
User’s Manual

Target device
78K/0 series

ID78K0
Integrated Debugger

Guide (Windows™ based operation)

1991©
Printed in Japan

Document No. U11649EJ1V2UM00 (1st edition)
Date Published March 1998 J CP(K)

1996

IBM PC/AT is a trademark of International Business Machines Corporation.

i386 and i486 are trademarks of Intel Corporation.

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation

in the United States and/or other countries.

Windows is an abbreviation of Microsoft TM Windows TM Operating System.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or of others.

M7A 96. 10

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

J98. 2

Preface

i

Preface

Thank you for purchasing the ID78K0 integrated debugger.

Conventional debuggers are used by entering commands directly. The ID78K0 integrated debugger, on
the other hand, runs under Windows to provide a friendly, easy-to-use GUI (Graphical User Interface). Its
operation is mouse-based, and operation is possible without having to refer to the manual. Also,
frequently used commands are represented as buttons, allowing their activation simply by clicking the
button with the mouse.

«Purpose»
The purpose of this manual is to provide the user with a brief explanation of how to use the ID78K0
integrated debugger. This manual should be read together with the “ID78K0 Integrated Debugger
User’s Manual (Reference).” For a detailed explanation of each window, refer to the “ID78K0
Integrated Debugger User’s Manual (Reference).”

«Files supplied with the integrated debugger»
Files used with the integrated debugger

File name Explanation

ID78K0.EXE Debugger main section.

The debugger is started by executing this file.

ID78K0P.DLL Contains the libraries used for link processing with Project Manager.

DB78K0.DLL Contains libraries for file and symbol processing.

AS78K0.DLL Contains libraries for assembly and disassembly.

EX78K0.DLL Contains libraries for communication with the in-circuit emulator.

EX78K0.OM0 Downloaded into the in-circuit emulator when the debugger starts.

ID78K0.HLP Help file.

EXPC.INI Initial file.

Used to specify a set point and an interrupt address for the PC interface board.

Sample programs

File name Explanation

SAMPLE.C Sample program written in C.

SUB.C Sample program written in C. Contains the subroutines of SAMPLE.C.

SAMPLE.LNK Load module file for sample programs SAMPLE.C and SUB.C. Compiled by
µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµPD78014.

Preface

ii

«Target device»
The device which is to be the target of debugging by the integrated debugger is called a target device.
The table below lists target devices, their associated device files, microprograms, and the names of
the CPUs which select the target devices.

Target device CPU name Device file

µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµPD78014 78014 D014.78K

µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµPD78044 78044 D044.78K

µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµPD78054 78054 D054.78K

µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµPD78064 78064 D064.78K

Note: For details of other devices, contact your NEC sales representative or authorized dealer.

«In-circuit emulator»
An in-circuit emulator and dedicated interface board are required to use the integrated debugger.

The table below lists the in-circuit emulator boards and interface boards that can be connected to host
machines.

In-circuit emulator

Product name Explanation

IE-78000-R-A In-circuit emulator main board

IE-78xxx-R-EM(Note 1) Product type dependent board

Note 1. For details, contact your NEC sales representative or authorized dealer.

Interface boards

Product name Explanation

IE-70000-98-IF-A Interface board for PC-9801 and 9821 Series (C bus)

IE-70000-98-IF-B Interface board for PC-9801 and 9821 Series (C bus)

IE-70000-98N-IF(Note 2) Interface board for 98NOTE (110-pin expansion bus)

IE-70000-PC-IF-B(Note 3) Interface board for IBM-PC/AT Series (ISA bus)

Note 2. The IE-70000-98N-IF is corrected to the expansion bus (110-pin type) of 98NOTE.
Note 3. The IE-70000-PC-IF-A cannot be used.

Preface

iii

«Host machine»
The integrated debugger runs under Windows. The table below lists the requirements for the
machine to be used.

Item Requirement

Host machine PC-9801, 9821 or IBM-PC/AT Series

CPU i80386 or above (i80486, 33 MHz or above recommended)

Main memory 4M bytes or more (8M bytes or more recommended)

OS Windows 3.1 or Windows 95

Screen size 640 x 400 dots or larger (800 x 600 dots or larger recommended)

«Configuration»

•• Chapter 1 Overview

Explains general operations of the integrated debugger.

•• Chapter 2 Basic Operations

Explains the relationships between windows and other information by purpose.

•• Chapter 3 Advanced Use of ID78K0

Describes the terms used in the explanation of the integrated debugger.

«Conventions»
The following explains the conventions used throughout this manual.

 : Indicates a key to be pressed.

 + : Indicates keys which must be pressed at the same time.

 “ ” : Indicates a character string.

 ‘ ’ : Indicates a character.

 [] : Indicates an optional parameter.

GRPH key : Representation of a key featured by the PC-9801 and 9821 Series.

The Alt key of the IBM-PC/AT Series has the same function.

All representations of keys in this manual are for the PC-9801 and 9821 Series. When using an IBM-
PC/AT Series computer as a host machine, see Appendix B .

Preface

iv

«Screen»
The descriptions in this manual refer to Windows 95 screens unless specified otherwise.

The differences between Windows 3.1 screens and Windows 95 screens are as described below.

Windows
3.1

Windows
95

Remarks

Control menu box Displays the control menu.

With Windows 95, an icon or the Windows logo is
displayed.

Minimizes the window.

Maximizes the window.

Window size
modification

Restores the window to its original size.

Close button (None) Closes the window.

Multiple options can be selected.Option

Only one of the multiple options can be selected.

Windows 95 screen

Windows 3.1 screen

Control menu box Window size modification, program closing

Options

Preface

v

«Cautions»
• To perform source debugging, add options for creating debug information whenever compiling,

assembly, or linking is performed. Otherwise, source debugging may not be possible.

• When creating your own startup routine in C, add the symbols given below. Failing to do so may
result in part of the step execution not being performed correctly.

Where to add Symbol to be added

Start of startup routine _@cstart

End of startup routine _@cend

«Related Documents»
The documents (user’s manuals) related to this manual are listed below:

Document numberDocument name

Japanese English

ID78K0 Integrated Debugger User’s Manual, Reference U11539J U11539E

Language EEU-815 EEU-1399RA78K Series Assembler Package

Operation EEU-809 EEU-1404

RA78K Series Structured Assembler Preprocessor EEU-817 EEU-1402

Language EEU-655 EEU-1280CC78K Series C Compiler

Operation EEU-656 EEU-1284

78K/0 Series User’s Manual, Instructions IEU-849 EEU-1372

µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµPD78014, 78014Y Sub-Series U-10085JJ EEU-1343

Note: The above documents may be revised without notice. Use the latest versions when
designing an application system.

Contents

vi

Chapter 1 Overview-- 1
1.1 Starting and Terminating the Debugger --- 2

1.1.1 Starting --- 2
1.1.2 Terminating-- 3

1.2 Making Maximum Use of the Main Window -- 4
1.2.1 Main Window Functions-- 4
1.2.2 Making Maximum Use of Menus --- 5
1.2.3 One-Touch Tool Bar Operation--- 5
1.2.4 Using Information Provided by the Status Bar ---------------------------------- 7

Chapter 2 Basic Operations --- 8
2.1 Establishing the Environment -- 9

2.1.1 Selecting a Device--- 10
2.1.2 Selecting a CPU Clock --- 11
2.1.3 Mapping -- 12
2.1.4 Specifying a Stack Area-- 13
2.1.5 Setting the Alternate Software Operation Clock -------------------------------- 14
2.1.6 Setting Memory Banks --- 16
2.1.7 Loading/Saving the Debugging Environment ----------------------------------- 18

2.2 Source Level Debugging-- 20
2.2.1 Notes on Compilation, Assembly, and Linking---------------------------------- 20
2.2.2 Downloading a Program-- 21
2.2.3 Displaying a Source --- 22
2.2.4 Functions Supported by the Source Window ----------------------------------- 23
2.2.5 Jump from the Source Window--- 24

2.3 Instruction Level Debugging-- 25
2.3.1 Assembly Language Display and Online Assembly --------------------------- 26
2.3.2 Saving and Referencing Displayed Assembly Language Code ------------ 27
2.3.3 Functions Supported by the Assemble Window-------------------------------- 28
2.3.4 Jump from the Assemble Window --- 29

2.4 Manipulating Memory -- 30
2.4.1 Displaying and Modifying Memory Data-- 30
2.4.2 Basic Memory Data Operations -- 31
2.4.3 Saving and Referencing Displayed Memory Data ----------------------------- 32
2.4.4 Functions Available in the Memory Window------------------------------------- 33
2.4.5 Jumping from the Memory Window-- 34

2.5 Manipulating Registers -- 35
2.5.1 Displaying and Modifying Registers --- 35
2.5.2 Saving and Referencing Displayed Register Data ----------------------------- 36
2.5.3 Functions Available in the Register Window ------------------------------------ 37
2.5.4 Functions Available in the SFR Window --- 37
2.5.5 Jumping from the Register Window --- 38

2.6 Creating Events --- 39
2.6.1 Setting and Referencing Events in the Source Window
 and Assemble Window--- 40
2.6.2 Creating Event Conditions--- 41
2.6.3 Setting Events -- 43
2.6.4 Saving and Restoring Event Conditions-- 44
2.6.5 Functions Available in the Event Manager--------------------------------------- 45
2.6.6 Jumping to an Event Setting Address--- 46

Contents

vii

2.7 Manipulating Symbols (Variables) -- 47
2.7.1 Displaying and Modifying Variables --- 48
2.7.2 Saving and Referencing Symbol Data -- 50
2.7.3 Functions Available in the Variable Window and
 Local Variable Window--- 51

2.8 Using the Tracer Effectively -- 52
2.8.1 Displaying Trace Results -- 53
2.8.2 Saving and Referencing Trace Results--- 54
2.8.3 Effective Trace Memory Usage 1 (Trace Mode Setting) --------------------- 55
2.8.4 Effective Trace Memory Usage 2
 (Trace Full Break, Snapshot Trace)--- 59
2.8.5 Inter-Window Connection Functions
 (Window Connection Function, Jump Function) ------------------------------- 61

2.9 Measuring the Execution Time -- 63
2.9.1 Measuring Program Execution Time -- 63
2.9.2 Time Measurement Using the Tracer --- 64

Chapter 3 Advanced Use of ID78K0--- 65
3.1 Verifying the Validity of Evaluation-- 66

3.1.1 Coverage -- 66
3.1.2 Verifying the Validity of Evaluation Based on Coverage---------------------- 67
3.1.3 Notes on Coverage Results --- 69

3.2 Using External Sense Clips -- 70
3.2.1 Tracing External Data--- 71
3.2.2 Trigger Output -- 72
3.2.3 Real-Time RAM Output -- 73
3.2.4 Creating an Event by ANDing a Data Condition-------------------------------- 74

3.3 Measuring Time by Setting Conditions -- 75

Appendix A Error Messages--- 77

Appendix B Key Functions --- 87
B.1 Functions of Special Function Keys-- 87

B.2 Functions of Special Function Keys (CTRL + Key) -- 88

Appendix C Menus--- 89

[MEMO]

Chapter 1 Overview

1

Chapter 1 Overview

This chapter outlines the debugger.

1.1 Starting and Terminating the Debugger
This section explains how to start and terminate the debugger.

1.2 Making Maximum Use of the Main Window
The main window appears when the debugger is started. The main window supports many
functions. By making full use of these functions, the efficiency of debugging can be significantly
enhanced.

Chapter 1 Overview 1.1 Starting and Terminating the Debugger

2

1.1 Starting and Terminating the Debugger
• The debugger can be started and terminated easily.
• To start the debugger, select the icon, shortcut key, or corresponding item in the start menu.

These will have been registered when the software was installed.
• To terminate the debugger, select the corresponding item from the menu. When terminating the

debugger, you may select saving of the debugging environment. Doing so allows the debugger
to be used immediately the next time it is started.

1.1.1 Starting
1. Start Windows.
2. Turn on the in-circuit emulator.
3. Turn on the target, if being used.
4. Double-click the icon or shortcut key, registered when the debugger was installed.

5. After the debugger starts, the configuration dialog box appears.

Chapter 1 Overview 1.1 Starting and Terminating the Debugger

3

6. Select a debug target device.

(Note that the debug target device can be selected only when the debugger is being
started.)

7. Set the clock source, memory mapping, and other required items.

8. Once all the necessary items have been set, click the button. This completes
device initialization and causes the required data to be downloaded to the in-circuit emulator.

9. Once downloading has been completed, the main window of the debugger opens. The main

window is used as the core window for debugging.

1.1.2 Terminating
1. Select File from the menu bar of the main window.

2. Select Exit from the File pull-down menu.

3. The Exit Debugger dialog box appears.

4. Click the button to terminate the debugger.

Chapter 1 Overview 1.2 Making Maximum Use of the Main Window

4

1.2 Making Maximum Use of the Main Window
• All debugger windows are based on the main window.
• The main window supports many functions, all of which are easy to use.

1.2.1 Main Window Functions
• The main window supports four major functions.
• Many debugger operations are performed from the main window. Remember the following four

functions.

Function Description
Menu bar Contains all the functions supported by the debugger. To perform

some operation with the debugger, first check the contents of the
menu bar.

Tool bar Contains the most-frequently used commands. While no target is
connected, try clicking each of the buttons, and make a note of the
graphic identifying each button.

Window display area Windows are displayed in this area. These windows include, for
example, the Source window and Assemble window, both of which
are used whenever debugging is performed.

Status bar The status of the in-circuit emulator (IE) is displayed in this area.
The IE status and break cause are particularly important.

Menu bar:
All operations supported by the debugger
are displayed on pull-down menus.

Tool Bar:
Contains he most-frequently used
commands. Tool bar commands can
be executed by a single action, making
them extremely conventient to use.

Window display area:
Windows are displayed.

Status bar:
Information such as IE
inforation is displayed.

Chapter 1 Overview 1.2 Making Maximum Use of the Main Window

5

1.2.2 Making Maximum Use of Menus
• The menus contain all the functions supported by the debugger.
• Even when you are not familiar with the debugger's functions, briefly studying each of the pull-

down menus will allow you to understand the range of functions available.
• The menus are outlined below.

Menu Description
File Contains file operation commands. This menu enables the switching of the

source displayed in the Source window, the loading and saving of project
files, and other file operations.

Edit Provides commands for copying and pasting displayed data, as well as
commands for memory editing.

View Contains display commands. Using this menu, you can retrieve variables,
enter the display start address, and display variables.

Option Allows you to display and hide the tool bar, status bar, and buttons in each
window, and to establish the debugger environment.

Execute Contains execution commands. Also, trace mode setting is performed from
this menu.

Operation Allows you to perform window mode switching, and to specify connection to
the trace window.

Browse Contains the commands used to open each window. From this menu, you
can display windows such as the event and coverage windows.

Jump Allows you to jump to the source window, assemble window, and memory
window.

Window Allows you to specify how windows are to be displayed, the arrangement of
icons, and also enables switching between windows.

Help Displays help information.

1.2.3 One-Touch Tool Bar Operation
• The tool bar consists of buttons which correspond to frequently used commands. Commands

are executed simply by clicking the corresponding button.
• The function of each button is identified by a suitably representative graphic.
• The commands assigned to the tool bar buttons can also be executed from the menu bar.

Commands for program
execution:
Commands for controlling
program execution

Window manipulation commands:
Frequently used commands such as that
for displaying a source and that for
displaying registers.

Chapter 1 Overview 1.2 Making Maximum Use of the Main Window

6

Display Description
Stops user program execution.

Executes a user program.
As soon as the break conditions are satisfied, the user program terminates.

Executes a user program.
Even when break conditions are satisfied, the user program does not terminate.

Executes the program in real time, until execution returns to the calling function.

Executes the program, step by step.
Every time this button is clicked, one step of the program is executed. For source level
debugging, one step corresponds to one line. For instruction level debugging, one step
corresponds to one instruction.
Performs Next step execution of the program.
Every time this button is clicked, one step of the program is executed, by means of Next
step execution. For source level debugging, one step corresponds to one line. For
instruction level debugging, one step corresponds to one instruction.
Initializes the debugger or emulation CPU.
Opens the Reset Debugger dialog box.

Displays the source text.
Opens the Source window.

Displays the stack contents.
Opens the Stack window.

Displays a disassembled program.
Opens the Assemble window.

Displays the contents of memory.
Opens the Memory window.

Displays the register contents.
Opens the Register window.

Registers and sets break events.
Opens the Break dialog box.

Displays trace results.
Opens the Trace View window.

Registers and sets trace events.
Opens the Trace dialog box.

Displays the SFR contents.
Opens the SFR window.

Displays timer measurement results.
Opens the Timer window.

Chapter 1 Overview 1.2 Making Maximum Use of the Main Window

7

1.2.4 Using Information Provided by the Status Bar
• The status bar displays important data including, for example, the status of the IE and the cause

of a break.
• If a break occurs at a point where no break has been set, or if no source appears when a break

occurs, for example, check this area first.

Status bar:
Information relating to IE is displayed. Break
cause information is particularly important.

1. Source file name: Displays the source file name and source line number corresponding
to the indicated PC value. If no file information is available, "---" is
displayed.

2. Function name: Displays the function name corresponding to the indicated PC value.
If no function information is available, "---" is displayed.

3. PC value: Displays the current PC value.
4. CPU status: Displays the status of the CPU (µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµPD780xx: target device).

CPU status Description
TARGET The target is on.
HOLD Bus hold mode
STANDBY Halt or stop mode
LUTCHUP Latch-up has been detected. Turn off the target and in-circuit

emulator immediately.

5. IE status: Displays the operation status of the in-circuit emulator.

IE status Description
RUN Real-time execution in progress
STEP Step-by-step execution in progress
BREAK Break status
TRACE Tracing in progress
TIMER Timer measurement in progress

6. Break cause: Displays the reason for a break. The table below lists possible break
causes.

Cause Description
Compulsory Break Normal break (manual break)
Temporally Break Normal break (break caused by internal processing)
Event Break Break triggered by an event
Out Of Range Break Break caused by procedure step termination
Trace Full Break Break caused by trace full state
Non Map Break Access to a non-mapped area was attempted.
SFR Illegal Illegal access to an SFR was attempted.
Stack Overflow Break caused by stack overflow
Write Protect An attempt was made to write to a write-protected area.

Chapter 2 Basic Operations

8

Chapter 2 Basic Operations
This chapter explains the basic operations of the ID78K0.
Each section clarifies how windows are related to each other.

2.1 Establishing the Environment
Explains how to establish a debugging environment.

2.2 Source Level Debugging
Explains the use of the Source window to debug a source program.

2.3 Instruction Level Debugging
Explains the use of the Assemble window to perform assembler level debugging.

2.4 Manipulating Memory
Explains the use of the Memory window to perform modification, initialization, and other operations
on memory.

2.5 Manipulating Registers
Explains the functions of the Register window, used to manipulate general-purpose registers, and
those of the SFR window, used to manipulate SFRs.

2.6 Creating Events
Events are very useful for debugging. Events can be used for program and trace control. This
section explains how to set an event.

2.7 Manipulating Symbols (Variables)
The debugger supports the input of symbols as data. This section explains how to enter symbols
and display variables.

2.8 Using the Tracer Effectively
The IE-78000-R-A contains 32K frames of trace memory. The tracer is used to trace data, making it
very useful for detecting program problems. This section explains the use of the tracer.

2.9 Measuring the Execution Time
Explains the time required to execute a program from beginning to end, and time tags written in the
tracer.

Chapter 2 Basic Operations 2.1 Establishing the Environment

9

2.1 Establishing the Environment

• Establishing an environment allows the debugger to recognize the configuration of a target
system. Establishing a debugging environment enables the maximum utilization of the
debugger functions.

• The environment must be established whenever the debugger is started.
• Once an environment has been established, it can be saved to a file, subsequently eliminating

the need to newly establish the environment. When the debugger is next started, the
environment can be established simply by loading the file (project file).

• For the ID78K0 operating environment, set the following items:

Item Setting window Location in
environment
setup diagram

Remarks

Device <1>CPU
CPU clock <2> <3> <4> <6>

<7> CLOCK
Peripheral equipment
operation

Configuration dialog box

<1> CPU

Memory bank switching Configuration dialog box
Bank Set dialog box

<1> CPU
<8> MEMORY

Alternate operation clock Configuration dialog box <1> CPU

Can be set
only when
the
debugger is
being
started

Memory mapping Configuration dialog box <5> <8> MEMORY
Mask option Mask Option dialog box <1> CPU

Can be set
at any time

CPU<1>

IE alternate memory
(64K bytes)

<5>

MEMORY

<8>

External Clock

Subsystem
clock

CLOCK

<6>

<7>

Power supply

EP-78xxx-R

In-circuit emulator Target jig

Target jig

Internal Clock

External Clock
or

6-8pin short

CLOCK

<2>

<3>

Subsystem
clock

or
6-8pin short

<4>

MEMORY
IE-78000-R-A

IN CIRCUIT EMULATOR

Establishing an Environment

Chapter 2 Basic Operations 2.1 Establishing the Environment

10

2.1.1 Selecting a Device
• A device can be selected in the Configuration dialog box that appears when the debugger is

started. Note that once the debugger has started, this selection cannot be changed.

Setting in the Configuration dialog box:
1. Start the debugger.
2. Select a device in the Configuration dialog box that appears when the debugger is

started.

When the main window has already been opened:
1. Terminate, then restart, the debugger.

Selecting
a device

Chapter 2 Basic Operations 2.1 Establishing the Environment

11

2.1.2 Selecting a CPU Clock
• A CPU clock is selected in the Configuration dialog box that appears when the debugger is

started. Note that once the debugger has started, the CPU clock cannot be changed.

Setting in the Configuration dialog box :
1. Start the debugger.
2. Change the CPU clock in the Configuration dialog box that appears when the debugger

is started.

When the main window has already been opened:
1. Terminate, then restart, the debugger.

• When "Internal" is selected as the CPU clock, the clock provided by the in-circuit emulator is
used as the CPU clock. This clock frequency is determined by the connected emulation board
(EM board).

Emulation board(Note) CPU clock frequency when "Internal" is selected
IE-78014-R-EM

IE-78014-R-EM-A
8.38 MHz

IE-780208-R-EM
IE-78044-R-EM

4.19 MHz

IE-78064-R-EM
IE-78078-R-EM

5.0 MHz

IE-78098-R-EM 6.0 MHz
Note For emulation boards not listed here, refer to the manual provided with the board.

To use the clock provided
by the target, select
"External."

Chapter 2 Basic Operations 2.1 Establishing the Environment

12

2.1.3 Mapping
• When external ROM/RAM is used in addition to internal ROM and internal RAM (including SFRs

and registers), the area to be mapped must be set.

To add an area to be mapped:
1. Open the Configuration dialog box. This dialog box appears when the debugger is started.

It can also be displayed by selecting Option -> Configuration... from the menu bar.

2. Set the Memory Attribute area, then click the button.

To delete a mapped area:
1. Open the Configuration dialog box. This dialog box appears when the debugger is started.

It can also be displayed by selecting Option -> Configuration... from the menu bar.

2. Select the mapped area to be deleted, then click the button.

Mapping can be performed using the
Configuration dialog box.
Emulation ROM: IE alternate ROM
Emulation RAM: IE alternate RAM
Target : Target RAM
Stack : Stack area specification

Chapter 2 Basic Operations 2.1 Establishing the Environment

13

2.1.4 Specifying a Stack Area
• To monitor stack operation, specify a stack area.
• When a stack area has been specified, any stack operation (CALL, RET, PUSH, POP)

performed outside the set area is detected as being an illegal access.
• An area in internal high-speed RAM can be specified as the stack area.
• When no stack area is specified, the entire internal high-speed RAM area is used as the stack

area.

To specify a stack area:
1. Open the Configuration dialog box. This dialog box appears when the debugger is started.

It can also be displayed by selecting Option -> Configuration... from the menu bar.

2. Set the Memory Attribute area, then click the button.

To cancel the stack area specification:
1. Open the Configuration dialog box. This dialog box appears when the debugger is started.

It can also be displayed by selecting Option -> Configuration... from the menu bar.

2. Select the mapped stack area to be deleted, then click the button.

The PD78014 contains 1024
bytes of internal high-speed
RAM between addresses
0xfb00 and 0xfeff. Therefore,
set the area to be mapped
within this range.

µ

Chapter 2 Basic Operations 2.1 Establishing the Environment

14

2.1.5 Setting the Alternate Software Operation Clock
• The alternate software is control software that runs on the 78K0 device. It controls the

resources (register values, SFRs, and memory) of the target while the in-circuit emulator is in
break mode.

• The alternate software accesses the target resources directly.
• The operation of the alternate software uses the same clock as the user program. If, therefore,

the user program uses a low-speed clock while the in-circuit emulator is in break mode, the
alternate software will also operate slowly, thus lowering the overall speed of debugger operation.
To avoid this, specify the use of the alternate software operation clock.

To set the operation clock:
1. Open the Configuration dialog box. This dialog box appears when the debugger is

started. It can also be displayed by selecting Option -> Configuration... from the menu
bar.

2. Select the operation clock in the alternate software operation clock selection area.

Setting alternate
software operation
clock

Chapter 2 Basic Operations 2.1 Establishing the Environment

15

The alternate software operating environment is illustrated below.

EX78K0.0M0

SV board

CPU for IE
control: V53

During break: Alternate software
While running: User program

Emulation CPU: 78K0
IE-78000-R-A

IN CIRCUIT EMULATOR

BK, EM board

I/O and memory
on the target

Power supply

Target

ID78K0.EXE
AS78K0.DLL
DB78K0.DLL
EX78K0.DLL

Trace board

Control software

Chapter 2 Basic Operations 2.1 Establishing the Environment

16

2.1.6 Setting Memory Banks
• The 78K0 series has an address space consisting of up to 64K bytes between addresses 0 and

0xffff.
• A program of 64K bytes or more can be run by switching part or all of the program area between

addresses 0 and 0xffff.
• The structure of the memory banks is shown below.

In the following figure, the 16K-byte space between addresses 4000h and 7fffh is used for the
memory banks. Five banks, 0 to 4, are used. When bank 0 is selected, data in bank 0 can be
accessed at addresses 4000h to 7fffh, a linear space existing between address 0h and 7fffh.
When bank 0 is selected, the spaces corresponding to banks 1 to 4 cannot be accessed. When
bank 3 is selected, the data in bank 3 can be accessed between addresses 4000h and 7fffh.
The other banks cannot be accessed.

Memory Bank Switching

0000H

FFFFH
SFR

3FFFH

4000H

7FFFH

Internal ROM

Bank1

Bank2

Bank3

Bank4

0000H

FFFFH
SFR

3FFFH

4000H

7FFFH

Internal ROM

Bank0

Bank1

Bank2

Bank4

When bank 0 is
selected

When bank 3 is
selected

Bank memory

Bank0

Bank memory

Bank3

Chapter 2 Basic Operations 2.1 Establishing the Environment

17

• To switch between memory banks, program the generation of the upper address by using, for
example, ports.

• So that the debugger can control the memory banks effectively, set the ports and other data to
be used for bank switching when establishing the environment.

To set up the memory banks, click the
BANK Set button in the Configuration
dialog box. The dialog box for
memory bank setting will appear.

Chapter 2 Basic Operations 2.1 Establishing the Environment

18

2.1.7 Loading/Saving the Debugging Environment
• Saving the debugging environment into a project file enables subsequent debugging to be

performed in exactly the same environment.

Debugging
environment

Method

At start Specify a project file to be read, using its full path name, as a start option.Load
After start Load a project file by using the Project file load dialog box.
After start Save a project file using the Project file save dialog box.Save
At exit Select "Save Project File" in the Exit Debugger dialog box, then terminate the

debugger.

Enter the full path name
of a project file.

After the debugger starts (loading)

Before the debugger
starts

When the debugger
terminates

After the debugger starts (save)

When terminating the
debugger, select

\

\

Chapter 2 Basic Operations 2.1 Establishing the Environment

19

Data to be loaded/saved
Window Data

Configuration dialog box All items
Bank Set dialog box All items
Main window Setting information
Load Module dialog box File information downloaded
Extended Option dialog box Setting information
Mask Option dialog box Setting information
Source Path dialog box Source path information
Source window Window display information, font information
Assemble window Window display information, display start address
Memory window Window display information, display start address
Stack window Window display information
SFR window Window display information
Local Variable window Window display information
Trace View window Window display information
Show Trace dialog box Setting information
Snap Trace dialog box Setting information
Event Manager Window display information, all event information
Event Link dialog box Window display information
Break dialog box Window display information
Trace dialog box Window display information
Snap-Shot dialog box Window display information
Event Set dialog box Window display information
Register window Window display information, displayed bank
Variable window Window display information, displayed variable information
Coverage window Window display information

Chapter 2 Basic Operations 2.2 Source Level Debugging

20

2.2 Source Level Debugging
• ID78K0 can set breakpoints and display variables for a source.
• Many source level operations are supported, thus greatly enhancing debugging efficiency.
• Source level debugging can be performed by loading a file containing source information.
• Source level debugging is particularly effective for debugging programs written in C or structured

assembly language.

2.2.1 Notes on Compilation, Assembly, and Linking
• When source level debugging is performed, the file to be loaded must contain source debugging

information.
• Source debugging information is included in the object by specifying the option for adding

debugging information at assembly or compile time.
• The following shows how to set options at compilation, assembly, and linking:

Type of source to be debugged Required action
Without in-line assembly
description

Specify the -G option at compile time.C program

With in-line assembly description 1. At compile time, specify the -a option to
output an assembly source file.

2. Assemble the source generated in 1, above,
without specifying any debug options (-GA, -
NGA).

Structured assembly language program 1. Specify the -GS option at structured
assembly.

2. Assemble the source generated in 1, above,
without specifying any debug options (-GA, -
NGA).

Assembly language program Specify the -GA option at assembly.

Link Specify the -G option at linking.

Chapter 2 Basic Operations 2.2 Source Level Debugging

21

2.2.2 Downloading a Program
• Load module files and hexadecimal files can be downloaded.
• When a downloaded file contains source debugging information, source level debugging can be

performed.

To perform downloading:
1. Select File -> Download... from the menu bar to open the Load Module dialog box.
2. Load the desired file.

Select the file to
be loaded.

\

Chapter 2 Basic Operations 2.2 Source Level Debugging

22

2.2.3 Displaying a Source
• After a load module file containing source debugging information has been downloaded, the

source can be displayed.
• If the source file is stored in a directory other than that containing load module file, or if the

source file is stored in more than one directory, source path information must be provided to the
debugger.

To display a source:

1. Select Browse -> Source Text... from the menu bar or click the button to open the
Source window.

To change the source file displayed in the Source window:
1. Activate the Source window.
2. Select File -> Open... from the menu bar to open the Source file select dialog box.

When a source file is stored in another directory or in more than one directory:
1. Select Option -> Source Path... from the menu bar to open the Source Path dialog box.

Specifying a directory containing a source file: Source Path dialog box

Displaying a source file: Source window

Selecting a source file to be
displayed in the Source window:
Source file select dialog box

\

Chapter 2 Basic Operations 2.2 Source Level Debugging

23

2.2.4 Functions Supported by the Source Window
• The Source window Supports a wide range of functions, such as the setting of breakpoints and

the addition of variables to be displayed.
• The supported functions are listed below:

ProcedureFunction
Using the mouse From the keyboard

Setting/deleting a
breakpoint

Click the point mark area. 1. Select a line number (with the mouse).
2. Select Execute -> Set BP from the menu bar.

(CTRL + B)

Setting PC --- 1. Select a line number (with the mouse).
2. Select Execute -> Set PC from the menu bar.

(CTRL + E)

Displaying a
variable

1. Select a variable.

2. Click the
button then the

 button.

1. Select a variable (with the mouse).
2. Select View -> Watch Variable... or View

Variable... from the menu bar.

Retrieving a
character string

1. Select a variable.

2. Click the
button.

1. Select a variable (with the mouse).
2. Select View -> Search... from the menu bar.

Checking an
event

1. Select an event line.

2. Click the
button.

1. Select an event line (with the mouse).
2. Select View -> Event? from the menu bar.

Setting, deleting, and displaying a
breakpoint, and displaying an event

Select a character string.
(Token-based selection is enabled by double-clicking.)

Select an event
setting line.

Search button: Find dialog box

View button: Variable View dialog box

Watch button: Variable window

Event? button:
Event manager

PC position

Line number: Mainly used as the pointer for keyboard entry.

Chapter 2 Basic Operations 2.2 Source Level Debugging

24

2.2.5 Jump from the Source Window
• Jump from the Source window to the Assemble window and Memory window is supported.
• Using the jump function, it is easy to check the source text assemble results.
• Select a source line number as the jump destination. Then, the start address of the selected

source line is set as the jump pointer.

Jump destination Procedure
Assemble window 1. Select a source line number.

2. Select Jump -> Assemble... from the menu bar.
Memory window 1. Select a source line number.

2. Select Jump -> Memory... from the menu bar.

The jump destination is the address of the source line, displayed in reverse video: In the
following example, the start address of the 38th line is set as the jump pointer.

Jump to the Assemble window

Jump to the Memory window

Chapter 2 Basic Operations 2.3 Instruction Level Debugging

25

2.3 Instruction Level Debugging

• The contents of memory can be displayed, modified, and retrieved in assembly language.

• Instruction level debugging supports a higher level of precision than source level debugging.

• Assembly language code can be displayed in the Assemble window and Trace View window.
This section mainly explains the operations supported by the Assemble window.

Chapter 2 Basic Operations 2.3 Instruction Level Debugging

26

2.3.1 Assembly Language Display and Online Assembly
• The Assemble window allows you to view assembly language code and perform online assembly.
• With the online assemble function, patching can be performed. Simple bugs can be corrected

and confirmed immediately.

Assemble Procedure
To select a displayed address Open the Addressing dialog box in either of the

following two ways:
1. Select Browse -> Assemble... from the menu bar.

2. Click the button.

Display

To display instructions starting from an
address selected in another window (such
as the Source, Memory, or Register
window)

1. Select an address to be used as the display
pointer.

2. Select Jump -> Assemble... from the menu bar.

Modification 1. Open the Assemble window.

2. Click the button to enter modify mode.
3. Position the cursor to the mnemonic

display/modification area, then correct the program.
4. After completing the correction of the program,

click the, button to rewrite the program.

5. Click the button to enter view mode.

Specifying the start address for display: Addressing dialog box

Assembly language display: Assemble window (display mode)

ToModify button:
Change to modify
mode

ToView button:
Change to view
mode

Online assembly

Program correction: Assemble window (modify mode)

Chapter 2 Basic Operations 2.3 Instruction Level Debugging

27

2.3.2 Saving and Referencing Displayed Assembly Language
Code

• The displayed assembly language code can be saved to a file. The saved file can subsequently
be referenced.

• The file is saved in text format, such that any commercially available editor can be used to view
its contents.

To save displayed assembly language code to a file:
1. Activate the Assemble window.
2. Select File -> Save As... from the menu bar.
3. Save the displayed assembly language code using the View file save dialog box.

To open and reference the saved file:
1. Activate the Assemble window.
2. Select File -> Open... from the menu bar.
3. Load the file to be referenced using the View file load dialog box.

Saving the display contents to a file: View file save dialog box

Reference window
The window used for loading and opening a
file is opened as a reference window. All
operations other than search are disabled
while this window is displayed.

Displaying the contents saved to a file: View file load dialog box

\

\

Chapter 2 Basic Operations 2.3 Instruction Level Debugging

28

2.3.3 Functions Supported by the Assemble Window
• The Assemble window supports many functions such as the setting of breakpoints and PC

setting.
• The supported functions are listed below:

ProcedureFunction
Using the mouse Using the keyboard

Setting/deleting a
breakpoint

Click the point mark area. 1. Select an address (with the mouse).
2. Select Execute -> Set BP from the menu bar.

(CTRL + B)

Setting PC --- 1. Select an address (with the mouse).
2. Select Execute -> Set PC from the menu bar.

(CTRL + E)

Retrieving a
character string

1. Select a character
string.

2. Click the
button.

1. Select a character string (with the mouse).
2. Select View -> Search... from the menu bar.

Checking an
event

1. Select the address at
which an event is set.

2. Click the
button.

1. Select the address at which an event is set (with
the mouse).

2. Select View -> Event? from the menu bar.

Event? button: Event manager

Search button: Find dialog box

ToModify button: Program
correction

Address: The address displayed in
reverse video is set as the pointer for
a function.

PC position

Setting, deleting, and displaying a breakpoint, and
displaying an event

Chapter 2 Basic Operations 2.3 Instruction Level Debugging

29

2.3.4 Jump from the Assemble Window
• Jump from a line in the Assemble window to the corresponding source line or memory address is

supported.
• Select an address as the jump destination. Then, the selected address is set as the jump

pointer.
• When the jump destination is the Source window, a jump is made to a source line including the

jump pointer.

Jump destination Procedure
Source window 1. Select an address.

2. Select Jump -> Source Text... from the menu bar.
Memory window 1. Select an address.

2. Select Jump -> Memory... from the menu bar.

The jump destination is the address displayed in reverse video: In the
following example, address 132H is the jump pointer.

Jump to the Source window
A jump is made to the source line
including address 132H in the Source
window.

Jump to the Memory window

Chapter 2 Basic Operations 2.4 Manipulating Memory

30

2.4 Manipulating Memory
• The user can display, modify, and search for memory data.
• The user can display and modify memory data in ASCII format.

2.4.1 Displaying and Modifying Memory Data
• The user can display and modify memory data in the Memory window.

Memory Procedure
When a display address is to be
selected

The Addressing dialog box can be opened by means of
either of the following two procedures:
1. Select Browse -> Memory... from the menu bar.

2. Select the button.

Display

When memory data is to be
displayed starting from an address
selected in another window (such
as the Source window, Assemble
window, or Register window)

1. Select an address to act as a display pointer.
2. Select Jump -> Memory... from the menu bar, or press

CTRL + M.

Modification 1. Open the Memory window.

2. Switch to modify mode by clicking the
button.

3. Position the cursor to the desired memory
display/modification area, then modify the data.

4. After entering the new data, execute the modification

by clicking the button.

5. Switch to view mode by clicking the button.

Specifying a desired display start address: Addressing dialog box

Memory display: Memory window (view mode)

Memory modification: Memory window (modify mode)

ToModify button:
Used to switch to
modify mode.

ToView button: Used
to switch to view
mode.

Chapter 2 Basic Operations 2.4 Manipulating Memory

31

2.4.2 Basic Memory Data Operations
• Basic memory data operations are enabled by activating the Memory window.
• The basic operations include initialization, copy, and comparison.

To initialize memory:
Select Edit -> Memory -> Memory Fill... from the menu bar.

To copy memory data:
Select Edit -> Memory -> Memory Copy... from the menu bar.

To compare memory data:
Select Edit -> Memory -> Memory Compare... from the menu bar.

Memory initialization: Memory Fill dialog box
String data of no more than 16 bytes can be
specified.

Activate the Memory
window.

Memory copy: Memory Copy dialog box
A memory copy destination can be specified.

Memory comparison: Memory Compare dialog box

If memory data comparison reveals a mismatch,
the Memory Compare result dialog box appears.

Chapter 2 Basic Operations 2.4 Manipulating Memory

32

2.4.3 Saving and Referencing Displayed Memory Data
• Displayed memory data can be saved to a file. A file containing saved memory data can be

referenced.
• Memory data is saved in text format, allowing an editor to be used to reference saved memory

data.

To save displayed memory data to a file:
1. Activate the Memory window.
2. Select File -> Save As... from the menu bar.
3. Save the displayed memory data by using the View file save dialog box.

To open and reference a file containing saved memory data:
1. Activate the Memory window.
2. Select File -> Open... from the menu bar.
3. Load the file to be referenced by using the View file load dialog box.

Saving displayed memory data to a file: View file save dialog box

Reference window.
Load and open the file to be displayed. The
window is opened for reference. All
operations other than Search are disabled.

Displaying memory data that has been saved to a file: View file load dialog box

\

\

Chapter 2 Basic Operations 2.4 Manipulating Memory

33

2.4.4 Functions Available in the Memory Window
• The Memory window allows the user to perform a range of functions including modification in

ASCII format, and data search.
• The available functions are listed below.

Function Procedure
Character string search 1. Select a character string.

2. Click the button, or select View -> Search... from the
menu bar.

ASCII character display
selection

Select View -> Memory -> Ascii from the menu bar.

Type display selection Select View -> Memory -> Nibble, Byte, Word, or Long from the
menu bar.

Number system display
selection

Select View -> Bin, Oct, Dec, or Hex from the menu bar.

Search button: Find dialog box

Address display: An address
displayed in reverse video acts
as a pointer to be used with
each function.

Data display.
ToModify button: Used to modify data.
The user can select binary, octal, decimal, or hexadecimal
display.
The user can also select nibble, byte, word, and long for display.

Display in ASCII

Chapter 2 Basic Operations 2.4 Manipulating Memory

34

2.4.5 Jumping from the Memory Window
• This function enables a jump to the source line or disassembly start address corresponding to an

address in the Memory window.
• A jump destination can be specified by selecting a desired address. The selected address

serves as a jump pointer.
• When a jump is made to the Source window, a jump to the source line including the jump pointer

occurs.

Jump destination Procedure
Source window 1. Select an address.

2. Select Jump -> SourceText... from the menu bar.
Assemble window 1. Select an address.

2. Select Jump -> Assemble... from the menu bar.

A jump is made to the address displayed in reverse video.
In this case, address D0H is the jump pointer.

Jump to the Source window. A
jump to the source line including
address D0H in the Source
window occurs.

Jump to the Assemble window

Chapter 2 Basic Operations 2.5 Manipulating Registers

35

2.5 Manipulating Registers
• Registers are classified into three major types: control registers, general-purpose registers, and

special function registers (SFRs).
• The control registers and general-purpose registers can be displayed and modified in the

Register window. The SFRs can be displayed and modified in the SFR window.

2.5.1 Displaying and Modifying Registers
• The user can display and modify control registers, general-purpose registers, and SFRs.
• The user can manipulate control registers and general-purpose registers in the Register window,

and manipulate SFRs in the SFR window.

Memory Procedure
Control registers and general-
purpose registers (Register
window)

Select Browse -> Register... from the menu bar, or click

the button.

Display

SFRs (SFR window) Select Browse -> Sfr... from the menu bar, or click the

 button.
Modification (common to the Register
window and SFR window)

1. Open a desired window.

2. Switch to modify mode by clicking the
button.

3. Position the cursor to a desired register, then modify
the data.

4. After making the modification, execute the modification

by clicking the button.

5. Switch to view mode by clicking the button.

Register window (view mode)

Register window (modify mode)
ToModify button: Used to switch to
modify mode.
ToView: Used to switch to view mode.

SFR window (view mode)

SFR window (modify mode)

Displaying and modifying control registers
and general-purpose registers Displaying and modifying SFRs

Chapter 2 Basic Operations 2.5 Manipulating Registers

36

2.5.2 Saving and Referencing Displayed Register Data
• Displayed register data can be saved to a file. A file containing saved register data can be

referenced.
• Register data is saved in text format, allowing an editor to be used to reference saved register

data.

To save displayed register data to a file:
1. Activate a desired window.
2. When the Register window has been selected, select File -> Open/save Condition -> Save

File as... from the menu bar.
When the SFR window has been selected, select File -> Save As... from the menu bar.

3. Save the displayed register data by using the View file save dialog box.

To open and reference a file containing saved register data:
1. Activate a desired window.
2. When the Register window has been selected, select File -> Open/save Condition -> Open

Condition... from the menu bar.
When the SFR window has been selected, select File -> Open... from the menu bar.

3. Load the file to be referenced by using the View file load dialog box.

Saving displayed register data to a file: View file save dialog box

Reference window.
Load and open the file to be displayed. The
window is opened for reference. All
operations related to modification are
disabled.

Displaying register data that has been saved to a file: View file load dialog box

\

\

Chapter 2 Basic Operations 2.5 Manipulating Registers

37

2.5.3 Functions Available in the Register Window
• The Register window allows the user to choose between the function name display option and

absolute name display option, choose between the register display option and pair register
display option, and so forth.

• The available functions are listed below.

Function Procedure
Absolute name
display/function
name display

Absolute name: Select View -> Absolute Name from the menu
bar.
Function name: Select View -> Function Name from the menu
bar.

Display
switching

Register
display/pair
register display

Register display: Select View -> Register from the menu bar.
Pair register display: Select View -> Register Pair from the
menu bar.

Number system display
selection

Select View -> Bin, Oct, Dec, or Hex from the menu bar.

2.5.4 Functions Available in the SFR Window
• The SFR window allows the user to select the display order, specify whether attribute data is to

be displayed, and so forth.
• The available functions are listed below.

Function Procedure
Display order selection The user can choose either address order or alphabetic order as

the display order:
Select View -> Sfr -> Address Sort from the menu bar.

Attribute display selection Select View -> Sfr -> Attribute -> Show or Hide from the menu
bar.

Pickup display selection Only those SFRs that have been modified but not yet written to a
target in modify mode are displayed.
Select View -> Sfr -> Pick Up from the menu bar.

Address order, attribute display (default) Pickup display

Hiding attribute data Alphabetical order

Chapter 2 Basic Operations 2.5 Manipulating Registers

38

2.5.5 Jumping from the Register Window
• This function enables a jump to the source line, disassembly start address, or memory address

corresponding to a register value in the Register window.
• A jump destination can be specified by selecting a desired register. The value of a selected

register acts as a jump pointer.
• When a jump is made to the Source window, a jump to that source line including the jump pointer

is performed.

Jump destination Procedure
Source window 1. Select a register

2. Select Jump -> SourceText... from the menu bar.
Assemble window 1. Select a register.

2. Select Jump -> Assemble... from the menu bar.
Memory window 1. Select a register.

2. Select Jump -> Memory... from the menu bar.

A jump is made to the value of the selected register. In this case,
address D0H, held in the BC register, is the jump pointrer.

Jump to the Source window. A
jump to that source line including
address D0H in the Source
window is performed.

Jump to the Assemble window

Chapter 2 Basic Operations 2.6 Creating Events

39

2.6 Creating Events

• An event, set beforehand in a program, specifies that an operation is to be performed when a
specified condition is satisfied.

• Two types of conditions are used. One is an execution event, which is set for a program
execution address. The other is an access event, which is set for memory data accessed by a
programmed instruction.

• Four types of events are used to perform operations. These include break events for
terminating the program or analyzer, and qualified events, section events, and snapshot events
which are used to control the tracer.

• The event-related windows are listed below.

Operation Window
Event management Event Manager

Event condition Event Set dialog boxEvent condition
creation Event link condition Event Link dialog box

Break condition Break dialog box
Trace condition Trace dialog box
Snapshot condition Snap-Shot dialog box

Event setting

External sense clip
condition

External Sense Clip dialog box

Chapter 2 Basic Operations 2.6 Creating Events

40

2.6.1 Setting and Referencing Events in the Source Window
and Assemble Window

• In the Source window and Assemble window, break events can be set, and events can be
referenced.

• If a break event is set in the Source window or Assemble window, a parallel-linked event link
condition, named Break-L, is automatically created.

• All set break events become execution events (with the status set to Run).

Function Procedure
Break event setting Use any of the five methods described below.

1. Click the point mark area.
2. Double-click a line number or address.

3. Select a line number or address, then click the button.
4. Select a line number or address, then select Execute -> Set BP from the

menu bar.

5. Select a line number or address, then press CTRL + B .

Event condition reference Use either of the two methods described below. Select an address or line
number indicated by E in the point mark area, then perform either of the
following operations:

1. Click the button.
2. Select View -> Event? from the menu bar.

Event reference:
When an event is referenced, the Event
Manager is opened, and the event is marked.

Point mark area:
A break event can be set simply by
clicking this area.

Line number and address:
An address displayed in reverse
video becomes the pointer used
for input.

Break event
setting

Chapter 2 Basic Operations 2.6 Creating Events

41

2.6.2 Creating Event Conditions
• Event conditions are divided into two main types: execution events for detecting an execution

address, and access events for detecting access data.
• When an execution event is used, it can be combined with an event condition.

Function Procedure
Event condition creation The Event Set dialog box is used.

Select Browse -> Event -> EventSet... from the menu bar.
Event link condition creation 1. Create an execution event in the Event Set dialog box.

2. Open the Event Manager by selecting Browse -> Event ->
EventManager... from the menu bar.

3. Open the Event Link dialog box by selecting Browse -> Event ->
EventLinkSet... from the menu bar.

4. Create an event link condition by dragging & dropping the execution
event created in 1., above.

Event condition creation: Event Set dialog box

Event condition link: Event Link dialog box

An execution event is
an event for which the
status is Run.

Event condition creation and
registration

Use execution events.

Event link condition creation and
registration

Event management: Event Manager

Chapter 2 Basic Operations 2.6 Creating Events

42

• Examples of event condition setting are given below.
When the Event Set dialog box is opened, the default screen, shown below, initially appears.
Modify the screen settings as required.

<1>

<3>

<4>

<2>

<5>

<6> <7>

Condition Setting Remarks
When a program at address
0x100 is executed

<1>0x100 <2>0 <3>Run The defaults are used for
<4>, <5>, <6>, and <7>.

When memory access to
address 0xfe00 is
performed

<1>0xfe00
<4>0x00

<2>0
<5>ff

<3>Data R/W The defaults are used for
<6> and <7>.

When memory access is
performed for addresses
0xfe00 to 0xfe7f

<1>0xfe00-0xfe7f
<3>Data R/W
<5>ff

<2>0
<4>0

The defaults are used for
<6> and <7>. An event
occurs when any address in
the range is accessed.

When memory is read (with
no address condition set)

<1>0
<4>0

<2>ffff
<5>ff

<3>Data Read The defaults are used for
<6> and <7>.

If bit 0 is 1 when writing to
address 0xfb01 is
performed

<1>0xfb01
<4>1

<2>0
<5>fe

<3>Data Write The defaults are used for
<6> and <7>. For mask
specification, set those bits
to be monitored to 0, and set
the other bits to 1.

When 0x10 is written to
address 0xfb01

<1>0xfb01
<4>0x10

<2>0
<5>0

<3>Data Write The defaults are used for
<6> and <7>.

When an event is to be set
at the start of function
sub(), coded in C

<1>_sub <2>0 <3>Run The defaults are used for
<4>, <5>, <6>, and <7>.

When the value of variable
cnt, registered in C,
becomes 0x46

<1>_cnt
<4>0x46

<2>0
<5>0

<3>Data R/W The defaults are used for
<6> and <7>.

When an event is to be set
with the START function of
the assembler

<1>START <2>0 <3>Run The defaults are used for
<4>, <5>, <6>, and <7>.

When the value of
assembler variable DATA
becomes 35H

<1>DATA
<4>35H

<2>0
<5>0

<3>Data R/W The defaults are used for
<6> and <7>.

Chapter 2 Basic Operations 2.6 Creating Events

43

2.6.3 Setting Events
Event conditions registered in the Event Set dialog box or Event Link dialog box can be used as break
conditions and trace conditions.

Condition Procedure
When used as a break
condition

Select Browse -> BreakSet... from the menu bar.

When used as a trace condition Select Browse -> Trace -> TraceSet... from the menu bar.
When used as a snapshot
condition

Select Browse -> Trace -> SnapShotTraceSet... from the menu bar.

When used as an external
sense clip condition

Select Execute -> ExtSenseClip... from the menu bar.

Setting a break condition: Break dialog box

Setting a snapshot condition: Snap-Shot dialog box

Setting a trace condition: Trace dialog box

Setting a condition enabling the output of data to the
external sense clip: External Sense Clip dialog box

Set an event in the desired dialog box by dragging and
dropping from the Event Manager.

Chapter 2 Basic Operations 2.6 Creating Events

44

2.6.4 Saving and Restoring Event Conditions
• Event conditions can be saved to a file. Saved event conditions can be referenced.
• Event conditions are saved in text format, allowing an editor to be used to reference saved event

conditions.

To save an event condition to a file:
1. Activate the Event Manager.
2. Select File -> Open/save Condition -> Save File as... from the menu bar of the Event

Manager.
3. Save the event condition by using the View file save dialog box.

To restore a saved event condition:
1. Activate the Event Manager.
2. Select File -> Open/save Condition -> Open Condition... from the menu bar of the Event

Manager.
3. Load the file containing the event condition to be restored with the View file load dialog

box.

Saving an event condition to a file: View file save dialog box

Restoring an event condition saved to a file: View file load dialog box

\

\

Chapter 2 Basic Operations 2.6 Creating Events

45

2.6.5 Functions Available in the Event Manager
• The Event Manager allows the user to use a variety of functions such as enabling/disabling an

event, deleting an event, and referencing an event.
• The available functions are listed below.

Function Procedure
Enabling/disabling an
event

Select an event to be enabled or disabled, then perform the following:

To enable the event: Click the button.

To disable the event: Click the button.
Deleting an event 1. Select the event to be deleted.

2. Click the button.
Detailed event condition
display

Select View -> Detail from the menu bar of the Event Manager.

Changing the order of
display

The order of display can be changed using the menu bar of the Event
Manager.

To enable display in event name order: Select View -> Name.
To enable display in type order: Select View -> Kind.

Referencing/modifying an
event condition

1. Select the event to be referenced or modified.
2. Select an option from Operation in the menu bar of the Event

Manager.

Event Manager

Event Manager
(detailed display)

Referencing an event

Chapter 2 Basic Operations 2.6 Creating Events

46

2.6.6 Jumping to an Event Setting Address
• This function enables a jump to the source line, disassembly start address, or memory address

corresponding to the address of an event condition in the Event Manager.
• A jump destination can be specified by selecting an event condition. The start address of a

selected event condition acts as a jump pointer.
• When a jump is made to the Source window, a jump to that source line including the jump pointer

is performed.

Jump destination Procedure
Source window 1. Select an event condition.

2. Select Jump -> SourceText... from the menu bar.
Assemble window 1. Select an event condition.

2. Select Jump -> Assemble... from the menu bar.
Memory window 1. Select an event condition.

2. Select Jump -> Memory... from the menu bar.

A jump is made to the address of the selected event, Event02.
In this case, the start address (D0H) of function main is the jump pointer.

Jump to the Source window. A
jump to that source line including
address D0H in the Source
window is performed.

Jump to the Assemble window

Chapter 2 Basic Operations 2.7 Manipulating Symbols (Variables)

47

2.7 Manipulating Symbols (Variables)

• The user can display and modify the values of variables.
• Before an operation such as symbol debugging can be performed, a load module file including debug

information must be loaded.
• The user can enter symbols in the address and data input fields of each window.
• To enter symbols, observe the input formats indicated below.

Type of symbol Input format
Variable defined in C _ fnc

file#_fnc
Variable defined in assembler language fnc

file#fnc
Source line number file:no
SFR sfrneme

fnc: Function name or variable name sfrname: SFR name file: File name
no: Line number

1. When specifying a variable defined in C, prefix the variable with an underbar (_).
2. Use a sharp (#) as the separator between a file name and variable name.
3. Use a colon (:) as the separator between a file name and line number.

• The windows related to symbol operations are listed below.

Operation Window
Display of variables Variable window
Registration of displayed variables Add Variable dialog box
Temporary display of variables Variable View dialog box
Display of local variables Local Variable window

Chapter 2 Basic Operations 2.7 Manipulating Symbols (Variables)

48

2.7.1 Displaying and Modifying Variables
• The user can display and modify the values of variables in the Variable window, Variable View dialog

box, and Local Variable window.

Variable Procedure
Display at all times Display the variables in the Variable window.

Select View -> Watch Variable... from the menu bar.
Temporary display 1. Select a source variable displayed in the Source window.

2. Select View -> View Variable... from the menu bar, or click the

 button in the Source window.

Display

Display of local
variables

Select Browse -> Local Variable... from the menu bar.

Variable
modification

Modifi-
cation

Local variable
modification

Use the Variable window to modify a variable. Use the Local Variable
window to modify a local variable. Both windows are modified as
follows:

1. Open the desired window.

2. Switch to modify mode by clicking the button.
3. Position the cursor to the variable to be modified, then modify the

data.
4. After entering the new data, execute the modification by clicking the

 button.

Switch to view mode by clicking the button.
Registration The Variable window allows the user to register a displayed variable.

To register a variable in the Source window:
1. Select a source variable displayed in the Source window.
2. Select View -> Watch Variable... from the menu bar, or click the

 button in the Source window.

To register a variable in the Add Variable dialog box for variable
registration:

1. Select View -> Add Variable... from the menu bar.
2. Register the variable in the Add Variable dialog box.

Deletion The user can delete any variable displayed and registered in the
Variable window.

1. Select the variable to be deleted.
2. Select Operation -> Delete from the menu bar.

Chapter 2 Basic Operations 2.7 Manipulating Symbols (Variables)

49

After a variable has been selected in the Source window, that
variable can be displayed or modified by clicking the Watch button,
or can be temporarily displayed by clicking the View button.

Display and modification of local
variables: Local Variable
window

Display and modification
of variables: Variable
window

Temporary display of variables:
 Variable View dialog box

To register a variable by keyboard input, or to
display a variable registered by the assembler in
the Variable window: Add Variable dialog box

Chapter 2 Basic Operations 2.7 Manipulating Symbols (Variables)

50

2.7.2 Saving and Referencing Symbol Data
• Displayed symbol data can be saved to a file. A file containing saved symbol data can be referenced.
• Symbol data is saved in text format, allowing an editor to be used to reference saved symbol data.

To save displayed symbol data to a file:
1. Activate the desired window.
2. When the Variable window has been selected, select File -> Open/save Condition -> Save

File as... from the menu bar.
When the Local Variable window has been selected, select File -> Save As... from the
menu bar.

3. Save displayed symbol data by using the View file save dialog box.

To open and reference a file containing saved symbol data:
1. Activate the desired window.
2. When the Variable window has been selected, select File -> Open/save Condition -> Open

Condition... from the menu bar.
When the Local Variable window has been selected, select File -> Open... from the menu
bar.

3. Load the file to be referenced by using the View file load dialog box.

Saving displayed register data to a file: View file save dialog box

Reference window.
Load and open the file to be displayed. The
window is opened for reference. All
operations related to modification are
disabled.

Displaying symbol data that has been saved to a file: View file load dialog box

\

\

Chapter 2 Basic Operations 2.7 Manipulating Symbols (Variables)

51

2.7.3 Functions Available in the Variable Window and Local
Variable Window

• The Variable window and Local Variable window give the user access to a variety of functions, such as
the ability to modify the data number system.

• The available functions are listed below.

Function Procedure
Display of variables of
pointer type

A variable of pointer type is prefixed by + or -.

Variable prefixed by +:
The value of the variable indicated by the pointer is displayed by
double-clicking. At this time, the prefix of the displayed variable
changes to -.

Variable prefixed by -:
The display of the value of the variable indicated by the pointer is
stopped by double-clicking. At this time, the prefix of the
displayed variable changes to +.

Number system display
selection

Select View -> Bin, Oct, Dec, Hex, or Proper from the menu bar.

A variable prefixed by + or - is a variable
of pointer type. Double-clicking a
variable of pointer type prefixed by +
displays the value of the variable
indicated by the pointer.
At this time, the prefix of the displayed
variable changes from + to -.

Variable window

Data display.
ToModify button: Used to modify data.
The user can choose binary, octal, decimal,
hexadecimal, or automatic for display.

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

52

2.8 Using the Tracer Effectively

• The tracer records device operations in trace memory.
• The IE-78000-R-A has 32K frames of trace memory.
• Trace memory has a ring buffer structure.
• For combined events, four trace methods are supported:

Trace cycle Trace mode Remarks
Machine cycle trace Total trace Port trace operation is possible.

Total trace Trace operation is performed only when the
device performs a read, write, or fetch
operation.

Sectional
trace

The start and end of trace operation can be
specified using an event condition.

Event cycle trace

Conditio-
nal trace

Qualified
trace

Trace operation is performed only when an
event condition match is detected.

• The trace-related windows are listed below.

Operation Window
Trace result display Trace View window

Trace display Show Trace dialog boxDisplay item
selection Snapshot

display
Snap Trace dialog box

Trace condition setting Trace dialog box
Snapshot condition setting Snap-Shot dialog box
Trace result search Trace pick-up dialog box

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

53

2.8.1 Displaying Trace Results
• Trace results can be displayed in the Trace View window.

To display trace results:

Select Browse -> Trace -> TraceView... from the menu bar, or click the button.

Display of fetch-type access results.
The results of program execution are
displayed.

Trace status.
Statuses such as the IE status at trace stop
are displayed.

Display of data access results.
The results of R/W accesses to memory
are displayed.

The execution time
between frames is
counted.

Frame
number

External sense clip
input/output results are
displayed.

Port trace results.
In machine cycle trace, port trace operation is
possible.

Disassembly display.
This display is provided when fetch-type
access is performed and the status is M1.

Item Description
Frame Displays trace frame numbers.

Valid range: 0 < Trace frame number < 32,767
Time Displays the number of clock pulses taken by the target chip between the start of

execution of the immediately preceding trace address and the start of execution of
the current trace address. For the clock signal, the CPU clock is not used.
Instead, the 10-MHz clock signal of the in-circuit emulator is used.
Measurement range: 1 < Time tag < 0xffffff

Address
Data
Statu

Displays program fetch results. This field displays the following information
depending on the fetch status displayed in the Status field:

M1 : Fetch of the first byte of an instruction
OP : Operation code fetch
IF : Invalid fetch

Address
Data
Statu

Displays data access results. This field displays the following information
depending on the access status display in the Status field:

VECT : Vector read
R : Data read
W : Data write

ExtP Displays the input level of the external sense clips when trace has been performed.
DisAsm Displays the results of disassembly. This information is displayed only when the

fetch status is M1.

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

54

2.8.2 Saving and Referencing Trace Results
• Trace results can be saved to a file. A file containing saved trace results can be referenced.
• Trace results are saved in text format, allowing an editor to be used to reference saved trace

results.

To save trace results to a file:
1. Activate the Trace View window.
2. Select File -> Save As... from the menu bar.
3. Save trace results with the View file save dialog box.

To open and reference a file containing saved trace results:
1. Activate the Trace View window.
2. Select File -> Open... from the menu bar.
3. Load the file to be referenced by using the View file load dialog box.

Saving displayed data to a file: View file save dialog box

Displaying data saved to a file: View file load dialog box

Reference window.
Load and open the file to be displayed.
The window is opened for reference.

If the range to be saved consists of about
100 frames or more, a dialog box for
reporting the save status is opened. To stop
the save operation, click the Stop button.

\

\

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

55

2.8.3 Effective Trace Memory Usage 1 (Trace Mode Setting)
• Trace memory can be used effectively by setting a trace condition and trace mode.
• Three major trace modes are supported:

Trace mode Description
Total trace All accesses are traced. The user can choose between machine

cycle trace and event cycle trace.
Sectional trace A section from one event to another is traced. This mode is useful,

for example, for tracing one particular function.
Qualified trace Only an event condition match point is traced. This mode is useful,

for example, for tracing particular memory accesses.

• Each trace mode is described below.
1. The data for each of the following modes indicates the results of executing test program 1

from address 80H to address 8EH.
2. Test program 1 initializes, to zero, the four bytes of memory from address 0FE00H to

address 0FE03H.

Test program 1: Clearing RAM
Addr Data Mnemonic
0080 61D0 SEL RB0
0082 16FFFC MOVW HL,#0FCFFH
0085 A100 MOV A,#0H
0087 A304 MOV B,#4H
0089 BB MOV [HL+B],A
008A 8BFD DBNZ B,$89H
008C 00 NOP
008D 00 NOP
008E FAFE BR $8EH

Selects register bank 0.
Sets the initialization start address, minus 1.
Sets initialization data.
Sets the number of bytes to be initialized.
Initializes memory.
Determines termination.

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

56

 1. Results of total trace (event cycle trace)
♦ The results of total trace are indicated below.
♦ All accesses are traced, so that all program operations can be identified.
♦ Program fetch operations, and data read and write operations are traced.

frame Faddr Fdat Fstat Maddr Mdat Mstat DisAsm
32738 0080 61 M1 SEL RB0
32739 0081 D0 OP
32740 0082 16 M1 MOVW HL,#0FCFFH
32741 0083 FF OP
32742 0084 FC OP
32743 0085 A1 M1 MOV A,#0H
32744 0086 00 OP
32745 0087 A3 M1 MOV B,#4H
32746 0088 04 OP
32747 0089 BB M1 MOV [HL+B],A
32748 008A 8B M1 DBNZ B,$89H
32749 FD03 00 W
32750 008B FD OP
32751 0089 BB M1 MOV [HL+B],A
32752 008A 8B M1 DBNZ B,$89H
32753 FD02 00 W
32754 008B FD OP
32755 0089 BB M1 MOV [HL+B],A
32756 008A 8B M1 DBNZ B,$89H
32757 FD01 00 W
32758 008B FD OP
32759 0089 BB M1 MOV [HL+B],A
32760 008A 8B M1 DBNZ B,$89H
32761 FD00 00 W
32762 008B FD OP
32763 008C 00 M1 NOP
32764 008D 00 M1 NOP
32765 008E FA M1 BR $8EH
32766 008F FE OP

♦ Total trace mode is set as follows:
1. Disable all trace event conditions.
2. Select a trace cycle.

Select Execute -> Trace -> Machine All. Trace or Event All. Trace from the menu
bar.

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

57

2. Results of sectional trace
♦ The results of sectional trace from address 89H to address 8CH are shown below.
♦ The range to be traced can be specified, such that trace memory is used effectively.
frame Faddr Fdat Fstat Maddr Mdat Mstat DisAsm
32750 0089 BB M1 MOV [HL+B],A
32751 008A 8B M1 DBNZ B,$89H
32752 FD03 00 W
32753 008B FD OP
32754 0089 BB M1 MOV [HL+B],A
32755 008A 8B M1 DBNZ B,$89H
32756 FD02 00 W
32757 008B FD OP
32758 0089 BB M1 MOV [HL+B],A
32759 008A 8B M1 DBNZ B,$89H
32760 FD01 00 W
32761 008B FD OP
32762 0089 BB M1 MOV [HL+B],A
32763 008A 8B M1 DBNZ B,$89H
32764 FD00 00 W
32765 008B FD OP
32766 008C 00 M1 NOP

♦ Sectional trace mode and the event conditions can be set as shown below.
♦ By enabling trace event conditions, a conditional trace operation can be performed.

Set sectional trace conditions as
follows:
Start: Event01
End: Event02

Event occurrence conditions
Event01: Execution of address 89h
Event02: Execution of 8ch

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

58

3. Results of qualified trace
♦ The results of qualified trace, for data read and write operations only, are indicated below.
♦ Only those points that are to be traced are traced, allowing large amounts of data to be traced.

Note, however, that since trace is performed only when an event condition match is detected, the
context is difficult to grasp.

frame Faddr Fdat Fstat Maddr Mdat Mstat DisAsm
32763 FD03 00 W
32764 FD02 00 W
32765 FD01 00 W
32766 FD00 00 W

♦ Qualified trace mode and an event condition can be set as shown below.
♦ By enabling a trace event condition, a conditional trace operation can be performed.

Set a qualified trace condition
as follows:
Event03

Event condition
Event03: When data read or
 write is performed at
 any address

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

59

2.8.4 Effective Trace Memory Usage 2
(Trace Full Break, Snapshot Trace)

• Trace full break
1. Trace memory has a ring buffer structure. This means that, once the trace memory is filled

with trace data, the existing trace data is overwritten by the new data, starting from the oldest
data.

2. To preserve the trace results, trace operation can be stopped once the trace memory is full.

Trace full break setting:
Select Execute -> Trace Full Break from the menu bar.

• Snapshot trace
1. Trace memory is used to store the execution history. In addition to the execution history,

other data can be stored by specifying a snapshot event.
2. The snapshot trace function writes specified data into trace memory when a condition is

satisfied. The following data can be written:

Data Description
Register All registers of the current bank

(PC, SP, PSW, AX, BC, DE, HL)
SFRData
Memory

Up to five points in SFRs or memory can be traced.

3. Before data is written into trace memory, the execution of the user program is stopped.
4. For the program below, the method of writing the register and SFRs (P0, P1) when address

0fd02h is accessed is shown.

Test program 1: Clearing RAM
Addr Data Mnemonic
0080 61D0 SEL RB0
0082 16FFFC MOVW HL,#0FCFFH
0085 A100 MOV A,#0H
0087 A304 MOV B,#4H
0089 BB MOV [HL+B],A
008A 8BFD DBNZ B,$89H
008C 00 NOP
008D 00 NOP
008E FAFE BR $8EH

Selects register bank 0.
Sets an initialization start address, minus 1.
Sets initialization data.
Sets the number of bytes to be initialized.
Initializes memory.
Determines termination.

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

60

Example of snapshot event setting

Event condition:
Address: 0fd02h
Status : Data R/W
Data : All data

Snapshot condition:
Event: Event 01
Snapshot data: Registers,
 SFRs (P0, P1)

Trace data
PC SP PSW X:R0 A:R1 C:R2 B:R3 DE:RP2 HL:RP3 MEM1(DAT) MEM2(DAT)
frame Faddr Fdat Fstat Maddr Mdat Mstat DisAsm
32742 0089 BB M1 MOV [HL+B],A
32743 008A 8B M1 DBNZ B,$89H
32744 FD03 00 W
32745 008B FD OP
32746 0089 BB M1 MOV [HL+B],A
32747 008A 8B M1 DBNZ B,$89H
32748 FD02 00 W
32749 008B FD OP
0089 FEE0 02 00 00 00 02 0000 FCFF P0(00) P1(00)
32755 0089 BB M1 MOV [HL+B],A
32756 008A 8B M1 DBNZ B,$89H
32757 FD01 00 W
32758 008B FD OP
32759 0089 BB M1 MOV [HL+B],A
32760 008A 8B M1 DBNZ B,$89H
32761 FD00 00 W
32762 008B FD OP

♦ In frame 32748, a match with event condition Event01 was detected, causing snapshot event
Snap to occur.

♦ Between frame 32749 and frame 32755, the debugger stopped once to write snapshot data into
the tracer.

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

61

2.8.5 Inter-Window Connection Functions
(Window Connection Function, Jump Function)

• Window connection function: This function displays trace results in each window. When the
user positions the cursor to the Trace View window, each of the windows (Source window,
Assemble window, and Memory window) can be manipulated interactively, thus allowing trace
operation in each window.

• Jump function: A jump can be made to a position in the Source window, Assemble window, and
Memory window corresponding to the address value of a frame line specified in the Trace View
window.

• When the window connection function is used, the Trace View window remains active. When
the jump function is used, however, the jump destination window becomes the active window.

Function Operation
Connection to the
Source window

Activate the Trace View window.
Select Window Connect -> SourceText from the menu bar.

Connection to the
Assemble window

Activate the Trace View window.
Select Window Connect -> Assemble from the menu bar.

Window
connection
function

Connection to the
Memory window

Activate the Trace View window.
Select Window Connect -> Memory from the menu bar.

Jump to the Source
window

Select a frame in the Trace View window.
Select Jump -> SourceText... from the menu bar, or press

CTRL + U .

Jump to the Assemble
window

Select a frame in the Trace View window.
Select Jump -> Assemble... from the menu bar, or press

CTRL + A .

Jump
function

Jump to the Memory
window

Select a frame in the Trace View window.
Select Jump -> Memory... from the menu bar, or press

CTRL + M .

Chapter 2 Basic Operations 2.8 Using the Tracer Effectively

62

• With the window connection function and jump function, connection is made to the data in each
window as follows:

Function Window connection Jump function
Source window
Assemble window

Fetch address Fetch address

Memory window Data read address and data
write address

Fetch address, data read address,
and data write address

For window connection and jump

For window connection and jump

For jump

For window connection and jump

Chapter 2 Basic Operations 2.9 Measuring the Execution Time

63

2.9 Measuring the Execution Time
• The IE-78000-R-A has two timers. One timer measures the time from the start of execution to

the end of trace operation. The other timer measures the time from the start of the previous
trace operation to the start of the current trace operation.

• The specifications of the two timers are as follows:

Timer Maximum
measurement time

Minimum
measurement time

For execution time measurement Approx. 14 minutes
and 18 seconds

Approx. 500
nanoseconds

For trace interval measurement
(time tag)

Approx. 1.677
seconds

Approx. 100
nanoseconds

2.9.1 Measuring Program Execution Time
• The time from the start of program execution to the end of program execution is displayed in the

Timer window.
• The measurement time depends on the execution mode, as indicated below.

Execution mode Measurement section
Step execution Last instruction
Real-time execution From the start of execution to a break
Non-break real-time execution From the start of execution to termination of

the tracer

• The Timer window can be opened as follows:

Execution time display:

Select Browse -> Timer... from the menu bar, or press the button.

File Operation

Chapter 2 Basic Operations 2.9 Measuring the Execution Time

64

2.9.2 Time Measurement Using the Tracer
• For measurement of a short section, regularly executed processing, and so forth, the time tag is

useful.
• When compared with the execution times displayed in the Timer window, shorter times are

obtained with the time tag. However, the time tag stores multiple data items in trace memory,
so that information such as time distribution data can be checked using a separate tool.

• With the time tag, the time from the start of the previous trace operation to the start of the current
trace operation is measured. This measurement is conducted not only while the program is
being executed but also while the program is stopped. This means that the time tag data for the
first program execution frame is meaningless.

Time tag.
The interval from the previous frame to the current frame is displayed. An actual
time, counted in 100 ns steps, is converted to a hexadecimal number for display.
To convert a displayed value to an actual time, convert the displayed value to a
decimal number, then multiply that number by 100 ns.

Chapter 3 Advanced Use of ID78K0

65

Chapter 3 Advanced Use of
ID78K0

This chapter describes several advanced uses of the ID78K0. Note that these uses are usually not
essential to normal operation.

3.1 Verifying the Validity of Evaluation
Evaluation is essential to the development of a program. If the evaluation of a particularly important
item is omitted for some reason, bugs may remain in a program that is offered for retail sale. This
section describes the use of the coverage functions to verify the validity of evaluation.

3.2 Using External Sense Clips
The in-circuit emulator status or the contents of memory can be output in real time, by using external
sense clips together with event conditions. This section describes the use of the external sense clips.

3.3 Measuring Time by Setting Conditions
Basically, the Timer window of the ID78K0 supports only the measurement of the time that elapses
between the start and end of program execution. Shorter periods can, however, be measured by
using the tracer in combination with events.

Chapter 3 Advanced Use of ID78K0 3.1 Verifying the Validity of Evaluation

66

3.1 Verifying the Validity of Evaluation
• Evaluation is essential to the development of a program. If the evaluation of a particularly

important item is omitted for some reason, bugs may remain in a program that is offered for retail
sale.

• This section describes the use of the coverage functions to verify the validity of evaluation.
Note, however, that the validity of evaluation cannot be completely verified based on only the
results of coverage.

3.1.1 Coverage
• Coverage is a record of the flow of the execution of a program. While the tracer can trace

program execution backwards, coverage merely indicates whether specified instructions within a
program have actually been executed.

• The debugger supports coverage for the read, write, and fetch operations.
• The results of coverage can be displayed in the Coverage window.
• The following window and dialog boxes are used for coverage:

Window Description
Coverage window Displays the results of coverage.
Coverage Efficiency View
dialog box

Displays the coverage results, as a percentage, for each function
or specified address range.

Coverage Condition Setting
dialog box

Used to add items to be displayed in the Coverage Efficiency
View dialog box.

Coverage Memory Clear
dialog box

Initializes the coverage memory.

Coverage window

Coverage Efficiency View
dialog box

Coverage Memory Clear dialog box

Coverage Condition Setting
dialog box

Chapter 3 Advanced Use of ID78K0 3.1 Verifying the Validity of Evaluation

67

3.1.2 Verifying the Validity of Evaluation Based on Coverage
• Ideally, all possible patterns of program execution should be evaluated. Due to time or other

restrictions, however, evaluation may have to be restricted by, for example, sampling and
combining several patterns. Evaluation based on sampled patterns must, however, be checked
for validity.

• One method of verifying the validity of evaluation is the use of the coverage results to check
whether all instructions have been executed.

• The above check can easily be performed by using the Coverage window and the memory map
in the link list file (.MAP), output upon linkage of the program.

Verification based on coverage
1. Refer to the memory map in the link list file to identify any free spaces (* gap *) in the program.
2. Refer to the contents of the Coverage window to check whether all memory spaces other than the

free spaces, identified in step 1, have been accessed (read, written, or fetched).
3. If any unaccessed space is revealed by step 2, check the program and review the evaluation items.

If any free space in the program has been accessed, check that space by, for example, setting
event conditions.

Example link list file
*** Memory map ***
 SPACE=REGULAR
 MEMORY=ROM
 BASE ADDRESS=0000H SIZE=8000H

OUTPUT INPUT INPUT BASE SIZE
 SEGMENT SEGMENT MODULE ADDRESS
 @@VECT00 0000H 0002H CSEG AT
 @@VECT00 @cstart 0000H 0002H
* gap * 0002H 0012H
 @@VECT14 0014H 0002H CSEG AT
 @@VECT14 SAMPLE 0014H 0002H
* gap * 0016H 002AH
 @@CALT 0040H 0000H CSEG CALLT0
 @@CALT @cstart 0040H 0000H
 @@CALT SAMPLE 0040H 0000H
 @@CALT C_SUB 0040H 0000H
* gap * 0040H 0040H

 Intermediate lines omitted

@@CNST 0080H 0000H CSEG UNITP
 @@CNST @cstart 0080H 0000H
 @@CNST SAMPLE 0080H 0000H
 @@CNST C_SUB 0080H 0000H

@@CODE 0080H 02D1H CSEG
 @@CODE @cstart 0080H 0050H
 @@CODE SAMPLE 00D0H 0130H

In this example, 0002H to 0013H, 0016H to 003FH, and 0040H to 007FH are free spaces.

Chapter 3 Advanced Use of ID78K0 3.1 Verifying the Validity of Evaluation

68

Example coverage results (results of executing the example link list file)

Unaccessed
spaces

In this example, the reset vector at addresses 0 and 1 has not been accessed. The operation
performed upon a reset must, therefore, be evaluated.

Chapter 3 Advanced Use of ID78K0 3.1 Verifying the Validity of Evaluation

69

3.1.3 Notes on Coverage Results
• When checking the coverage results, note the results of conditional branches.
• The IE-78000-R-A supports C0 coverage, which cannot be used to check how processing has

branched at a conditional branch instruction.

Example of execution of a conditional branch instruction
1. When the following program is executed from address 80H to 8CH, a conditional branch instruction

is executed at address 86H. Execution jumps to address 88H because the condition is false.

Addr Data Mnemonic
0080 A101 MOV A,H ; Assume that the H register contains 1.
0082 A302 MOV B,#2H
0084 4D01 CMP A,#1H
0086 BD02 BNZ $8AH
0088 610B ADD A,B
008A A200 MOV C,#0H
008C 00 NOP

2. The coverage results are as follows, indicating that all instructions have been executed.

All instructions at
addresses 80H to 8CH
have been executed.

3. Actually, however, the condition may be true, depending on the stored data, thus causing address
88H to be skipped. In such a case, the coverage results do not cover all evaluation items.

Chapter 3 Advanced Use of ID78K0 3.2 Using External Sense Clips

70

3.2 Using External Sense Clips
• External sense clips have various functions. They can be used to post notification of the in-

circuit emulator status or output 1-byte RAM data in real-time.
• The use of external sense clips may enable essential processing which has not been possible

conventionally.
• External sense clips No. 01 to 08 are provided. The debugger handles them as bits 0 to 7,

respectively.

External sense clip number Debugger handles as:
No.08 Bit 7
No.07 Bit 6
No.06 Bit 5
No.05 Bit 4
No.04 Bit 3
No.03 Bit 2
No.02 Bit 1
No.01 Bit 0

• When external sense clips are set to output mode, they must be pulled up using resistors. In
such a case, a voltage exceeding +15 V cannot be applied to the sense clips.

• The tracer traces the potential difference between each external sense clip and GND, regardless
of whether the sense clips are set to input or output mode. The HC4050B (used as an input
buffer) determines whether the trace data for each external sense clip is 1 or 0.

• The trace data for external sense clips can be used for event conditions, thus enabling the
setting of a wide range of event conditions.

Chapter 3 Advanced Use of ID78K0 3.2 Using External Sense Clips

71

3.2.1 Tracing External Data
• To trace the state of each pin of the target device, set the external sense clips to input mode

(default). Input data can be incorporated into event conditions, such that an event can be
triggered by an external source.

Setting procedure
1. Set the external sense clips to input mode.

Set to input
mode.

2. Connect external sense clips to the pins to be traced.
3. To set an event, set event conditions using the Event Set dialog box. The results of trace can be

checked using the Trace View window.

Trace data for external
sense clips

Set this area to incorporate external sense
clip data into the event conditions.

Chapter 3 Advanced Use of ID78K0 3.2 Using External Sense Clips

72

3.2.2 Trigger Output
• To output the in-circuit emulator status or other data, set the external sense clips to trigger output

mode.

Set to trigger output
mode

• Trigger output data is output under the following condition:

Trigger output condition
When the pass count becomes 0 upon the occurrence of a break event

Trigger data is not output upon the occurrence of a fail-safe or manual break.

• Trigger output data is output from external sense clip No. 01.
• When external sense clips are set to output mode, they must be pulled up using resistors.

Vdd(Max:15V)

R

Connect external sense clip No. 01.

TRG OUT

Trigger condition satisfied

Vdd

GND

Connection diagram Trigger output waveform

TRG OUT

Time t

Chapter 3 Advanced Use of ID78K0 3.2 Using External Sense Clips

73

3.2.3 Real-Time RAM Output
• The IE-78000-R-A does not support real-time RAM sampling. Only 1-byte data in memory can

be output in real-time, by using event conditions in combination with external sense clips and
simple external jigs.

Create an access event. In
this example, the contents of
address 0xfe00 are output.

Drag & drop the event into
the event setting area, then
select Output.

• Because data is being output in real time, it can also be used as a trigger source for other targets.
• When external sense clips are set to output mode, they must be pulled up using resistors.

Vdd(Max:15V)

R

Connect each external sense clip.

Example connection

GND

No.01 - No.08

LED

Transition of data output from
external sense clip

Data

The set event occurs.

Latch the contents of the data bus
upon the occurrence of the set event.
The latched data is held until the next
occurrence of the event.

Chapter 3 Advanced Use of ID78K0 3.2 Using External Sense Clips

74

3.2.4 Creating an Event by ANDing a Data Condition
• Advanced events can be created by using external sense clips.
• An event condition can be created by ANDing a data condition, as follows:

Procedure for creating an event condition by ANDing a data condition
1. Create an event having a data condition.
2. Set the event created in step 1 as an output condition for the external sense clips.
3. Pull up the eight external sense clips using resistors.
4. Create an event having an address condition or execution condition.
5. Specify an external sense data condition for the event created in step 4, thus creating an event

having a condition ANDing those specified in steps 1 and 4.

Example
Causing an event to occur when 15h is written into address 0fe12h, provided address 0fe00h contains
20h

Set Address, Status, and Data.
Set External as the default or
Mask in ff.

Set an event condition, and set
the external sense clips to
output mode.

Finally, set Address, Status,
and Data for another event.
Specify the value at address
0fe00h for External.

In this example, one data condition is ANDed with another data condition. A data condition can
also be ANDed with an execution condition. An event condition like that shown above can be set
for various events, thus enabling the creation of advanced events. First try specifying "on."

Chapter 3 Advanced Use of ID78K0 3.3 Measuring Time by Setting Conditions

75

3.3 Measuring Time by Setting Conditions
• The timer measurement function of the IE-78000-R-A does not support the setting of event

conditions. The user may, however, require information such as the intervals that elapse
between a function being called, or whether timer interrupts are generated correctly and on time.

• Time measurement using event conditions in combination with the tracer is described below.

Setting procedure
1. Set an event at the beginning of the function for which time will be measured. The following

program is used as an example:

Example program to be subject to time measurement
 Addr Data Mnemonic
 > 0080 A300 MOV B,#0H
 0082 43 INC B

T 0083 63 MOV A,B ; Set an event.
 0084 8BFE DBNZ B,$84H
 0086 73 MOV B,A
 0087 FAF9 BR $82H

This program executes an infinite loop between addresses 82H and 87H. The intervals (µs)
between the executions of the instruction at address 83H are measured.

2. Set event and trace conditions as follows:

Set an event at the beginning
of the processing to be
subject to time measurement.

Set a qualified event.

Chapter 3 Advanced Use of ID78K0 3.3 Measuring Time by Setting Conditions

76

3. After the event and trace conditions have been set, the execution of the program is traced as
follows:

Check that the execution times are
satisfactory by converting the time tag
data to an actual time by using, for
example, spreadsheet software.

4. Save the trace results to a file. The execution times can be obtained by converting the time tag
data to actual times by using, for example, spreadsheet software.

Conversion results
Frame number Time tag data [hex] Actual time [µµs]

32666 0x2671 984.1
32667 0x2756 1007.0
32668 0x283B 1029.9
32669 0x291F 1052.7
32670 0x2A14 1077.2
32671 0x2AEA 1098.6
32672 0x2BCE 1121.4
32673 0x2CB3 1144.3
32674 0x2D98 1167.2

Time tag data is counted every 100 ns. To obtain an actual time, convert hexadecimal to decimal,
then convert the radix.

Appendix A Error Messages

77

Appendix A Error Messages

This appendix lists the error and warning messages output by ID78K0.

An error message consists of error number + type + message .

Error number

Type

Message

A type is represented by an alphabetic character. There are three types:

Type Explanation

A
Abort error.

Processing is interrupted and the debugger ends. If this error occurs, debugging cannot
be continued.

F
Format (syntax) error.

Processing is interrupted. The currently open windows and dialog boxes are closed.

W
Warning.

Processing is interrupted. The currently open windows and dialog boxes remain as is.

A message contains the names of the file, variable, and device related to the error, as follows:

Representation in message Explanation

xxx Low-order three digits of device name

yyy File name

zzz Function name

Appendix A Error Messages

78

Error messages (1/9)
Error No. Type Message Explanation

--- -- Can’t open this file. please make
sure, now Active Window.

The project file format is incorrect, or the file content
has collapsed.
Loading the project file was discontinued.

--- -- Cannot find “character string”. The search character was not found. The search
was discontinued.
Alternatively, opening the specified file was
discontinued because no data was in the file.

--- -- Event Name is not set. There is no event name.
Specify the name of the event when adding it.

--- -- Event number already exist. It is impossible to add an event having the same
number as an existing event.
Change the number of the event to be added or of
the existing event.

--- -- Not enough memory. Because of insufficient memory, a window cannot be
displayed, its content cannot be changed, or
changes to it cannot be retained.
Assign sufficient memory, and retry.

--- -- Other view mode window exist. Two or more active windows of the same type
cannot be opened simultaneously.
An active window that was already open was closed.

--- -- Sorry, Too large view file. The specified view file (.MEM, .TVW, or .DIS)
contains more than 1000 lines. Its display was
discontinued.

--- -- “event name” is already exist. It is impossible to add an event having the same
name as an existing event.
Change the name of the event to be added or of the
existing event.

0001 A Communication open error Communication with the in-circuit emulator (IE) is
not possible.

0003 A Hardware error A hardware error is detected.
0004 A Monitor time out Data was not transferred to and from the monitor

program.
Clock pulses may not be being supplied to the target
CPU or power may not be supplied. Check the
above and restart the debugger.

0005 A Not found monitor file The monitor file is not found.
0006 A Monitor file error A monitor file error is detected.
0009 A Communication failed Communication with the IE failed.
000a A Verify error A verify error is detected.
000e A User program Cannot run The user program cannot be executed.
000f A Illegal receive data An illegal response is received.
0012 A Emulation-Board conflicts with

Device-file
The EM board ID does not match the value in the
device file.

0014 W Target power off The power of the target device is off.
0015 W Program is running The user program is running.
0016 W Already break The user program is already in the break status.
0017 W Tracer is running The tracer is running.

Appendix A Error Messages

79

Error messages (2/9)
Error No. Type Message Explanation

0018 W Timer is running Timer measurement is in progress.
001d W Measure is off Timer measurement is not performed.
0020 W Execution mode error An execution mode error is detected.
0021 W Mapping error A mapping error is detected.
0022 W Trace block not found The specified trace block does not exist.
0023 W There is no trace data There is no trace data.
0024 W Trace range over The trace range has been exceeded.
0026 W Bus hold mode The bus hold mode is active.
0077 F Search data not found The search data does not exist.
0078 F Measure overflow The timer measurement result overflowed.
007a F Not specified coverage range The coverage range has not been specified.
007e W Event No.3 is using Event condition No. 3 is in use.
00c8 W User program is stepping The user program step is being executed.
01a1 A Invalid EX78Kx.OM0 The executor file (EX78K0.OM0) was not read

correctly.
The executor file may not exist or may have been
destroyed. Install the executor file again and
restart the debugger.

01a3 A Unconnected Emulation-board The emulation board (IE-780xx-R-EM) is not
correctly connected.
Connect the IE-780xx-R-EM to the IE-78000-R-A
correctly.

01a5 A Unconnected I/O emulation-board Emulation board 1 (IE-78xxx-R-EM1) is not correctly
connected.
Connect the IE-78xxx-R-EM1 to the IE-78000-R-A
correctly.

01a6 A Executor is running The executor is running.
01a8 A Invalid EXPC.INI The initialize file (EXPC.INI) was not read correctly.

The initialize file may not exist or may have been
destroyed. Install the initialize file again and restart
the debugger.

0600 A Communication buffer error The area for the buffer used for exchanging data
with the IE was not reserved. End other MS-
Windows applications, change the setting of the MS-
Windows swap file, or install additional main
memory in the host machine.

0f13 A Send timed out Data transmission to the IE failed.
Possible causes include an invalid interface board
setting and IE power off condition. Install the
initialize file again, then restart the debugger.

0f14 A Receive timed out No response was received from the IE.
The IE may be abnormal. Check the IE and restart
the debugger.

0f15 A Invalid D0xxx.78K The device file (D0xxx.78K) cannot be read
correctly.
The device file may not be located in the specified
directory or it may have been destroyed. Install the
device file again, then restart the debugger.

Appendix A Error Messages

80

Error messages (3/9)
Error No. Type Message Explanation

1000 A failure in initialization An attempt to initialize the IE failed. Check whether
the IE is abnormal.

1003 F Illegal relocation address It is impossible to relocate to a specified address.
1004 F Illegal parameter The parameter is illegal.
1006 F Illegal address The address is illegal.
1007 A Not enough substitute memory An attempt was made to map IE alternate memory in

an area of 64K bytes or more.
100b F Program Is Running A user program is running. This command cannot

be executed.
100c F Different Bussize An attempt was made to make duplicate specification

in areas having different bus sizes.
100d F Total Maximum Over An attempt was made to specify a bus larger than the

maximum size (8).
100e F Enable Maximum Over The bus size is larger than 8.
100f W Wrong Target Status(Power Off) The target state is unstable.
10ff A Communication Error It is impossible to communicate with the IE. Check

whether the IE is abnormal.
2000 F Illegal sfr name The SFR name is illegal.
2002 F User program is running A user program is running. This command cannot

be executed.
2003 F Illegal SFR number An attempt was made to access a nonexistent SFR.
2004 F Illegal bit number There is no bit SFR at the specified bit position.
2005 W Redraw sfr name The SFR has been disabled from redrawing.
2006 F This SFR is hidden SFR This SFR is not open to general use. It is impossible

to display or change data for the SFR.
2007 F Can’t Read/Write An attempt was made to write to a write-protected

SFR or read from a read-protected SFR.
2008 F Too big number The specified SFR was not found.
200a F Illegal Bit Pattern An attempt was made to specify an illegal value for

an SFR.
20ff A Communication Error Communication with the IE is impossible. Check

whether the IE is abnormal.
3000 F Illegal address The address is illegal.
3001 F Different data There is a memory content mismatch.
3002 F Illegal source address The specified source address range does not fall

within the mapping range (during a memory search,
comparison, or copy).

3003 F Illegal destination address The specified destination address range does not fall
within the mapping range (during a memory search,
comparison, or copy).

3004 F Illegal address (source &
destination)

The specified address range does not fall within the
mapping range (during a memory search,
comparison, or copy).

3005 F Illegal parameter The parameter is illegal.
3006 F User program is running A user program is running. This command cannot

be executed.
3008 F No Parameter There is no parameter.

Appendix A Error Messages

81

Error messages (4/9)
Error No. Type Message Explanation

3009 F Parameter Size Alignment Error The parameter size is illegal. Change the
parameter according to the memory access size.

300a F Memory Alignment Error The address value is illegal. Change the address
value according to the memory access size.

300b F Source Start Address Alignment
Error

The source address is illegal. Change the source
address according to the memory access size.

300c F Error, Destination Start Address
Alignment Error

In the destination address range, a memory range
with a conflicting access memory size was
specified.

300d F End Address Alignment Error The end address is illegal. Change the end
address according to the memory access size.

300e F Different Access Size in This Area In the address range, a memory range with a
conflicting access memory size was specified.

300f F Different Access Size in Source
Area

In the source address range, a memory range with
a conflicting access memory size was specified.

3010 F Different Access Size in Destination
Area

In the destination address range, a memory range
with a conflicting access memory size was
specified.

3011 F Different Access Size, Source &
Destination

The access size conflicts between the source and
destination address ranges.

30ff A Communication Error Communication with the IE is impossible. Check
whether the IE is abnormal.

4000 F Number is referenced now The specified event condition cannot be deleted.
4001 F Illegal table number The specified table number is illegal.
4002 F Illegal start address The start address is illegal.
4003 F Illegal end address The end address is illegal.
4004 F Illegal status The status is illegal.
4005 F Illegal data The data is illegal.
4006 F Can’t action number An attempt was made to use an event number that

was already in use.
4007 F Can’t empty number An attempt was made to register more than 32,767

events of the same type.
4008 F Table not found The specified event has not been registered.
4009 F Illegal data size The data size is illegal.
400a F Illegal type mode The mode is illegal.
400b F Illegal parameter The parameter is illegal.
400c F Illegal type number The type is illegal.
400d F Table overflow An attempt was made to register more than 32,767

events of the same type.
400e F No entry event number The specified event does not exist.
400f F Illegal Elink data An event condition specified with a range condition

or pass condition was used as an event link
condition. Alternatively, only one event condition
was specified.

4010 F Function not found The specified function was not found.
4011 A No free memory There is no sufficient memory. End unnecessary

applications, or close the Debugger window.
4012 F Timer not enabled The timer is disabled. Enable it if timer

measurement must be made.

Appendix A Error Messages

82

Error messages (5/9)
Error No. Type Message Explanation

4013 W Data access size mismatch at the
bus size

The access size in an event condition does not
match the bus size for mapping.

4014 F Can’t use software break At present, no software break can be used.
Specify that a software break be usable, using the
Extended Option dialog box.

4015 F Not point-address It is impossible to use, as an address condition, an
event condition specifying a range.

4016 F Not renew event condition. This event condition is being used for another
event. It is impossible to change the address
range condition or pass count condition.

4017 F Specified odd-address by word-
access.

The data value was not detected in word data
beginning at an odd address. Do not include that
data value in the setting.

5000 A Illegal type number The type is illegal.
5002 A Illegal file name The device file cannot be opened.
5003 A Cannot file seek An attempt to seek the file failed.
5004 A Cannot file close An attempt to close the file failed.
5005 A Illegal device format The format of the device file is illegal.
5006 A Cannot device initialize An attempt to initialize the IE failed.
5007 A Illegal device information There is no device information.
5008 F Cannot open device file The specified device file cannot be opened.
5009 F Cannot open EX78KX.OM0 file The EX78K0.OM0 cannot be opened.
500a F No match device file of version The version of the device file is illegal.
500b W Device has no relocatable iram. The currently selected device does not support

relocation in internal RAM.
6001 F Illegal entry symbol name The symbol name is illegal.
6002 F Illegal parameter The parameter is illegal.
6003 F Illegal entry function name The function name is illegal.
6004 F Out of Buffer flow Function display in the Stack window is incomplete.

The maximum allowable line size is 512 characters.
6005 F Illegal expression The expression is illegal.
7001 F User program is running A user program is running. This command cannot

be executed.
7002 F User program is stopped A user program is at a break. This command

cannot be executed.
7003 F Trace function is active The tracer is running. This command cannot be

executed.
7004 F Trace memory is OFF The tracer is off.
7005 F No Return Address, Can’t Execute The return address of the current function was not

found. Step execution based on the Return
command is not carried out.

7010 W Warning, No Source Line
Information

Instruction-level step execution was carried out
because there was no source information.

7012 A Not enough memory There is no sufficient memory. End unnecessary
applications, or close the Debugger window.

Appendix A Error Messages

83

Error messages (6/9)
Error No. Type Message Explanation

70fe A Bus Hold Error The bus is on hold. The user program cannot be
executed.

70ff A Communication Error Communication with the IE is impossible. Check
whether the IE is abnormal.

7801 F Step wait canceled Step execution was discontinued. So,
communication with the IE may become impossible.

7802 F Step aborted An illegal access break occurred during step
execution. Check the user program.

7f00 F Interrupted step Step execution was forced to end.
7f02 F Suspended step Step execution was suspended.
7f03 A Run/Step cancel failed. CPU

resetted
An attempt to break the user program failed. The
IE is unstable because the evaluation chip was
reset. Make sure that the IE is normal, then
restart it.

7f04 F Illegal address An attempt was made to execute in an non-mapped
area.

8000 F File not found The file was not found.
8001 F Illegal line number The line number is illegal.
8002 F Current data is not set The current information has not been set.
8003 F Ilegal address The address is illegal.
9002 F Illegal set value The specified value cannot be set in a register.

Specify a value that can be set.
a001 F Illegal expression The expression is illegal.
a002 F Start address bigger than end

address
The start address is greater than the end address
(start address > end address). Check the
addresses.

a003 F Source path not found The specified source path information is illegal.
Specify the correct source path information.

a004 F Expression is too big The size of the expression is greater than 127
characters.

a005 A Not enough memory There is no sufficient memory. End unnecessary
applications, or close the Debugger window.

a006 F Illegal argument The argument is illegal.
a008 F Source path not set The source path has not been specified.
a009 F File not found The file was not found.
a00a F File not open The file cannot be opened.
a00b A File not close An attempt to close the file failed.
a00c A File not read An attempt to read the file failed. It is likely that

the file has collapsed.
a00d F Not source file of LM The specified source file has not been registered

for the load module file. A file not registered for
the load module file cannot be displayed in the
Source window.

a00e F Illegal line number The line number is illegal.
a00f F Illegal variable The variable does not exist.
a010 A Communication failed Communication with the IE is impossible. Check

whether the IE is abnormal.

Appendix A Error Messages

84

Error messages (7/9)
Error No. Type Message Explanation

a011 F Can’t access register The register cannot be accessed. Check the IE.
a012 F Can’t access memory The specified memory (variable) cannot be

accessed. Check the IE or map setting.
b000 F Command line error The parameter is illegal.
b001 F Task type not found The load module file does not contain program

information.
b002 F File not found The file was not found.
b003 F Function not found The specified function was not found.
b004 F Illegal magic number The magic number for the load module file is illegal.
b005 F Symbol not found The symbol was not found.
b008 F Illegal value The expression is illegal.
b009 A Not enough memory There is no sufficient memory. End unnecessary

applications, or close the Debugger window.
b00a F Illegal symbol entry There is an illegal symbol in the load module file.

It is likely that there is a bug related to the
programming language.

b00b F Current type noting There is no debug information. Load the load
module file.

b00c F Current file noting There is no current source file. Alternatively the
source file cannot be opened because the load
module file has not been loaded.

b012 F Line number too large The line number is illegal.
b015 A Read error An attempt to read the file failed. It is likely that the

file has collapsed.
b016 A Open error The file cannot be opened.
b017 A Write error An attempt to write to the file failed.
b019 A Seek error An attempt to seek the file failed.
b01a A Close error An attempt to close the file failed.
b01d F Address not found There is no source line that corresponds to the

current PC value.
b01e F No line information(not compile

with -g)
There is no source line information in the load
module file. Attach the debug option, and carry out
recompilation, assembly, and linkage.

b01f F Cannot find member No member was found in the specified structure.
b020 F Cannot find value The specified enumeration constant is illegal.
b021 F Striped LM There is no symbol information in the load module

file.
b022 F Null statement line The line number is illegal.
b026 F Max dimension array over A four-dimensional or greater-scale array cannot be

displayed.
b027 F End of file The file is not complete.
b029 F Illegal address The address is illegal.
b02a A Communication failed Communication with the IE is impossible. Check

whether the IE is abnormal.
b02b F No stack frame point Stack tracing is impossible with the current PC

value.

Appendix A Error Messages

85

Error messages (8/9)
Error No. Type Message Explanation

b02c F Max block overflow The maximum number of blocks in one function is
exceeded. The function cannot be displayed.
(The maximum number of blocks per function is
256.)

b02d F Illegal argument The argument is illegal.
c001 F Cannot open file The file cannot be opened.
c002 A Cannot close file An attempt to close the file failed.
c003 A Cannot read file An attempt to read the file failed. It is likely that the

file has collapsed.
c004 A Cannot seek file An attempt to seek the file failed.
c005 F Illegal file type The format of the file is illegal. This file cannot be

handled.
c006 F Illegal magic number The magic number for the load module file is illegal.
c007 F This file is not load-module file The specified file is not a load module file.
c008 F Old coff version The version of the load module file is illegal.
c009 A Not enough memory There is no sufficient memory. End unnecessary

applications, or close the Debugger window.
c00a F Illegal address The address is illegal.
c00b F LM not load The load module file has not been loaded.
c00c F Illegal argument This is an internal error.
c00d F User program is emulating A user program is running. This command cannot

be executed.
c00e F User program is tracing The tracer is running. This command cannot be

executed.
c010 A Communication failed Communication with the IE is impossible. Check

whether the IE is abnormal.
c011 F Illegal file format The format of the load module file (LNK) is illegal.
c012 F Check sum error A checksum error occurred in reading the load

module file. Check the load module file.
c013 F Too big size The address range for uploading has exceeded 1M

byte.
c014 F Cannot write file An attempt to write to the file failed.
c100 F Not support The Tektronix format is not supported.
d001 F Not enough memory There is no sufficient memory. End unnecessary

applications, or close the Debugger window.
e000 F Illegal argument This is an internal error.
e001 F Illegal start address The start address is illegal.
e002 F Illegal end address The end address is illegal.
e003 F Size too long The address value is illegal.
e004 F Can’t open file The specified file cannot be opened.

Appendix A Error Messages

86

Error messages (9/9)
Error No. Type Message Explanation

e005 F Can’t read file An attempt to read the file failed. It is likely that the
file has collapsed.

e006 F Can’t seek file An attempt to seek the file failed.
e007 F Can’t write file An attempt to write to the file failed.
e008 F Not enough memory There is no sufficient memory. End unnecessary

applications, or close the Debugger window.
e009 F Illegal file format The format of the file is illegal.
XXXX F Internal error An internal error occurred.

Appendix B Key Functions

87

Appendix B Key Functions

Debugging can be carried out more effectively when ID78K0 is operated using the special function keys.
In the following explanation of the special function keys, general key representations (generic key
representations) are used. For the IBM-PC/AT Series, the key representations may differ slightly
depending on the keyboard type.

B.1 Functions of Special Function Keys
Key

PC-9801 and 9821
Series

IBM-PC/AT Series
Function

 BS BackSpace Deletes the character immediately before the cursor and
moves the cursor to the position of the deleted character.
The character string following the cursor is moved back.

 COPY PrintScreen Captures the entire screen into the clipboard as a bit
image. (Windows function)

 ESC Esc <1> Closes the pulldown menu.
<2> Closes the modal dialog box.

 GRPH Alt Moves the cursor to the menu bar.

 HELP End Displays the last line. Also, the cursor is positioned to
the last line.

 HOME CLR Home Displays the first line. Also, the cursor is positioned to
the first line.

 ROLL UP PageUp Scrolls the display up by one screen. Also, the cursor is
positioned to the top of the screen.

 ROLL DOWN PageDown Scrolls the display down by one screen. Also, the cursor
is positioned to the top of the screen.

 SPACE Space Inserts one blank.

 TAB Tab Positions the cursor to the next item.

 ↑ ↑
Moves the cursor up.

Scrolls the screen down by one line when the cursor is
positioned to the top of the screen.

 ↓ ↓
Moves the cursor down.

Scrolls the screen up by one line when the cursor is at
the bottom of the screen.

 ← ←

Moves the cursor to the left.
Scrolls the screen to the right by one item when the
cursor is in the leftmost column.

 → →

Moves the cursor to the right.
Scrolls the screen to the left by one item when the
cursor is in the rightmost column.

 ↵ ↵
Confirms input data.

Appendix B Key Functions

88

B.2 Functions of Special Function Keys (CTRL + Key)
Key

(Common to the PC-9801,
9821, and IBM-PC/AT Series)

Function

 A Using the data value in the current window as an address to jump to,
disassembles and displays the program starting from that address. Opens
the Assemble window.

 B Sets a breakpoint in a selected line.

 C Copies a selected character string to the clipboard buffer.

 D PC setting and window view: The Call dialog box is opened.

 E PC setting.

 F Switches a window to modify mode. This has the same effect as clicking

the button.

 G Executes a program. This has the same effect as clicking the button.

 H Switches a window to the Hold state.

 I Switches a window to the Active state.

 M Using the data value in the current window as an address to jump to,
displays the contents of memory starting from that address. Opens the
Memory window.

 O If the Source window is current:
Allows the user to select a source view file.
Opens the source file select dialog box.

Otherwise: Displays an appropriate view file in the current window.
Opens the view file save dialog box.

 P Stops the execution of a program. This has the same effect as clicking the

 button.

 R Performs step execution until control returns to the calling function. This

has the same effect as clicking the button.

 S Saves the contents of the current window to a view file.

 T Performs step execution. This has the same effect as clicking the
button.

 U Using the data value in the current window as an address to jump to,
displays an appropriate source text and source line. Opens the Source
window.

 V Pastes the contents of the clipboard buffer to the text cursor position.

 W Switches a window to view mode. This has the same effect as clicking the

 button.

 X Performs Next step execution. This has the same effect as clicking the

 button.

 Z Cancels the previous editing operation.

Appendix C Menus

89

Appendix C Menus

This Appendix lists the menus supported by ID78K0.

Symbols used in the menu lists

Symbol Meaning

[Item] Item on a menu bar

No symbol Item in a pull-down menu

→→ (arrow) Item in a cascaded menu
The number of arrows corresponds to the nesting level.

Table C-1 Main Window (1/4)
Menu Mnemonic Explanation

[File]

Open... CTRL+O Opens a file.

Save CTRL+S Saves the contents of the current window into the view file.

Save As... Saves the contents of the current window into a view file having
a different name.

Close Closes the current window.

Print Prints the contents of the current window.

Down load... Downloads a program.

Up load... Uploads a program.

Open/Save Project

→Open Project... Opens a project file.

→Save Overwrites the project file with the current debugging
environment.

→Save As... Saves the current debugging environment into a project file.

Open/Save Log Records the history of execution.

Exit Exits from the debugger.

[Edit]

Undo CTRL+Z Cancels the most recent editing.

Copy CTRL+C Copies a selected character string into the clipboard buffer.

Paste CTRL+V Pastes the contents of the clipboard buffer at the point to which
the text cursor is positioned.

Write in Writes the modified contents into the target device.

Restore Cancels the modified contents.

Memory

→Memory Fill... Initializes memory.

→Memory Copy... Copies the contents of memory.

→Memory Compare... Compares the contents of memory.

→File Compare... Compares the view file with the contents of memory.

Appendix C Menus

90

Table C-1 Main Window (2/4)
Menu Mnemonic Explanation

[View]

Search... Searches for a character string or numerical value.

Address... Displays the contents of memory at a specified address.

View Variable... Displays the value of a specified variable temporarily.

Watch Variable... Displays the value of a specified variable continuously.

Add Variable... Adds a variable to the Variable window.

Sym To Adr... Converts symbols.

Delete Deletes a specified value.

Bin Selects binary display format.

Oct Selects octal display format.

Dec Selects decimal display format.

Hex Selects hexadecimal display format.

Proper Selects a default display format for each variable.

Event ? Displays event information.

Memory

→Nibble Displays data in nibble format.

→Byte Displays data in byte format.

→Word Displays data in word format.

→Long Displays data in long format.

→Ascii Switches on or off ASCII view mode.

Sfr

→Address Sort Selects alphabetic display order or display in order of
addresses.

→Pick Up Displays only modified SFRs.

→Attribute

→→Show Displays the attribute view area.

→→Hide Hides the attribute view area.

→Compulsion Read Performs forced reading of a read-protected SFR.

→Synchronize Writes the modified SFRs to the target device.

Trace View

→Trace View... Selects the trace view contents.

→Snap View... Selects the snapshot trace view contents.

→Normal Title Displays the trace frame titles.

→Snap Title Displays the snapshot frame titles.

→All Title Displays all titles.

→Open Frame... Specifies a view frame number.

→Pick Up... Selects a view frame.

Coverage

→ 1 Byte Displays data in 1-byte units.

→64 Byte Displays data in 64-byte units.

Appendix C Menus

91

Table C-1 Main Window (3/4)
Menu Mnemonic Explanation

[Option]

Tool Bar Displays or hides the tool bar.

Status Bar Displays or hides the status bar.

Button Displays or hides the buttons in the window.

Source Mode Selects the source mode.

Instruction Mode Selects the instruction mode.

Configuration... Sets the environment.

Source Path... Sets source path information.

Extended Option... Sets extended options.

Mask Option... Sets mask options.

[Execute]

Stop CTRL+P Stops the execution of a program.

Go CTRL+G Executes a program.

Return CTRL+R Executes a program, step by step, until control is returned to
the calling function.

Step CTRL+T Executes a program step by step.

Next CTRL+X Performs Next step execution of a program.

Go & Go Repeatedly executes a program.

Go & Come Executes a program up to a specified address.

Slowmotion Continues step-by-step execution.

CPU Reset & Go Resets the CPU before starting execution.

CPU Reset... Resets the CPU.

Set BP CTRL+B Sets a breakpoint.

Set PC CTRL+E Sets the address in the program counter.

Call... CTRL+D Sets PC in the specified address and moves.

ExtSenceClip... Sets external sense clip mode.

Trace

Cond. Trace Sets conditional tracing mode.

Machine All. Trace Sets machine cycle, all-tracing mode.

Event All. Trace Sets event cycle, all-tracing mode.

Trace Full Break Breaks after full tracing.

[Operation]

Active CTRL+I Puts the window in the active state.

Hold CTRL+H Puts the window in the hold state.

ToModify CTRL+F Puts the window in modify mode.

ToView CTRL+W Puts the window in view mode.

Window Connect

→SourceText Links to the Source window.

→Assemble Links to the Assemble window.

→Memory Links to the Memory window.

Appendix C Menus

92

Table C-1 Main Window (4/4)
Menu Mnemonic Explanation

[Browse]

SourceText... Opens the Source window.

Variable... Opens the Variable window.

Assemble... Opens the Assemble window.

Memory... Opens the Memory window.

Register... Opens the Register window.

Stack Trace... Opens the Stack window.

Sfr... Opens the SFR window.

Local Variable... Opens the Local Variable window.

BreakSet... Opens the Break dialog box.

Timer... Opens the Timer window.

Trace

→TraceSet... Opens the Trace dialog box.

→TraceView... Opens the Trace View dialog box.

→SnapShotTraceSet... Opens the Snap-Shot dialog box.

Event

→EventSet... Opens the Event Set dialog box.

→EventManager... Opens the Event Manager.

→EventLinkSet... Opens the Event Link dialog box.

Coverage

→View... Opens the Coverage window.

→Clear... Opens the Coverage Memory Clear dialog box.

→Condition... Opens the Coverage Condition Setting dialog box.

→Efficiency... Opens the Coverage Efficiency View dialog box.

[Jump]

SourceText... CTRL+U Jumps to the Source window.

Assemble... CTRL+A Jumps to the Assemble window.

Memory... CTRL+M Jumps to the Memory window.

[Window]

Cascade Displays the window in cascade style.

Tile Displays the window in tile style.

Arrange Icons Re-arranges the icons.

Close All Closes all windows except the main window.

[Help]

About... Displays the information about the version.

Appendix C Menus

93

Table C-2 Event Manager
Menu Mnemonic Explanation

[File]

Open... Opens an event setting file.

Save Saves the current event settings into the event setting file,
overwriting the previously saved setting.

Save As... Saves the current event settings into a specified event setting
file.

Print Prints the event registration/setting information.

Close Closes the Event Manager.

[Edit]

Undo Cancels the most recent editing.

Copy Copies a specified icon using a different name.

All Select Selects all icons.

Delete Deletes a specified icon.

[View]

Name Sorts the icons into event name order.

Kind Sorts the icons into event type order.

Detail Switches between normal view and detail view.

[Execute]

Set Break Enables a break condition.

Cancel Break Disables a break condition.

Set Trace Enables a trace condition.

Cancel Trace Disables a trace condition.

Set SnapShotTrace Enables a snapshot condition.

Cancel SnapShotTrace Disables a snapshot condition.

[Operation]

BreakSet... Opens the Break dialog box.

TraceSet... Opens the Trace dialog box.

SnapShotTraceSet... Opens the Snap-Shot dialog box.

EventSet... Opens the Event Set dialog box.

EventLinkSet... Opens the Event Link dialog box.

[Jump]

SourceText... Jumps to the Source window.

Assemble... Jumps to the Assemble window.

Memory... Jumps to the Memory window.

Appendix C Menus

94

Table C-3 Register Window
Menu Mnemonic Explanation

[File]

Open/save Condition

→Open Condition... Opens the selected file for reference.

→Save Condition Saves the contents of the window into a view file.

→Save File as... Saves the current event settings into a specified view file.

Close Closes the Register window.

[Edit]

Undo Cancels the most recent editing.

Copy Copies a selected character string into the clipboard buffer.

Paste Pastes the contents of the clipboard buffer at the point to which
the text cursor is positioned.

Write in Writes the modified contents into the target device.

Restore Cancels the modified contents.

[View]

Absolute Name Displays absolute register names.

Functional Name Displays functional register names.

Register Displays registers individually.

Register Pair Displays register pairs.

Bin Displays data in binary format.

Oct Displays data in octal format.

Dec Displays data in decimal format.

Hex Displays data in hexadecimal format.

[Operation]

Active Puts the Register window in the active state.

Hold Puts the Register window in the hold state.

ToModify Puts the Register window in modify mode.

ToView Puts the Register window in view mode.

[Jump]

SourceText... Jumps to the Source window.

Assemble... Jumps to the Assemble window.

Memory... Jumps to the Memory window.

Appendix C Menus

95

Table C-4 Variable Window
Menu Mnemonic Explanation

[File]
Open/save Condition

→Open Condition... Opens the selected file for reference.

→Save Condition Saves the contents of the window into a view file.

→Save File as... Saves the contents of the window into a specified view file.

Close Closes the Variable window.

[Edit]

Undo Cancels the most recent editing.

Copy Copies a selected character string into the clipboard buffer.

Paste Pastes the contents of the clipboard buffer at the point to
which the text cursor is positioned.

Write in Writes the modified contents into the target device.

Restore Cancels the modified contents.

[View]

Bin Displays variable values in binary format.

Oct Displays variable values in octal format.

Dec Displays variable values in decimal format.

Hex Displays variable values in hexadecimal format.

Proper Displays variable values in default format for each variable.

[Operation]

Active Puts the Variable window in the active state.

Hold Puts the Variable window in the hold state.

ToModify Puts the Variable window in modify mode.

ToView Puts the Variable window in view mode.

Delete Removes a specified variable from the Variable window.

Table C-5 Timer Window
Menu Mnemonic Explanation

[File]
Open/save Condition

→Open Condition... Opens a file.

→Save Condition Saves the contents of the window into the original file.

→Save File as... Saves the contents of the window into a specified file.

Close Closes the Timer window.

[Operation]

Active Places the Timer window in the active state.

Hold Places the Timer window in the hold state.

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 98.2

Name

Company

From:

Tel. FAX

Facsimile Message

