TV-Tuner-IC with Three Separate Oscillators and Mixers, SAW-Driver, L. O.-Output and Tri-State Band Switch

Features

- 9 V supply voltage
- Frequency range from 48 to 860 MHz
- Band A: balanced high impedance mixer input and amplitude controlled oscillator
- Band B + C: balanced low impedance mixer input and symmetrical oscillator
- Balanced L. O.-outputs for prescalers or PLL
- SAW filter driver with low impedance output
- Voltage regulator for stable operating characteristics
- ESD protection on all pins except oscillator pins and RF-inputs

Package: SO-28

Block Diagram

Figure 1. Block diagram pinning of U2309B

Temic

U2309B-AFL

TELEFUNKEN Semiconductors

Pin Configuration

Absolute Maximum Ratings

All voltages are referred to GND, Pin 2

Parameters	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	Pin 19	V_{S}			10.5
RF inputs	Pin (20-25)				5.0
IF outputs	Pin 17-18				V
Tri-state switch voltage	Pin 12				10.5
Junction temperature		T_{j}			V
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40		10.5	V

TELEFUNKEN Semiconductors
U2309B-AFL

Operating Range

All voltages are referred to GND, Pin 2

Parameters	Test Conditions / Pins	Symbol	Min	Typ	Max	Unit
Supply voltage	Pin 17-19	V_{S}	8.1	9	9.9	V
Ambient temperature		$\mathrm{T}_{\mathrm{amb}}$	-25		75	${ }^{\circ} \mathrm{C}$
Thermal resistance	Test conditions p. 6 Package SO28	$\mathrm{R}_{\mathrm{thJA}}$		70		K/W

Electrical Characteristics

Test conditions (unless otherwise specified): $\mathrm{V}_{\mathrm{s}}=9 \mathrm{~V} . \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$. Reference point Pin 2

Parameters	Test Conditions / Pins	Symbol	Min	Typ	Max	Unit
Supply voltage	Pin 17-19	V_{S}	8.1	9.0	9.9	V
Supply current	Pin 17-19	$\mathrm{I}_{\text {S }}$		42	50	mA
Band switch						
Voltage Band A	Pin 12	VSWA	0	0	1.0	V
Voltage Band B	Pin 12	VSWB	1.6	2.0	2.4	V
Voltage Band C	Pin 12	VSWC	3.4	4.0	5.0	V
Switching current	VSW = 5 V Pin 12	ISW			100	$\mu \mathrm{A}$
L. O .-output						
L. O. level each output	$\mathrm{RL}=50 \mathrm{Ohm}$ Pin 27, 28	PLO	-25		-17	dBm
SAW filter driver $\mathrm{fi}=36 \mathrm{MHz}$						
Input impedance	Pin 15, 16	ZiSAW		450		Ohm
Output impedance	Pin 13, 14	ZoSAW		70		Ohm
Voltage gain	Pin $15,16 \rightarrow 13,14$	GvSAW		17		dB
Band A						
Input frequency range	Pin 24	fiA	48		170	MHz
Input impedance	Figure $3 \quad$ Pin 24	S11A				
Gain (note 4)	Pin I/P to O/P	GA		28		dB
Noise figure DSB (note 2)	$\begin{aligned} & \text { Pin I/P to O/P } \\ & \text { fiA }=50 \mathrm{MHz} \\ & \text { fiA }=150 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{NF} \end{aligned}$		$\begin{gathered} 11.5 \\ 12 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input level for (note 3):	Each carrier					
IM3 (interm. of 3rd order	fiA $=71 \mathrm{MHz} \quad$ Pin I/P	ViA		-23		dBm
IM2 (interm. of 2nd order)	$\mathrm{fiA}=71 \mathrm{MHz} \quad$ Pin I/P	ViA		-22		dBm
Band B (note 1)						
Input frequency range	Pin 22, 23	fiA	170		470	MHz
Input impedance	Figure $3 \quad$ Pin 22, 23	S11B				
Gain (note 4)	Pin I/P to O/P	GB		32		dB
Noise figure DSB (note 2)	Pin I/P to O/P $\begin{aligned} \mathrm{fiB} & =200 \mathrm{MHz} \\ \mathrm{fiB} & =450 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { NF } \\ & \text { NF } \end{aligned}$		$\begin{gathered} 9.5 \\ 10 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input level for (note 3):	Each carrier					
IM3 (interm. of 3rd order)	$\mathrm{fiB}=300 \mathrm{MHz} \quad$ Pin I / P	ViB		-28		dBm

TELEFUNKEN Semiconductors

Parameters	Test Conditions / Pins	Symbol	Min	Typ	Max	Unit
Band C (note 1)						
Input frequency range	Pin 20, 21	fiC	470		860	MHz
Input impedance	Figure $3 \quad$ Pin 20, 21	S11C				
Gain	Pin I/P to O/P	GC		32		dB
Noise figure DSB (note 2)	$\begin{aligned} & \text { Pin I/P to O/P } \\ & \mathrm{fiC}=500 \mathrm{MHZ} \\ & \mathrm{fiC}=800 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{NF} \\ & \mathrm{NF} \end{aligned}$		$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input level for (note 3):	Each carrier					
IM3 (interm. of 3rd order)	$\mathrm{fiC}=600 \mathrm{MHz} \quad$ Pin I/P	ViC		-28		dBm

Notes

1) The RF inputs B and C are symmetrical driven by means of a hybrid for 180° phase shifting, consequently the source impedance is 100Ω. All other impedance for RF tests is 50Ω.
2) The noise figure (NF) is the value for double-side-band measurement.
3) The intermodulation test (2-carrier-method) which is made on IF-centre is in reference to a signal-to-IM ratio of 60 dB .
4) Gain is the ratio of the voltage at the primary coil of L5 to the available voltage at the input.

Test and Principle Application Circuit

Figure 2. Test and principle application circuit

PCB for the $\mathbf{R}_{\text {thJA }}$-Measurement

Figure 3. PCB for the $\mathrm{R}_{\text {thJA }}$-measurement

U2309B-AFL

Input Impedance Mixer Band A (S11A), B and C (S11B/C)

Figure 4. Input impedance mixer band A (S11A), B and C (S11B/C)

1) VHF-low

Normalised to 50Ω, measuring range 45 MHz to 750 MHz .
VHF-high and UHF
Normalised to 50Ω, measuring range 45 MHz to 1045 MHz . Both inputs are driven symmetrical.
The output impedance of hybrid is 100Ω,the measured levels are then calculated in reference to 50Ω.

TELEFUNKEN Semiconductors

Dimensions in mm:

959932

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.
> Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

