International

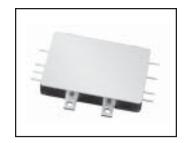
ADVANCED ANALOG HIGH RELIABILITY RADIATION HARDENED DC/DC CONVERTERS

Description

The H-Series of DC/DC converters are radiation tolerant, high reliability devices designed for moderate radiation environments such as those encountered by low earth orbit satellites and launch vehicles. For higher radiation environments, the G-Series of DC/DC converters is recommended. System upgrades to higher radiation tolerance applications can be easily accommodated with the G-Series converters because they have the same mechanical outline and are pin compatible. For physically smaller, lower output power single and dual output applications the L-Series of DC/DC converters are recommended. Features of the H-Series include up to 40 watt output power, small size, low weight and a high tolerance to total ionizing dose, single event effects and environmental stresses such as temperature extremes, mechanical shock, and vibration. All components are fully derated to meet the requirements of MIL-STD-975 and MIL-STD-1547. Extensive documentation including Radiation Susceptibility, Thermal Analysis, Stress Analysis and MTBF are available.

The converters incorporate a fixed frequency single forward topology with magnetic feedback and an internal EMI filter. These converters are capable of meeting the conducted emissions and conducted susceptibility requirements of MIL-STD-461C without any additional components. All models include an external inhibit port and have an adjustable output voltage. They are enclosed in a hermetic 3.0" x 2.5" x 0.445" steel package and weigh less than 125 grams. The package utilizes rugged ceramic feed-through copper core pins and is sealed using parallel seam welding.

Full environmental screening includes temperature cycling, constant acceleration, fine and gross leak, and burn-in.


Non-flight versions of the H-Series converters are available for system development purposes. Variations in

www.irf.com

PD - 94518

H-SERIES

+28V Input, Triple Output

Features

- Total Dose > 25K Rad(Si)
- SEE > 37 MeV. cm²/mg
- Internal EMI filter; Converter Capable of meeting MIL-STD-461C CE03 and CS01
- Low Weight, < 125 grams
- Magnetically Coupled Feedback
- 18V to 50V Input Range (50V, 70V, and 120V Models Available)
- Up to 40W Output Power
- Triple Output Models Include +5 and ±12 or ±15V
 - Main output isolated from dual outputs
- High Efficiency to 80%
- -55°C to +125°C Operating Temperature Range
- 100MΩ @ 500VDC Isolation
- Under-Voltage Lockout
- Short Circuit and Overload Protection
- Output Over Voltage Limiter
- External Inhibit
- > 1,500,000 Hour MTBF

Applications

- Low Earth Orbit Satellites (LEO)
- Launch Vehicles

electrical specifications and screening to meet custom requirements can be accommodated.

Circuit Description

The H-Series converters utilize a single forward topology with resonant reset. The nominal switching frequency is 500kHz. Electrical isolation and tight output regulation are achieved through the use of a magnetically coupled feedback. Voltage feed-forward with duty factor limiting provides high line rejection and protection against output over voltage in the event of an internal control loop failure. This mechanism limits the maximum output voltage to approximately 20% over the nominal regardless of the line voltage.

An internal EMI filter allows the converter to meet the conducted emissions requirements of MIL-STD-461C on the input power leads. A two-stage output filter reduces the typical output ripple to less than 20mV peak-to-peak.

The main (+5 volt) output is regulated by the control loop and typically exhibits better than 1% regulation. The auxiliary (±12 volt or ±15 volt) outputs are maintained through tight coupling in the power transformer and main output filter inductor and typically exhibit better than 5% regulation. The main output and auxiliary outputs are isolated from each other. Output power is limited under any load fault condition to approximately 125% of rated. An overload condition causes the converter output to behave like a constant current source with the output voltage dropping below nominal. The converter will resume normal operation when the load current is reduced below the current limit point. This protects the converter from both overload and short circuit conditions. The current limit point exhibits a slightly negative temperature coefficient to reduce the possibility of thermal runaway.

International

An under-voltage lockout circuit prohibits the converter from operating when the line voltage is too low to maintain the output voltage. The converter will not start until the line voltage rises to approximately 17 volts and will shut down when the input voltage drops below 16 volts. The one volt of hysteresis reduces the possibility of line noise interfering with the converter's start-up and shut down.

An external inhibit port is provided to control converter operation. The converter's operation is inhibited when this pin is pulled low. It is intended to be driven by an open collector logic device. The pin may be left open for normal operation and has a nominal open circuit voltage of 10.5V with respect to the input return (pin 2).

Design Methodology

The H-Series was developed using a proven conservative design methodology which includes selecting radiation tolerant and established reliability components and fully derating to the requirements of MIL-STD-975 and MIL-STD-1547. Heavy derating of the power MOSFET gate and drain voltages minimize the possibility of SEGR and SEB. A magnetic feedback circuit is utilized instead of opto-couplers to minimize temperature, radiation and aging sensitivity. PSPICE was used extensively to predict and optimize circuit performance for both beginning and end-of-life. Thorough design analyses include Radiation Susceptibility (TREE), Stress, Thermal, and Reliability (MTBF).

International **IOR** Rectifier

Absolute Maximum Ratings

Input voltage range -Output power -Lead temperature -Operating temperature - -55°C to +135°C Storage temperature - -55°C to +135°C

-0.5Vdc to +80Vdc Internally limited +300°C for 10 seconds

Recommended Operating Conditions

Input voltage range -	18Vdc to +60Vdc
Input voltage range ¹ -	18Vdc to +50Vdc
Output power -	0 to Max. Rated
Operating temperature ² -	-55°C to +125°C
Operating temperature ¹ -	-55°C to +70°C

¹Meets derating per MIL-STD-975 ²For operation at +125°C see table note 14

			Limits			
Parameter	Group A Subgroup	$-55^{\circ}C \le T_{c} \le +85^{\circ}C$ V _{IN} = 28V DC ± 5%, C _L = 0 unless otherwise specified	Min	Nom	Max	Unit
Input Voltage	1,2,3	Note 2	18	28	50	V
Output Voltage (Vout) (main) 2812T (aux.) 2815T (aux.)	1	I _{out} = 100% rated load, Note 5		5.00 ±11.80 ±14.90	5.02 ±12.10 ±15.20	V V V
(main) 2812T (aux.) 2815T (aux.)	2,3	I_{out} = 100% rated load, Note 5	4.93 ±11.30 ±14.40		5.07 ±12.30 ±15.40	V V V
Output power (P _{out})	1,2,3	V _{IN} = 18, 28, 50 Volts, Note 2	0		40	W
Output current (Ι _{ουτ}) (main) 2812T (aux.) 2815T (aux.)	1,2,3	V _{IN} = 18, 28, 50 Volts, Notes 2,3,4,5	400 83 67		4000 ±833 ±667	mA mA mA
Line regulation (VR _{LINE}) (main) 2812T (aux.) 2815T (aux.)	1,2,3	V _{IN} = 18, 28, 50 Volts I _{OUT} = 10%, 50%, 100% rated Note 5	-10 -120 -150		10 120 150	mV mV mV
Load regulation (VR _{LOAD}) (main) 2812T (aux.) 2815T (aux.)	1,2,3	I _{out} = 10%, 50%, 100% rated V _{IN} = 18, 28, 50 Volts Notes 5,13	-50 -400 -500		50 400 500	mV mV mV
Cross regulation (VR _{cross}) 2812T (aux.) 2815T (aux.)	1,2,3	$V_{_{\rm IN}} =$ 18, 28, 50 Volts $I_{_{\rm OUT}} =$ 1A to 4A (main), ±416mA on (aux.) $I_{_{\rm OUT}} =$ 1A to 4A (main), ±333mA on (aux.)	-3.5 -3.0		3.5 3.0	% %
Total regulation (VR) (main) 2812T (aux.) 2815T (aux.)	1,2,3	All conditions of Line, Load, and Cross Regulation, and Temperature	4.90 ±11.00 ±13.50		5.10 ±13.00 ±16.50	V V V
Input current ($I_{\mathbb{N}}$)	1,2,3	I _{out} = 0, Pin 3 open			80	mA
		Pin 3 shorted to pin 2			5	
Output ripple (V _{RP}) (main) 2812T (aux.) 2815T (aux.)	1,2,3	$V_{\rm IN}$ = 18, 28, 50 Volts I _{our} = 100% rated load, Notes 5, 6		25 30 30	50 60 75	mV p-p mV p-p mV p-p
Switching frequency (F) Efficiency (E,)	1,2,3 1,2,3	Sync. Input (Pin 4) open I _{our} = 100% rated load; Note 5	450 75	500 79	550	KHz %
	1,2,3	$n_{OUT} = 100\%$ rated load, Note 5	75	19		70

Electrical Performance Characteristics

For Notes to Specifications, refer to page 4

www.irf.com

International TOR Rectifier

Electrical Performance Characteristics (continued)

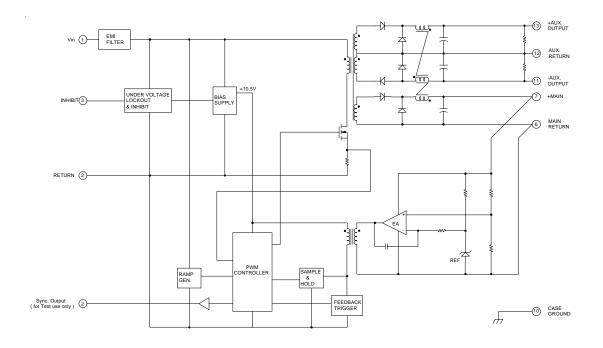
		Conditions		Limits		
Parameter	Group A Subgroup	-55°C ≤ T_c ≤ +125°C V _{IN} = 28V DC ± 5%, C _L = 0 unless otherwise specified	Min	Nom	Max	Unit
Inhibit Input open circuit voltage drive current (sink) voltage range	1,2,3	Note 1	3.0 -0.5		5.0 100 50	ν μΑ ν
Current Limit Point Expressed as a percentage of full rated output power	1,2,3	V_{out} = 90% of Nominal, Note 5			135	%
Power dissipation, load fault ($P_{\scriptscriptstyle D}$)	1,2,3	Short Circuit, Overload, Note 8			18	W
Output response to step load changes (V_{TLD})	4,5,6	Half Load to/from Full Load, Notes 5,9	-300		300	mV pk
Recovery time, step load changes (T_{TLD})	4,5,6	Half Load to/from Full Load, Note 5,9,10			200	μS
Output response to step line changes (V_{TLN})	4,5,6	18V to/from 50V I _{our} = 100% rated load, Notes 1,5,11	-300		300	mV pk
Recovery time, step line changes (T_{TLN})	4,5,6	18V to/from 50V I _{our} = 100% rated load, Notes 1,5,10,11			200	μS
Turn-on Response Overshoot (V _{os}) (main) (aux.)	4,5,6	No Load, Full Load; notes 5 &12			500 750	mV mV
Turn-on Delay (T _{DLY})	4,5,6		1		5	mS
Capacitive Load (CL) (main) (Each aux. output)	1	I _{out} = 100% rated load, No effect on DC performance, Notes 1, 5, 7			1000 200	μF μF
Line Rejection	1	I _{ουτ} = 100% rated load DC to 50KHz, Notes 1, 5	40	60		dB
Isolation	1	Input to Output or Any Pin to Case except pin 10, test @ 500VDC	100			MΩ
Device Weight					125	grams
MTBF		MIL-HDBK-217F2, SF, 35°C	1.5 x 10 ⁶			Hours

Table I. Electrical Performance Characteristics - notes

- 1. Parameter is tested as part of design characterization or after design changes. Thereafter, parameter shall be guaranteed to the limits specified.
- 2 Parameter verified during line and load regulation tests.
- Although operation with no load is permissible, light loading on the main (+5 volt) output may cause the output voltage of the auxiliary outputs З. (±12 volt or ±15 volt) to drop out of regulation. It is therefore recommended that at least 200 mA or 20 percent of the total output power, whichever is greater, be taken from the main (+5 volt) output. 4.
- Although operation with no load is permissible, heavy loading on the main (+5 volt) output may cause the output voltage of the auxiliary outputs 5.
- 6. (±12 volt or ±15 volt) to rise out of regulation. It is therefore recommended that at least 50 mA or 20 percent of the total output power, whichever is greater, be taken from the auxiliary (±12 volt or ±15 volt) outputs. Unless otherwise specified, "Rated" load is 20W on the main (+5 volt) output and 10 watts each on the auxiliary (±12 volt or ±15 volt) outputs. Load 7.
- currents of up to 5A and ±1A on the main and auxiliary outputs respectively are acceptable as long as the total output power does not to exceed 40 watts. 8. Guaranteed for a D.C. to 20MHz bandwidth. Tested using a 20KHz to 10MHz bandwidth.
- 9
- Capacitive load may be any value from 0 to the maximum limit without compromising dc performance. A capacitive load in excess of the maximum limit may interfere with the proper operation of the converter's overload protection, causing erratic behavior 10. during turn-on.
- Overload power dissipation is defined as the device power dissipation with the load set such that $V_{out} = 90\%$ of nominal. 11.
- Load step transition time $\leq 10 \,\mu$ Sec. 12.
- Recovery time is measured from the initiation of the transient to where V_{out} has returned to within ±1% of 13.
- 14. 15. its steady state value.
- Line step transition time ≤ 100 μSec. Turn-on delay time from either a step application of input power or a logic low to a logic high transition 16.
- 17.
- α is given by a sign of the point where $V_{out} = 90\%$ of nominal. Load is varied for output under test while the remaining outputs are loaded at 50% of rated. Regulation relative to output voltage at 50% rated load. 18.
- For operation at temperatures between +85°C and +125°C, derate the maximum input voltage linearly from 60V to 40V and the maximum output power linearly from 100% to 75%. 19.

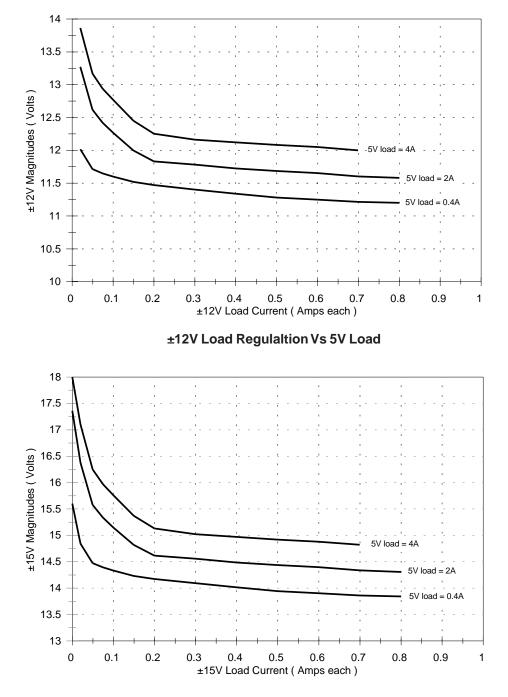
International **IOR** Rectifier

H-SERIES

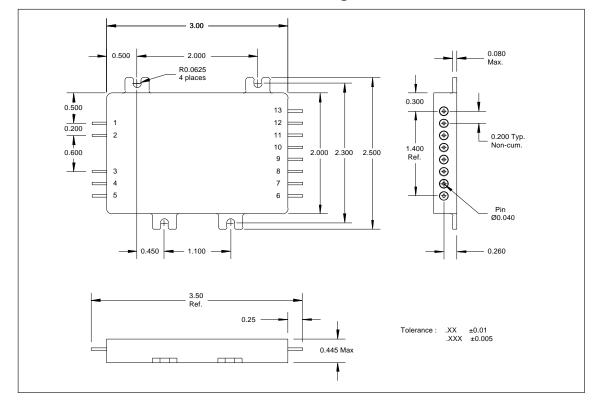

Radiation Performance Characteristics

Test	Conditions	Min	Тур	Highest Level Tested	Unit
Total Ionizing Dose (Gamma)	MIL-STD-883, Method 1019 Operating bias applied during exposure, Full Rated Load, V _№ = 28V	25	40	60	Krads (Si)
Single Event Effects SEU, SEL, SEGR, SEB	Heavy ions (LET) Operating bias applied during exposure, Full Rated Load, V _{IN} = 28V	37	82	82	MeV•cm² /mg
Dose Rate (Gamma Dot) Temporary Saturation Survival	MIL-STD-883, Method 1023 Operating bias applied during exposure, Full Rated Load, V _№ = 28V	1E8 1E10		1.5E9	Rads (Si)/sec
Neutron Fluence	MIL-STD-883, Method 1017	3E12		8E12	Neutrons /cm ²
Proton Fluence	E > 10MeV	TBD		N/A	protons /cm ²

Device Screening


Test Inspection	Method	Condition
Element Evaluation	MIL-PRF-38534 class H equivalent with SEM	
Nondestructive Bond Pull	MIL-STD-883, Method 2023	
Internal Visual	MIL-STD-883, Method 2017	
Temperature Cycling	MIL-STD-883, Method 1010	С
Constant Acceleration	MIL-STD-883, Method 2001 (2k-g)	A, Y1 axis only
Electrical	In accordance with device specification	
Burn-in	MIL-STD-883, Method 1015	160 Hours
Final Electrical (Group A)	In accordance with device specification	
Seal Fine Leak Gross Leak	MIL-STD-883, Method 1014	A1 C
External Visual	MIL-STD-883, Method 2009	

International **IOR** Rectifier


Block Diagram - Triple Output

International **tor** Rectifier

±15V Load Regulation Vs 5V Load

International

Mechanical Diagram

Pin Designation (Triple Ouput)

Part Number

Pin	Signal	Pin	Signal <u>M3H</u> 28		<u>МЗН 28 0515 Т</u>	
Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Pin 7	+V Input Return Inhibit NC Clock Output (T.P.) Main Return +Main Output	Pin 8 Pin 9 Pin10 Pin 11 Pin 12 Pin 13	NC NC Case Ground -Aux. Output Aux. Output Return +Aux. Output	Model Input Voltage 28 = 28V Nominal	Outputs T = Triple Output Voltage 0512 = 5V,±12V 0515 = 5V,±15V	

International

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 07/02

www.irf.com