July 1988

National Semiconductor

NM1624/NM1625 16,384 x 4-Bit Static RAM

General Description

The NM1624/NM1625 are 65,536-bit fully-static, asynchronous, random access memories organized as 16,384 words by 4-bits per word. The NM1624/NM1625 are based on an advanced, isoplanar, oxide-isolation CMOS process. The process utilizes fully-implanted CMOS technology with sub-2 micron design rules and tantalum silicide gate electrodes for high performance. The combination of this high-performance technology, and speed-optimized circuitry results in a very high-speed memory device.

The NM1625 is identical to the NM1624 with the additional feature of power-down for low power battery back-up applications.

Features

- Output enable access times: 10 ns/12 ns/15 ns
- Fast address access times: 25 ns/30 ns/35 ns (maximum)
- Enable read access faster than address access
- Minimum write cycle time, including moderate system timing skews, equal to minimum read cycle time
- No internal clocks—high speed achieved without address transition detection circuitry
- All inputs and outputs directly TTL compatible
- Common I/O (TRI-STATE® output)
- Available in 24-pin DIP, PDIP, or 28-pin LCC
- Low power dissipation (data retention NM1625) $I_{CCDR} = 35 \ \mu A \ max (V_{DR} = 2.0V),$ $I_{CCDR} = 50 \ \mu A \ max (V_{DR} = 3.0V)$
- Data retention supply voltage NM1625: 2.0V to 5.5V

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Voltage on Any Input or Output Pin

with Respect to V _{SS}	$-2.0V$ to V_{CC} + $2V$
Storage Temperature	-65°C to +150°C
Operating Temperature	0°C to +70°C
Power Dissipation	1.0W
Continuous Output Current per Output	25 mA
Average Input or Output Current (Averaged over Any 1 μs Time Interva	al) 25 mA

Recommended Operating

Conditions $T_A = 0^{\circ}C$ to $+ 70^{\circ}C$							
	Min	Max	Units				
Input HIGH Voltage (V _{IH})	2.2	$V_{CC} + 0.5$	V				
Input LOW Voltage (VIL)	-1*	0.8	V				
All voltages are referenced to VSS	; pin = 0V.						

*The device will withstand undershoots to -3.0V of 20 ns duration.

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

Powered by ICminer.com Electronic-Library Service CopyRight 2003

4

.

No.	Syn	nbol	Parameter	NM1624-25/255 NM1625-25/255		NM 1624-30 NM 1625-30		NM1624-35 NM1625-35		Units
	Standard	Standard Alternate		Min	Max	Min	Max	Min	Max	
WRI	TE CYCLE	2								
24	TAVEL	TAS	Address Valid to Chip Enable LOW (Address Setup) (Notes 7 & 8)	0		0		0		ns
25	TELEH	TWP	Chip Enable LOW to Chip Enable HIGH (Write Pulse Width) (Notes 7 & 10)	19		22		25		ns
26	TEHAX	ТАН	Chip Enable HIGH to Address Don't Care (Address Hold after End of Write) (Notes 7 & 12)	0		0		0		ns
27	TAVEH	TAW	Address Valid to Chip Enable HIGH (Address Setup to End of Write) (Note 7)	19		22		25		ns
28	TELWH	TWP	Chip Enable LOW to Write HIGH (Write Pulse Width) (Notes 7 & 10)	19		22		25		ns
29	TDVEH	TDS	Data Valid to Chip Enable HIGH (Data Setup to End of Write) (Notes 7 & 12)	10		10		12		ns
30	TEHDX	TDH	Chip Enable HIGH to Data Don't Care (Data Hold) (Notes 7 & 12)	0		0		0		ns

Timing Waveforms (Continued)

TL/D/9679-12

This write cycle is \overline{E} controlled, where \overline{W} is active (LOW) prior to, or coincident with, \overline{E} becoming active (LOW). $\overline{G} = V_{|H}$. In this write cycle the data out remains in the high impedance state (TRI-STATE) at the beginning of the write cycle, precluding potential data bus contention.

Symbol	Parameter		ristics $T_A = 0^{\circ}C$ to $+70^{\circ}C$, Conditions	NM1624-25/255 NM1625-25/255		NM1624-30 NM1625-30		NM1624-35 NM1625-35		Units
Symbol				Min	Max	Min	Max	Min	Max	
lu	Input Leakage Current (Except DQ)		$V_{SS} \le V_{IN} \le V_{CC}$		±2		±2		±2	μΑ
ILO	Output Leakage Current (DQ)		$\label{eq:entropy_states} \begin{split} \overline{E} &= V_{IH} \text{ or } \overline{W} = V_{IL} \\ V_{SS} &\leq V_{OUT} \leq V_{CC} \end{split}$		± 10		± 10		± 10	μA
lcc	Dynamic Operating Supply Current		Min Read Cycle Time Duty Cycle = 100% Output Open		120		100		90	mA
I _{SB1}	Standby Supply Current		Ē = V _{IH} (Note 1)		25		25		25	mA
I _{SB2}	Full Standby Supply Current	NM1624	(Note 2)		15		15		15	mA
		NM1625	(11016 2)		5		5		5	
V _{OL}	Output LOW Voltage		I _{OL} = 8.0 mA All Outputs under Load		0.4		0.4		0.4	v
V _{OH1}	Output HIGH Voltage		I _{OH1} = −4.0 mA All Outputs under Load	2.4		2.4		2.4		v
V _{OH2}	Output HIGH Voltage		I _{OH2} = -0.05 mA Other Outputs Open	V _{CC} -0.4		V _{CC} -0.4		V _{CC} -0.4		v
Vcc	Operating Supply		Except Data Retention Mode	-25		1				
				4.5	5.5	4.5	5.5	4.5	5.5	v
			() () () () () () () () () ()	-255		55				
			5 1 har	4.75	5.5	1				

Data Retention Characteristics $T_A = 0^{\circ}C$ to $+70^{\circ}C$, $V_{CC} = 2.0V$ to 5.5V (NM1625 only)

No.	Symbol	Parameter	Co	nditions	Min	Max	Units
31	V _{DR}	V _{CC} Voltage for Data Retention (Note 15)		$\overline{E} \le +5.5V$ V _{IN} $\le +5.5V$ or V _{IN} $\le V_{SS} + 0.2V$	2.0	5.5	v
32		Data Retention Current	$V_{DR} = 2.0V$	$T_A = 0^{\circ}C$ to $70^{\circ}C$		35	μA
JZ I ICCDH	(Note 14)	$V_{DR} = 3.0V$	$T_A = 0^{\circ}C$ to 70°C		50	· · · ·	
33	TCDR	Chip Disable to Data Retention Time (Note 4)			0		ns
34	TR	Recovery Time (Notes 4 & 13)			ΤΑΥΑΧ		ns

Powered by ICminer.com Electronic-Library Service CopyRight 2003

Note 1: Standby supply current (TTL) is measured with E HIGH (chip deselected) and inputs steady state at valid ViL or VIH levels.

Note 2: Full standby supply current (CMOS) is measured with the enable bar input satisfying the condition: $V_{CC} - 0.2V \le \overline{E} \le V_{CC} + 0.2V$, and all other inputs, (including the data inputs) at steady state and satisfying one of two conditions. Either $V_{CC} - 0.2V \le V_{IN} \le V_{CC} + 0.2V$ or $V_{SC} - 0.2V \le V_{IN} \le V_{CS} + 0.2V$. This condition results in a significant reduction in current in the input buffers and consequently a lower overall current level.

Note 3: Operation to specifications guaranteed 2.0 ms after V_{CC} reaches minimum operating voltage.

Note 4: This parameter is sampled, not 100% tested.

Note 5: Address Access Time (Read Cycle 1) assumes that E occurs before, or within 5 ns after addresses are valid. Timing considerations are referenced to the edges of Address Valid.

Note 6: Enable Access Time (Read Cycle 2) assumes that addresses are valid at least 5 ns prior to E transitioning LOW (active). Timing considerations are then referenced to the LOW (active) transitioning edge of E.

Note 7: A write condition exists only during intervals where both \overline{W} and \overline{E} are LOW (active). The internal Write starts when the second of these signals becomes LOW (active). The internal Write ends when either of these signals transitions HIGH (inactive).

Note 8: Address setup to beginning of write is measured from the time when the last address input becomes valid to the time when the second of the two signals (Ē or W̄) becomes LOW (active). The timing of the first signal (W̄ or Ē) to transition LOW (active) is a Don't Care.

Note 9: Transition to the high-impedance state is measured at a ±500 mV change from a valid V_{OH} of V_{OL} steady state voltage with the loading specified in Figure 2. This parameter is sampled, not 100% tested.

Note 10: Write pulse width is measured from the time when the last of the two signals E and W becomes LOW (active) to the time of the first of E or W to transition HIGH (inactive).

Note 11: For rise or fall times greater than 3 ns, the timing relationships can no longer be specified to the time when inputs cross the 1.5V level. This is a characteristic of any CMOS device operated outside specified switching levels or transition times.

Note 12: Timing specifications of Data Setup to End of Write, Data Hold after End of Write, and Address Hold after End of Write are all referenced to the time when the first of E or W transitions HIGH (inactive). The timing of the second signal (W or E) to transition HIGH (inactive) is a Don't Care.

Note 13: TAVAX = Read Cycle Timing.

Note 14: I_{CCDR} is tested with $V_{IN} = 0V$ and $V_{IN} = V_{DR}$.

Note 15: V_{IN} applies to all inputs other than \overline{E} and $DQ_0 - DQ_3$. Input conditions for $DQ_0 - DQ_3$ are: $V_{SS} - 0.2V \le DQ \le V_{SS} + 0.2V$ or $V_{CC} - 0.2V \le DQ \le V_{CC} + 0.2V$.

Connection Diagrams

Order Number NM 1624J25, NM 1624J255, NM 1624J30, NM 1624J35, NM 1624N25, NM 1624N255, NM 1624N30, NM 1624N35, NM 1625J257, NM 1625J255, NM 1625J30, NM 1625J35, NM 1625N25, NM 1625N255, NM 1625N30 or NM 1625N35 See NS Package Number D24H* or N24D*

Pin Names

A0-A13	Address Inputs
Ē	Chip Enable Bar
W	Write Enable Bar
ធ	Output Enable Bar
DQ0-DQ3	Data Inputs/Outputs
Vcc	Power (+5.0V)
V _{SS}	Ground (0V)
NC	No Connect

28-Pin LCC (E)

Top View

TL/D/9679-2

/ Order Number NM1624E25, NM1624E255, NM1624E30, NM1624E35, NM1625E25, NM1625E255, NM1625E30 or NM1625E35 See NS Package Number E28B

8

Logic Symbols

TL/D/9679-3

DQX

High Z

QOUT

High Z

DIN

Power Level

Standby Active

Active

Active

Truth Table

Mode Standby

Read

Read

Write

EWG

н х х

LHHL

LHH

LLLX

0V to 3.0V
3 ns
1.5V
See Figures 1 and 2

AC Test Conditions (Notes 3 & 11)

Capacitance (Note 4)

Symbol	Parameter	Max	Units
CIN	Input Capacitance	6	pF
Солт	Output Capacitance	7	pF

Effective capacitance calculated from the equation

High Z = High impedance

D = Valid data bit in X = Don't care

Q = Valid data bit out

*including scope and jig

FIGURE 2. Output Load (for TEHQZ, TELQX, TWLQZ, TWHQX, TGHQX, TGLQX, TGHQZ)

9

STANDARD TIMING PARAMETER ABBREVIATIONS

TXXXX signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal	
TL/D/9679-1	14

The transition definitions used in this data sheet are:

- H = transition to high state.
- L = transition to low state.
- V = transition to valid state.
- X = transition to invalid or don't care condition.
- Z = transition to off (high impedance) condition.

XXXXXXXXXXXXXXXX

TL/D/9679-15

INVALID or Don't Care

TIMING VALUES

sooner than this,

TL/D/9679-16 on from HIGH to LOW level may occur

The AC Operating Conditions and Characteristics tables typically show either a minimum or maximum limit for each device parameter. Those timing parameters which state a minimum value do so because the system must supply at least that much time, even though most devices don't require that full amount. Thus, input requirements are speci-

fied from the external point of view. In contrast, responses

from the memory (like access times) are specified as a max-

imum time because the device will never provide the data later than this stated value, and will usually provide it much

> TL/D/9679-17 Transition from LOW to HIGH level may occur any time during this period

Transition from HIGH to LOW level may occur any time during this period

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

12

Powered by ICminer.com Electronic-Library Service CopyRight 2003