

MIL-C-26482 Series 1

KPT & KPSE MIL-C-26482 Series I connectors offer high density contact arrangements in a miniature circular metal shell. The connector is environmentally sealed and comes in two versions: a solder contact version (KPT) and a high performance crimp contact version (KPSE). Both conform to MIL-C-26482 and are intermateable, intermountable, and interchangeable with all MIL-C-26482 connectors, whether solder or crimp style is used. Both styles use a quick disconnect bayonet coupling for rapid positive mating and unmating of the connector. Both types meet all requirements of MIL-C-26482.

Applications

Military and Industrial environments requiring a miniature, high density, environmental connector.

- ٠ Power generators
- ٠ Engines
- Sensors
- Motion Control
- Off-road vehicles
- Earth moving equipment
- Ships
- Mobile equipment Industrial machinery
- Telecommunications

Features

Rugged shell

Aluminum alloy shell and hardware create a rugged connector with minimal weight. These connectors have been used extensively in commercial, military, and aerospace environments. Standard shells accept all MIL-C-26482 accessories.

Environmentally Sealed

Complete moisture sealing is achieved by combining four seals: shell, peripheral, interfacial, and wire. Wire Seal is accomplished by multiple ripple design, exceeding the wire sealing requirements of MIL-C-26482.

Resistant to Military Environments

These connectors will operate in temperatures from -67° to +257°F (-55° to +125°C) under the harshest possible conditions.

Wide Range of Wire Gauges and **Current Carrying Capability**

Up to 22 amps with wire gauges from size 24 up to size 16 AWG wire.

Resilient Insulator & Grommet

A resilient polychloroprene insulator and integrated rear wire sealing grommet

guarantees a liquid tight assembly. Crimp contacts are available that can be inserted from the rear of the connector. Solder contacts are permanently bonded into the insulator.

Solder or Crimp Gold Plated Contacts

Both solder (KPT) and crimp (KPSE) contacts are available. Both are gold plated per MIL-G-45204 Type II. KPSE crimp contacts are designed to MIL-C-39029 and can be crimped with the standard M22520/1 crimp tool. Socket contacts are closed to eliminate damage from test probes and to help correct misaligned pins during engagement. Contact insertion is from the rear of the connector. When the contact is fully inserted, it snaps securely into metal retention tines embedded in the insulator. Contact extraction is accomplished from the front with the proper extraction tool. Pressing the tool plunger pushes the contact out through the rear of the connector.

Agency Approvals

- MIL-C-26482
- VG 95 328

Cannon

КРТ www.DataSheet4U.com

MATERIALS & FINISHES

Industrial Platings

Shell	Aluminum alloy
Plating	Olive drab chromate coating over cadmium plating, black zinc cobalt or electroless nickel
Contacts	Copper alloy
Platings	Gold plate, 50 microinches minimum per MIL-G-45204 Type II.
Insulator	Resilient polychloroprene (Neoprene). KPSE insulators also encase a tough plastic wafer which contains metal contact retention tines for high reliabilty rentention of crimp contacts.

ELECTRICAL DATA

Operating Voltage & Test Voltage:

SERVICE	TEST	MAXIMUM OPE	RATING VOLTAGE	TEST VOLTAGE		
RATING*	ALTITUDE	DC	AC(RMS)	DC	AC(RMS)	
1	Sea Level	850	600	2100	1500	
2	Sea Level	1,275	1,000	3,200	2,300	
1	70,000 feet	-	300	535	375	
2	70,000 1001	-	450	770	550	

*Each insulator layout has a specific "Service Rating". The Service Ratings for each layout are listed on page KPT 13.

Current Rating

cc	ONTACT SIZE	RATED CURRENT (AMPS)	TEST CURRENT (AMPS)	POTENTIAL DROP (Millivolts) Initial
	20	7.5	7.5	< 55
	16	22	13	< 50

Wire Range Sizes	24 to 16 AWG
Contact Resistance	When tested to MIL-STD-1344 Method 3004 will not exceed voltage drops listed in table. Consult MIL-C-26482, 3.6.4 for details.
Insulation Resistance	5,000 Megohms minimum at 77°F (25°C)

MECHANICAL

Operating Temperature	-67° to +257°F (-55° to +125°C)
Sealing	48 hours in 6 feet of water per MIL-C-26482 4.6.14. Meets 10 and 20 day 50-95% humidity testing per MIL-STD-1344 Method 1002.2 per MIL-C-26482.

Wire Sealing Range

		INSULATION O.D. LIMITS: INCHES(mm)				
CONTACT SIZE	AWG WIRE SIZE	Min.(KPT)	Min. (KPSE)	Max. (KPT/KPSE)		
20	24, 22, and 20	.060 (1.52)	.047 (1.19)	.083 (2.11)		
16	20, 18, and 16	.066 (1.68)	.066 (1.68)	.109 (2.77)		

Cannon

Technical Specifications	Insulation Strip Lengths:	CONTACT	WIRE SIZE	STRIP			
specifications		SIZE	(AWG)	LENGTH INCHES (mm)			
		20	20-24	.375 (9.5)	1		
		16	16-20	.250 (6.35)			
	Mating Life	500 cycles minimum					
	Salt Spray	Unmated connectors and protective covers meet 48hour exposure to MIL-STD-1344 Method 1001 per MIL-C-26482. (Cadmium Plating)					
	Heat	+175°C (+347°F) for 1000 hours to MIL-STD-1344 Method 1005.1 per MIL-C-26482.					
Sheet4U.com	Chemical Resistance	20 hour full immersion unmated in hydraulic fluid and lubricating oil per MIL-C-26482.					
	Vibration	10 to 2,000Hz (15g's) 10 microseconds maximum discontinuity. To MIL-STD-1344 Method 2005 per MIL-C-26482.					
	Shock	50g's. 11ms duration, three major axes. 10 microse onds maximum discontinuity. To MIL-STD-1344 Me 2004 per MIL-C-26482.					
	Contact Type	Solder or Po	C (KPT); Crimp	(KPSE)			
	Number of Circuits	KPT: 2 to 6	1; KPSE: 3 to	61			
	Contact Insertion (crimp)	Insertion from the rear of connector with simple hand tool. Front release with appropriate extraction tool.					
	Contact Retention	To MIL-STD-1344 Method 2007 per MIL-C-26482.					
		CONTACT S		OAD MIN. Ins (Ibs)			
		20		7 (15)			

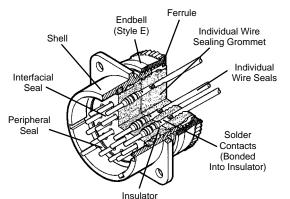
Polarization	Five Keyway, three p tional polarization. S	point bayonet with optional rota- bee page KPT 13.
Approvals	■MIL-C-26482	■VG 95 328

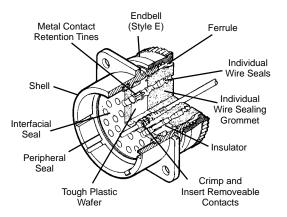
111.2 (25)

16

How to Order

There are three types of MIL-C-26482 Series 1 Connectors. KPT contains solder contacts. KPSE uses high performance crimp contacts and KPTB is a special purpose thru-bulkhead connector. Choose which series is best suited to your application and then construct the part number from the How-To- Order presentation on the next page. Photographs of typical assemblies and dimensions can be found on pages KPT 6 through KPT 13.


Cannon



Cross Section

KPT (solder)

KPSE (crimp)

How to Order

KPT – Solder Contact Connectors

Black zinc cobalt and electroless nickel	MS <u>KPT</u>	 _	22 - 36 <u>22</u> - <u>36</u>		**
SERIES PREFIX					
SHELL STYLE					
CLASS					
SHELL SIZE		 			
CONTACT ARRANGEMENT					
CONTACT STYLE					
ALTERNATE INSERT POSITION		 			
MODIFICATION CODE		 		 	
SERIES PREFIX CLASS	s				

- KPT ITT Cannon prefix
- MS MIL-C-26482 prefix

SHELL STYLE

MS	Cannon KPT	Designation
3110	00	wall mounting receptacle
3111	01	cable connecting receptacle
3112	02	box mounting receptacle (Class E only)
-	03*	wall mounting receptacle without
		grommet, ferrule and endbell
-	04*	cable connecting receptacle without
		grommet, ferrule and endbell
-	05*	straight plug without grommet,
		ferrule and endbell
3116	06	straight plug
3114	07	jam nut receptacle (available in
		hermetic version also)
-	08	90º angle plug
3119	В	thru-bulkhead receptacle (Class E only)
	*Call fr	or details

Call for details

CLASS

- general duty (not MS approved) Α –
- В _ general duty with strain relief without grommet & ferrules (may be used for potting when strain relief is desired) (not MS approved)
- E grommet seal except on 02 and 3112 (MS specification)
- F grommet seal with strain relief (MS specification)
- J water tight gland seal with strain relief for jacketed cable (MS specification)
- Ρ potted (MS specification)
- SHELL SIZE
 - 8, 10, 12, 14, 16, 18, 20, 22, and 24

CONTACT ARRANGEMENT

See contact arrangements - Pages KPT 12 and 13.

CONTACT STYLE

- P pin; S socket
- **ALTERNATE INSERT POSITION**
 - W, X, Y and Z. (Omit for normal.)

MODIFICATION CODE (NOT MS APPROVED)

- A71 Electroless nickel
- A206 Black zinc cobalt
- DN Shrink boot adapter
- DZ Shrink boot adapter for shielded cable

•

How to Order

cable connecting receptacle without

ferrule and endbell

jam nut receptacle

and endbell

straight plug

 90° angle plug

straight plug without ferrule

Industrial Platings -Black zinc cobalt and electroless nickel

SERIES PREFIX -SHELL STYLE -CLASS SHELL SIZE **CONTACT ARRANGEMENT** -CONTACT TYPE ALTERNATE INSERT POSITION -**MODIFICATION CODE** -**SERIES PREFIX KPSE** – ITT Cannon prefix MS - MIL-C-26482 prefix SHELL STYLE MS |Cannon KPSE| Designation 3120 00 wall mounting receptacle 3121 01 cable connecting receptacle 3122 02 box mounting receptacle (E only) 03* wall mounting receptacle without ferrule and endbell

04*

05*

06

07

08

*Call for details

_

_

3126

3124

CLASS

- A general duty (not MS approved) B - general duty with strain relief without
- grommet & ferrule (not MS approved) Ε
- grommet seal (MS specification)
- F grommet seal with strain relief (MS specification)
- J gland seal with strain relief for jacketed cable (not MS approved)
- P potted (MS specification)

MS

KPSE

3120 Ε

00

Ε

18 – 32 P

18 - 32

X

Р X * *

- SHELL SIZE
 - 10, 12, 14, 16, 18, 20, 22, and 24

CONTACT ARRANGEMENT

See contact arrangements - Pages KPT 12 and 13.

- CONTACT STYLE
 - P pin S socket
- **ALTERNATE INSERT POSITION** W, X, Y and Z. (Omit for normal.)

MODIFICATION CODE

- FO less contacts, not marked on connectors
- A71 Electroless nickel plating
- A206- Black zinc cobalt plating
- DN Heat shrink boot adapter
- DZ Heat shrink boot adapter for shielded cable

KPTB – Thru Bulkhead Receptacle Connectors

- General Purpose
- Contains KPT socket insert
- Nonremovable contacts

KPTB connectors are a series of general purpose, Double ended pin and socket contacts miniature circular connectors, qualified for use in military applications. They are also widely used in industrial applications. The KPTB is a thru-bulkhead version with double faced pin and socket insert construction, allowing mating from both ends. They contain KPT socket inserts with feed-thru (pin/socket) non-removable contacts.

Industrial Platings -Black zinc cobalt and electroless nickel

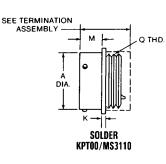
	<u>KPTB</u>	<u>22</u> - <u>55</u>	PS	¥	**
SERIES PREFIX					
SHELL SIZE					
CONTACT ARRANGEMENT					
CONTACT STYLE (pin & socket) -					
ALTERNATE INSERT POSITION -					
MODIFICATION CODE					
MODIFICATION CODE (NOT MS A	PPROV	ED)			

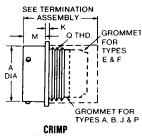
A71 - Electroless nickel

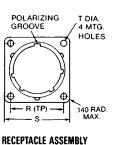
A206 - Black zinc cobalt

The thru-bulkhead receptacle is provided for applications requiring the disconnection of a power source from either side of a panel. A typical connector to be used if air leakage requirements are critical.

	<u>MS3119</u>	Ē	<u>22</u> – <u>55</u>	Ť
MIL-C-26482 PREFIX ———				
CLASS				
SHELL SIZE				
CONTACT ARRANGEMENT				
ALTERNATE INSERT POSITION				


Wall Mounting Receptacles


MS3110 (MS service class E, F, J, P) MS3120 (MS service class E, F, P)


KPT00 KPSE00

"F" Endbell Shown

KPSE00/MS3120

TYPE B and F

HBF

Max.

.891 (22.63)

1.016 (25.81)

1.141 (28.98)

1.469 (37.31)

.490 (12.45) 1.203 (30.56)

.365 (9.27)

.615 (15.62)

.615 (15.62)

LBF

Max.

1.922 (48.82)

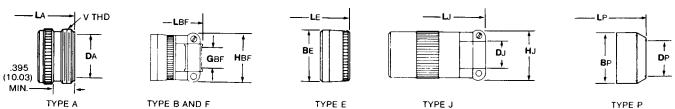
1.922 (48.82)

1.922 (48.82)

2.047 (51.99)

2.078 (52.78)

1.469 (37.31) 2.344 (59.54) 1.360 (34.54)


.828 (21.03) 1.922 (48.82)

.740 (18.80) 1.656 (42.06) 1.344 (59.54) 1.484 (37.69)

4 Shell Size	A ±.003 (±.08)	К ±.016 (±.41)	M +.031 (+.79) 000 (00)	R* (TP)	S Max.	T ±.005 (±.13)	Q Thread Class 2A
‡8	.471 (11.96)	.062 (1.57)	.431 (10.95)	.594 (15.09)	.828 (21.03)	.120 (3.05)	7/16-28UNEF
10	.588 (14.96)	.062 (1.57)	.431 (10.95)	.719 (18.26)	.954 (24.23)	.120 (3.05)	9/16-24UNEF
12	.748 (19.00)	.062 (1.57)	.431 (10.95)	.812 (20.62)	1.047 (26.59)	.120 (3.05)	11/16-24UNEF
14	.873 (22.17)	.062 (1.57)	.431 (10.95)	.906 (23.01)	1.141 (28.98)	.120 (3.05)	13/16-20UNEF
16	.998 (25.35)	.062 (1.57)	.431 (10.95)	.969 (24.61)	1.234 (31.34)	.120 (3.05)	15/16-20UNEF
18	1.123 (28.52)	.062 (1.57)	.431 (10.95)	1.062 (26.97)	1.328 (33.73)	.120 (3.05)	1-1/16-18UNEF
20	1.248 (31.70)	.094 (2.39)	.556 (14.12)	1.156 (29.36)	1.453 (36.91)	.120 (3.05)	1-3/16-18UNEF
22	1.373 (34.87)	.094 (2.39)	.556 (14.12)	1.250 (31.75)	1.578 (40.08)	.120 (3.05)	1-5/16-18UNEF
24	1.498 (38.05)	.094 (2.39)	.589 (14.96)	1.375 (34.92)	1.703 (43.26)	.147 (3.73)	1-7/16-18UNEF

‡ Not available in KPSE * (TP) located within .010 T.P. with respect to diameter A and master keyway.

Endbells for Above

DN

•	I	<u> </u>			
			TYPE E		TYPE J
			TYPE A		
	Shell Size	DA Min.	LA Max.	V Thread Class 2A	GBF Min.
	‡ 8	.335 (8.51)	1.444 (36.68)	1/2-28UNEF	.115 (2.92)
	10	.466 (11.84)	1.444 (36.68)	5/8-24UNEF	.178 (4.52)
	12	.591 (15.01)	1.444 (36.68)	3/4-20UNEF	.302 (7.67)

1.444 (36.68)

1.444 (36.68)

1.198 (30.43) 1.728 (43.89) 1-7/16-18UNEF

1.444 (36.68) 1-3/16-18UNEF

1.728 (43.89) 1-3/16-18UNEF

Call for details

							· /
	24 1.29	93 (32.84) 1.738 (44.15) 1-7	/16-18UNEF .79	0 (20.07) 1.750 (44.45) 2.406 (61	.11) 1.610 (40.89	3)
		T	TYPE P				
<u>ge KPT 2</u> .	Shell Size	DJ Max./Min.	HJ Max.	LJ Max.	BP Max.	DP Min.	
mbly	‡8	.230/.168 (5.84/ 4.27)	.828 (21.03)	2.271 (57.68)	.608 (15.44)	.317 (8.05)	1
	10	.312/.205 (7.92/ 5.21)	.891 (22.63)	2.271 (57.68)	.734 (18.64)	.434 (11.02)	1
Р <u>Т 12</u> .	12	.442/.338 (11.23/ 8.59)	1.016 (25.81)	2.411 (61.24)	.858 (21.79)	.548 (13.92)	1
<u> 1 1 </u> .	14	.539/.416 (13.56/10.57)	1.141 (28.98)	2.599 (66.01)	.984 (24.99)	.673 (17.09)	1
<u>.</u>	16	.616/.550 (15.65/13.97)	1.203 (30.56)	2.943 (74.75)	1.110 (28.19)	.798 (20.27)	1
<u>1.</u>	18	.672/.600 (17.07/15.24)	1.469 (37.31)	3.172 (80.57)	1.234 (31.34)	.899 (22.83)	1
	20	.747/.635 (18.97/16.13)	1.469 (37.31)	3.610 (91.69)	1.360 (34.54)	1.024 (26.01)	1
<u>2-3</u> .	22	.846/.670 (21.49/17.02)	1.656 (42.06)	3.766 (95.66)	1.484 (37.69)	1.149 (29.18)	1
neters).	24	.894/.740 (22.71/18.80)	1.750 (44.45)	3.985 (101.22)	1.610 (40.89)	1.274 (32.36)	1
,	‡ Not availa	able in KPSE				D	

7/8-20UNEF

1-20UNEF

Performance Specifications – Pag Contacts, Wire Hole Fillers, Assem Tools – Page KPT 14. Contact Arrangements – Page KP Potting Compound – Page ACC 5. Mounting Hardware – Page ACC 1 Heat Shrink Boots – Pages ACC 2 Dimensions are shown in inches (millime KPT Dimensions subject to change

6

14

16

18

20

22

.705 (19.05)

.830 (21.08)

.948 (24.08)

1.043 (26.49)

www.DataSheet4U.com Specifications subject to change

TYPE E

.608 (15.44) 1.328 (33.73)

.734 (18.64) 1.328 (33.73)

LE

Max.

1.328 (33.73)

1.328 (33.73)

1.328 (33.73)

1.328 (33.73)

1.531 (38.89)

1.531 (38.89)

1.594 (40.49)

LP

Max.

1.453 (36.91)

1.453 (36.91) 1.453 (36.91)

1.453 (36.91)

1.453 (36.91) 1.453 (36.91)

1.672 (42.47)

1.672 (42.47) 1.734 (44.04)

BE

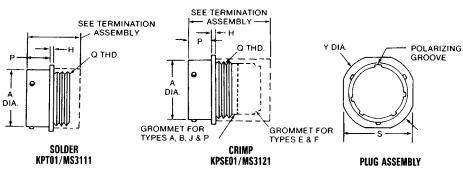
Max

.858 (21.79)

.984 (24.99)

1.110 (28.19)

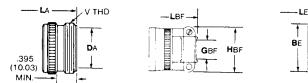
1.234 (31.34)


Cable Connecting Receptacle

MS3111 (MS service class E, F, J, P) MS3121 (MS service class E, F, P)

KPT01 KPSE01

KPSE01



"E" Endbell Shown

			P			
Shell Size	A ±.003 (±.08)	H ±.016 (±.41)	+.031 (+.79) 000 (00)	S Max.	Y Max.	Q Thread Class 2A
‡8	.471 (11.96)	.094 (2.39)	.400 (10.16)	.828 (21.03)	.958 (24.33)	7/16-28UNEF
10	.588 (14.94)	.094 (2.39)	.400 (10.16)	.954 (24.23)	1.082 (27.48)	9/16-24UNEF
12	.748 (19.00)	.094 (2.39)	.400 (10.16)	1.047 (26.59)	1.176 (29.87)	11/16-24UNEF
14	.873 (22.17)	.094 (2.39)	.400 (10.16)	1.141 (28.98)	1.270 (32.26)	13/16-20UNEF
16	.998 (25.35)	.094 (2.39)	.400 (10.16)	1.234 (31.34)	1.364 (34.65)	15/16-20UNEF
18	1.123 (28.52)	.094 (2.39)	.400 (10.16)	1.328 (33.73)	1.458 (37.03)	1-1/16-18UNEF
20	1.248 (31.70)	.115 (2.92)	.535 (13.59)	1.453 (36.91)	1.582 (40.18)	1-3/16-18UNEF
22	1.373 (34.87)	.115 (2.92)	.535 (13.59)	1.578 (40.08)	1.708 (43.38)	1-5/16-18UNEF
24	1.498 (38.05)	.115 (2.92)	.568 (14.43)	1.703 (43.26)	1.832 (46.53)	1-7/16-18UNEF

‡Not available in KPSE *(TP) located within .010 T.P. with respect to diameter A and master keyway.

Endbells for Above

TYPE A

TYPE E

TYPE J

1.1

Ø

ъ,

÷.

ĤJ

TYPE P

ŧ

DP

- LP

BP

		TYPE A			TYPE B and F		TY	YE E
Shell Size	DA Min.	LA Max.	V Thread Class 2A	GBF Min.	HBF Max.	LBF Max.	BE Max.	LE Max.
‡8	.335 (8.51)	1.444 (36.68)	1/2-28UNEF	.115 (2.92)	.828 (21.03)	1.922 (48.82)	.608 (15.44)	1.328 (33.73)
10	.466 (11.84)	1.444 (36.68)	5/8-24UNEF	.178 (4.52)	.891 (22.63)	1.922 (48.82)	.734 (18.64)	1.328 (33.73)
12	.591 (15.01)	1.444 (36.68)	3/4-20UNEF	.302 (7.67)	1.016 (25.81)	1.922 (48.82)	.858 (21.79)	1.328 (33.73)
14	.705 (19.05)	1.444 (36.68)	7/8-20UNEF	.365 (9.27)	1.141 (28.98)	1.922 (48.82)	.984 (24.99)	1.328 (33.73)
16	.830 (21.08)	1.444 (36.68)	1-20UNEF	.490 (12.45)	1.203 (30.56)	2.047 (51.99)	1.110 (28.19)	1.328 (33.73)
18	.948 (24.08)	1.444 (36.68)	1-3/16-18UNEF	.615 (15.62)	1.469 (37.31)	2.078 (52.78)	1.234 (31.34)	1.328 (33.73)
20	1.043 (26.49)	1.728 (43.89)	1-3/16-18UNEF	.615 (15.62)	1.469 (37.31)	2.344 (59.54)	1.360 (34.54)	1.531 (38.89)
22	1.198 (30.43)	1.728 (43.89)	1-7/16-18UNEF	.740 (18.80)	1.656 (42.06)	1.344 (59.54)	1.484 (37.69)	1.531 (38.89)
24	1.293 (32.84)	1.738 (44.15)	1-7/16-18UNEF	.790 (20.07)	1.750 (44.45)	2.406 (61.11)	1.610 (40.89)	1.594 (40.49)

		TYPE J	TYPE P			
Shell Size	DJ Max./Min.	HJ Max.	LJ Max.	BP Max.	DP Min.	LP Max.
‡8	.230/.168 (5.84/ 4.27)	.828 (21.03)	2.271 (57.68)	.608 (15.44)	.317 (8.05)	1.453 (36.91)
10	.312/.205 (7.92/ 5.21)	.891 (22.63)	2.271 (57.68)	.734 (18.64)	.434 (11.02)	1.453 (36.91)
12	.442/.338 (11.23/ 8.59)	1.016 (25.81)	2.411 (61.24)	.858 (21.79)	.548 (13.92)	1.453 (36.91)
14	.539/.416 (13.56/10.57)	1.141 (28.98)	2.599 (66.01)	.984 (24.99)	.673 (17.09)	1.453 (36.91)
16	.616/.550 (15.65/13.97)	1.203 (30.56)	2.943 (74.75)	1.110 (28.19)	.798 (20.27)	1.453 (36.91)
18	.672/.600 (17.07/15.24)	1.469 (37.31)	3.172 (80.57)	1.234 (31.34)	.899 (22.83)	1.453 (36.91)
20	.747/.635 (18.97/16.13)	1.469 (37.31)	3.610 (91.69)	1.360 (34.54)	1.024 (26.01)	1.672 (42.47)
22	.846/.670 (21.49/17.02)	1.656 (42.06)	3.766 (95.66)	1.484 (37.69)	1.149 (29.18)	1.672 (42.47)
24	.894/.740 (22.71/18.80)	1.750 (44.45)	3.985 (101.22)	1.610 (40.89)	1.274 (32.36)	1.734 (44.04)
Not avai	lable in KPSE			· · · · · ·		·

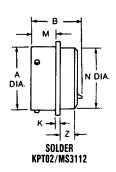
MAM DN DZ Call for details

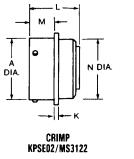
Performance Specifications – Page KPT 2. Contacts, Wire Hole Fillers, Assembly Tools - Page KPT 14. Contact Arrangements – Page KPT 12. Potting Compound – Page ACC 5. Mounting Hardware – Page ACC 1. Heat Shrink Boots – Pages ACC 2-3.

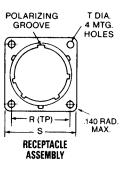
> Dimensions are shown in inches (millimeters). KPT Dim www.DataSheet4U.com Specifications subject to change

•

For technical assistance, price or delivery info. call 1-800-523-0727 or visit www.pei-genesis.com




Box Mounting Receptacles

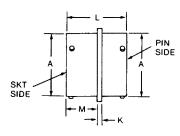

MS3112 (MS service class E) MS3122 (MS service class E)

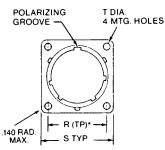
KPT02 KPSE02

connector does not accommodate backshell.

Shell Size	а ±.003 (±.08)	B Max	K ≭.016 (±.41)	L Max.	M +.031 (+.79) 000 (.00)	N Dia. Max.	R* (TP)	S Max.	т ±.005	Z Max.
‡8	.471 (11.96)	.978 (12.14)	.062 (1.57)	1.320 (33.07)	.431 (10.95)	.469 (11.91)	.594 (15.09)	.828 (21.03)	.120 (3.05)	.354 (8.99)
10	.588 (14.96)	.978 (12.14)	.062 (1.57)	1.320 (33.07)	.431 (10.95)	.593 (15.06)	.719 (18.26)	.954 (24.23)	.120 (3.05)	.354 (8.99)
12	.748 (19.00)	.978 (12.14)	.062 (1.57)	1.320 (33.07)	.431 (10.95)	.719 (18.26)	.812 (20.62)	1.047 (26.59)	.120 (3.05)	.354 (8.99)
14	.873 (22.17)	.978 (12.14)	.062 (1.57)	1.320 (33.07)	.431 (10.95)	.843 (21.41)	.906 (23.01)	1.141 (28.98)	.120 (3.05)	.354 (8.99)
16	.998 (25.35)	.978 (12.14)	.062 (1.57)	1.320 (33.07)	.431 (10.95)	.969 (24.61)	.969 (24.61)	1.234 (31.34)	.120 (3.05)	.354 (8.99)
18	1.123 (28.52)	.978 (12.14)	.062 (1.57)	1.320 (33.07)	.431 (10.95)	1.093 (27.76)	1.062 (26.97)	1.328 (33.73)	.120 (3.05)	.354 (8.99)
20	1.248 (31.70)	1.196 (30.38)	.094 (2.39)	1.367 (34.72)	.556 (14.12)	1.219 (30.96)	1.156 (29.36)	1.453 (36.91)	.120 (3.05)	.417 (10.59)
22	1.373 (34.87)	1.196 (30.38)	.094 (2.39)	1.367 (34.72)	.556 (14.12)	1.343 (34.11)	1.250 (31.75)	1.578 (40.08)	.120 (3.05)	.417 (10.59)
24	1.498 (38.05)	1.196 (30.98)	.094 (2.39)	1.418 (36.02)	.589 (14.96)	1.469 (37.31)	1.375 (34.92)	1.703 (43.26)	.147 (3.73)	.445 (11.30)

‡Not available in KPSE *(TP) located within .010 T.P. with respect to diameter A and master keyway.


Thru Bulkhead Receptacles


MS3119 (MS service class E)

Performance Specifications – Page KPT 2. Contacts, Wire Hole Fillers, Assembly Tools – Page KPT 14. Contact Arrangements - Page KPT 12. Mounting Hardware - Page ACC 1.

*(T.P.) located within .010 T.P. with respect to diameter A and master keyway.

Shell Size	A Dia. ±.003 (±.08)	к ±.016 (±.406)	L Max.	M +.031 (+.79) 000 (00)	R* (TP)	S Max.	T ±.005 (±.127)
8	.471 (11.96)	.062 (1.57)	1.125 (28.58)	.562 (14.27)	.594 (15.09)	.828 (21.03)	.120 (3.05)
10	.588 (14.94)	.062 (1.57)	1.125 (28.58)	.562 (14.27)	.719 (18.26)	.954 (24.23)	.120 (3.05)
12	.748 (18.00)	.062 (1.57)	1.125 (28.58)	.562 (14.27)	.812 (20.62)	1.047 (26.59)	.120 (3.05)
14	.873 (22.17)	.062 (1.57)	1.125 (28.58)	.562 (14.27)	.906 (23.01)	1.141 (28.98)	.120 (3.05)
16	.998 (25.35)	.062 (1.57)	1.125 (28.58)	.562 (14.27)	.969 (24.61)	1.234 (31.34)	.120 (3.05)
18	1.123 (28.52)	.062 (1.57)	1.125 (28.58)	.562 (14.27)	1.062 (26.97)	1.328 (33.73)	.120 (3.05)
20	1.248 (31.70)	.094 (2.39)	1.406 (35.71)	.688 (17.48)	1.156 (29.36)	1.453 (36.91)	.120 (3.05)
22	1.373 (34.87)	.094 (2.39)	1.406 (35.71)	.688 (17.48)	1.250 (31.76)	1.578 (40.08)	.120 (3.05)
24	1.498 (38.05)	.094 (2.39)	1.406 (35.71)	.688 (17.48)	1.375 (34.92)	1.703 (43.26)	.147 (3.73)

Dimensions are shown in inches (millimeters). Dimensions subject to change

Straight Plugs

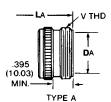
MS3116 (MS service class E, F, J, P) MS3126 (MS service class E, F, P)

"F" Endbell Shown

KPT06 Q THD KPSE06 DI

SOLDER

KPT06/MS3116


Q THD GROMMET FOR TYPES A, B, J & P GROMMET FOR TYPES E & F SEE TERMINATION ASSEMBLY KPSE06/MS3126

DIA

Shell A dia. G .1 **Q** Thread ±.010 (±0.25) Max Size Max Class 2A **‡8** .765 (19.43) .782 (19.86) .353 (8.99) 7/16-28UNEF 10 .840 (21.34) .926 (23.52) .353 (8.99) 9/16-24UNEF 12 .999 (25.38) 1.043 (26.49) .353 (8.99) 11/16-24UNEF 14 1.139 (28.93) 1.183 (30.05) .353 (8.99) 13/16-20UNEF 16 1.261 (32.03) 1.305 (33.15) .353 (8.99) 15/16-20UNEF 18 1.337 (33.96) 1.391 (35.33) .353 (8.99) 1-1/16-18UNEF 20 1.477 (37.52) 1.531 (38.89) .415 (10.54) 1-3/16-18UNEF 22 1.602 (40.69) 1.656 (42.06) .415 (10.54) 1-5/16-18UNEF 24 1.723 (43.76) 1.777 (45.14) .415 (10.54) 1-7/16-18UNEF

‡Not available in KPSE

Endbells for Above

—L8F ଚ GBF HBF

TYPE B AND F

LE BE TYPE E

THUR THE

TYPE J

ø

DJ.

HJ

B

t

DP

LP

	TYPE A			TYPE B and F		TYPE E		
LA Max.	DA Min.	V Thread Class 2A	LBF Max.	HBF Max	GBF Min.	BE Max.	LE Max.	
1.440 (36.58)	.335 (8.51)	1/2-28UNEF	1.906 (48.41)	.828 (21.03)	.115 (2.02)	.608 (15.44)	1.328 (33.73)	
1.440 (36.58)	.466 (11.84)	5/8-24UNEF	1.906 (48.41)	.891 (22.63)	.178 (4.52)	.734 (18.64)	1.328 (33.73)	
1.440 (36.58)	.591 (15.01)	3/4-20UNEF	1.906 (48.41)	1.016 (25.81)	.302 (7.67)	.858 (21.79)	1.328 (33.73)	
1.440 (36.58)	.705 (19.05)	7/8-20UNEF	1.906 (48.41)	1.141 (28.98)	.365 (9.27)	.984 (24.99)	1.328 (33.73)	
1.440 (36.58)	.830 (21.08)	1-20UNEF	2.047 (51.99)	1.203 (30.56)	.490 (12.45)	1.110 (28.19)	1.328 (33.73)	
1.662 (42.21)	.948 (24.08)	1-3/16-18UNEF	2.078 (52.78)	1.469 (37.31)	.615 (15.62)	1.234 (31.34)	1.328 (33.73)	
1.662 (42.21)	1.043 (26.49)	1-3/16-18UNEF	2.250 (57.15)	1.469 (37.31)	.615 (15.62)	1.360 (34.54)	1.453 (36.91)	
1.662 (42.21)	1.198 (30.43)	1-7/16-18UNEF	2.250 (57.15)	1.656 (42.06)	.740 (18.80)	1.484 (37.69)	1.453 (36.91)	
1.672 (42.47)	1.293 (32.84)	1-7/16-18UNEF	2.312 (58.72)	1.750 (44.45)	.790 (20.07)	1.610 (40.89)	1.510 (38.54)	
	Max. 1.440 (36.58) 1.440 (36.58) 1.440 (36.58) 1.440 (36.58) 1.440 (36.58) 1.662 (42.21) 1.662 (42.21) 1.662 (42.21)	LA DA Max. Min. 1.440 (36.58) .335 (8.51) 1.440 (36.58) .466 (11.84) 1.440 (36.58) .591 (15.01) 1.440 (36.58) .705 (19.05) 1.440 (36.58) .830 (21.08) 1.662 (42.21) .948 (24.08) 1.662 (42.21) 1.043 (26.49) 1.662 (42.21) 1.198 (30.43)	LA Max. DA Min. V Thread Class 2A 1.440 (36.58) .335 (8.51) 1/2-28UNEF 1.440 (36.58) .466 (11.84) 5/8-24UNEF 1.440 (36.58) .591 (15.01) 3/4-20UNEF 1.440 (36.58) .705 (19.05) 7/8-20UNEF 1.440 (36.58) .830 (21.08) 1-20UNEF 1.440 (36.58) .830 (21.08) 1-20UNEF 1.662 (42.21) .948 (24.08) 1-3/16-18UNEF 1.662 (42.21) 1.043 (26.49) 1-3/16-18UNEF 1.662 (42.21) 1.198 (30.43) 1-7/16-18UNEF	LA Max. DA Min. V Thread Class 2A LBF Max. 1.440 (36.58) .335 (8.51) 1/2-28UNEF 1.906 (48.41) 1.440 (36.58) .466 (11.84) 5/8-24UNEF 1.906 (48.41) 1.440 (36.58) .591 (15.01) .3/4-20UNEF 1.906 (48.41) 1.440 (36.58) .705 (19.05) .7/8-20UNEF 1.906 (48.41) 1.440 (36.58) .830 (21.08) 1-20UNEF 2.0647 (51.99) 1.662 (42.21) .948 (24.08) 1-3/16-18UNEF 2.078 (52.78) 1.662 (42.21) 1.043 (26.49) 1-3/16-18UNEF 2.250 (57.15) 1.662 (42.21) 1.198 (30.43) 1-7/16-18UNEF 2.250 (57.15)	LA Max. DA Min. V Thread Class 2A LBF Max. HBF Max. 1.440 (36.58) .335 (8.51) 1/2-28UNEF 1.906 (48.41) .828 (21.03) 1.440 (36.58) .355 (8.51) 1/2-28UNEF 1.906 (48.41) .828 (21.03) 1.440 (36.58) .466 (11.84) 5/8-24UNEF 1.906 (48.41) .891 (22.63) 1.440 (36.58) .591 (15.01) 3/4-20UNEF 1.906 (48.41) 1.016 (25.81) 1.440 (36.58) .705 (19.05) 7/8-20UNEF 1.906 (48.41) 1.016 (25.81) 1.440 (36.58) .830 (21.08) 1-20UNEF 2.047 (51.99) 1.203 (30.56) 1.662 (42.21) .948 (24.08) 1-3/16-18UNEF 2.078 (52.78) 1.469 (37.31) 1.662 (42.21) 1.043 (26.49) 1-3/16-18UNEF 2.250 (57.15) 1.469 (37.31) 1.662 (42.21) 1.198 (30.43) 1-7/16-18UNEF 2.250 (57.15) 1.665 (42.06)	LA Max. DA Min. V Thread Class 2A LBF Max. HBF Max GBF Max. 1.440 (36.58) .335 (8.51) 1/2-28UNEF 1.906 (48.41) .828 (21.03) .115 (2.02) 1.440 (36.58) .335 (8.51) 1/2-28UNEF 1.906 (48.41) .891 (22.63) .115 (2.02) 1.440 (36.58) .466 (11.84) 5/8-24UNEF 1.906 (48.41) .891 (22.63) .178 (4.52) 1.440 (36.58) .591 (15.01) 3/4-20UNEF 1.906 (48.41) .1016 (25.81) .302 (7.67) 1.440 (36.58) .705 (19.05) 7/8-20UNEF 1.906 (48.41) 1.141 (28.98) .365 (9.27) 1.440 (36.58) .830 (21.08) 1-20UNEF 2.047 (51.99) 1.203 (30.56) .490 (12.45) 1.662 (42.21) .948 (24.08) 1-3/16-18UNEF 2.078 (52.78) 1.469 (37.31) .615 (15.62) 1.662 (42.21) 1.043 (26.49) 1-3/16-18UNEF 2.250 (57.15) 1.469 (37.31) .615 (15.62) 1.662 (42.21) 1.198 (30.43) 1-7/16-18UNEF 2.250 (57.15) 1.656 (42.06) .740 (18.80)	LA Max. DA Min. V Thread Class 2A LBF Max. HBF Max GBF Max. BE Max. 1.440 (36.58) .335 (8.51) 1/2-28UNEF 1.906 (48.41) .828 (21.03) .115 (2.02) .608 (15.44) 1.440 (36.58) .366 (11.84) 5/8-24UNEF 1.906 (48.41) .891 (22.63) .178 (4.52) .734 (18.64) 1.440 (36.58) .666 (11.84) 5/8-24UNEF 1.906 (48.41) 1.016 (25.81) .302 (7.67) .858 (21.79) 1.440 (36.58) .591 (15.01) 3/4-20UNEF 1.906 (48.41) 1.016 (25.81) .302 (7.67) .858 (21.79) 1.440 (36.58) .705 (19.05) 7/8-20UNEF 1.906 (48.41) 1.141 (28.98) .365 (9.27) .984 (24.99) 1.440 (36.58) .830 (21.08) 1-20UNEF 2.047 (51.99) 1.203 (30.56) .490 (12.45) 1.110 (28.19) 1.662 (42.21) .948 (24.08) 1.3/16-18UNEF 2.078 (52.78) 1.469 (37.31) .615 (15.62) 1.234 (31.34) 1.662 (42.21) 1.043 (26.49) 1.3/16-18UNEF 2.250 (57.15) 1.469 (37.31) .615 (15.62) 1.360 (34.54)	

		TYPE J			TYPE P	
Shell Size	LJ Max.	HJ Max.	D.J Max./Min.	LP Max.	DP Min.	BP Max.
‡8	2.271 (57.68)	.828 (21.03)	.230/.168 (5.84/ 4.27)	1.500 (38.10)	.317 (8.05)	.608 (15.44)
10	2.271 (57.68)	.891 (22.63)	.321/.205 (7.92/ 5.21)	1.500 (38.10)	.434 (11.02)	.734 (18.64)
12	2.411 (61.24)	1.016 (25.81)	.442/.338 (11.23/ 8.59)	1.500 (38.10)	.548 (13.92)	.858 (21.79)
14	2.599 (66.01)	1.141 (28.98)	.539/.416 (13.56/10.57)	1.500 (38.10)	.673 (17.09)	.984 (24.99)
16	2.943 (74.75)	1.203 (30.56)	.616/.550 (15.65/13.97)	1.500 (38.10)	.798 (20.27)	1.110 (28.19)
18	3.172 (80.57)	1.469 (37.31)	.672/.600 (17.07/15.24)	1.500 (38.10)	.899 (22.83)	1.234 (31.34)
20	3.610 (91.69)	1.469 (37.31)	.747/.635 (18.97/16.13)	1.609 (40.87)	1.024 (26.01)	1.360 (34.54)
22	3.766 (95.66)	1.656 (42.06)	.846/.670 (21.49/17.02)	1.609 (40.87)	1.149 (29.18)	1.484 (37.69)
24	3.985 (101.22)	1.750 (44.45)	.894/.740 (22.71/18.80)	1.687 (42.85)	1.274 (32.36)	1.610 (40.89)
‡Not av	ailable in KPSE			·		

Plug includes grounding finger barrel, call for details.

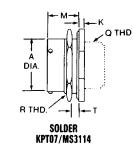
Performance Specifications – Page KPT 2. Contacts, Wire Hole Fillers, Assembly Tools – Page KPT 14. Contact Arrangements – Page KPT 12.

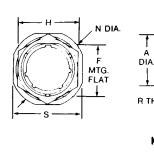
Potting Compound – Page ACC 5.

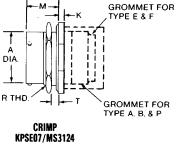
Heat Shrink Boots - Pages ACC 2-3.

Dimensions are shown in inches (millimeters). KPT Dimensions subject to change

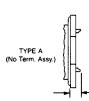
www.DataSheet4U.com Specifications subject to change

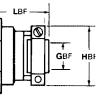


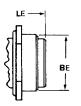

Jam Nut Receptacles

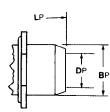

MS3114 (MS service class E, F, P) MS3124 (MS service class E, F, P)

KPT07 KPSE07




"E" Endbell Shown


	_	_			M				T	
Shell Size	A ±.003 (±0.08)	F ±.005 (.130)	H ±.017 (±0.43)	к ±.020 (±.05)	+.031 (+.08) 000 (00)	N Max.	S max.	Panel Min.	Thickness Max.	R thread Class 2A
‡8	.471 (11.96)	.525 (13.34)	.750 (19.05)	.117 (2.97)	.691 (17.55)	1.078 (27.38)	.954 (24.23)	.062 (1.57)	.125 (3.17)	9/16-24UNEF
10	.588 (14.93)	.650 (16.51)	.875 (22.22)	.117 (2.97)	.691 (17.55)	1.203 (30.56)	1.078 (27.38)	.062 (1.57)	.125 (3.17)	11/16-24UNEF
12	.748 (19.00)	.813 (20.65)	1.062 (26.97)	.117 (2.97)	.691 (17.55)	1.319 (35.33)	1.266 (32.16)	.062 (1.57)	.125 (3.17)	7/8-20UNEF
14	.873 (22.17)	.937 (23.80)	1.188 (30.17)	.117 (2.97)	.691 (17.55)	1.516 (38.51)	1.391 (35.33)	.062 (1.57)	.125 (3.17)	1-20UNEF
16	.988 (25.35)	1.061 (26.95)	1.312 (33.32)	.117 (2.97)	.691 (17.55)	1.641 (41.68)	1.516 (38.51)	.062 (1.57)	.125 (3.17)	1-1/8-18UNEF
18	1.123 (28.52)	1.186 (30.12)	1.438 (36.25)	.117 (2.97)	.691 (17.55)	1.766 (44.86)	1.641 (41.68)	.062 (1.57)	.125 (3.17)	1-1/4-18UNEF
20	1.248 (31.70)	1.311 (33.30)	1.562 (39.67)	.148 (3.76)	.879 (22.33)	1.954 (49.63)	1.828 (46.43)	.062 (1.57)	.250 (6.35)	1-3/8-18UNEF
22	1.373 (34.87)	1.436 (36.47)	1.688 (42.87)	.148 (3.76)	.879 (22.33)	2.078 (52.78)	1.954 (49.63)	.062 (1.57)	.250 (6.35)	1-1/2-18UNEF
24	1.498 (38.05)	1.561 (39.65)	1.812 (46.02)	.148 (3.76)	.912 (23.16)	2.203 (55.96)	2.078 (52.78)	.062 (1.57)	.250 (6.35)	1-5/8-18UNEF
Not ava	ailable in KPSE					· · · · ·				


‡Not available in KPSE

Endbells for Above

	TYPE A TYPE B AND F		TY	PE E		TYPE P	TYPE P			
Shell Size	Z Max.	HBF Max.	GBF Min.	LBF Max.	BE Max.	LE Max.	BP Max.	DP Min.	LP Max.	
8	.312 (7.92)	.828 (21.03)	.115 (2.92)	1.906 (48.41)	.608 (15.44)	1.344 (34.14)	.608 (15.44)	.317 (8.05)	1.391 (35.33)	
10	.312 (7.92)	.891 (22.63)	.178 (4.52)	1.906 (48.41)	.734 (18.64)	1.344 (34.14)	.734 (18.64)	.434 (11.02)	1.391 (35.33)	
12	.312 (7.92)	1.016 (25.81)	.302 (7.67)	1.906 (48.41)	.858 (21.79)	1.344 (34.14)	.858 (21.79)	.548 (13.92)	1.391 (35.33)	
14	.312 (7.92)	1.141 (28.98)	.365 (9.27)	1.906 (48.41)	.984 (24.99)	1.344 (34.14)	.984 (24.99)	.673 (17.09)	1.391 (35.33)	
16	.312 (7.92)	1.203 (30.56)	.490 (12.45)	2.047 (51.99)	1.110 (28.19)	1.344 (34.14)	1.110 (28.19)	.798 (20.27)	1.391 (35.33)	
18	.312 (7.92)	1.469 (37.31)	.615 (15.62)	2.078 (52.78)	1.234 (31.34)	1.344 (34.14)	1.234 (31.34)	.899 (22.83)	1.391 (35.33)	
20	.193 (4.90)	1.469 (37.31)	.615 (15.62)	2.328 (59.13)	1.360 (34.54)	1.594 (40.49)	1.360 (34.54)	1.024 (26.01)	1.641 (41.68)	
22	.193 (4.90)	1.656 (42.06)	.740 (18.80)	2.328 (59.13)	1.484 (37.69)	1.594 (40.49)	1.484 (37.69)	1.149 (29.18)	1.641 (41.68)	
24	.150 (3.81)	1.750 (44.45)	.790 (20.07)	2.453 (62.31)	1.610 (40.89)	1.641 (41.68)	1.610 (40.89)	1.274 (32.36)	1.703 (43.26)	

Performance Specifications – Page KPT 2. Contacts, Wire Hole Fillers, Assembly Tools – Page KPT 14. Contact Arrangements – Page KPT 12. Potting Compound - Page ACC 5.

Dimensions are shown in inches (millimeters). Dimensions subject to change

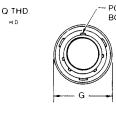
For technical assistance, price or delivery info. call 1-800-523-0727 or visit www.pei-genesis.com

• KPT

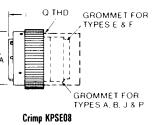
•

• .

10


Right Angle Plugs

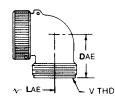
"F" Endbell Shown

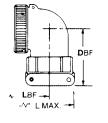

DIA

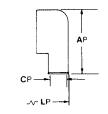
KPT08 KPSE08

Solder KPT08

POLARIZING BOSS DIA


Performance Specifications – Page KPT 2. Contacts, Wire Hole Fillers, Assembly Tools - Page KPT 14. Contact Arrangements – Page KPT 12.


Potting Compound - Page ACC 5.


	KPT/	KPSE	
Shell Size	A Dia. Max.	G Max.	Q Thread Class 2A
‡8	.765 (19.43)	.782 (19.86)	7/16-28UNEF
10	.840 (21.34)	.926 (23.52)	9/16-24UNEF
12	.999 (25.38)	1.043 (26.49)	11/16-24UNEF
14	1.139 (28.93)	1.183 (30.05)	13/16-20UNEF
16	1.261 (32.03)	1.305 (33.15)	15/16-20UNEF
18	1.337 (33.96)	1.391 (35.33)	1-1/16-18UNEF
20	1.477 (37.52)	1.531 (38.89)	1-3/16-18UNEF
22	1.602 (40.69)	1.656 (42.09)	1-5/16-18UNEF
24	1.723 (43.76)	1.777 (45.13)	1-7/16-18UNEF

 $\ddagger Not$ available in KPSE. NOTE: for size 10 and 24 consult factory for availability in type A, B, E and F. For size 8 consult factory for availability in Type P.

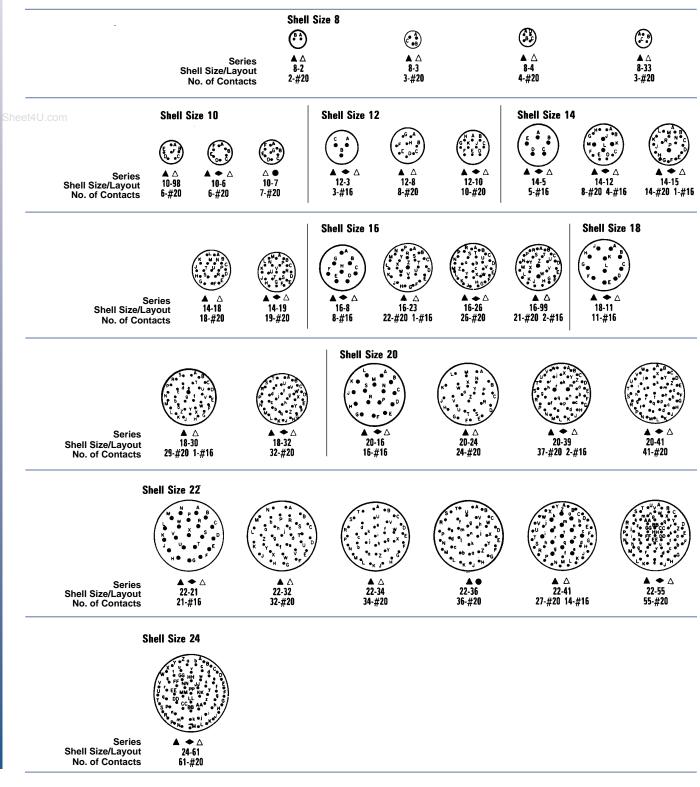
Endbells for Above

	TYPE A AND E			TYPE B AND F				TYPE P		
Shell Size	LAE Max.	DAE Max.	V Thread Class 2A	DBF Max.	LBF Max.	L Max.	V Thread Class 2A	AP Max.	LP Max.	CP Min.
‡8	1.421 (36.09)	.822 (20.88)	1/2-28UNEF	1.238 (31.44)	1.421 (36.09)	1.842 (46.79)	1/2-28UNEF	— (—)	— (—)	- ()
10	1.484 (37.69)	.853 (21.67)	5/8-28UNEF	1.269 (32.24)	1.484 (37.69)	1.937 (49.20)	5/8-28UNEF	1.030 (26.16)	1.380 (35.05)	.252 (6.40)
12	1.546 (39.27)	.916 (23.27)	3/4-20UNEF	1.395 (35.43)	1.546 (39.27)	1.937 (49.20)	3/4-20UNEF	1.030 (26.16)	1.567 (39.80)	.252 (6.40)
14	1.577 (40.05)	.978 (24.84)	7/8-20UNEF	1.519 (38.58)	1.577 (40.05)	2.124 (53.95)	7/8-20UNEF	1.030 (26.16)	1.567 (39.80)	.283 (7.19)
16	1.609 (40.87)	1.041 (26.44)	1-20UNEF	1.582 (40.18)	1.609 (40.87)	2.203 (55.96)	1-20UNEF	1.280 (32.51)	1.567 (39.80)	.355 (9.02)
18	1.734 (44.04)	1.103 (28.70)	1-3/16-18UNEF	1.644 (41.76)	1.734 (44.04)	2.380 (60.45)	1-3/16-18UNEF	1.280 (32.51)	1.755 (44.58)	.530 (13.46)
20	1.879 (47.73)	1.166 (29.62)	1-3/16-18UNEF	1.707 (43.36)	1.879 (47.73)	2.629 (66.78)	1-3/16-18UNEF	1.530 (38.86)	1.782 (45.26)	.562 (14.27)
22	2.035 (51.69)	1.245 (31.62)	1-7/16-18UNEF	1.884 (47.85)	2.035 (51.69)	2.629 (66.78)	1-7/16-18UNEF	1.530 (38.86)	1.782 (45.26)	.562 (14.27)
24	2.035 (51.69)	1.322 (33.58)	1-7/16-18UNEF	1.963 (49.86)	2.035 (51.69)	2.895 (73.53)	1-7/16-18UNEF	1.780 (45.21)	2.087 (53.01)	.610 (15.49)

‡Not available in KPSE. NOTE: For size 10 and 24 consult factory for availability in type A, B, E and F. For size 8 consult factory for availability in Type P.

Dimensions are shown in inches (millimeters). Dimensions subject to change

KPT



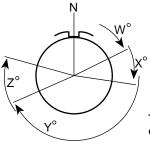
Layouts by Shell Size

LEGEND

- ▲ KPT
- **KPSE** ٠
- \triangle Authorized per MIL-C-26482 (NAVY)
- Not MS approved •

Drawing not to scale; mating face view of pin insert shown (socket view is opposite)

KPT


• 12

•

. . .

Layouts by Number of Contacts

Mating Face view of pin inserts

Alternate Insert Position

The five positions (W, X, Y, Z and Normal) differ in degree of rotation for varous sizes and arrangements.

NO. (OF CON	TACTS	SER	IES	SHELL SIZE	LAYOUT	DE	GREES O	F ROTAT	ION	SERVICE
TOTAL	#20	#16	KPT	KPSE			W	X	Y	Z	RATING
2	2		•		8	8-2	58	122	-	-	1
3	3		•		8	8-3	60	210	-	-	1
eet4 lg .com	3		•		8	8-33	90	-	-	-	1
3		3	•	•	12	12-3	-	-	180	-	2
4	4		•		8	8-4	45	-	-	-	1
5		5	•	•	14	14-5	40	92	184	273	2
6	6		•	•	10	10-6	90	-	-	-	1
6	6		•		10	10-98	90	180	240	270	1
7	7		•		10	10-7*	90	-	-	-	1
8	8		•		12	12-8	90	112	203	292	1
8		8	•	•	16	16-8	54	152	180	331	2
10	10		•	•	12	12-10	60	155	270	295	1
11		11	•	•	18	18-11	62	119	241	340	2
12	8	4	•	•	14	14-12	43	90	-	-	1
15	14	1	•	•	14	14-15	17	110	155	234	1
16		16	•	•	20	20-16	238	318	333	347	2
18	18		•		14	14-18	15	90	180	270	1
19	19		•	•	14	14-19	30	165	315	-	1
21		21	•	•	22	22-21	16	135	175	349	2
23	22	1	•		16	16-23	158	270	-	-	1
23	21	2	•		16	16-99	66	156	223	340	1
24	24		•		20	20-24	70	145	215	290	1
26	26		•	•	16	16-26	60	-	275	338	1
30	29	1	•		18	18-30	180	193	285	350	1
32	32		•	•	18	18-32	85	138	222	265	1
32	32		•		22	22-32	72	145	215	288	1
34	34		•		22	22-34	62	142	218	298	1
36	36		•		22	22-36*	72	144	216	288	1
39	37	2	•	•	20	20-39	63	144	252	333	1
41	41		•		20	20-41	45	126	225	-	1
41	27	14	•		22	22-41	39	135	264	-	2
55	55		•	•	22	22-55	30	142	226	314	1
61	61		•	•	24	24-61	90	180	270	324	1

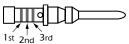
Operating Voltage & Test Voltage:

SERVICE	TEST	MAXIMUM OPE	RATING VOLTAGE	TEST VOLTAGE		
RATING*	ALTITUDE	DC	AC(RMS)	DC	AC(RMS)	
1	Sea Level	850	600	2100	1500	
2	Sea Level	1,275	1,000	3,200	2,300	
1	70,000 feet	-	300	535	375	
2	70,000 1001	-	450	770	550	

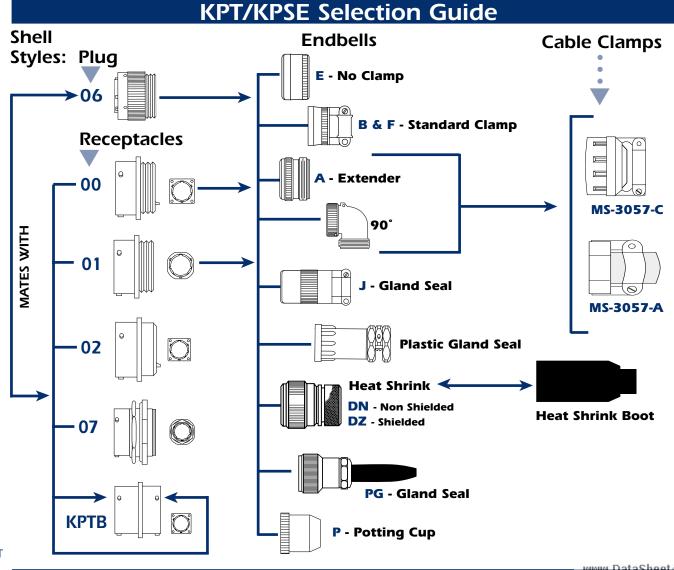
*Each insulator layout has a specific "Service Rating" indicated in last column.

Crimp Contacts

	Contact Size	Part Number
	20	030-9036-021
Pin	16	030-9032-030
	20	031-9074-030
Socket	16	031-9095-028
Wire Hole	20	225-1012-000
Filler	16	225-1011-000
		192990-2050
	20	(M22520/1-01)
	16	192990-2050
Crimp Tool		(M22520/1-01)
		TH1A
	20	(M22520/1-02)
Turret	16	TH1A
t4U.com		(M22520/1-02)
	20	MS24256A20
Insertion Tool	16	MS24256A16
	20	MS24256R20
	16	MS24256R16
Extraction Tool		

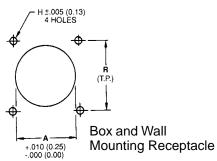

KPSE Crimp Kit

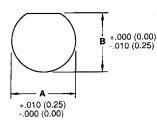
Kit includes: Crimp Tool Locator Insertion Tools 16 + 20 Extraction Tools 16 + 20 Contact Insertion Lubricant Assembly Instructions Rugged Case



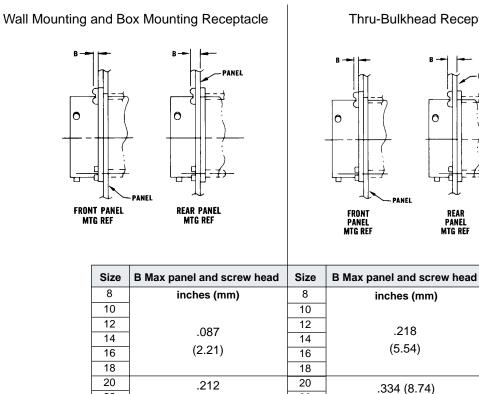
Contact Identification

(To MIL-C-39029)




Contact Size	Color Bands on Contacts				
	1st	2nd	3rd		
20 pin	RED	YELLOW	BLACK		
20 socket	RED	GREEN	WHITE		
16 pin	RED	RED	GREY		
16 socket	RED	YELLOW	VIOLET		

Panel Cutouts


Jam Nut Receptacle

SHELL	A dia incl FRONT	nes(mm) REAR	R - inches(mm)	H <u>+</u> .005	Screw*	А	В
8‡	.500 (12.70)	.551 (14.0)	.594 (15.09)	.125 (3.17)	#4	.578 (14.68)	.540 (13.72)
10	.630 (16.00)	.669 (17.0)	.719 (18.26)	.125 (3.17)	#4	.703 (17.86)	.665 (16.89)
12	.751 (19.75)	.866 (22.0)	.812 (20.62)	.125 (3.17)	#4	.890 (22.61)	.828 (21.02)
14	.876 (22.25)	.984 (25.0)	.906 (23.01)	.125 (3.17)	#4	1.015 (25.78)	.952 (24.18)
16	1.001 (25.43)	1.102 (28.0)	.969 (24.61)	.125 (3.17)	#4	1.140 (28.96)	1.076 (27.33)
18	1.126 (28.60)	1.220 (31.0)	1.062 (26.97)	.125 (3.17)	#4	1.265 (32.13)	1.201 (30.51)
20	1.251 (31.78)	1.358 (34.5)	1.156 (29.36)	.125 (3.17)	#4	1.390 (35.31)	1.326 (33.68)
22	1.376 (34.95)	1.476 (37.5)	1.250 (31.75)	.125 (3.17)	#4	1.515 (38.48)	1.451 (36.86)
24	1.501 (38.13)	1.614 (41.0)	1.375 (34.92)	.155 (3.94)	#6	1.640 (41.66)	1.576 (40.03)

‡ Not available in KPSE connectors.

* See Accessories on page ACC 1 for sealing screws.

Panel Thickness

Thru-Bulkhead Receptacle

.311 (7.90)

ANEL

(5.38)

22

24

22

24

Accessories

	Dummy Receptacles	Metal Dust Caps∗				
.com	O J See page KPT 15 for panel cutouts.		9 (4.29) 008 (.20)			
			FOR REC	CEPTACLE		
SHELL SIZE	PART NUMBER	FOR PLUGS	Flanged* With Sash Chain	Jam Nut* With Sash Chain and Ring		
8	MS3115-8	MS3180-8CA	MS3181-8CA	MS3181-8NA		
10	MS3115-10	MS3180-10CA	MS3181-10CA	MS3181-10NA		
12	MS3115-12	MS3180-12CA	MS3181-12CA	MS3181-12NA		
14	MS3115-14	MS3180-14CA	MS3181-14CA	MS3181-14NA		
16	MS3115-16	MS3180-16CA	MS3181-16CA	MS3181-16NA		
18	MS3115-18	MS3180-18CA	MS3181-18CA	MS3181-18NA		
20	MS3115-20	MS3180-20CA	MS3181-20CA	MS3181-20NA		
22	MS3115-22	MS3180-22CA	MS3181-22CA	MS3181-22NA		
24	MS3115-24	MS3180-24CA	MS3181-24CA	MS3181-24NA		

*Sash chain version for attachment to mounting screw on flanged receptacles. Sash chain with ring for mounting to jam nut receptacle.

•

•

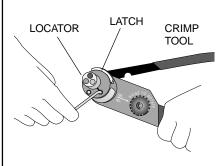
•

Assembly Instructions

KPT Solder Contacts

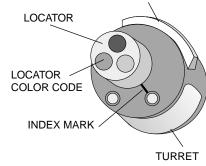
- 1. Slide the rear accessories over the wire bundle in the proper sequence for re-assembly: cable clamp and/or endbell first, then ferrule, and (if used) the coupling nut.
- 2. Insert individual wires through the proper holes in the grommet.
- 3. Solder wires to appropriate contacts on the rear of the www.DataShee14U.co.connector. ITT Cannon document RPI234 covers standard soldering practices and is available upon request by fax or mail. Please call.
 - 4. Fixture the connector for reassembly using the endbell assembly tools on <u>page ACC 4</u> or a mating connector with contacts installed.
 - Slide the grommet down the wires (lubricating the grommet with isopropyl alcohol will help).
 - 6. Fill all unused grommet cavities with a wire hole filler to maintain the sealing integrity of the connector.
 - 7. Slide coupling nut, ferrule, and endbell accessories over rear of the connector and tighten. Torque as follows:

SIZE	TORQUE (INCH/LBS)
8, 10, 12, 14	10 - 15
16, 18	15- 25
20, 22, 24	25 - 35

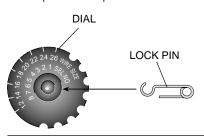

KPSE Crimp Tool Operation

Hand Crimp Tool

1. Strip the wires to the appropriate length.

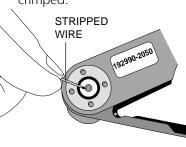

CONTACT SIZE	STRIP LENGTH
20	3/16" (4.8)
16	1/4" (6.4)

2. Open the 192990-2050 (M22520/1-01) crimp tool by squeezing the handles. Push the latch on TH1A (M22520/1-02)to pop up the locator on the turret. Attach the turret to the 192990-2050 crimp tool using the two captive hex bolts in the turret.



 Select the proper locator position for your contact by rotating the locator until the proper color is aligned with the index mark. Push locator back down until it snaps into position.

CONTACT SIZE	LOCATOR COLOR
20	RED
16	BLUE
	LATCH

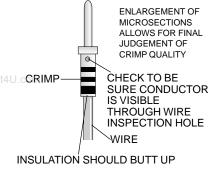

 Adjust dial for proper wire gauge. To change the dial setting remove the lock pin and lift center of dial. Turn to the desired wire gauge. Replace lock pin on dial.

5. Cycle the tool before inserting the contact to be sure the tool is in the open position. Drop the contact, mating end first, into the crimp cavity of the tool. Squeeze the tool handle just enough to grip the contact without actually crimping it.

 Insert the stripped wire into the contact with a slight twisting motion. Be sure all wire strands are inside the contact. Squeeze the handle to cycle the tool. The handle will not release until the contact is completely crimped.

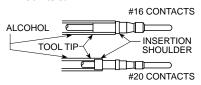
For technical assistance, price or delivery info. call 1-800-523-0727 or visit www.pei-genesis.com

www.DataSheet4U.com Specifications subject to change.


крт

PT/(PSE

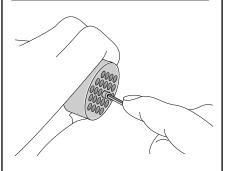
Crimp Tool Operation | Insertion of Contacts (continued)


7. Remove the crimped contact. Pull on the wire slightly to be sure it is properly crimped. Be sure the contact is not bent or damaged in any way. Visually inspect the crimp:

AGAINST THE END OF THE CONTACT.

Insertion of Contacts

- 1. Slide the rear accessories over the wire bundle in the proper sequence for re-assembly: cable clamp and/or endbell first, then ferrule, and coupling nut.
- 2. Using the proper insertion tool from the chart on page KPT 14, slide the tool over the wire side of the contact until the tool bottoms on the contact.



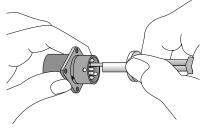
The tool for size 16 contacts butts against the shoulder of the contact. The rear, or insulation support, of the size 20 contacts butts against an internal shoulder in the tool tip.


3. Dip the contact and tool tip in isopropyl alcohol (do not use any lubricant other than isopropyl alcohol). Hold the tool perpendicular to the rear of the connector. Beginning with the center cavity and working outwards in a circular pattern, insert the wired

(continued)

contact into the rear of the connector until the contact snaps into place. A light pull on the wire will assure that the contact is locked securely.

- 4. Fill any unused cavities with contacts. A wire hole filler must be inserted into the grommet behind the unused contacts to maintain the sealing integrity of the connector.
- 5. Check the mating face of the connector to insure that all the same size contacts are on the same plane (fully inserted). If not, the contact is not fully inserted. Remove the contact using the proper extraction tool and procedure and reinsert. Do not attempt to reinsert the insertion tool to correct the problem.

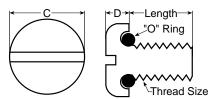


6. Fixture the connector for reassembly using the endbell assembly tools on page ACC 4 or a mating connector with contacts installed. Slide the connector accessories back down the cable over the rear of the connector and tighten. Torque as follows:

SIZE	TORQUE (INCH/LBS)
8, 10, 12, 14	10 - 15
16, 18	15- 25
20, 22, 24	25 - 35

Extraction of Contacts

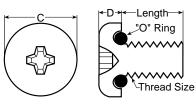
- 1. Remove the endbell accessories and slide them back over the wires.
- 2. Use the proper extraction tool from the chart on page KPT 14.
- 3. On the mating face of the connector, insert the tool over the contact and into the insulator until the tool bottoms. While keeping an even pressure against the tool, push the plunger on the tool shaft forward with your thumb and index finger. This will release the contact from the retention tine and push it toward the rear of the connector.


4. Carefully remove extraction tool from the connector. Pull the wire by hand to completely remove the contact from the rear of the connector.

KPT 18

For technical assistance, price or delivery info, call 1-800-523-0727 or visit www.pei-genesis.com

Sealing Screws


Sealing screws are designed with a groove underneath the head to incorporate an O-ring. When tightened, the O-ring is compressed against the connector flange to form an air, water, and gas-tight seal. These screws are also vibration resistant. The reservoir beneath the

SLOTTED	SLOTTED PAN HEAD							
PART					CLEAR	HOLE		
NUMBER	THREAD	LENGTH	C MAX	D MAX	MIN	MAX		
S-440-3/8		3/8"						
S-440-1/2	4-40NC-2A	1/2"	.220"	.069"	.125"	.129"		
S-440-5/8	4-40100-27	5/8"	.220			.125		
S-440-3/4		3/4"						
S-632-3/8		3/8"						
S-632-1/2	6-32NC-2A	1/2"	.271"	.083"	.147"	.152"		
S-632-5/8	0-32NC-2A	5/8"	.271			.152		
S-632-3/4		3/4"						
METRIC								
SM4-12MM	M4	12MM	CALL	CALL	CALL	CALL		
SM5-12MM	M5	12MM	CALL	CALL	CALL	CALL		

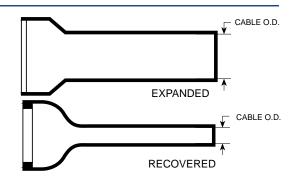
Additional threads, lengths, and styles available. Call for ordering information.

head confines the O-ring and permits full metal-to-metal contact between the screw and the connector flange. Sealing screws can be reused without spoiling the sealing action. Sealing screws are used in conjunction with the nutplates below.

PHILLIPS	PHILLIPS PAN HEAD (meets MS3212 & MS3213)							
PART					CLEAR	HOLE		
NUMBER	THREAD	LENGTH	C MAX	D MAX	MIN	MAX		
R-440-3/8		3/8"						
R-440-1/2	4-40NC-2A	1/2"	.238	.080"	.125"	.129"		
R-440-5/8	4-40110-2A	5/8"				.123		
R-440-3/4		3/4"						
R-632-3/8		3/8"						
R-632-1/2"	6-32NC-2A	1/2"	.294"	.097"	.147"	.152"		
R-632-5/8"	0 02110 2/1	5/8"	.234	.037		.102		
R-632-3/4"		3/4"						

Material: Passivated stainless steel screws, silicone rubber O-rings

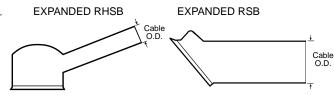
Nut Plates


Nut plates are flat metal brackets containing four captive nuts that are used to mount flanged receptacles to a panel. They eliminate the nightmare of working with loose nuts in a confined area and effectively distribute the screw tension across the back of the panel. These cost effective devices are "self-wrenching", drawing the bracket up to be automatically aligned. Our plates are a C shape design which allows you to slip the nut plate over the wire bundle just prior to mounting. The bracket is aluminum alloy with Alodine plating and the nuts are steel alloy plated with cadmium. Nut plates mate with above Sealing Screws.

Connector Styles		Commercial Industrial	MIL-C-5015 Style	MIL-C-26482 Style		MI		
Part Number	Thread	Sure-Seal, APD, SLC	CA/MS CB/CR	KPT, KPSE, PV70, MS3470, Trident	PV72, MS3472	KJL Series I	KJ Series II	KJA Series III
M85528/2-8A	4-40		8/8S	8			8	
M85528/2-10A	4-40		10S/10SL	10		9	10	A
M85528/2-10B	6-32				10			
M85528/2-12A	4-40		12/12S	12	10	11	12	В
M85528/2-12B	6-32				12			
M85528/2-14A	4-40	APD1,4,7 SSF2,3,4	14/14S	14		13	14	С
M85528/2-14B	6-32				14			
M85528/2-16A	4-40		16/16S	16		15	14	D
M85528/2-16B	6-32	SLC10			16			
M85528/2-18A	4-40	SSF8,9,10	18	18		17	18	E
M85528/2-18B	6-32				18			
M85528/2-20A	4-40		20	20		19	20	F
M85528/2-20B	6-32				20			
M85528/2-22A	4-40		22	22		21	22	G
M85528/2-22B	6-32				22			
M85528/2-24A	6-32				24	25		J
M85528/2-24B	6-32		24	24		23	24	Н
M85528/2-25A	6-32					25		
M85528/2-28A	6-32		28	24 Neptune only				
M85528/2-32A	6-32		32					
M85528/2-36A	6-32		36					

Heat Shrink Boots

Standard Heat Shrink Boots are supplied in flame retardant polyolefin with an adhesive inner liner. A High Shrink Ratio version for sealing smaller wire bundles is also listed. The adhesive liner is heat activated and bonds to the underlying surface filling small voids. When cool, the adhesive forms a barrier against water, moisture, dirt, and other environmental contaminants. The lip on the connector end of the recovered boot fits into the sealing groove on the M and N style endbells used with CAVMS, CB, CR and KPT/KPSE connectors. Operating temperature is $-67^{\circ}F$ ($-55^{\circ}C$) to $+275^{\circ}F$ ($+135^{\circ}C$). These boots are also available in halogen free polyolefin, semirigid polyolefin, silicone, or Viton, with or without adhesive liner. Call for ordering information. See page ACC 5 for Heat Shrink Gun.


(Note: Allow at least 20% recovery for proper liner adhesion)

	-			1				_				
CABLE O.D. INCI MAX (expanded)	1ES 0.25	0.30	0.38	0.45	0.88	1.01	1.16	1.34	1.47	1.72	1.97	2.47
MIN	0.25	0.30	0.38	0.45	0.88	0.29	0.33	0.39	0.41	0.44	0.51	0.69
CABLE O.D. MM	0.00	0.10	0.12	0.14	0.25	0.29	0.55	0.39	0.41	0.44	0.51	0.09
MAX	(6.3)	(7.6)	(9.6)	(11.4)	(22.3)	(25.6)	(29.5)	(34.0)	(37.3)	(43.7)	(50.0)	(62.7
MIN	(0.3)	(7.6)	(3.0)	(11.4)	(6.3)	(25.6)		(10.0)	(10.4)			(02.7
0.0011	. ,						(8.4)			(11.1)	(13.0)	
PART NUMBER -	HSB1	HSB2	HSB3	HSB4	SB1	SB2	SB3	SB4	SB5	SB6	SB7	SB8
CA-Bayonet N=N		M=M Shie	Ided End	bell	-	-		ļ	i,		 	
CB10SL-M	•							L				
CB10SL-N	•				•	•						
CB12S-M		•			•	•		•				
CB12S-N	•				•	•						
CB14S-M		•			•	•		•				
CB14S-N	•				•	•		•				
CB16-M								•				
CB16-N						•		•				
CB16S-M						•		•				
CB16S-N		•			•			•				
CB18-M			•				•	•	1			
CB18-N		•				•		•				
CB20-M			•	•				•	•	•		
CB20-N			•					•	•			
CB22-M			•	•				•	•	•		
CB22-N			•	-				•	•	-		
CB24-M			-	•						•	•	
CB24-N				•					+	•	•	
CB28-M				•					+	•	•	
CB28-N				•						•	•	
CB32-M									-	•	•	•
CB32-N											•	•
CB36-M									-		•	•
CB36-N								-			•	
CR40-N												—
KPT/KPSE DN/												
KPT08											,	
KPT10												
KPT10 KPT12	-	•			-				-			
KPT12 KPT14						•	•	•				
KPT14 KPT16		-										l
			•									
KPT18			-					—	•	•		<u> </u>
KPT20		_							•	•		<u> </u>
KPT22				•					<u> </u>	•		
KPT24												
T=Trident TN=T		eptune					1		ļ			
T10								<u> </u>				ļ
T12											 	
T14			<u> </u>						<u> </u>		 	l
T16											<u> </u>	ļ
T18												L
T20												
T22												
T24												
TN16												
			1	1	1				1		1	(

For technical assistance, price or delivery info. call 1-800-523-0727 or visit www.pei-genesis.com

Right Angle Heat Shrink Boots

Right Angle Heat Shrink Boots are supplied in flame retardant polyolefin with an adhesive inner liner. A High Shrink Ratio version for sealing smaller wire bundles is also listed. The adhesive liner is heat activated and bonds to the underlying surface filling small voids. When cool, the adhesive forms a barrier against water, moisture, dirt, and other environmental contaminants. The lip on the connector end of the recovered boot fits into the sealing groove on the M and N style endbells used with CA/MS, CB, CR and KPT/KPSE connectors. Operating temperature is -67°F (-55°C) to +275°F (+135°C). These boots are also available in halogen free polyolefin, semi-rigid polyolefin, silicone, or Viton, with or without adhesive liner. Call for ordering information. See page ACC 5 for Heat Shrink Gun.

RECOVERED RSB and RHSB

(Note: Allow at least 20% recovery for proper liner adhesion)

Note: Allow at least 20%		proper line	er adnesion)									
CABLE O.D. INC		1				1		1	1	1		
MAX (expanded)	0.24	0.30	0.38	0.45	0.88	1.01	1.16	1.34	1.47	1.72	1.97	2.47
MIN	0.08	0.10	0.12	0.14	0.25	0.29	0.30	0.38	0.41	0.44	0.56	0.69
CABLE O.D. MM						1						
MAX	(6.0)	(7.5)	(9.6)	(11.4)	(22.3)	(25.6)	(29.5)	(34.0)	(37.3)	(43.7)	(50.0)	(62.7)
MIN	(2.0)	(2.5)	(3.0)	(3.6)	(6.3)	(7.4)	(7.6)	(9.6)	(10.4)	(11.1)	(14.2)	(17.5)
PART NUMBER 🔶	RHSB1	RHSB2	RHSB3	RHSB4	RSB1	RSB2	RSB3	RSB4	RSB5	RSB6	RSB7	RSB8
CA-Bayonet N=N	Endbell	M=M Shiel	ded Endb	bell								
CB10SL-M							•					
CB10SL-N	•					•						
CB12S-M		•				•	•					
CB12S-N	•				•	•						
CB14S-M		•			•	•	•	•				
CB14S-N		•			•	•	•					
CB16-M		•			-	•	•	•				
CB16-N		•				•	•	•				
CB16S-M		•				•	•	•				
CB16S-N		•				•	•	•				
CB18-M	1		•		-	+ -	•	•	•	-		l
CB18-N			•			•	•	•	-			l
CB20-M			•					•	•	•		
CB20-N			•					•	•	•		
CB22-M			•					•	•	•		
CB22-N			•					•	•	•		
CB24-M			•	•				•		•		
CB24-M CB24-N				•						•		
CB28-M				•						•	•	
CB28-N				•						•		
CB32-M				-						-	•	•
CB32-M CB32-N											•	•
CB32-N CB36-M											•	•
CB36-N												•
CR40-N												
KPT/KPSE DN												
KPT/KPSE DN/												
KPT10												
KPT10 KPT12	•				-	•						
KPT12 KPT14		•				•		•	-			
KPT16						-						
			•					•	•			
KPT18			•					•	•			
KPT20				•					•	•		
KPT22												
KPT24												
T=Trident TN=T		eptune										
T10												
T12												
T14												
T16												
T18												
T20												
T22												
T24												
TN16												
TN24												

Cable 0.D.

For technical assistance, price or delivery info. call 1-800-523-0727 or visit www.pei-genesis.com

www.DataSheet4U.com Specifications subject to change.

Connector Tools

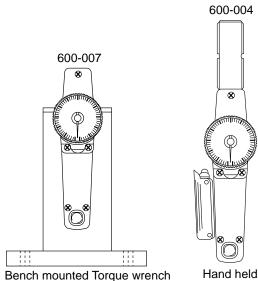
TG70 Strap Wrench

The Strap wrench is used to connect or disconnect coupling nuts in a confined space, or to tighten or loosen endbells without damaging the connector plating. A strap wrench also

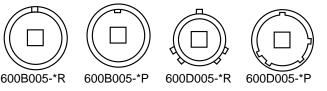
increases torque, allowing you to more easily mate or unmate a connector pair. Substitute tools, such as a pipe wrench or pliers, should never be used due to the high probability of severe damage to the connector plating or the coupling mechanism.

600 Series Production System

TG69P Non-Marring Adjustable **Endbell Pliers For Field Service**


The TG69P pliers have resilient jaws and are used to tighten or remove endbells without damaging the

connector plating. The pliers are adjustable and will accommodate all of the connector sizes in this catalog. Substitute tools, such as a pipe wrench or metal jaw pliers, should never be used


due to the high probability of severe damage to the connector plating.

The 600 series is a complete system for the proper assembly and torquing of connector endbells. The System includes a bench mounted or hand-held torque wrench, plug and receptacle holders, and a range of endbell tightening tools. When used together, these tools provide the user with consistent endbell installations. Each item is shipped with detailed assembly instructions.

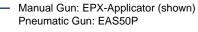
Ø

Plug and receptacle holders

	MIL-C	-5015	MIL-C-2	6482
	for MSE, F, B,	R, CA, CB, CR	for KPT,KPTSE, P	/, MS311_, MS347_
Size	Receptacles	Plugs	Receptacles	Plugs
8/8S	600B005-8R	600B005-8P	600D005-8R	600D005-8P
10S/SL	600B005-10R	600B005-10P	600D005-10R	600D005-10P
12/12S	600B005-12R	600B005-12P	600D005-12R	600D005-12P
14/14S	600B005-14R	600B005-14P	600D005-14R	600D005-14P
16/16S	600B005-16R	600B005-16P	600D005-16R	600D005-16P
18	600B005-18R	600B005-18P	600D005-18R	600D005-18P
20	600B005-20R	600B005-20P	600D005-20R	600D005-20P
22	600B005-22R	600B005-22P	600D005-22R	600D005-22P
24	600B005-24R	600B005-24P	600D005-24R	600D005-24P
28	600B005-28R	600B005-28P	-	-
32	600B005-32R	600B005-32P	-	-
36	600B005-36R	600B005-36P	-	-

	MIL-C-389	99 Series I	MIL-C-3899	MIL-C-38999 Series III					
	for	KJL	for	KJ			for KJA		
Size	Receptacles	Plugs	Receptacles	Plugs	Shel	I Size	Receptacles	Plugs	
9	600F005-9R	600F005-9P	600FF005-9R	600FF005-9P	Α	9	600H005-9R#	600H005-9P#	
11	600F005-11R	600F005-11P	600FF005-11R	600FF005-11P	В	11	600H005-11R#	600H005-11P#	
13	600F005-13R	600F005-13P	600FF005-13R	600FF005-13P	С	13	600H005-13R#	600H005-13P#	
15	600F005-15R	600F005-15P	600FF005-15R	600FF005-15P	D	15	600H005-15R#	600H005-15P#	
17	600F005-17R	600F005-17P	600FF005-17R	600FF005-17P	E	17	600H005-17R#	600H005-17P#	
19	600F005-19R	600F005-19P	600FF005-19R	600FF005-19P	F	19	600H005-19R#	600H005-19P#	
21	600F005-21R	600F005-21P	600FF005-21R	600FF005-21P	G	21	600H005-21R#	600H005-21P#	
23	600F005-23R	600F005-23P	600FF005-23R	600FF005-23P	Н	23	600H005-23R#	600H005-23P#	
25	600F005-25R	600F005-25P	600FF005-25R	600FF005-25P	J	25	600H005-25R#	600H005-25P#	

Add polarizations: N, A, B, C, D, E

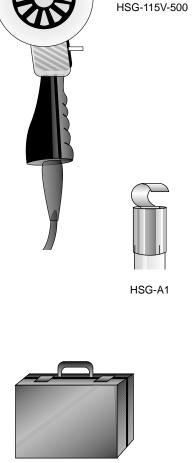

PANDUIT

The Panduit HSG-115V-500 heat gun is a general purpose tool designed for all types of heat shrink boots and tubing. The air intake adjustment varies the temperature from 500°F (260°C) to 650°F (344°C). The unit operates on 115 Vac at 11 amps. The tools comes with an adjustable stand and a neoprene AC cord. The bearings, brushes, and heating element are replaceable.

PART NUMBER	DESCRIPTION
HEAT TOOLS	
HSG-115V-500	 General purpose tool - For use on all types of heat shrink tubing and boots Air intake regulator varies temperature from 500°F (260°C) to 650°F (344°C) 115 Volt, 11 AMP. Neoprene jacketed cord with molded strain relief Adjustable stand included. Replaceable bearings, brushes and heating elements.
ACCESSORIES	
HSG-A1	 Deflector tube. Directs heat around the tubing to reduce shrink time. For tubing up to 3/4" diameter.
HSG-A2	Deflector tube for tubing up to 1-1/2" diameter.
HSG-A3	 Concentrator tube to direct heat toward tubing and away from heat sensitive components.
HSG-A4	 Black polyethylene carrying case. Stores gun, stand, and all three accessories.

3M Scotch-Weld[™] EPX Potting Systems consists of a self leveling Duo-Pak epoxy potting compound cartridge, an EPX applicator, and an EPX nozzle for precise mixing. 3M's two part epoxy potting compound is for use with the KPT, KPSE, CA/MS, CB, and CR series "P" style endbells. The EPX system provides an easy way to meter, mix and dispense potting compound. 3M's non-corrosive epoxy potting compound is specially formulated for electronic applications. Available in Black and Clear.

Potting System


Nozzle: EPX-NOZZLE

Potting Compound DP270-BLACK DP270-CLEAR DP100 PLUS-CLEAR 4-minute work life; Rapid setup for automotive applications

For technical assistance, price or delivery info. call 1-800-523-0727 or visit www.pei-genesis.com

www.DataSheet4U.com

HSG-A4

HSG-A3

HSG-A2

Nationwide and abroad...

pricing and delivery information is just around the corner.

USA Sales Offices

Corporate Headquarters

2180 Hornig Road Philadelphia, PA 19116-4289 1-800-523-0727 215-673-0400 FAX: 215-552-8022

800 Hart Road, Suite 260 Barrington, IL 60010-2630 1-877-539-5364 847-382-9300 FAX: 847-382-9768 354 McDonnell Street Suite Six Lewisville, TX 75057-4832 1-800-780-8463

3951 South Plaza Drive

Santa Ana, CA 92704-6954

Suite 240

1-800-692-2186

FAX: 714-428-1194

714-428-1188

1915 N. Bendix Drive South Bend, IN 46628-1603 1-800-348-2996 219-287-2911 FAX: 219-287-7289

7168 Waldemar Drive Building #116 Indianapolis, IN 46268-2183 1-800-428-5081 317-328-7700 FAX: 317-328-7717 45 Stiles Road, Suite 206 Salem, NH 03079-4808 1-877-751-1168 603-898-3444 FAX: 603-898-7872

International Sales Offices

Canada

316 Colborne Street West Whitby, Ontario L1N 1X3, CANADA 1-800-575-1500 905-668-2155 FAX: 905-665-1166

PEI-Genesis UKLTD

Unit 23, Headley Park 10 Woodley, Reading, Berkshire RG5 4SW 0118 969 3444 FAX: 0118 969 4777

Export Sales Office

9 Dexter Street Selden, NY 11784-2273, USA 516-696-8140 FAX: 516-696-0299

A full line of connectors to meet your needs.

Sure-Seal® — Small, low cost, and reliable.

Clip Lock Circular — User friendly and built to last.

Slide Lock Circular — Easy to assemble and maintain.

Slide Lock Environmental — Designed for demanding, under-the-hood applications.

APD — Rugged, high performance connectors at a low-total applied cost.

Trident Ringlock, Trident Neptune, and Trident Neptune Metal — Small, low cost, and reliable.

Standard-K — Lightweight, reliable, and economical.

CA/MS–E/F/R — Standard MS Circular to MIL-C-5015.

CA-Bayonet — Rugged with a quick-mating bayonet lock.

KPT/KPSE — High-density contact arrangements in a miniature circular metal shell.

PV — Designed for use in demanding, high-reliability environments.

KJL — High density contact arrangements in a miniature shell.

KJ — High-density contact arrangements in a low-profile, miniature circular shell.

KJA — High-density contact arrangements in a miniature circular shell.

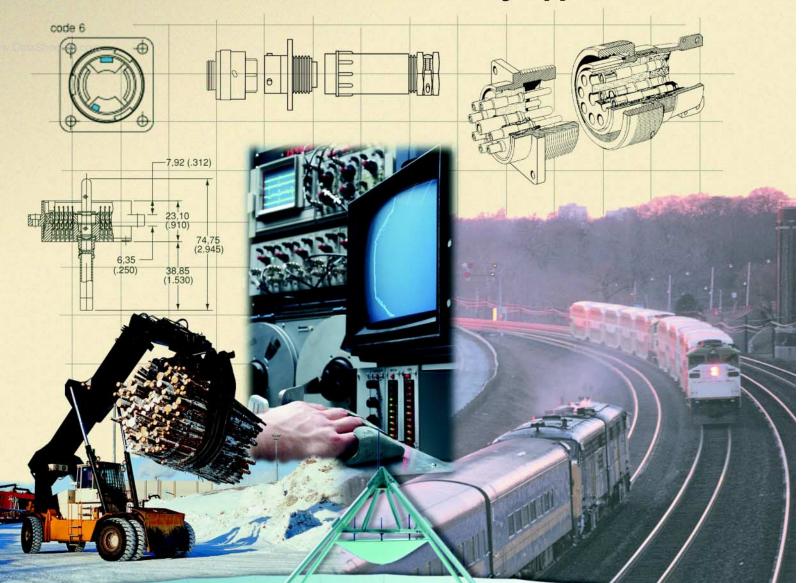
MIKO — Rugged, lightweight connector offering high performance in a small package.

MIKM — Rugged, lightweight connector in a small package.

MDSM — High-density, shielded connectors for today's commercial industry.

MDM — High strength and lightweight with an extremely small interconnect.

D-Sub — A variety of styles and accessories makes this an economical solution to many interconnect problems.


DL/DLD/DLM — Economical and versatile, high-density connectors.

Connector Solution Guide

for Commercial, Industrial, Harsh Environment and Military Applications

Cannon

Inww.bardsheestu.coms Engineered for life