2N6660CSM4

MECHANICAL DATA Dimensions in mm (inches)

Underside View LCC3 PACKAGE (MO-041BA)

Pin 1 – Drain	Pin 3 – Source
Pin 2 – N/C	Pin 4 – Gate

N-CHANNEL ENHANCEMENT MODE MOS TRANSISTOR

FEATURES

- Switching Regulators
- Converters
- Motor Drivers
- JAN Level Screening Options
- CECC Screening Options
- Space Quality Level Options

ABSOLUTE MAXIMUM RATINGS (T_{CASE} = 25°C unless otherwise stated)

V _{DS}	Drain – Source Voltage		60V
V _{GS}	Gate – Source Voltage	Gate – Source Voltage	
I _D	Drain Current	@ T _{CASE} = 25°C	1.1A
I _D	Drain Current	@ T _{CASE} = 100°C	0.8A
I _{DM}	Pulsed Drain Current *		ЗА
PD	Power Dissipation	@ T _{CASE} = 25°C	6.25W
P _D	Power Dissipation	@ T _{CASE} = 100°C	2.5W
Т _ј	Operating Junction Temperature Range		–55 to 150°C
T _{stg}	Storage Temperature Range		–55 to 150°C
ΤL	Lead Temperature $(\frac{1}{16})^{n}$ from case for 10 sec.)		300°C

* Pulse Width Limited by Maximum Junction Temperature

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

2N6660CSM4

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
	STATIC CHARACTERISTICS							
V _{(BR)DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0V$	I _D = 10μA	60	100		v	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 1.0mA	0.8	1.5	2	1 [•]	
	Gate – Body Leakage Current	$V_{GS} = \pm 15V$				±100	nΑ	
'GSS		$V_{DS} = 0V$	$T_{CASE} = 125^{\circ}C$			±500		
		$V_{DS} = 60V$	$V_{GS} = 0V$			10		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 48V	$V_{GS} = 0V$			500	μΑ	
			$T_{CASE} = 125^{\circ}C$			500		
I _{D(on)*}	On–State Drain Current	V _{DS} =>2V	V _{GS} = 10V	1.5	1.7		А	
		$V_{GS} = 5V$	I _D = 0.3A		4.7	5		
R _{DS(on)*}	Drain – Source On Resistance	$V_{GS} = 10V$			2.7	3	Ω	
		I _D = 1.0A	$T_{CASE} = 125^{\circ}C$		3.9	4.2		
V _{DS(on)*}	Drain – Source On Voltage	$V_{GS} = 5V$	I _D = 0.3A		1.4	1.5	V	
		$V_{GS} = 10V$	I _D = 1A		2.7	3		
	DYNAMIC CHARACTERISTICS							
g _{FS*}	Forward Transconductance	$V_{DS} = 25V$	I _D = 0.5A	170	195		ms	
C _{iss}	Input Capacitance	V _{DS} = 25V			35	50		
C _{oss}	Output Capacitance	$V_{GS} = 0V$	-		33	40	pF	
C _{rss}	Reverse Transfer Capacitance	f = 1MHz			2	10		
	SWITCHING CHARACTERISTICS							
t _{ON}	Turn–On Time	$V_{DD} = 25V$	I _D = 1.0A		8	10	ne	
t _{OFF}	Turn–Off Time	$R_L = 23\Omega$	$R_G = 25\Omega$		8	10	115	
	BODY-DRAIN DIODE CHARACTERISTICS							
I _S	Continuous Source Current	burce Current Modified MOSPOWER Symbol Showing The Integral PN Juncion Rectifier				-1.1		
	(Body Diode)						- A	
I _{SM}	Source Current ¹ (Body Diode)					-3		
V _{SD}	Diode Forward Voltage ¹	I _S = -1.1A T _{CASE} = 125°	V _{GS} = 0V C			-0.9	V	

* Pulse Test: $~t_p \leq 80~\mu s$, $\delta \leq 1\%$

	Parameter	Min.	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance, Junction to Ambient			210	°C/W
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case			20	°C/W

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.