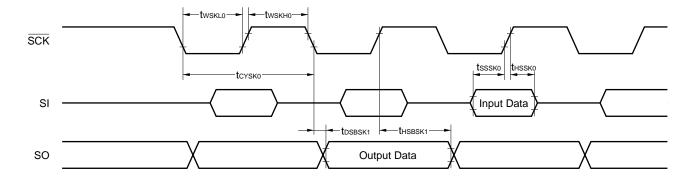


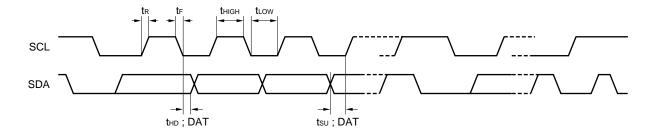
Refresh Timing Waveform


(1) Random read/write cycle

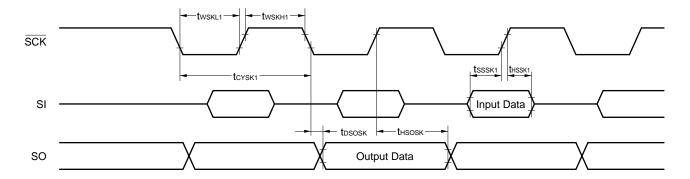

(2) When refresh memory access is simultaneous with read, write

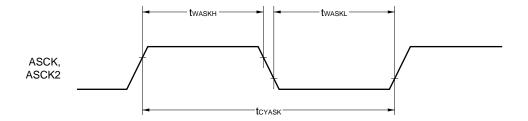
(3) Refresh after read


(4) Refresh after write

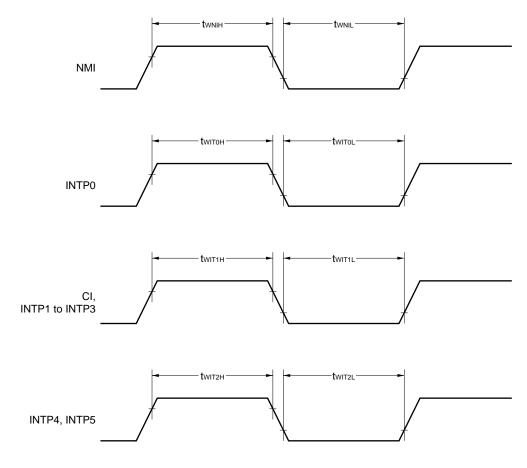


Serial Operation

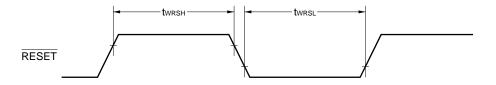

(1) CSI


(2) I²C

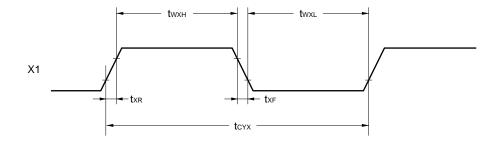
(3) IOE1, IOE2



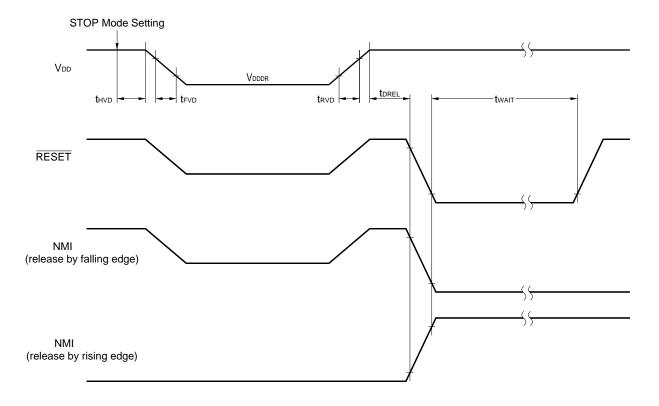
(4) UART, UART2



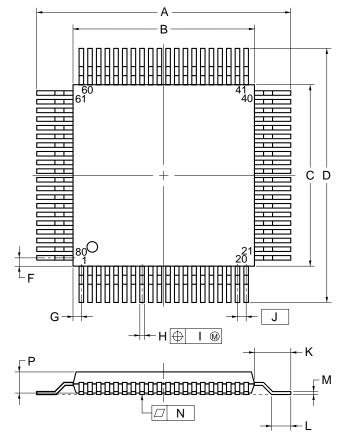
Interrupt Input Timing

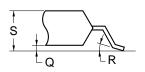


Reset Input Timing



External Clock Timing


Data Retention Characteristics



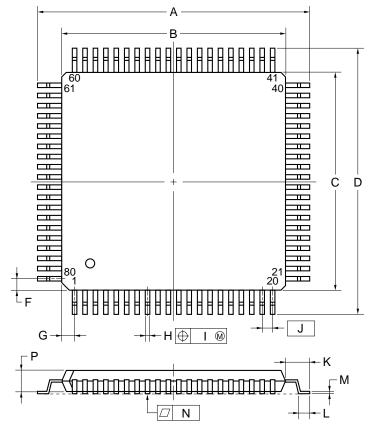
14. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×14)

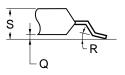
detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES
Α	17.2±0.4	0.677±0.016
В	14.0±0.2	$0.551^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.2±0.4	0.677±0.016
F	0.825	0.032
G	0.825	0.032
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.13	0.005
J	0.65 (T.P.)	0.026 (T.P.)
K	1.6±0.2	0.063±0.008
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	0.15 ^{+0.10} -0.05	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

S80GC-65-3B9-4

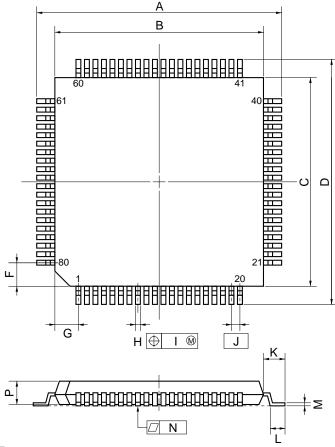

Remark Dimensions and materials of ES products are the same as those of mass-produced products.

\star 80 PIN PLASTIC QFP (14 \times 14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS	INCHES	
Α	17.20±0.20	0.677±0.008	
В	14.00±0.20	$0.551^{+0.009}_{-0.008}$	
С	14.00±0.20	$0.551^{+0.009}_{-0.008}$	
D	17.20±0.20	0.677±0.008	
F	0.825	0.032	
G	0.825	0.032	
Н	0.32±0.06	$0.013^{+0.002}_{-0.003}$	
1	0.13	0.005	
J	0.65 (T.P.)	0.026 (T.P.)	
K	1.60±0.20	0.063±0.008	
L	0.80±0.20	$0.031^{+0.009}_{-0.008}$	
М	0.17 + 0.03 - 0.07	$0.007^{+0.001}_{-0.003}$	
N	0.10	0.004	
P	1.40±0.10	0.055±0.004	
Q	0.125±0.075	0.005±0.003	
R	3°+7°	3°+7° -3°	
S	1.70 MAX.	0.067 MAX.	

P80GC-65-8BT

Remark Dimensions and materials of ES products are the same as those of mass-produced products.

80-PIN PLASTIC TQFP (FINE PITCH) (12 \times 12 mm)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES	
Α	14.0±0.2	0.551 ^{+0.009} _{-0.008}	
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$	
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$	
D	14.0±0.2	0.551+0.009	
F	1.25	0.049	
G	1.25	0.049	
Н	$0.22^{+0.05}_{-0.04}$	0.009±0.002	
I	0.10	0.004	
J	0.5 (T.P.)	0.020 (T.P.)	
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$	
L	0.5±0.2	0.020+0.008	
М	0.145 ^{+0.055} _{-0.045}	0.006±0.002	
N	0.10	0.004	
Р	1.05	0.041	
Q	0.05±0.05	0.002±0.002	
R	5°±5°	5°±5°	
S	1.27 MAX.	0.050 MAX.	

P80GK-50-BE9-4

Remark Dimensions and materials of ES products are the same as those of mass-produced products.

★ 15. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended in the table below.

For details of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions (1/2)

(1) μ PD784031YGC-3B9: 80-pin plastic QFP (14 × 14 mm, thickness 2.7 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above), Number of times: 3 times max.	IR35-00-3
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above), Number of times: 3 times max.	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Duration: 10 sec. max., Number of times: Once, Preliminary heat temperature: 120°C max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max. Duration: 3 sec. max. (per device side)	_

Caution Use of more than one soldering method should be avoided (except in the case of partial heating).

(2) μ PD784031YGC-8BT: 80-pin plastic QFP (14 × 14 mm, thickness 1.4 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above), Number of times: Twice max.	IR35-00-2
VPS	Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above), Number of times: Twice max.	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Duration: 10 sec. max., Number of times: Once, Preliminary heat temperature: 120°C max. (Package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max. Duration: 3 sec. max. (per device side)	_

Caution Use of more than one soldering method should be avoided (except in the case of partial heating).

Table 15-1. Surface Mounting Type Soldering Conditions (2/2)

(3) μ PD784031YGK-BE9: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above), Number of times: Twice max., Time limit: 7 days ^{Note} (thereafter 10 hours prebaking required at 125°C) <pre></pre>	IR35-107-2
VPS	Package peak temperature: 215°C, Duration: 40 sec. (at 200°C or above), Number of times: Twice max., Time limit: 7 days ^{Note} (thereafter 10 hours prebaking required at 125°C) <pre> <pre> <pre></pre></pre></pre>	VP15-107-2
Partial heating	Pin temperature: 300°C max. Duration: 3 sec. max. (per device side)	_

Note For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65 % RH.

Caution Use of more than one soldering method should be avoided (except in the case of partial heating).

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for supporting development of a system using the μ PD784031Y.

Language Processor Software

RA78K4 ^{Note 1}	Assembler package common to 78K/IV Series
CC78K4Note 1	C compiler package common to 78K/IV Series
CC78K4-LNote 1	C compiler library source file common to 78K/IV Series

PROM Writing Tool

PG-1500	PROM programmer
PA-78P4026GC	Programmer adapter connected to PG-1500
PA-78P4038GK	
PA-78P4026KK	
PG-1500 controllerNote 2	PG-1500 control program

Debugging Tool

IE-784000-R	In-circuit emulator common to 78K/IV Subseries
IE-784000-R-BK	Break board common to 78K/IV Series
IE-784038-R-EM1	Emulation board for evaluation of μ PD784038Y Subseries
IE-784000-R-EM	
IE-70000-98-IF-B	Interface adapter when PC-9800 Series (except notebook type) is used as host machine
IE-70000-98N-IF	Interface adapter and cable when notebook type PC-9800 Series is used as host
	machine
IE-70000-PC-IF-B	Interface adapter when IBM PC/AT TM is used as host machine
IE-78000-R-SV3	Interface adapter and cable when EWS is used as host machine
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-3B9 and GC-8BT types) common to
	μPD784038Y Subseries
EP-78054GK-R	Emulation probe for 80-pin plastic TQFP (fine pitch) (GK-BE9 type) common to
	μPD784038Y Subseries
EV-9200GC-80	Socket mounted on board of target system created for 80-pin plastic QFP (GC-3B9 and
	GC-8BT types)
TGK-080SDW	Adapter mounted on board of target system created for 80-pin plastic TQFP (fine pitch)
	(GK-BE9 type)
EV-9900	Jig used to remove μ PD78P4038YKK-T from EV-9200GC-80
SM78K4Note 3	System simulator common to 78K/IV Series
ID78K4Note 3	Integrated debugger for IE-784000-R
DF784038Note 4	Device file for μPD784038Y Subseries

Real-time OS

RX78K/IV ^{Note 4}	Real-time OS for 78K/IV Series
MX78K4Note 2	OS for 78K/IV Series

- Notes 1. PC-9800 Series (MS-DOSTM) based
 - IBM PC/AT and compatible machine (PC DOSTM, WindowsTM, MS-DOS, IBM DOSTM) based
 - HP9000 Series 700TM (HP-UXTM) based
 - SPARCstationTM (SunOSTM) based
 - NEWSTM (NEWS-OSTM) based
 - 2. PC-9800 Series (MS-DOS) based
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) based
 - 3. PC-9800 Series (MS-DOS + Windows) based
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) based
 - HP9000 Series 700 (HP-UX) based
 - SPARCstation (SunOS) based
 - 4. PC-9800 Series (MS-DOS) based
 - IBM PC/AT and compatible machine (PC DOS, Windows, MS-DOS, IBM DOS) based
 - HP9000 Series 700 (HP-UX) based
 - SPARCstation (SunOS) based
- Remarks 1. RA78K4, CC78K4, SM78K4, and ID78K4 are used in combination with DF784038.
 - **2.** TGK-080SDW is manufactured by TOKYO ELETECH Corporation. Consult your local NEC sales representative when purchasing it.

APPENDIX B. RELATED DOCUMENTS

Documents Related to Device

Document Name Docum		ent No.	
	English	Japanese	
μPD784031Y Data Sheet	This manual	U11504J	
μPD784035Y, 784036Y, 784037Y, 784038Y Data Sheet	U10741E	U10741J	
μPD78P4038Y Data Sheet	U10742E	U10742J	
μΡD784038, 784038Y Subseries User's Manual - Hardware	U11316E	U11316J	
μΡD784038Y Subseries Special Function Register Table	_	U11091J	
78K/IV Series User's Manual - Instruction	U10905E	U10905J	
78K/IV Series Instruction Table	_	U10594J	
78K/IV Series Instruction Set	_	U10595J	
78K/IV Series Application Note - Software Basics	_	U10095J	

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.	
		English	Japanese
RA78K4 Assembler Package	Operation	U11334E	U11334J
	Language	_	U11162J
RA78K Series Structured Assembler Preprocessor		EEU-1402	EEU-817
CC78K4 Series	Operation	_	EEU-960
	Language	_	EEU-961
CC78K Series Library Source File		_	U12322J
PG-1500 PROM Programmer		EEU-1335	U11940J
PG-1500 Controller - PC-9800 Series (MS-DOS) Based		EEU-1291	EEU-704
PG-1500 Controller - IBM PC Series (PC DOS) Based		U10540E	EEU-5008
IE-784000-R		EEU-1534	EEU-5004
IE-784038-R-EM1		U11383E	U11383J
EP-78230		EEU-1515	EEU-985
EP-78054GK-R		EEU-1468	EEU-932
SM78K4 System Simulator - Windows Based Reference		U10093E	U10093J
SM78K Series External Part User Open Interface Specifications		U10092E	U10092J
ID78K4 Integrated Debugger - Windows Based Reference		U10440E	U10440J
ID78K4 Integrated Debugger - HP9000 Series 700 (HP-UX) Based Reference		To be released soon	U11960J

Caution The above related documents are subject to change without prior notice. Be sure to use the latest version when starting design.

Documents Related to Embedded Software (User's Manual)

Document Name		Document No.	
		English	Japanese
78K/IV Series Real-time OS	Basics	U10603E	U10603J
	Installation	U10604E	U10604J
	Debugger	_	U10364J
78K/IV Series OS MX78K4	Basics	_	U11779J

Other Documents

Document Name	Document No.	
	English	Japanese
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
Reliability Quality Control on NEC Semiconductor Device	C10983E	C10983J
Electric Static Discharge (ESD) Test	_	MEM-539
Semiconductor Devices Quality Assurance Guide	MEI-1202	C11893J
Microcomputer Product Series Guide	_	U11416J

Caution The above related documents are subject to change without prior notice. Be sure to use the latest version when starting design.

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee outpin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

Caution Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

EEPROM and **IEBus** are trademarks of **NEC** Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

HP9000 Series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.