						·		RI	EVIS	ONS										
LTR		·- · · · · · · · · · · · · · · · · · ·			D	ESCR	IPTI(NC						ATE	(YR-MC)-DA)		APPR	OVED	
D	and 6589 type numb 05XX 08ZX as a 03NX sour	NOR No 6 and s 10UX er 0BY er 617 , 05YX , 08UX sourc , 04NX	ith changes made under NOR No. 5962-R11 o. 5962-R004-93 Revision C. Added venc OK6N4 to the drawing as sources of sup X, 10YX, 11UX, 11YX, and 12UX, 12YX. Re YV44 from drawing as source of supply. F 772 as a source of supply for devices X, 05ZX, 05UX, 06ZX, 07XX, 07YX, 07ZX, X, 09XX, 09YX, 09ZX, and 09UX. Added v ce of supply for devices 01MX, 01NX, 02 X, 04MX, 06MX, and 06NX. Removed vendo supply for devices 02XX, 02YX, 04XX changes throughout.							CAGE y. Ad ved ve poved v ZX, 02 UX, 08 dor ca , 02NX cage	number ded de ndor (endor ZX, 08 XX, 08 ge 617 , 03MX 34649	cage BZX, BYX,		94-01-04			M. A. FRYE			
				ТН	IE ORI	GINAL	FIRST	PAGE C	OF THIS	s draw:	ING HA	S BEEN	i REPL/	ACED.						
REV				ТН	IE ORI	GINAL	FIRST	PAGE C	OF THIS	S DRAW	ING HA	S BEEN	4 REPL/	ACED.						1
REV SHEET				ТН	IE ORI	GINAL	FIRST	PAGE C	OF THI:	S DRAW	ING HA	S BEEN	(REPL/	ACED.						
			D	TH	IE ORI	GINAL	FIRST	PAGE C	OF THI	S DRAW	ING HA	S BEEN	(REPL/	ACED.						
SHEET	15	16	D 17		IE ORI	GINAL	FIRST	PAGE C	OF THIS	S DRAW	ING HA	S BEEN	(REPL/	ACED.						
SHEET REV SHEET REV STATUS	15	16		D		GINAL	FIRST	PAGE C	DF THIS	S DRAW	ING HA	S BEEN	(REPL/	ACED.	D	D				
SHEET REV SHEET REV STATUS	15	16		D 18		GINAL									D 9	D 10	11	12	13	1
SHEET	15	16		D 18 REV SHE		34	D	D	D	D 4	D 5	D 6	D 7	D 8	9 S SU	10 PPLY	CEN.		13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STANI	DARD1	IZED	17	D 18 REV SHEI PREP	ET ARED E	3Y Rice	D	D	D	D 4	D 5	D 6	D 7	D 8	9 S SU	10 PPLY	CEN.		13	1
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STANI MII	DARD]	I ZED RY	17	D 18 REV SHE PREP Ke	ET ARED E	3Y Rice	D	D	D	D 4	D 5 EFENS	D 6	D 7	D 8 RONIC ON, O	s su	10 PPLY 454	CEN [*]	TER		<u> </u>
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STANI MII DR THIS DRAWI	DARDI LITAR AWIN	I ZED RY G	17	D 18 REV SHE PREP Ke CHECI Ra APPRG	ET ARED E nneth KED B) y Monr	BY Rice	D 1	D	D	D 4 DI MIC 32H MEN	D 5 EFENS	D 6 SE EL IRCI 8 S' (SI	D 7 ECTROAYTO	D 8 RONIC ON, O	9 S SU HIO MORY ANDO	PPLY 454	CEN 44 IGIT	TER		
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STANI MII DR	DARDI LITAL AWIN NG IS A ALL DE NCIES O	IZED RY G WAILAB PARTME! OF THE	17	D 18 REV SHE PREPPKE CHECK Ra APPRM Mid	ET ARED Enneth KED BY Y Monr	BY Rice	D 1	D 2	D	D 4 DI MIC 32H MEN MON	D 5 EFENS CROC X X MORY	D 6 SE EL IRCI 8 S' (SI THIC	D 7 LECTROAYTO	D 8 RONICON, O MEI CC R. LOT	9 S SU HIO MORY ANDO	PPLY 454 7, D DM A	CEN 44 IGIT CCES	TER TAL,	СМО	- -
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STANI MII DR THIS DRAWI FOR USE BY AND AGE	DARDI LITAR AWIN NG IS A ALL DE NCIES O NT OF D	IZED RY G WAILAB PARTME! OF THE	17	D 18 REV SHEI PREPA Kei CHECI Ra APPRI Mid	ET ARED E nneth KED B) y Monr OVED E chael	Rice A. Fry	D 1	D 2	D	D 4 DI MIC 32H MEN	D 5 EFENS CROC X X MORY	D 6 SE EL EIRCI 8 S: (SI THIC	D 7 ECTROAYTO	D 8 RONICON, O MEDICE R. LOY LICO	9 S SU HIO MORY ANDO	PPLY 454 7, D DM A	CEN 44 IGIT	TER TAL,	СМО	<u> </u>

DESC FORM 193

JUL 91

<u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.

5962-E468-93

1. SCOPE

1.1 $\underline{\text{Scope}}$. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".

1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	Generic number	Circuit function	Access time
01 02. 07 03. 08 04. 09 05 06 10 11	See 6.4	32K x 8 low power CMOS SRAM	100 ns 70 ns 55 ns 45 ns 35 ns 25 ns 20 ns 17 ns 15 ns

1.2.2 <u>Case outline(s)</u>. The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

Outline letter	<u>Descriptive designator</u>	<u>Terminals</u>	Package style
X Y Z U	GDIP1-T28 or CDIP2-T28 CQCC1-N32 CDFP3-F28 CDIP3-T28 or GDIP4-T28 CDFP4-F28	28 32 28 28 28	Dual-in-line Rectangular leadless chip carrier Flat pack Dual-in-line Flat pack
M N	CQCC3-N28 GDFP2-F28	28 28	Rectangular leadless chip carrier Flat pack

1.2.3 <u>Lead finish</u>. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein). Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

1.3 Absolute maximum ratings. 1/

Supply voltage range (V_{CC})	-0.5 V dc to +7.0 V dc 2/
Input voltage range	-0.5 V dc to +6.0 V dc
Storage temperature range	-65°C to +150°C
Inermal resistance, junction-to-case (0.0)	See MIL-STD-1835
Junction temperature (T ₁)	+150°C 3/
rower dissipation (Po)	1.0 W
Lead temperature (soldering, 10 seconds)	+260°C

Generic numbers are listed on the Standardized Military Drawing Source Approval Bulletin at the end of this document and will also be listed in MIL-BUL- 103.

All voltages referenced to V_{CC}.
 Maximum junction temperature Shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-88552
DAYTON, OHIO 45444		REVISION LEVEL D	SHEET 2

1.4 Recommended operating conditions.			
Supply voltage range (V_{CC})	+4.! 0 V +2.: -0.!	5 V dc to +5.5 V dc <u>1</u> / dc 2 V dc to V _{CC} +0.5 V dc 5 V dc to .8 V dc C to +125°C	
2. APPLICABLE DOCUMENTS			
2.1 <u>Government specification, standards, and bulletin</u> . standards, and bulletin of the issue listed in that issue standards specified in the solicitation, form a part of the	of the Department	t of Defense Index of Spec	ifications and
SPECIFICATION			
MILITARY			
MIL-I-38535 - Integrated Circuits (Microcircui	ts) Manufacturing	g, General Specification f	or.
STANDARDS			
MILITARY			
MIL-STD-883 - Test Methods and Procedures for MIL-STD-1835 - Microcircuit Case Outlines.	Microelectronics		
BULLETIN			
MILITARY			
MIL-BUL-103 - List of Standardized Military Dr	awings (SMD's).		
(Copies of the specification, standards, and bulletin re acquisition functions should be obtained from the contract			
2.2 Order of precedence. In the event of a conflict be herein, the text of this drawing shall take precedence.	tween the text of	f this drawing and the ref	erences cited
3. REQUIREMENTS			
3.1 Item requirements. The individual item requirement "Provisions for the use of MIL-STD-883 in conjunction with Product built to this drawing that is produced by a Qualif manufacturer or a manufacturer who has been granted transi product in accordance with the manufacturers approved prog MIL-I-38535. This QML flow as documented in the Quality M requirements herein. These modifications shall not affect shall not affect the PIN as described herein. A "Q" or "Q required to identify when the QML flow option is used.	compliant non-J/ ied Manufacturer tional certificar ram plan and qua anagement (QM) p form, fit, or fo	AN devices" and as specifical Listing (QML) certified a stion to MIL-I-38535 may be lifying activity approval lan may make modifications unction of the device. The	ed herein. Ind qualified In processed as QML In accordance with It to the Item modifications
3.2 <u>Design, construction, and physical dimensions</u> . The specified in MIL-STD-883 (see 3.1 herein) and herein.	design, construc	ction, and physical dimens	ions shall be as
3.2.1 <u>Case outline(s)</u> . The case outline(s) shall be in	accordance with	1.2.2 herein.	
3.2.2 <u>Terminal connections</u> . The terminal connections s	hall be as speci	fied on figure 1.	
1 / All voltages referenced to V_{CC} .			
STANDARDIZED	SIZE		5962-88552
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	A		

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-88552
DAYTON, OHIO 45444		REVISION LEVEL D	SHEET 3

Symbol	Condition $-55^{\circ}C \leq T_C \leq T$	ns +125°C	Group A	Device type	Li	mits	Unit
	unless otherwise	v _{CC} ≥ 5.5 v specified			Min	Max	
ILI	V _{CC} = max, V _{IN} = G	ND to V _{CC}	1,2,3	All		10	μA
ILO	V _{CC} = max, V _{OUT} = (CE ≥ V _{IH} ; WE ≤ V _{IL}	GND to V _{CC}	1,2,3	All		10	μΑ
v _{OL}	V _{CC} = 4.5 V. I _{OL} = V _{IL} = 0.8 V. V _{IH} =	8 mA, 2.2 V	1,2,3	All		.4	V
v _{OH}	V _{CC} = 4.5 V. I _{OH} = V _{IL} = 0.8 V, V _{IH} =	-4 mA, 2.2 V	1,2,3	All	2.4		V
v _{DR}		-	1,2,3	All	2.0		V
$I_{CC1} = 5.5 \text{ V.}$ $\frac{f}{CE} = f \text{ max } \frac{1}{I},$ $CE = V_{TI}, \text{ outputs ope}$		pen.	1,2,3	01,02, 07		100	mΑ
	all other inputs o	open, at V _{IL}		03,08		125	<u> </u>
ļ				04,09		135	
				05		145	<u> </u>
			06,11	 	155	<u> </u> 	
			10		150		
_				12		160	
I _{CC2}	$\overline{CE} \ge V_{IH}$, outputs of	pen	1,2,3	01-04		3	⊥ mA
	V _{CC} = 5.5 V, f = 0	MHz		05-09	···	5	-
				10-12	·	10	
I _{CC3}	$\overline{CE} \ge (V_{CC} - 0.2 \text{ V}),$ $f = 0 \text{ MHz}, \text{ outputs}$	open,	1,2,3	05, 07-09		900	μΑ
$V_{CC} = 5.5 \text{ V all oth}$ $V_{CC} = 5.5 \text{ V all oth}$ $V_{CC} = 0.2 \text{ V}$		ner r ≥		01-04, 06		1.5	mA
				10-12		5	Ī
	I _{LO} V _{OL} V _{OH} V _{DR} I _{CC1} I _{CC2}	I _{LI}	$I_{LI} \qquad V_{CC} = \max, \ V_{IN} = \text{GND to } V_{CC}$ $I_{LO} \qquad V_{CC} = \max, \ V_{OUT} = \text{GND to } V_{CC}$ $\overline{CE} \geq V_{IH}; \ \overline{WE} \leq V_{IL}$ $V_{OL} \qquad V_{CC} = 4.5 \ V. \ I_{OL} = 8 \ \text{mA}, \\ V_{IL} = 0.8 \ V. \ V_{IH} = 2.2 \ V$ $V_{OH} \qquad V_{CC} = 4.5 \ V. \ I_{OH} = -4 \ \text{mA}, \\ V_{IL} = 0.8 \ V. \ V_{IH} = 2.2 \ V$ V_{DR} $I_{CC1} \qquad V_{CC} = 5.5 \ V. \\ f = f \ \max \ 1/, \\ \overline{CE} = V_{IL}, \ \text{outputs open}, \\ all \ \text{other inputs at } V_{IL}$ $I_{CC2} \qquad \overline{CE} \geq V_{IH}, \ \text{outputs open}, \\ V_{CC} = 5.5 \ V. \ f = 0 \ \text{MHz}$ $I_{CC3} \qquad \overline{CE} \geq (V_{CC} - 0.2 \ V), \\ f = 0 \ \text{MHz}, \ \text{outputs open}, \\ V_{CC} = 5.5 \ V \ \text{all other inputs} \leq 0.2 \ V \ \text{or} \geq$	$I_{LO} \qquad \begin{matrix} V_{CC} = max. & V_{OUT} = GND \ to \ V_{CC} \\ \hline CE \ge V_{IH}; \ \overline{ME} \le V_{IL} \end{matrix} \qquad 1.2.3$ $V_{OL} \qquad \begin{matrix} V_{CC} = 4.5 \ V. \ I_{OL} = 8 \ mA. \\ V_{IL} = 0.8 \ V. \ V_{IH} = 2.2 \ V \end{matrix} \qquad 1.2.3$ $V_{OH} \qquad \begin{matrix} V_{CC} = 4.5 \ V. \ I_{OH} = -4 \ mA. \\ V_{IL} = 0.8 \ V. \ V_{IH} = 2.2 \ V \end{matrix} \qquad 1.2.3$ $V_{DR} \qquad \qquad 1.2.3$ $I_{CC1} \qquad \begin{matrix} V_{CC} = 5.5 \ V. \\ f = f \ max \ 1/. \\ \hline CE = V_{IL}, \ outputs \ open, \\ all \ other \ inputs \ at \ V_{IL} \end{matrix} \qquad 1.2.3$ $I_{CC2} \qquad \overline{CE} \ge V_{IH}, \ outputs \ open \\ V_{CC} = 5.5 \ V. \ f = 0 \ MHz$ $I_{CC3} \qquad \overline{CE} \ge (V_{CC} - 0.2 \ V), \\ f = 0 \ MHz, \ outputs \ open, \\ V_{CC} = 5.5 \ V \ all \ other \\ inputs \le 0.2 \ V \ or \ge \end{matrix} \qquad 1.2.3$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Test	Symbol	Condition -55°C ≤ T _C ≤	ns +125°C	Group A	Device type	Li	mits	Unit
		$-55^{\circ}C \le T_C \le V_{SS} = 0 \text{ V, } 4.5 \text{ V} \le V_{SS} = 0 \text{ unless otherwise } 100 \text{ m}$	V _{CC} ≤ 5.5 V specified			Min	Max	
Data retention current	1 <u>c</u> c4	$ V_{CC} = 3.0 \text{ V.CE} \ge (1)$ f = 0 MHz, outputs $ other inputs \le 0.2$	/ _{CC} - 0.2 V) open, all	1,2,3	05, 107-09		350	μΛ
		- 0.2 V)	v or 2 (v _{CC}		01-04,		800	
					10-12	ļ	750	
Input capacitance	c _I <u>2</u> /	V _I = 5.0 V or GND, f = 1 MHz, T _C = +2! See 4.3.1c	s°C,	4	All		12	pF
Output capacitance	c ₀ 2/	V _O = 5.0 V or GND, f = 1 MHz, T _C = +25 See 4.3.1c		4	All		12	pF
Read cycle time	t _{AVAV}	<u>3</u> /		9,10,11	01	100		ns
	į				02,07	70	ļ	ļ
					03,08	55	ļ	<u> </u>
					04,09	45		Ļ
					05	35		
					06	25		<u> </u>
					10	20	<u> </u> 	
					11	17		
					12	15		
Address access time	t _{AVQV}			9,10,11	01_		100	ns
					02,07		 70	1
					03,08		55	
					04,09		45	Ī
		<u> </u>	İ		05		35	<u> </u>
			į		06		25	
	ļ		į		10		20	†
			İ		11		17	
					12		15	
See footnotes at end of ta	able.							
MILITA	DARDIZED RY DRAWING	G .	SIZE A		·		5962	2-88552
DEFENSE ELECTRO DAYTON,	ONICS SUPP OHIO 454			REV	ISION L	EVEL	SHEET	•

Test	Symbol	Conditions $-55^{\circ}C \leq T_{C} \leq +125^{\circ}C$	Group A subgroups	Device type	Limits		Unit
		$-55^{\circ}C \le T_{C} \le +125^{\circ}C$ $V_{SS} = 0 \text{ V, } 4.5^{\circ}V \le V_{CC} \text{ 5.5 V}$ unless otherwise specified			Min	Max	
Chip-enable access time	t _{ELQV}		9,10,11	01		100	ns
				02,07		70	<u> </u>
				03,08	<u> </u>	55	<u> </u>
				04,09	<u></u>	45	<u> </u>
				05		35	<u> </u>
				06	<u> </u>	25	ļ
				10	[20	<u> </u>
				11	! !	17	Ī
				12		15	
utput hold from address change	tavqx		9,10,11	All	3		ns
utput enable to output valid	t _{OLQV}		9,10,11	01	<u> </u>	60	ns
output varia				02-04, 07-09		35	ļ
				05,06	ļ 	20	ļ
				10,11		10	<u> </u>
				12		8	<u> </u>
hip select to output in low Z	t _{ELQX}		9,10,11	All	3		ns
hip deselect to	+	3/	0.10.11	01-04,		25	
output in high Z	1 EHQZ 2 4/	<u>3</u> /	9,10,11	07,09		20	ns
				05,06		1	†
utput disable to			0.10.11	01-04,		10	
output in high Z	toHQZ 2		9,10,11	07,09		35	l ns
				05,06		20	1
	ole.	<u> </u>	1	10-12	L	10	<u> </u>

SIZE

REVISION LEVEL

5962-88552

6

SHEET

DESC FORM 193A JUL 91 STANDARDIZED

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

Test	Symbol	Condition -55°C ≤ T _C ≤ +	s 125°C	 Group A subgroups	Device type	Limits		Unit
		$-55^{\circ}C \le T_C \le + V_{SS} = 0 \text{ V, } 4.5 \text{ V} \le 0$ unless otherwise	$V_{CC} \le 5.5 V$ specified			Min	Max	
Write enable to output	t _{WLQZ}			9,10,11	01		50	ns
in high Z	2/ 4/				02-04, 07-09		35	
					05,06		20	1
				<u> </u>	10-12	10	10	
Output enable to output in low Z	19LQX			9,10,11	All	0		ns
Retention time	t _{cdr}	<u>CE</u> ≥ V _{CC} -0.2 V		9,10,11	 A11	0		ns
Operation recovery time	t _R <u>2</u> /	CE ≥ V _{CC} -0.2 V		9,10,11	All	tavav		ns
Data valid to end of write	t _{DVWH}			9,10,11	01-04, 07-09	35		ns
				<u> </u> 	05,06	15		<u> </u>
					10-12	10	ļ	<u> </u>
Data hold time	twHDX			9,10,11	01-09	3	<u> </u>	⊥ ns
	^t EHDX	<u> </u>		<u> </u>	10-12	0		ļ
Output active from end of write	twHQX 2			9,10,11	01-09	3	<u> </u>	ns
W) 100				1	10-12	0	<u> </u>	
Write cycle time	tavav			9,10,11	01	100		ns
					02,07	70		ļ
				! 	03,08	55	<u> </u>	1
					04,09	45	ļ	ļ
					05	35	ļ <u>.</u>	<u> </u>
					06	25		1
					10,11	20		
					12	15		
See footnotes at end of tab	le.							
MILITAR'			SIZE A				596	2-8855
	MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444			RE	/ISION L	EVEL	SHEE	T

Test	Symbol 1	Conditio $-55^{\circ}C \le T_C \le V_{SS} = 0 \text{ V, } 4.5 \text{ V} \le V_{SS}$ unless otherwise	ns +125°C	Group A subgroups	Device type	Lir	nits	Unit
		unless otherwise	specified			Min	Max	
Chip select to end of write	t _{ELWH}	<u>3</u> /		9,10,11	01	90		ns
					02.07	60		
					03,08	50		
					04,09	40		ļ
					05	30		
					06	20		1
					10,11	15		Ī
ddin	ļ				12	12		<u> </u>
Address valid to end of write	t _{AVWH}			9,10,11	01	85	<u> </u>	ns
					02,07	60	<u> </u>	1
					03,08	50	<u> </u>	<u> </u>
					04,09	40		Ĺ
					05	30		Ļ
					06	20	<u> </u>	<u> </u>
					10,11	15		1
					12	12		
ddress-setup time	^t AVEL			9,10,11	A11	0	 	ns
rite pulse width	t _{WLWH}			9,10,11	01	55		ns
	1				02,07	45	<u> </u>	ļ Ļ
					03,08	40		_
					04,09	35		
					05	30	<u> </u>	-
					06	25		
					10,11	15		
· · · · · · · · · · · · · · · · · · ·					12	12		
ee footnotes at end of table	·•							
STANDAI MILITARY	DRAWING	3	SIZE				5962	-88552
DEFENSE ELECTRONI DAYTON, OH	CS SUPP IO 454	LY CENTER 44		REV	ISION L D	EVEL	SHEET	8

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions -55°C ≤ T _C ≤ +125°C	Group A	Device	Lin	nits	Unit
		V _{SS} = 0 V, 4.5 V ≤ V _{CC} 5.5 V unless otherwise specified	subgroups	type	Min	Max	
Write recovery time	twhax		9,10,11	01-09	7		ns
	t _{EHAX}			10-12	0	<u> </u>	

- f max = $1/t_{AVAV}$. This parameter tested initially and after any design or process change which could affect this parameter, and therefore shall be guaranteed to the limits specified in table I.
- For output load circuits see figure 3 and for timing waveforms see figure 4.

 $\frac{3}{4}$ / Transition is measured ±500 mV from steady state voltage.

- 3.2.3 Truth table(s). The truth table(s) shall be as specified on figure 2.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.6 herein).
- 3.6 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Motification of change</u>. Notification of change to DESC-EC shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
- 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-88552
DAYTON, OHIO 45444		REVISION LEVEL D	SHEET 9

Device types	All	
Case outlines	X, Z, U, T, M, and N	Y
Terminal numbers	Terminal	symbol .
1	A ₁₄	NC
2	A ₁₂	A ₁₄
3	A ₇	A ₁₂
4	A ₆	A ₇
5	A ₅	A ₆
6	A ₄	A ₅
7	A ₃	A ₄
8	A ₂	A ₃
9	A ₁	A ₂
10	A ₀	A ₁
11	1/01	A ₀
12	1/02	NC .
13	1/03	1/01
14	GND	1/02
15	1/04	1/03
16	1/05	GND
17	1/06	NC
18	1/07	1/04
19	1/08	1/05
20	CE	1/06
21	A ₁₀	1/07
22	OE OE	1/08
23	A ₁₁	CE
24	A ₉	A ₁₀
25	A ₈	0E
26	A ₁₃	NC
27	WE WE	A ₁₁
28	v _{cc}	A ₉
29		A ₈
30		A
31		A ₁ 3
32		
NC = No connection		v _{cc}

NC = No connection

FIGURE 1. <u>Terminal connections</u>.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-88552
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 10

	WE	<u>OE</u>	1/0	Function
H	x	X	High Z	Standby (I _{CC2})
≥ V _{CC} -0.2 V	х	х	High Z	Standby (I _{CC3})
L	н	н	High Z	Output disable
L	н	L	Data out	Read
L L	L	X	Data in	Write
1	1	i .	i	

FIGURE 2. Truth table.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-88552
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 11

NOTE: Including scope and jig. (minimum values)

AC test conditions

Input pulse levels Input rise fall times Input timing reference levels	GND to 3.0 V 5 ns 1.5 V
Output reference levels	1.5 V

FIGURE 3. Output load circuit.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-88552
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 12

Timing waveform of read cycle number 1 (see note 1) ADDRESS t AVOX ŌĒ ^tOLQY [€]OH0Z

Timing waveform of read cycle number 2 (see notes 1, 2, and 4)

^tELOX

DATA

teHQZ -

Timing waveform of read cycle number 3 (see notes 1, 3, and 4)

NOTES:

- 1. WE is high for read cycle.

- 4. OE V₁₁.
 5. Transition is measured ±500 mV from steady state with 5 pF load (including scope and jig).

FIGURE 4. Timing waveforms.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-88552
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 13

Timing waveform of write cycle number 1 ($\overline{\text{WE}}$ controlled timing) (see notes 1, 2, 3, 6, and 7)

Timing waveform of write cycle number 2 ($\overline{\text{CE}}$ controlled timing) (see notes 1, 2, 3, and 5)

FIGURE 4. <u>Timing waveforms</u> - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-88552
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 14

NOTES:

1. WE must be high during all address transitions.

2. A write occurs during the overlap (tel WH or tw/ WH) of a low CE and a low WE.

 t_{WHAX} is measured from the earlier of $\overline{\text{CE}}$ or $\overline{\text{WE}}$ going high to the end of the write cycle.

4. During this period, the I/O pins are in the output state, and input signals must not be applied.

5. If the $\overline{\text{CE}}$ low transition occurs simultaneously with or after the $\overline{\text{WE}}$ low transition, the outputs remain in the high impedance state.

6. Transition is measured ± 500 mV from steady state with a 5 pF load

 (including scope and jig).
 If OE is low during a WE controlled write cycle, the write pulse width must be the larger of t_{MUWH} or (t_{WLQ7} + t_{DVWH}) to allow the I/O drivers to turn off and data to be placed on the bus for required t_{DVWH}. If OE is high during a WE controlled write cycle, This requirement does not apply and the write pulse can be as short as the specified t_{WLWH}.

FIGURE 4. Timing waveforms - Continued.

STANDARDIZED SIZE 5962-88552 MILITARY DRAWING A DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444 **REVISION LEVEL** SHEET 15

Low V_{CC} retention waveform

FIGURE 4. Timing waveforms - Continued.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-88552
DAYTON, OHIO 45444		REVISION LEVEL	SHEET 16

TABLE II. <u>Electrical test requirements</u>.

MIL-STD-883 test requirements	Subgroups (in accordance with method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7*, 8, 9, 10, 11
Group A test requirements (method 5005)	1, 2, 3, 4**, 7***, 8***, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	2, 3, 7, 8

^{*} PDA applies to subgroup 1 and 7.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C_{IN} and C_{0} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
- d. Subgroups 7 and 8 shall include verification of the truth table.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein).

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-88552
		REVISION LEVEL	SHEET 17

^{**} See 4.3.1c.

^{***} See 4.3.1d.

6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.
- 6.5 Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-88552
		REVISION LEVEL D	SHEET 18