## 240-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

## DESCRIPTION

The $\mu$ PD161830 is a source driver for TFT-LCDs supporting 64 gray-scale display and can operate with a supply voltage of 2.5 V for the logic block and 5.0 V for the driver block. Data input as 6 -bit x 3 -dot digital data is output as $64 \gamma$-corrected values using an internal D/A converter and 5 external power modules, thus achieving a 260,000-color (full-color) display.

## FEATURES

- CMOS level input
- 240 outputs
- Input of 6 bits (gray-scale data) by 3 dots
- Capable of outputting 64 values by means of 5 external power modules and a D/A converter
- Output dynamic range: Vss2 to VdD2
- High-speed data transfer: fcLk $=15 \mathrm{MHz}$ MAX. (internal data transfer speed when operating at $\mathrm{V}_{\mathrm{DD} 1}=2.5 \mathrm{~V}$ )
- Level inversion $\gamma$-correction power supply is possible
- Logic power supply voltage (VDD1): 2.2 to 3.6 V
- Driver power supply voltage (VDD2): 4.5 to 5.5 V


## ORDERING INFORMATION

| Part Number | Package |
| :---: | :---: |
| $\mu$ PD161830P | Chip |

Remark Purchasing the above chip entail the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representatives.

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

## 1. BLOCK DIAGRAM



Remark /xxx indicates active low signal.

## 2. PIN CONFIGURATION (Pad Layout)

Chip size: $15.84 \times 1.11 \mathrm{~mm}^{2}$
Bump size (Input/VCOM/test/dummy): $80 \times 86 \mu \mathrm{~m}^{2}$
Bump size (Output): $29 \times 103 \mu \mathrm{~m}^{2}$
Alignment Mark ( $\mu \mathrm{m}$ )
$X: 7716.45 \quad Y: 347.04$
X: -7716.45 Y: 347.04


Alignment mark shape (unit: $\mu \mathrm{m}$ )


Table 2-1. Pad Layout (1/2)

| No. | Name | $\mathrm{X}[\mu \mathrm{m}]$ | $\mathrm{Y}[\mu \mathrm{m}]$ | No. | Name | X $[\mu \mathrm{m}$ ] | $\mathrm{Y}[\mu \mathrm{m}]$ | No. | Name | $\mathrm{X}[\mu \mathrm{m}]$ | $\mathrm{Y}[\mu \mathrm{m}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | S1 | 7170.000 | 396.480 | 61 | S61 | 3570.000 | 396.480 | 121 | S121 | -30.000 | 396.480 |
| 2 | S2 | 7110.000 | 396.480 | 62 | S62 | 3510.000 | 396.480 | 122 | S122 | -90.000 | 396.480 |
| 3 | S3 | 7050.000 | 396.480 | 63 | S63 | 3450.000 | 396.480 | 123 | S123 | -150.000 | 396.480 |
| 4 | S4 | 6990.000 | 396.480 | 64 | S64 | 3390.000 | 396.480 | 124 | S124 | -210.000 | 396.480 |
| 5 | S5 | 6930.000 | 396.480 | 65 | S65 | 3330.000 | 396.480 | 125 | S125 | -270.000 | 396.480 |
| 6 | S6 | 6870.000 | 396.480 | 66 | S66 | 3270.000 | 396.480 | 126 | S126 | -330.000 | 396.480 |
| 7 | S7 | 6810.000 | 396.480 | 67 | S67 | 3210.000 | 396.480 | 127 | S127 | -390.000 | 396.480 |
| 8 | S8 | 6750.000 | 396.480 | 68 | S68 | 3150.000 | 396.480 | 128 | S128 | -450.000 | 396.480 |
| 9 | S9 | 6690.000 | 396.480 | 69 | S69 | 3090.000 | 396.480 | 129 | S129 | -510.000 | 396.480 |
| 10 | S10 | 6630.000 | 396.480 | 70 | S70 | 3030.000 | 396.480 | 130 | S130 | -570.000 | 396.480 |
| 11 | S11 | 6570.000 | 396.480 | 71 | S71 | 2970.000 | 396.480 | 131 | S131 | -630.000 | 396.480 |
| 12 | S12 | 6510.000 | 396.480 | 72 | S72 | 2910.000 | 396.480 | 132 | S132 | -690.000 | 396.480 |
| 13 | S13 | 6450.000 | 396.480 | 73 | S73 | 2850.000 | 396.480 | 133 | S133 | -750.000 | 396.480 |
| 14 | S14 | 6390.000 | 396.480 | 74 | S74 | 2790.000 | 396.480 | 134 | S134 | -810.000 | 396.480 |
| 15 | S15 | 6330.000 | 396.480 | 75 | S75 | 2730.000 | 396.480 | 135 | S135 | -870.000 | 396.480 |
| 16 | S16 | 6270.000 | 396.480 | 76 | S76 | 2670.000 | 396.480 | 136 | S136 | -930.000 | 396.480 |
| 17 | S17 | 6210.000 | 396.480 | 77 | S77 | 2610.000 | 396.480 | 137 | S137 | -990.000 | 396.480 |
| 18 | S18 | 6150.000 | 396.480 | 78 | S78 | 2550.000 | 396.480 | 138 | S138 | -1050.000 | 396.480 |
| 19 | S19 | 6090.000 | 396.480 | 79 | S79 | 2490.000 | 396.480 | 139 | S139 | -1110.000 | 396.480 |
| 20 | S20 | 6030.000 | 396.480 | 80 | S80 | 2430.000 | 396.480 | 140 | S140 | -1170.000 | 396.480 |
| 21 | S21 | 5970.000 | 396.480 | 81 | S81 | 2370.000 | 396.480 | 141 | S141 | -1230.000 | 396.480 |
| 22 | S22 | 5910.000 | 396.480 | 82 | S82 | 2310.000 | 396.480 | 142 | S142 | -1290.000 | 396.480 |
| 23 | S23 | 5850.000 | 396.480 | 83 | S83 | 2250.000 | 396.480 | 143 | S143 | -1350.000 | 396.480 |
| 24 | S24 | 5790.000 | 396.480 | 84 | S84 | 2190.000 | 396.480 | 144 | S144 | -1410.000 | 396.480 |
| 25 | S25 | 5730.000 | 396.480 | 85 | S85 | 2130.000 | 396.480 | 145 | S145 | -1470.000 | 396.480 |
| 26 | S26 | 5670.000 | 396.480 | 86 | S86 | 2070.000 | 396.480 | 146 | S146 | -1530.000 | 396.480 |
| 27 | S27 | 5610.000 | 396.480 | 87 | S87 | 2010.000 | 396.480 | 147 | S147 | -1590.000 | 396.480 |
| 28 | S28 | 5550.000 | 396.480 | 88 | S88 | 1950.000 | 396.480 | 148 | S148 | -1650.000 | 396.480 |
| 29 | S29 | 5490.000 | 396.480 | 89 | S89 | 1890.000 | 396.480 | 149 | S149 | -1710.000 | 396.480 |
| 30 | S30 | 5430.000 | 396.480 | 90 | S90 | 1830.000 | 396.480 | 150 | S150 | -1770.000 | 396.480 |
| 31 | S31 | 5370.000 | 396.480 | 91 | S91 | 1770.000 | 396.480 | 151 | S151 | -1830.000 | 396.480 |
| 32 | S32 | 5310.000 | 396.480 | 92 | S92 | 1710.000 | 396.480 | 152 | S152 | -1890.000 | 396.480 |
| 33 | S33 | 5250.000 | 396.480 | 93 | S93 | 1650.000 | 396.480 | 153 | S153 | -1950.000 | 396.480 |
| 34 | S34 | 5190.000 | 396.480 | 94 | S94 | 1590.000 | 396.480 | 154 | S154 | -2010.000 | 396.480 |
| 35 | S35 | 5130.000 | 396.480 | 95 | S95 | 1530.000 | 396.480 | 155 | S155 | -2070.000 | 396.480 |
| 36 | S36 | 5070.000 | 396.480 | 96 | S96 | 1470.000 | 396.480 | 156 | S156 | -2130.000 | 396.480 |
| 37 | S37 | 5010.000 | 396.480 | 97 | S97 | 1410.000 | 396.480 | 157 | S157 | -2190.000 | 396.480 |
| 38 | S38 | 4950.000 | 396.480 | 98 | S98 | 1350.000 | 396.480 | 158 | S158 | -2250.000 | 396.480 |
| 39 | S39 | 4890.000 | 396.480 | 99 | S99 | 1290.000 | 396.480 | 159 | S159 | -2310.000 | 396.480 |
| 40 | S40 | 4830.000 | 396.480 | 100 | S100 | 1230.000 | 396.480 | 160 | S160 | -2370.000 | 396.480 |
| 41 | S41 | 4770.000 | 396.480 | 101 | S101 | 1170.000 | 396.480 | 161 | S161 | -2430.000 | 396.480 |
| 42 | S42 | 4710.000 | 396.480 | 102 | S102 | 1110.000 | 396.480 | 162 | S162 | -2490.000 | 396.480 |
| 43 | S43 | 4650.000 | 396.480 | 103 | S103 | 1050.000 | 396.480 | 163 | S163 | -2550.000 | 396.480 |
| 44 | S44 | 4590.000 | 396.480 | 104 | S104 | 990.000 | 396.480 | 164 | S164 | -2610.000 | 396.480 |
| 45 | S45 | 4530.000 | 396.480 | 105 | S105 | 930.000 | 396.480 | 165 | S165 | -2670.000 | 396.480 |
| 46 | S46 | 4470.000 | 396.480 | 106 | S106 | 870.000 | 396.480 | 166 | S166 | -2730.000 | 396.480 |
| 47 | S47 | 4410.000 | 396.480 | 107 | S107 | 810.000 | 396.480 | 167 | S167 | -2790.000 | 396.480 |
| 48 | S48 | 4350.000 | 396.480 | 108 | S108 | 750.000 | 396.480 | 168 | S168 | -2850.000 | 396.480 |
| 49 | S49 | 4290.000 | 396.480 | 109 | S109 | 690.000 | 396.480 | 169 | S169 | -2910.000 | 396.480 |
| 50 | S50 | 4230.000 | 396.480 | 110 | S110 | 630.000 | 396.480 | 170 | S170 | -2970.000 | 396.480 |
| 51 | S51 | 4170.000 | 396.480 | 111 | S111 | 570.000 | 396.480 | 171 | S171 | -3030.000 | 396.480 |
| 52 | S52 | 4110.000 | 396.480 | 112 | S112 | 510.000 | 396.480 | 172 | S172 | -3090.000 | 396.480 |
| 53 | S53 | 4050.000 | 396.480 | 113 | S113 | 450.000 | 396.480 | 173 | S173 | -3150.000 | 396.480 |
| 54 | S54 | 3990.000 | 396.480 | 114 | S114 | 390.000 | 396.480 | 174 | S174 | -3210.000 | 396.480 |
| 55 | S55 | 3930.000 | 396.480 | 115 | S115 | 330.000 | 396.480 | 175 | S175 | -3270.000 | 396.480 |
| 56 | S56 | 3870.000 | 396.480 | 116 | S116 | 270.000 | 396.480 | 176 | S176 | -3330.000 | 396.480 |
| 57 | S57 | 3810.000 | 396.480 | 117 | S117 | 210.000 | 396.480 | 177 | S177 | -3390.000 | 396.480 |
| 58 | S58 | 3750.000 | 396.480 | 118 | S118 | 150.000 | 396.480 | 178 | S178 | -3450.000 | 396.480 |
| 59 | S59 | 3690.000 | 396.480 | 119 | S119 | 90.000 | 396.480 | 179 | S179 | -3510.000 | 396.480 |
| 60 | S60 | 3630.000 | 396.480 | 120 | S120 | 30.000 | 396.480 | 180 | S180 | -3570.000 | 396.480 |

Table 2-1. Pad Layout (2/2)

| No. | Name | $\mathrm{X}[\mu \mathrm{m}]$ | $\mathrm{Y}[\mu \mathrm{m}]$ |
| :---: | :---: | :---: | :---: |
| 181 | S181 | -3630.000 | 396.480 |
| 182 | S182 | -3690.000 | 396.480 |
| 183 | S183 | -3750.000 | 396.480 |
| 184 | S184 | -3810.000 | 396.480 |
| 185 | S185 | -3870.000 | 396.480 |
| 186 | S186 | -3930.000 | 396.480 |
| 187 | S187 | -3990.000 | 396.480 |
| 188 | S188 | -4050.000 | 396.480 |
| 189 | S189 | -4110.000 | 396.480 |
| 190 | S190 | -4170.000 | 396.480 |
| 191 | S191 | -4230.000 | 396.480 |
| 192 | S192 | -4290.000 | 396.480 |
| 193 | S193 | -4350.000 | 396.480 |
| 194 | S194 | -4410.000 | 396.480 |
| 195 | S195 | -4470.000 | 396.480 |
| 196 | S196 | -4530.000 | 396.480 |
| 197 | S197 | -4590.000 | 396.480 |
| 198 | S198 | -4650.000 | 396.480 |
| 199 | S199 | -4710.000 | 396.480 |
| 200 | S200 | -4770.000 | 396.480 |
| 201 | S201 | -4830.000 | 396.480 |
| 202 | S202 | -4890.000 | 396.480 |
| 203 | S203 | -4950.000 | 396.480 |
| 204 | S204 | -5010.000 | 396.480 |
| 205 | S205 | -5070.000 | 396.480 |
| 206 | S206 | -5130.000 | 396.480 |
| 207 | S207 | -5190.000 | 396.480 |
| 208 | S208 | -5250.000 | 396.480 |
| 209 | S209 | -5310.000 | 396.480 |
| 210 | S210 | -5370.000 | 396.480 |
| 211 | S211 | -5430.000 | 396.480 |
| 212 | S212 | -5490.000 | 396.480 |
| 213 | S213 | -5550.000 | 396.480 |
| 214 | S214 | -5610.000 | 396.480 |
| 215 | S215 | -5670.000 | 396.480 |
| 216 | S216 | -5730.000 | 396.480 |
| 217 | S217 | -5790.000 | 396.480 |
| 218 | S218 | -5850.000 | 396.480 |
| 219 | S219 | -5910.000 | 396.480 |
| 220 | S220 | -5970.000 | 396.480 |
| 221 | S221 | -6030.000 | 396.480 |
| 222 | S222 | -6090.000 | 396.480 |
| 223 | S223 | -6150.000 | 396.480 |
| 224 | S224 | -6210.000 | 396.480 |
| 225 | S225 | -6270.000 | 396.480 |
| 226 | S226 | -6330.000 | 396.480 |
| 227 | S227 | -6390.000 | 396.480 |
| 228 | S228 | -6450.000 | 396.480 |
| 229 | S229 | -6510.000 | 396.480 |
| 230 | S230 | -6570.000 | 396.480 |
| 231 | S231 | -6630.000 | 396.480 |
| 232 | S232 | -6690.000 | 396.480 |
| 233 | S233 | -6750.000 | 396.480 |
| 234 | S234 | -6810.000 | 396.480 |
| 235 | S235 | -6870.000 | 396.480 |
| 236 | S236 | -6930.000 | 396.480 |
| 237 | S237 | -6990.000 | 396.480 |
| 238 | S238 | -7050.000 | 396.480 |
| 239 | S239 | -7110.000 | 396.480 |
| 240 | S240 | -7170.000 | 396.480 |


| No. | Name | $\mathrm{X}[\mu \mathrm{m}]$ | $\mathrm{Y}[\mu \mathrm{m}]$ |
| :---: | :---: | :---: | :---: |
| 241 | DUMMY1 | -7311.420 | 407.010 |
| 242 | DUMMY2 | -7772.010 | 164.880 |
| 243 | DUMMY3 | -7772.010 | 64.860 |
| 244 | DUMMY4 | -7772.010 | -35.160 |
| 245 | DUMMY5 | -7772.010 | -135.180 |
| 246 | DUMMY6 | -7772.010 | -235.200 |
| 247 | DUMMY7 | -7654.530 | -407.010 |
| 248 | VCOM | -7479.510 | -407.010 |
| 249 | STHL | -7229.490 | -407.010 |
| 250 | DUMMY8 | -7054.440 | -407.010 |
| 251 | VDD2 | -6793.050 | -407.010 |
| 252 | VDD2 | -6693.090 | -407.010 |
| 253 | VDD2 | -6593.130 | -407.010 |
| 254 | VDD1 | -6331.710 | -407.010 |
| 255 | VDD1 | -6231.750 | -407.010 |
| 256 | VDD1 | -6131.790 | -407.010 |
| 257 | VSS1 | -5878.440 | -407.010 |
| 258 | VSS1 | -5778.480 | -407.010 |
| 259 | VSS1 | -5678.520 | -407.010 |
| 260 | VSS2 | -5428.500 | -407.010 |
| 261 | VSS2 | -5328.540 | -407.010 |
| 262 | VSS2 | -5228.580 | -407.010 |
| 263 | VCSEL | -4975.260 | -407.010 |
| 264 | R,/L | -4725.240 | -407.010 |
| 265 | MODE | -4475.220 | -407.010 |
| 266 | BA | -4225.200 | -407.010 |
| 267 | GAM | -3975.180 | -407.010 |
| 268 | CM | -3725.160 | -407.010 |
| 269 | POL | -3475.140 | -407.010 |
| 270 | AP | -3225.120 | -407.010 |
| 271 | STB | -2975.100 | -407.010 |
| 272 | D25 | -2725.080 | -407.010 |
| 273 | D24 | -2475.060 | -407.010 |
| 274 | D23 | -2225.040 | -407.010 |
| 275 | D22 | -1975.020 | -407.010 |
| 276 | D21 | -1725.000 | -407.010 |
| 277 | D20 | -1474.980 | -407.010 |
| 278 | CLK | -1224.960 | -407.010 |
| 279 | DUMMY9 | -1049.910 | -407.010 |
| 280 | V4 | -874.860 | -407.010 |
| 281 | V4 | -774.900 | -407.010 |
| 282 | V4 | -674.940 | -407.010 |
| 283 | V3 | -424.920 | -407.010 |
| 284 | V3 | -324.960 | -407.010 |
| 285 | V3 | -225.000 | -407.010 |
| 286 | V2 | 25.080 | -407.010 |
| 287 | V2 | 125.040 | -407.010 |
| 288 | V2 | 225.000 | -407.010 |
| 289 | V1 | 475.020 | -407.010 |
| 290 | V1 | 574.980 | -407.010 |
| 291 | V1 | 674.940 | -407.010 |
| 292 | V0 | 925.020 | -407.010 |
| 293 | V0 | 1024.980 | -407.010 |
| 294 | V0 | 1124.940 | -407.010 |
| 295 | DUMMY10 | 1299.990 | -407.010 |
| 296 | INV | 1475.010 | -407.010 |
| 297 | D15 | 1725.030 | -407.010 |
| 298 | D14 | 1975.050 | -407.010 |
| 299 | D13 | 2225.070 | -407.010 |
| 300 | D12 | 2475.090 | -407.010 |


| No. | Name | X $[\mu \mathrm{m}$ ] | $\mathrm{Y}[\mu \mathrm{m}]$ |
| :---: | :---: | :---: | :---: |
| 301 | D11 | 2725.110 | -407.010 |
| 302 | D10 | 2975.130 | -407.010 |
| 303 | D05 | 3225.150 | -407.010 |
| 304 | D04 | 3475.170 | -407.010 |
| 305 | D03 | 3725.190 | -407.010 |
| 306 | D02 | 3975.210 | -407.010 |
| 307 | D01 | 4225.230 | -407.010 |
| 308 | D00 | 4475.250 | -407.010 |
| 309 | TESTO1 | 4725.270 | -407.010 |
| 310 | TESTO2 | 4975.290 | -407.010 |
| 311 | TESTIN | 5225.310 | -407.010 |
| 312 | VDD1 | 5475.360 | -407.010 |
| 313 | VDD1 | 5575.320 | -407.010 |
| 314 | VDD1 | 5675.280 | -407.010 |
| 315 | VSS1 | 5853.630 | -407.010 |
| 316 | VSS1 | 5953.590 | -407.010 |
| 317 | VSS1 | 6053.550 | -407.010 |
| 318 | VSS2 | 6303.570 | -407.010 |
| 319 | VSS2 | 6403.530 | -407.010 |
| 320 | VSS2 | 6503.490 | -407.010 |
| 321 | VDD2 | 6843.180 | -407.010 |
| 322 | VDD2 | 6943.140 | -407.010 |
| 323 | VDD2 | 7043.100 | -407.010 |
| 324 | DUMMY11 | 7304.490 | -407.010 |
| 325 | STHR | 7479.540 | -407.010 |
| 326 | DUMMY12 | 7654.560 | -407.010 |
| 327 | DUMMY13 | 7772.010 | -235.200 |
| 328 | DUMMY14 | 7772.010 | -135.180 |
| 329 | DUMMY15 | 7772.010 | -35.160 |
| 330 | DUMMY16 | 7772.010 | 64.860 |
| 331 | DUMMY17 | 7772.010 | 164.880 |
| 332 | DUMMY18 | 7311.420 | 407.010 |

## 3. PIN FUNCTIONS

| Pin Symbol | Pin Name | Pad No. | I/O |  |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Pin Symbol | Pin Name | Pad No. | I/O | Description |
| :---: | :---: | :---: | :---: | :---: |
| AP | Output SW ON/OFF | 270 | Input | MODE $=\mathrm{L}$ <br> This pin turns ON/OFF the BIAS circuit and turns on the output SW and amplifier. When $A P$ is H , the amplifier is set and the LCD is driving. <br> The amplifier output and output SW are turned on at the rising edge of AP, starting the LCD drive. Note that the output SW is turned off at the rising edge of STB and the output becomes Hi-Z (Hi-Z: High impedance). For details, refer to 4.1 Drive Timing by MODE and AP Signal. <br> For the AP input timing, refer to Switching Characteristics Waveform. MODE $=\mathrm{H}$ <br> A sauce driver output circuit is changed to an amplifier output by grand fixation. For details, refer to 4.1 Drive Timing by MODE and AP Signal. |
| GAM | External $\gamma$-usage selection | 267 | Input | When the $\gamma$-correction power supply is input externally, switch GAM to H . If two or more chips are used, be sure to input the $\gamma$-correction power supply externally. <br> Figure 4-4 shows an input example of the $\gamma$-correction power supply. <br> GAM $=\mathrm{L}$ : External $\gamma$-correction power supply not input (open) <br> GAM $=\mathrm{H}$ : External $\gamma$-correction power supply input |
| MODE | Driver output functional change | 265 | Input | The drive mode of the sauce driver output by AP pin is set up as follows. For details, please refer to 4.1 Drive Timing by MODE and AP Signal. <br> MODE = L: Normal drive mode <br> MODE $=\mathrm{H}$ : Grand output drive mode |
| $\mathrm{V}_{0}$ to $\mathrm{V}_{4}$ | $\gamma$-corrected power supplies | 294 to 280 | - | These pins input the $\gamma$-corrected power supplies from outside, the relationship below must be observed. Also, be sure to stabilize the gray-scale-level power supply during gray-scale voltage output. $\mathrm{V}_{\text {SS2 }} \leq \mathrm{V}_{4} \leq \mathrm{V}_{3} \leq \mathrm{V}_{2} \leq \mathrm{V}_{1} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{DD} 2}$ |
| BA | BIAS current adjustment function | 266 | Input | This pin adjusts the BIAS current and through rate of amplifier inside IC. <br> Select either the high power mode or low power mode. <br> In addition, as compared with the time of the low power mode, twice about as many bias current as this flows at the time of high power mode. <br> $B A=L$ : Low power mode <br> $\mathrm{BA}=\mathrm{H}$ : high power mode |
| TESTIN | TEST input pin | 311 | Input | Set to H or leave open |
| TESTo1, TESTo2 | TEST output pin | $\begin{aligned} & 309, \\ & 310 \end{aligned}$ | Output | Leave open. |
| VDD1 | Logic power supply | $\begin{array}{\|l\|} \hline 254 \text { to } 256, \\ 312 \text { to } 314 \\ \hline \end{array}$ | - | 2.2 to 3.6 V |
| VDD2 | Driver power supply | $\begin{array}{\|l\|} \hline 251 \text { to } 253, \\ 321 \text { to } 323 \\ \hline \end{array}$ | - | 4.5 to 5.5 V |
| Vss1 | Logic ground | $\begin{array}{\|l} \hline 257 \text { to } 259, \\ 315 \text { to } 317 \\ \hline \end{array}$ | - | Ground |
| V ss2 | Driver ground | $\begin{array}{\|l\|} \hline 260 \text { to } 262, \\ 318 \text { to } 320 \\ \hline \end{array}$ | - | Ground |
| Dummy1 to dummy18 | Dummy | $\begin{aligned} & 241 \text { to } 247,250, \\ & 279,295,324, \\ & 326 \text { to } 332 \\ & \hline \end{aligned}$ | - | This pin is dummy. |

Caution To avoid latchup failure, the sequence when turning on the power must be VDD1 $\rightarrow$ logic input $\rightarrow$ $V_{D D 2} \rightarrow$ gray-scale power supply ( $\mathrm{V}_{0}$ to $\mathrm{V}_{4}$ ), and the reverse sequence when turning off the power. Follow this sequence during shift periods as well.

## 4. DISPLAY DRIVING CIRCUIT

The display driving circuit of $\mu$ PD161830 consists of $\gamma$-resistance and $\gamma$-selection switch (SW) which are shown below, a D/A converter, and an output stage.

The function of each block is as follows.
$\gamma$-resistance $\quad$ : It is string resistance for $\gamma$-curve.
$\gamma$-selection switch (SW): Change $\gamma$-curve at the time of a positive and a negative drive.
D/A converter : Choose an output voltage level from display data.
Output stage : It consists of amplifier for a drive and a switch for a voltage maintenance drive, and an inverter for 8 color displays.

Figure 4-1. Output Circuit Image


### 4.1 Drive Timing by MODE and AP Signal

## -MODE $=\mathrm{L}$

Normal drive is selected when a MODE pin is set as $L$.
Based on output stage construction, AP pin, STB pin, CLK pin signal, and the relation of Sn (sauce output) state are shown in the next figure.

From 1 clock of a CLK signal to 4 clock is used for the output stage after a STB standup, it carries out decoding to the latch output voltage level of display data, and transmits to an output circuit.
The output circuit's having prevented from Sn pin output compulsorily the output of the level which is not decided as a $\mathrm{Hi}-\mathrm{Z}$ state from the standup of a STB signal to the standup of a CLK signal 4 clock.
When AP pin is L input after 4 clock rises, as for Sn pin output, Hi-Z state is maintained, and an output circuit changes from the standup of AP pin input to an AMP drive state. Moreover, Sn pin outputs that the notes 1 which pull up to the voltage (display data) level which requires the potential of a TFT drain line, or are reduced ${ }^{\text {Note } 1}$.

When low power consumption is required, AMP pin is switched from H to L , after a voltage level attain to requirement voltage level L, output circuit stage operation is changed into SW drive ${ }^{\text {Note2 }}$, and it stabilizes a voltage level.
Since liquid crystal load is driven only by SW drive of $\gamma$-resistance direct file when referred to as AP $=\mathrm{L}$ before attainment of the level to demand, most time is needed for level attainment.
Since this timing ( $\mathrm{AP}=\mathrm{H}$ period) is dependent on the load conditions of liquid crystal, it is a real use TFT panel and fully needs to be evaluated.

Notes 1. When it is always set as $\mathrm{AP}=\mathrm{H}, \mathrm{Sn}$ pin starts an AMP drive automatically after the standup of 4 clock.
2. At the time of SW drive, stop the bias current of an output stage amplifier circuit, and stop the consumption current of the output stage.

Figure 4-2. Output Stage Operation Image


Examples of the input/output timing of each signal during white and black display in normal mode are shown below.

Figure 4-3. Timing Chart


8-color display mode

$\cdot \mathrm{MODE}=\mathrm{H}$ (GND output driving)
When a MODE pin is set as H , the output change function by AP pin is changed as follows.

| AP Pin | Sn Pin (source output) Drive |
| :---: | :--- |
| L | GND output (Vss fixed) |
| H | Normal AMP operation |

As for sauce output, output is fixed to ground (Vss) in falling of AP signal at the time of GND output drive (MODE = $H$ ). Moreover, the return to an APM drive usually returns from the next $S T B=H$ period which latched $A P=H$ by the rising edge of STB signal. The relationship of the CLK signal at the time of a GND output drive, a STB signal, AP signal, and Sn state is shown as follows.


## $4.2 \gamma$ Correction Power Supply Connection Example

The $\mu$ PD161830 enables customization of the $\gamma$-correction power supply on both the positive and negative polarity sides (refer to 6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE). Consequently, a $\gamma$ correction power supply does not have to be input externally when a single source-driver chip is being used in the panel.
Multiple chips can also be used without having to input a $\gamma$-correction power supply externally because the error between the chips can be absorbed by shorting the $\gamma$-correction power supply pins, as shown in Figure 4-4.

Figure 4-4. $\boldsymbol{\gamma}$-Correction Power-Supply Connection Example


### 4.3 CLK Signal Input

Input at least 4 clocks of the CLK signal after the rising of the STB signal.


Note Internal latch signal : It is the signal that do latch the display data put in data register in output latch circuit.

## 5. MODE EXPLANATION

Normal Mode/ 8-clor Display Mode

| CM | POL | Data | Driver Output Status | Driver Output (in normally white) |
| :---: | :---: | :---: | :---: | :---: |
| H | H | $\mathrm{MSB}=\mathrm{H}$ | 8-color mode | White level display |
|  |  | MSB $=\mathrm{L}$ |  | Black level display |
|  | L | MSB $=\mathrm{H}$ |  | White level display |
|  |  | $\mathrm{MSB}=\mathrm{L}$ |  | Black level display |
| L | H | All bit $=\mathrm{H}$ | 260,000-color mode | White level display |
|  |  | All bit $=$ L |  | Black level display |
|  | L | All bit $=\mathrm{H}$ |  | White level display |
|  |  | All bit $=$ L |  | Black level display |

## 6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

The relationship between input data and output voltage are shown in Table 6-2.
Any 3 major points $\mathrm{V}_{1}$ to $\mathrm{V}_{3}$ from the LCD panel $\gamma$-characteristics curve can be used as the external power supplies.
The relationship $\mathrm{V}_{0}$ to $\mathrm{V}_{4}$ external power supplies and $\gamma$-correction resistance is shown in Table 6-1, Figure 6-1.

Table 6-1. Relationship between External Power Supply Pins and $\gamma$-correction Resistance

| Pin Name | Voltage (V) | Resistance $(\Omega)$ |
| :---: | :---: | :---: |
| $\mathrm{V}_{0}$ | 5.0 | 0 |
| $\mathrm{~V}_{1}$ | 3.5 | 7,500 |
| $\mathrm{~V}_{2}$ | 2.5 | 12,500 |
| $\mathrm{~V}_{3}$ | 1.5 | 17,500 |
| $\mathrm{~V}_{4}$ | 0 | 25,000 |

Figure 6-1. Relationship between External Power Supply Pins and $\gamma$-correction Resistance


This external power supply pins ( $\mathrm{V}_{0}$ to $\mathrm{V}_{4}$ ) can customize the $\gamma$-correction voltage by selecting the desired voltage from one of 250 divisions of the string resistor between VSS2 and VDD2, which generated $\gamma$-correction voltage. Note that the voltage can be selected individually for both positive and negative polarity.

Table 6-2. Relationship of Input Data and Output Voltage in the $\mu$ PD161830
T.B.D.

Remark T.B.D. (To be determined.)

### 6.1 Connection between $\boldsymbol{\gamma}$ correction Resistance, Power Supply, and GND Pin

Connection of $\gamma$ compensation resistance power supply ( $\mathrm{V}_{0}$ to $\mathrm{V}_{4}$ ) and a power supply pin ( $\mathrm{VdD2}^{\text {and }} \mathrm{V}_{\mathrm{ss} 2}$ ) is indicated below to be $\gamma$ compensation resistance of $\mu$ PD161830.
By setup of a GAM pin, as for $\gamma$-compensation resistance, connection changes the highest minimum potential between VDD2 to $\mathrm{V}_{\mathrm{Ss} 2}$ or among $\mathrm{V}_{0}$ to $\mathrm{V}_{4}$.

Figure 6-2. GAM Pin Function


## 7. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format: 6 bits $\times$ RGBs (3 dots)
Input width: 18 bits (1-pixel data)
$\mathrm{R}, / \mathrm{L}=\mathrm{H}$ (Right shift)

| Output | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | $\ldots$ | $\mathrm{~S}_{239}$ | $\mathrm{~S}_{240}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data | $\mathrm{D}_{00}$ to $\mathrm{D}_{05}$ | $\mathrm{D}_{10}$ to $\mathrm{D}_{15}$ | $\mathrm{D}_{20}$ to $\mathrm{D}_{25}$ | $\mathrm{D}_{00}$ to $\mathrm{D}_{05}$ | $\ldots$ | $\mathrm{D}_{10}$ to $\mathrm{D}_{15}$ | $\mathrm{D}_{20}$ to $\mathrm{D}_{25}$ |

R,/L = L (Left shift)

| Output | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | $\ldots$ | $\mathrm{~S}_{239}$ | $\mathrm{~S}_{240}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data | $\mathrm{D}_{00}$ to $\mathrm{D}_{05}$ | $\mathrm{D}_{10}$ to $\mathrm{D}_{15}$ | $\mathrm{D}_{20}$ to $\mathrm{D}_{25}$ | $\mathrm{D}_{00}$ to $\mathrm{D}_{05}$ | $\ldots$ | $\mathrm{D}_{10}$ to $\mathrm{D}_{15}$ | $\mathrm{D}_{20}$ to $\mathrm{D}_{25}$ |

## 8. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V}\right)$

| Parameter | Rating | Unit |  |
| :--- | :--- | :--- | :---: |
| Logic Part Supply Voltage | $\mathrm{V}_{\mathrm{DD} 1}$ | -0.3 to +4.5 | V |
| Driver Part Supply Voltage | $\mathrm{V}_{\mathrm{DD} 2}$ | -0.3 to +6.0 | V |
| Input Voltage | $\mathrm{V}_{\mathrm{I}}$ | -0.3 to $\mathrm{V}_{\mathrm{DD} 1,2+0.3}$ | V |
| Output Voltage | $\mathrm{V}_{\mathrm{o}}$ | -0.3 to $\mathrm{VDD1,2+0.3}$ | V |
| Operating Ambient Temperature | $\mathrm{T}_{\mathrm{A}}$ | -20 to +75 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | $\mathrm{T}_{\mathrm{stg}}$ | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range ( $\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}$ to $+\mathbf{7 5}{ }^{\circ} \mathrm{C}$, $\mathrm{Vss} 1=\mathrm{Vss} 2=\mathbf{0} \mathrm{V}$ )

| Parameter | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Logic Part Supply Voltage | $\mathrm{V}_{\mathrm{DD} 1}$ |  | 2.2 |  | 3.6 | V |
| Driver Part Supply Voltage | $\mathrm{V}_{\mathrm{DD} 2}$ |  | 4.5 | 5.0 | 5.5 | V |
| High-Level Input Voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | $0.7 \mathrm{~V}_{\mathrm{DD} 1}$ |  | $\mathrm{~V}_{\mathrm{DD} 1}$ | V |
| Low-Level Input Voltage | $\mathrm{V}_{\mathrm{IL}}$ |  | 0 |  | $0.3 \mathrm{~V}_{\mathrm{DD} 1}$ | V |
| $\gamma$-Corrected Voltage | $\mathrm{V}_{0}$ to $\mathrm{V}_{4}$ |  | $\mathrm{~V}_{\mathrm{SS} 2}$ |  | $\mathrm{~V}_{\mathrm{DD} 2}$ | V |
| Clock Frequency | fCLK |  |  |  | 15 | MHz |

Electrical Characteristics ( $\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}$, $\mathrm{VDD}_{\mathrm{d} 1}=2.2$ to 3.6 V , $\mathrm{V}_{\mathrm{dD} 2}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$, $\mathrm{Vss}_{1}=\mathrm{Vss}_{2}=0 \mathrm{~V}$ )

| Parameter | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Leak Current | IIL | $D_{00-D_{05},} D_{10-D} D_{15}, D_{20-D} 25, R, L, S T B, C L K$, STHR(L), INV, CM, AP, BA, POL, GAM, VCsel |  |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
| Input Current | IL2 | TESTIN | 10 | 40 | 200 | $\mu \mathrm{A}$ |
| High-Level Output Voltage | Vон | STHR (STHL), $1 \mathrm{loH}=-1.0 \mathrm{~mA}$ | VDD1 - 0.5 |  |  | V |
| Low-Level Output Voltage | VoL | STHR (STHL), loL $=+1.0 \mathrm{~mA}$ |  |  | 0.5 | V |
| VCOM Output Voltage | VoH2 | $\mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$, $\mathrm{lo}=-1.0 \mathrm{~mA}$ | VDD2 - 0.5 |  |  | V |
|  | VoL2 | $\mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \mathrm{lo}=+1.0 \mathrm{~mA}$ |  |  | 0.5 | V |
| $\gamma$-Correction Power-supply Static Current Consumption | $\mathrm{I}_{\gamma}$ | $\mathrm{V}_{0}=5.0 \mathrm{~V}, \mathrm{~V}_{4}=0 \mathrm{~V}$ <br> (when in $\gamma$-correction power mode) | 100 | 200 | 400 | $\mu \mathrm{A}$ |
| Driver Output Current (AMP drive) | Ivor1 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \text {, Vout }=\mathrm{V}_{\mathrm{x}}-1.0 \mathrm{~V}^{\text {Note } 1} \\ & \text { Input data: } 1 \mathrm{FH} \end{aligned}$ |  | -0.5 | -0.15 | mA |
|  | Ivol1 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \text {, Vout }=\mathrm{V}_{\mathrm{x}}+1.0 \mathrm{~V}^{\text {Note } 1} \\ & \text { Input data: } 20 \mathrm{H} \end{aligned}$ | 0.15 | 0.50 |  | mA |
| Driver Output Current (Switch drive) | Ivoh2 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \text {, Vout }=\mathrm{V}_{x}-1.0 \mathrm{~V}^{\text {Note } 1} \\ & \text { Input data: } 1 \mathrm{FH} \end{aligned}$ |  | -50 | -15 | $\mu \mathrm{A}$ |
|  | Ivol2 | $\begin{aligned} & \text { Vod2 }=5.0 \mathrm{~V} \text {, Vout }=\mathrm{V}_{\mathrm{x}}+1.0 \mathrm{~V}^{\text {Note } 1} \\ & \text { Input data: } 20 \mathrm{H} \end{aligned}$ | 15 | 40 |  | $\mu \mathrm{A}$ |
| Driver Output Current (8-color display mode) | Vvö3 | $\mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \mathrm{lo}=-50 \mu \mathrm{~A}$ | VDD2 - 0.5 |  |  | V |
|  | Vvol3 | $\mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \mathrm{lo}=+50 \mu \mathrm{~A}$ |  |  | 0.5 | V |
| Output Voltage Deviation | $\Delta \mathrm{V}$ 。 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD1} 1}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}, \\ & \text { VOUT }=2.5 \mathrm{~V}^{\text {Note } 1} \end{aligned}$ |  | $\pm 10$ | $\pm 20$ | mV |
| Output Voltage Range | Vo | Input data: 00 H to 3 FH | $\mathrm{V}_{\text {ss2 }}+0.05$ |  | VDD2 - 0.05 | V |
| Logic Part Dynamic Current Consumption | IDD1 | With no load ${ }^{\text {Note2 }}$ |  | 0.4 | 0.8 | mA |
| Driver Part Dynamic Current Consumption | IDD2 | $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, with no load ${ }^{\text {Note2 }}$ |  | 0.9 | 1.5 | mA |

Notes 1. Vx refers to the output voltage of analog output pins $S_{1}$ to $S_{240}$.
Vout refers to the voltage applied to analog output pins $\mathrm{S}_{1}$ to $\mathrm{S}_{240}$.
2. fcLk $=15 \mathrm{MHz}$, STB cycle $=60 \mu \mathrm{~s}$, AP pulse width $=15 \mu \mathrm{~s}$, BA=L (low power mode)

Switching Characteristics ( $\mathrm{T}_{\mathrm{A}}=-20$ to $+75^{\circ} \mathrm{C}$, $\mathrm{VdD1}^{2}=2.2$ to 3.6 V , $\mathrm{VdD2}^{2}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{Vss} 1=\mathrm{Vss}_{2}=0 \mathrm{~V}$ )

| Parameter | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Pulse Delay Time | tpLH1 | $\mathrm{CL}=15 \mathrm{pF}$ |  |  | 25 | ns |
|  | tpHL1 |  |  |  | 25 | ns |
| Driver Output Delay Time <br> (High power mode) | tРНН2н | $\begin{aligned} & \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{AP} \uparrow \rightarrow \mathrm{Vout}-100 \mathrm{mV} \text { or } \mathrm{Vout}^{2}+100 \mathrm{mV} \end{aligned}$ |  |  | 12 | $\mu \mathrm{s}$ |
|  | tPHL2H |  |  |  | 12 | $\mu \mathrm{s}$ |
| Driver Output Delay Time <br> (Low power mode) | tPLH2L | $\begin{aligned} & \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{AP} \uparrow \rightarrow \text { Vout }-100 \mathrm{mV} \text { or Vout }+100 \mathrm{mV} \end{aligned}$ |  |  | 15 | $\mu \mathrm{s}$ |
|  | tphl2 |  |  |  | 15 | $\mu \mathrm{s}$ |
| Input Capacitance | $\mathrm{Cl}_{11}$ | $V_{0}$ to $V_{4}, T_{A}=25^{\circ} \mathrm{C}$ |  | 5 | 15 | pF |
|  | $\mathrm{Cl}_{12}$ | Excluded $\mathrm{V}_{0}$ to $\mathrm{V}_{4}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 10 | 15 | pF |

Timing Requirements ( $\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD1}=2.2$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{Vs} 1=0 \mathrm{~V}, \mathrm{tr}_{\mathrm{V}}=\mathrm{tf}_{\mathrm{t}}=10 \mathrm{~ns}$ )

| Parameter | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock Pulse Width | PWClk |  | 65 |  |  | ns |
| Clock Pulse High Period | PWСıк(н) |  | 20 |  |  | ns |
| Clock Pulse Low Period | PWCLK(L) |  | 20 |  |  | ns |
| Data Setup Time | tsetup 1 |  | 20 |  |  | ns |
| Data Hold Time | thold |  | 20 |  |  | ns |
| Start Pulse Setup Time | tsetup 2 |  | 20 |  |  | ns |
| Start Pulse Hold Time | thold |  | 20 |  |  | ns |
| Start Pulse Low Period | tspL |  | 3 |  |  | CLK |
| Last Data Timing | tLDT |  | 2 |  |  | CLK |
| CLK-STB Time | tclk-stb | CLK $\uparrow \rightarrow$ STB $\uparrow$ | 20 |  |  | ns |
| STB Pulse Width | PWstb |  | 40 |  |  | ns |
| Start Pulse Rising Time | tsti-Sth | STB $\uparrow \rightarrow$ STH $\uparrow$ | 3 |  |  | CLK |
| INV Set-up Time | tsetup3 |  | 20 |  |  | ns |
| INV Hold Time | thold 3 |  | 20 |  |  | ns |
| STB Set-up Time | tsetup 4 |  | 20 |  |  | ns |
| STB Hold Time | thold 4 |  | 20 |  |  | ns |
| POL-STB Time | tpol-stb |  | 0 |  |  | ns |
| STB-POL Time | tstb-poL |  | 40 |  |  | ns |
| CM-STB Time | tсм-stв |  | 0 |  |  | ns |
| STB-CM Time | tstb-cm |  | 40 |  |  | ns |
| STB-AP Time | tstb-Ap | STB $\uparrow \rightarrow \mathrm{AP} \downarrow$ | 20 |  |  | $\mu \mathrm{s}$ |
| AP Pulse Width (High power mode) | PW ${ }_{\text {APH }}$ |  | 12 |  |  | $\mu \mathrm{s}$ |
| AP Pulse Width (Low power mode) | PWAPL | STB cycle $40 \mu \mathrm{~s}, \mathrm{CL}=30 \mathrm{pF}$ | 15 |  |  | $\mu \mathrm{s}$ |
| AP Set-up Time | tsetup | STB $\uparrow$, MODE $=\mathrm{H}$ | 0 |  |  | ns |
| AP Hold Time | thold | STB $\uparrow$, MODE $=\mathrm{H}$ | 40 |  |  | ns |



## NOTES FOR CMOS DEVICES

## (1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

## (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

## (3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents<br>NEC Semiconductor Device Reliability/Quality Control System (C10983E)<br>Quality Grades On NEC Semiconductor Devices (C11531E)

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

