QEN 14 \& QEN 4

CONSUME \& INDUSTRIAL DIL XO

Description

Our standard clock oscillators QEN 14-H and QEN 4-H use a high precision crystal resonator sealed with a 2 points mount on a hybrid circuit board. There are designed to operate at temperature up to $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. These low cost oscillators are particularly well suited, for microprocessors and outdoor electronics. The tristate output is ideal for automated test or frequency switching applications. Both the DIL and half DIL are able to driveTTL and CMOS loads for more design flexibility.

Frequency range

1 M Hz to 125 MHz

Features

Temperature ranges:

Frequency stability (1):
Supply voltage:
Current consumption:
Rise \& fall time:
Start up time:
Duty cycle:
Option :

Note :

(1). Frequency stability inclusive of $25^{\circ} \mathrm{C}$ calibration, temperature,

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$ $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\pm 25, \pm 50, \pm 00 \mathrm{ppm}$ $+5 \mathrm{~V},+3.3 \mathrm{~V}$

30 mA max.
7 nS (TTL), 10 nS (CMOS)
10 mS max.
40/60 \%
Tristate
$45 / 55 \%$ duty cycle (f $<40 \mathrm{MHz}$)

VCC, load changes, and 1st year ageing at $45^{\circ} \mathrm{C}$.

Minimum ordering information requirement
(See Table 1 for available combinations)
(See page 4-19 for package drawing)

Example: QEN 14 - HR 32 MHz DT50 /TR

Option

J =tristate (" 0 " $=1 \mathrm{HiZ}$ ", 1 " =enable)
$R=45 / 55 \%$ duty cycle ($f<40 \mathrm{MHz}$)
Frequency
(in MHz)
Temperature \qquad

$\mathrm{LQ}=0^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
$\mathrm{HQ}=-20^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
DT $=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
Stability
$25= \pm 25 \mathrm{ppm}$
$50= \pm 50 \mathrm{ppm}$
$100= \pm 100 \mathrm{ppm}$

Table 1: Other temperature ranges and stabilities available		QEN 4			QEN 14		
		$\pm 25 \mathrm{ppm}$	$\pm 50 \mathrm{ppm}$	+100 ppm	$\pm 25 \mathrm{ppm}$	$\pm 50 \mathrm{ppm}$	\#100 ppm
$\begin{array}{r} 0 \text { to }+70^{\circ} \mathrm{C} \\ -20 \text { to }+70^{\circ} \mathrm{C} \end{array}$	$1-50 \mathrm{MHz}$	Yes	Yes	Yes	Yes	Yes	Yes@
	$50-80 \mathrm{MHz}$	Yes	Yes	Yes	Yes	Yes	kes
	$80-125 \mathrm{MHz}$		Yes	Yes		Yes	Yes
-40 to $+85^{\circ} \mathrm{C}$	$1-50 \mathrm{MHz}$		Yes	Yes	Yes	Yes	0) Yes
	$50-80 \mathrm{MHz}$		Yes	Yes		Yes?	Yes
	$80-125 \mathrm{MHz}$						

4-12
Vol. 2

