

Agilent HLMP-HD57 5 mm Precision Optical Performance Red Oval LED Lamps

Data Sheet

Features

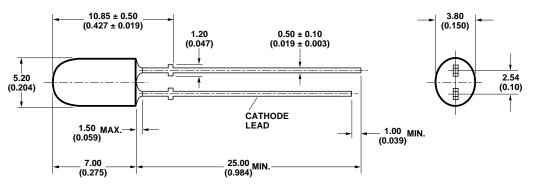
- Well defined spatial radiation pattern
- · High brightness material
- Red AllnGaP 630 nm

Benefits

- Viewing angle designed for wide field of view applications
- Superior performance for outdoor environments

Description

This Precision Optical Performance Oval LED is specifically designed for Full Color/Video and Passenger Information Signs. The Oval shaped radiation pattern and high luminous intensity ensure that this device is excellent for wide field of view outdoor applications where a wide viewing angle and readability in sunlight are


essential. This lamp has very smooth, matched radiation patterns ensuring consistent color mixing in full color applications, message uniformity across the viewing angle of the sign. High efficiency LED material is used in this lamp: Aluminium Indium Gallium Phosphide (AlInGaP) for Red Color. The higher performance AlInGaP II is used.

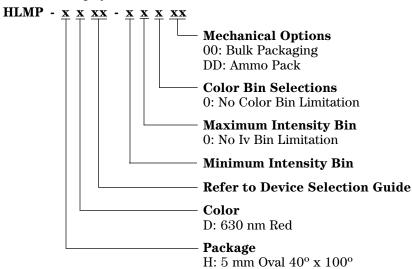
Applications

- · Full color signs
- Commercial outdoor advertising

Package Dimensions

NOTE: MEASURED JUST ABOVE FLANGE.

- NOTES:
 1. DIMENSIONS IN MILLIMETERS (INCHES).
- 2. TOLERANCE ± 0.25 mm UNLESS OTHERWISE NOTED.


Device Selection Guide

Part Number	Color and Dominant Wavelength λ_d (nm) Typ.	Luminous Intensity Iv (mcd) at 20 mA Min.	Luminous Intensity Iv (mcd) at 20 mA Max.	Tinting Type
HLMP-HD57-NR000	Red 630	590	2200	Red

Notes:

- 1. The luminous intensity is measured on the mechanical axis of the lamp package.
- 2. The optical axis is closely aligned with the package mechanical axis.
- 3. The dominant wavelength, λ_d , is derived from the Chromaticity Diagram and represents the color of the lamp.

Part Numbering System

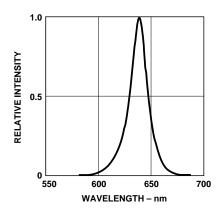
Absolute Maximum Ratings at $T_A = 25^{\circ}C$

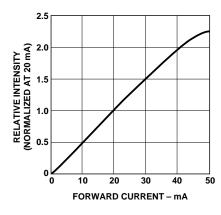
Parameter	Value
DC Forward Current ^[1]	50 mA
Peak Pulsed Forward Current	100 mA
Average Forward Current	30 mA
Power Dissipation	140 mW
Reverse Voltage	$5 \text{ V (I}_{R} = 100 \mu\text{A})$
LED Junction Temperature	130°C
Operating Temperature Range	-40°C to +100°C
Storage Temperature Range	-40°C to +120°C
Soldering Temperature	260°C for 5 secs

Note:

1. Derate linearly as shown in Figure 3.

Electrical/Optical Characteristics


 $T_A = 25^{\circ}C$


Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Forward Voltage	V _F		2.2	2.4	V	I _F = 20 mA
Reverse Voltage	V _R	5	20			I _R = 100 μA
Capacitance	С		40		pF	V _F = 0, f = 1 MHz
Thermal Resistance	R _{0J-PIN}		240		°C/W	LED Junction-to-Cathode Lead
Viewing Angle Major Axis Minor Axis	20 _{1/2}		100 40		deg	
Dominant Wavelength	λ_{d}		630		nm	I _F = 20 mA
Peak Wavelength	λ_{p}		639		nm	Peak of Wavelength of Spectral Distribution at I _F = 20 mA
Spectral Halfwidth	$\Delta\lambda_{1/2}$		17		nm	Wavelength Width at Spectral Distribution Power Point at I _F = 20 mA
Luminous Efficacy	ην		155		lm/W	Emitted luminous power/ Emitted radiant power

Notes:

^{1.} $2\theta_{1/2}$ is the off-axis angle where the luminous intensity is 1/2 the on axis intensity.

^{2.} The radiant intensity, Ie in watts per steradian, may be found from the equation Ie = Iv/η_v where Iv is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

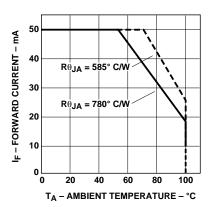
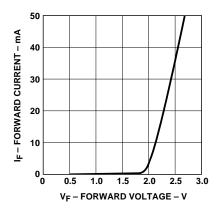



Figure 1. Relative intensity vs. wavelength.

Figure 2. Relative luminous intensity vs. forward current.

Figure 3. Forward current vs. ambient temperature.

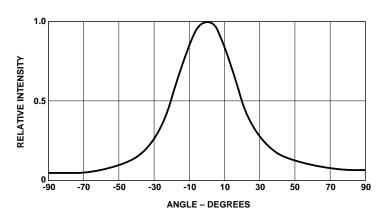


Figure 4. Forward current vs. forward voltage.

Figure 5. Spatial radiation pattern-minor axis.

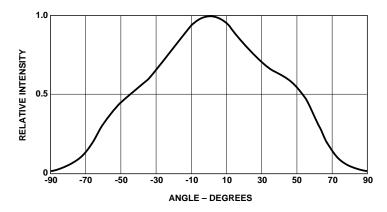


Figure 6. Spatial radiation pattern-major axis.

Intensity Bin Limits (mcd at 20 mA)

Bin Name	Min.	Max.	
M	520	680	
N	680	880	
P	880	1150	
0	1150	1500	
R	1500	1900	

Tolerance will be $\pm\,15\%$ of these limits. **Note:**

 Bin categories are established for classification of products. Products may not be available in all bin categories.

www.semiconductor.agilent.com

