Magnum Motor Drive Seriestm PW-8×075P6

75A, 600V MAGNUM MOTOR DRIVES

FIGURE 1A. PW-83075P6 BLOCK DIAGRAM

FIGURE 1B. PW-84075P6 BLOCK DIAGRAM

FIGURE 1C. PW-85075P6 BLOCK DIAGRAM

TABLE 1. PW-8X075P6 ABSOLUTE MAXIMUM RATINGS			
PARAMETER	SYMBOL	VALUE	UNITS
Drive Supply Voltage	Vbus+ to Vbus-	600	Vdc
Logic Power-In Supply Voltage	Vcc	5.5	Vdc
Input Logic Voltage	UPPER, LOWER, $\overline{\text { DISABLE/RESET, }}$ SLEEPMODE, AUTO RESET	5.5	Vdc
Reference Input Voltage	Viref	VdD +0.5	Vdc
Continuous Output Current	Io	75	A
Peak Output Current (10 ms)	IPEAK	150	A
Storage Temperature Range	Tcs	-65 to +125	${ }^{\circ} \mathrm{C}$
Intermittent Case Operating Temperature	TCI	-55 to +125	${ }^{\circ} \mathrm{C}$
Continuous Case Operating Temperature	Tc	-55 to +100	${ }^{\circ} \mathrm{C}$
Junction Temperature, Power Devices	Tj	+150	${ }^{\circ} \mathrm{C}$
Junction Temperature, Other Components	TJ	+125	${ }^{\circ} \mathrm{C}$
Ground Isolation Voltage (Note 1)	Viso	2500	Vdc
Note 1: From Vcc-rtn to Vbus+, Vbus-, OUTPUT, REGEN CLAMP+, Rsense+, Rsense-.			

TABLE 2. PW-8X075P6 SPECIFICATIONS
($\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{dD}}=5 \mathrm{~V}$ UNLESS OTHERWISE SPECIFIED, TC $=-55^{\circ} \mathrm{C} \mathrm{TO}+100^{\circ} \mathrm{C}$ FOR MIN, MAX VALUES, $\mathrm{TC}=+25^{\circ} \mathrm{C}$ FOR TYPICAL VALUES.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT STAGE						
Drive Supply Voltage (motor)	Vbus+ to Vbus-	Unipolar/Bipolar		270	600	Vdc
Output Switch Transistors (each)						
Continuous Current Drive	10	$+25^{\circ} \mathrm{C}$ case			75	A
		$+85^{\circ} \mathrm{C}$ case			50	A
Turn-on energy per pulse	Et-on	$\mathrm{VCE}=270 \mathrm{~V}, \mathrm{I}=50 \mathrm{~A}$		4.0		mJ
		$\mathrm{T}_{\mathrm{j}}=+125^{\circ} \mathrm{C}$				
Turn-off energy per pulse	Et-OFF	$\begin{gathered} \mathrm{VCE}=270 \mathrm{~V}, \mathrm{I}=50 \mathrm{~A} \\ \mathrm{~T}_{\mathrm{j}}=+125^{\circ} \mathrm{C} \end{gathered}$		2.4		mJ
Peak Current	$I_{\text {PEAK }}$	$+85^{\circ} \mathrm{C}$ case,$\leq 15 \mathrm{~ms}$			100	A
Short Circuit Trip Current (Note 1)	ISC	$\leq 5 \mu \mathrm{~s}$	200	350	400	A
Output Voltage Drop (IGBT)	$\mathrm{V}_{\text {CE(SAT) }}$	$\mathrm{l}_{\mathrm{O}}=50 \mathrm{~A}$		2.2	2.6	Vdc
FLYBACK DIODE	(SAT)					
Forward Voltage	V_{F}	$\mathrm{l}=50 \mathrm{~A}$		1.7	1.9	Vdc
Reverse Recovery Time @ $\mathrm{T}_{\mathrm{j}}=+125^{\circ} \mathrm{C}$	$\mathrm{Trr}_{\text {r }}$	$\mathrm{l}_{\mathrm{O}}=50 \mathrm{~A}$		175		ns
Reverse recovery Peak Current	Irm	$\begin{gathered} \mathrm{di} / \mathrm{dt}=480 \mathrm{~A} / \mu \mathrm{s} \\ \mathrm{IF}=50 \mathrm{~A}\left(90^{\circ} \mathrm{C}\right) \end{gathered}$		19	33	A
Reverse Leakage Current $@ T_{j}=+25^{\circ} \mathrm{C}$	I_{r}	VBUS = 480Vdc		30	325	$\mu \mathrm{A}$
Reverse Leakage Current @ $\mathrm{T}_{\mathrm{j}}=+125^{\circ} \mathrm{C}$					17	mA
OUTPUT SWITCHING CHARACTERISTICS (See FIGURE 5)						
Turn-on Propagation Delay	t_{d} (on)		150	430	650	ns
Turn-off Propagation Delay	t_{d} (off)		740	790	1800	ns
Disable Propagation Delay	$\mathrm{ts}_{\text {d }}$		25	33	45	$\mu \mathrm{s}$
Turn-on Rise Time	tr_{r}		100		200	ns
Turn-off Fall Time	t_{f}		140		200	ns
Sleep_Mode Delay	tsleepu			3.7		ms
Output Switching Frequency	fPWM		0		35	KHz
Control Inputs						
UPPER, LOWER, DISABLE/RESET						
AUTO RESET		$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$				
High Level Input Voltage	VIH		1.55	2.5	3.15	Vdc
Low Level Input Voltage	VIL		0.9	1.6	2.45	Vdc
Hysteresis Voltage	VHYST		0.4	0.9	2.1	Vdc
UPPER, LOWER						
High Level Input Current	IIH	$\mathrm{Vin}=\mathrm{Vcc}$	22	23	24	$\mu \mathrm{A}$
Low Level Input Current RESET/DISABLE	IIL	$\mathrm{Vin}=0 \mathrm{~V}$	0	0.1	100	nA
High Level Input Current	IIH	$\mathrm{Vin}=\mathrm{Vcc}$		0		$\mu \mathrm{A}$
Low Level Input Current	IIL	$\mathrm{Vin}=0 \mathrm{~V}$	22	23	24	$\mu \mathrm{A}$
AUTO_RESET						
High Level Input Current	IIH	$\mathrm{Vin}=\mathrm{Vcc}$		0		$\mu \mathrm{A}$
Low Level Input Current	IIL	$\mathrm{Vin}=0 \mathrm{~V}$	1.3	1.4	1.5	mA
SLEEP_MODE						
High Level Input Voltage	VIH	$\mathrm{Vcc}=4.5 \mathrm{~V}$	2.4			Vdc
Low Level Input Voltage	VIL	$\mathrm{Vcc}=4.5 \mathrm{~V}$			0.8	Vdc
High Level Input Current	IIH	$\mathrm{Vin}=\mathrm{Vcc}$		0.1		$\mu \mathrm{A}$
Low Level Input Current	IIL	$\mathrm{Vin}=0 \mathrm{~V}$	0.4		0.5	mA

TABLE 2. PW-8X075P6 SPECIFICATIONS
($\mathrm{TC}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ UNLESS OTHERWISE SPECIFIED, $\mathrm{TC}=-55^{\circ} \mathrm{C} \mathrm{TO}+100^{\circ} \mathrm{C}$ FOR MIN, MAX VALUES)

PARAMETER	SYMBOL	$\begin{gathered} \text { TEST } \\ \text { CONDITION } \end{gathered}$	MIN	TYP	MAX	UNITS
UPPER-LOWER DEADTIME AUTO_RESET Delay to output off AUTO_RESET Delay to output enabled RESET pulsewidth to clear SC_FAULT Cycle time between AUTO_RESET retries	tdead tdoff.auto tdon.auto tpw.reset tcycle.auto	(See Note 2)	$\begin{aligned} & \hline 1.0 \\ & \\ & 200 \\ & 40 \end{aligned}$	$\begin{aligned} & 202 \\ & 3.0 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ms} \\ & \mathrm{~ms} \\ & \mathrm{~ns} \\ & \mathrm{~ms} \end{aligned}$
$\begin{array}{\|l} \hline \text { CONTROL OUTPUTS } \\ \hline \text { SC_FAULT } \\ \text { High Level Output Current } \\ \text { Low Level Output Current } \end{array}$	ISCFLTH ISCFLTL	$\begin{gathered} \mathrm{Vo}=\mathrm{Vcc} \\ \mathrm{Vo}=0.4 \mathrm{~V} \end{gathered}$	$\begin{gathered} 22 \\ 5 \end{gathered}$	$\begin{aligned} & 23 \\ & 10 \end{aligned}$	24	$\underset{\mathrm{mA}}{\mu \mathrm{~A}}$
THERMAL Maximum Thermal Resistance - IGBT - Diode Junction Temperature Range Case Operating Temperature Case Storage Temperature	$\begin{aligned} & \text { 日jc } \\ & \text { jic } \\ & \mathrm{Tj} \\ & \mathrm{Tc} \\ & \mathrm{Tcs} \end{aligned}$	Each Output Switch	$\begin{aligned} & -55 \\ & -55 \\ & -65 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.87 \\ & +150 \\ & +100 \\ & +150 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$
MECHANICAL Maximum Lead Soldering Temp Mounting Torque Weight	Ts				$\begin{gathered} +250 \\ 3 \\ 3.1 \text { (88) } \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \text { in-lbs } \\ \text { oz (gr) } \end{gathered}$

Note 1: Vbus+ to VBus- must be $\geq 10 \mathrm{~V}$ (during short circuit) for short circuit protection to operate.
Note 2: AUTO_RESET tied to SC_FAULT

TABLE 3. PW-83075P6 SPECIFICATIONS$\left(\mathrm{TC}=+25^{\circ} \mathrm{C}\right)$						
Power and Logic Supply Voltage Logic Supply Current	$\begin{aligned} & \text { Vcc, VDD } \\ & \text { ICC } \end{aligned}$	SLEEP MODE $\mathrm{F}_{\mathrm{pwm}}=25 \mathrm{Khz}$	4.5	$\begin{gathered} 5 \\ 11 \\ 110 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 200 \end{aligned}$	$\underset{\mathrm{mA}}{\mathrm{VA}}$

TABLE 4. PW-84075P6 SPECIFICATIONS ($\mathrm{TC}=+\mathbf{2 5}{ }^{\circ} \mathrm{C} \mathrm{V} \mathrm{Cc}=\mathrm{V}_{\mathrm{DD}}=\mathbf{5 V}$ UNLESS OTHERWISE SPECIFIED)						
PARAMETER	SYMBOL	$\begin{gathered} \text { TEST } \\ \text { CONDITION } \end{gathered}$	MIN	TYP	MAX	UNITS
Current Amplifier VIRsense Gain VIRsense Gain Error Virsense Offset Virsense Offset Drift VIRsense Gain \% Virsense Offset \% VIRsense Offset \% Drift I_VABS Gain I_VABS Gain Error I_VABS Offset I_VABS Offset Drift I_VABS Gain \% I_VABS Offset \% - VABS Offset \% Drift	Gvout Evout VOs TCVos Gvout\% Vos\%VIREF TCVos\% Gvabs Evabs Vosabs TCVosabs Gvout\% Vosabs\% VIREF TCVosabs\%	$\begin{aligned} \mathrm{VIREF} & =5.0 \mathrm{~V} \\ \mathrm{VIREF} & =5.0 \mathrm{~V} \\ \mathrm{VIREF} & =5.0 \mathrm{~V} \\ 0 \mathrm{~A} & =\mathrm{Vref} / 2 \\ 0 \mathrm{C} & =0 \mathrm{~V} \\ \mathrm{VIREF} & =5.0 \mathrm{~V} \\ \mathrm{VIREF} & =5.0 \mathrm{~V} \\ 0 \mathrm{~A} & =0 \mathrm{~V} \end{aligned}$	$\begin{gathered} -6 \\ -30 \\ -90 \\ -0.6 \\ -18 \\ -8 \\ -131 \\ -90 \\ -2.6 \\ -18 \\ \hline \end{gathered}$	$\begin{aligned} & 29.76 \\ & 0.595 \\ & 59.52 \\ & 1.19 \end{aligned}$	$\begin{gathered} 6 \\ 30 \\ 110 \\ \\ 0.6 \\ 22 \\ \\ 8 \\ 131 \\ 110 \\ \\ 2.6 \\ 22 \\ \hline \end{gathered}$	
Delay Time Bandwidth Linear Range OC_FAULI Trip Level Trip Delay Time Reference Voltage Current Input Reference Voltage Input	tdelay fBW Irange IOC Tioc Iviref Viref	-55 to $100^{\circ} \mathrm{C}$ -55 to $100^{\circ} \mathrm{C}$ -5 t t $100^{\circ} \mathrm{C}$ -55 to $100^{\circ} \mathrm{C}$ -55 to $100^{\circ} \mathrm{C}$ -55 to $100^{\circ} \mathrm{C}$ -55 to $100^{\circ} \mathrm{C}$	$\begin{gathered} 20 \\ \pm 75 \\ 4.0 \end{gathered}$	$\begin{gathered} 9 \\ 30 \\ \pm 50 \\ \pm 85 \\ 66 \\ 0.26 \end{gathered}$	$\begin{gathered} 20 \\ \pm 95 \\ \pm \\ 1 \\ \text { VDD } \end{gathered}$	$\mu \mathrm{s}$ kHz A A us mA Vdc
OC_FAULT (-55 to $100^{\circ} \mathrm{C}$) High Level Output Current Low Level Output Current	IOCFLTH IOCFLTL	$\begin{aligned} & V o=V D D \\ & V o=0.8 V \end{aligned}$	4	0.2	15	$\begin{aligned} & \mathrm{uA} \\ & \mathrm{~mA} \end{aligned}$
Power \& Logic Supply (-55 to $100^{\circ} \mathrm{C}$) Voltage Logic Supply Current Current Amplifier Supply Current	Vcc, Vdd ICC IDD	SLEEP MODE $\mathrm{F}_{\mathrm{pwm}}=25 \mathrm{Khz}$	4.5	$\begin{gathered} 5 \\ 11 \\ 136 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ 200 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \hline \end{gathered}$

TABLE 5. PW-85075P6 SPECIFICATIONS
($\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ UNLESS OTHERWISE SPECIFIED, $\mathrm{TC}=-55^{\circ} \mathrm{C} \mathrm{TO}+100^{\circ} \mathrm{C}$ FOR MIN, MAX VALUES, $\mathrm{TC}=+25^{\circ} \mathrm{C}$ FOR TYPICAL VALUES.)

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
Over Voltage Transistor Continuous Current Drive Peak Current Output Voltage Drop (IGBT) Reverse Leakage @ $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}$ Reverse Leakage @ $\mathrm{T}_{\mathrm{J}}=+125^{\circ} \mathrm{C}$	$\begin{gathered} \text { lo } \\ \text { IPEAK } \\ \text { VCE(SAT) } \\ \text { Ir } \\ \text { Ir } \end{gathered}$	$+25^{\circ} \mathrm{C}$ Case $+85^{\circ} \mathrm{C}$ Case $+85^{\circ} \mathrm{C}$ Case, 15 ms 600 Vdc 600 Vdc		2.0	$\begin{aligned} & 35 \\ & 30 \\ & 60 \\ & 3.0 \\ & 250 \\ & 1.0 \end{aligned}$	A A A Vdc $\mu \mathrm{A}$ mA
```Over Voltage flyback Diode Reverse Leakage @ \(\mathrm{Tc}=+25^{\circ} \mathrm{C}\) Reverse Leakage @ \(\mathrm{Tc}=+125^{\circ} \mathrm{C}\) Over Voltage Trip Trip Level Hysteresis```	lr lr Vtrip Vhyst	480 Vdc 480 Vdc no external adjustments	$\begin{gathered} 358 \\ 34 \end{gathered}$	$\begin{gathered} 20 \\ 1 \\ 400 \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ 7 \\ 440 \\ 45 \end{gathered}$	$\mu \mathrm{A}$   mA   Vdc   Vdc
Power and Logic Supply Voltage Current	$\begin{aligned} & \text { Vcc } \\ & \text { ICC } \end{aligned}$	Sleep Mode $\mathrm{F}_{\mathrm{pwm}}=25 \mathrm{Khz}$	4.5	$\begin{gathered} 5 \\ 11 \\ 137 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 250 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$
REGEN STATUS (ref. to REGEN CLAMP-) High Level Output Voltage Low Level Output Voltage Output resistance Vtrip rise to status ON Delay Vtrip fall status OFF Delay	VOHstatus VOLstatus Rstatus tdon.status tdoff.status	No Load No Load	$\begin{gathered} 13.8 \\ 4.2 \end{gathered}$	$\begin{gathered} 15 \\ 0.2 \\ 4.75 \\ 36 \\ 48 \end{gathered}$	$\begin{gathered} 15.6 \\ 0.4 \\ 4.8 \end{gathered}$	Vdc   Vdc   K $\Omega$   $\mu \mathrm{s}$   $\mu \mathrm{s}$
THERMAL   Maximum Thermal Resistance	өjc	Over Voltage Switch		0.8	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## INTRODUCTION

The PW-8X075P6 is a universal modular half-bridge motor drive intended for use with brush, brushless DC and AC induction motors in aerospace applications.

The isolation barrier, which separates the power and control stage, attenuates the ground noise generated from high speed, high power switching. All signals from the control to the power sections are isolated from power and ground of the other section. This eliminates false triggering of the input signals and the need for creative grounding schemes. The isolation barrier also allows the user to operate the output stage from either unipolar or bipolar power supplies without level shifting the input signals.

A built in power supply located in the control stage provides power to all electronics in the power stage. This eliminates the need for refresh cycles or external power supplies for the gate drive circuitry and allows switching duty cycles from 0-100\%.

In addition, the PW-84075P6 provides current sensing of either motor current or DC bus current. This current signal can be used as a feedback signal in a servo drive to create a torque loop.

The output power transistors on all modules are protected from a short circuit applied to the output pin. When a short circuit condition is detected, the output transistor is shut down and a flag "SC_FAULT" is made active (logic low (L)) indicating a short has occurred.

All output power transistors can be protected from regenerative bus overvoltage when utilizing dynamic braking with the addition of one PW-85075P6 module. When an overvoltage condition is detected, the overvoltage switch is enabled and an external (user supplied, application specific) load dump resistor is connected across the high voltage bus. During an overvoltage condition, the status flag "REGEN STATUS" is active (logic low (L)) indicating an overvoltage condition is occurring.

MODULE AND I/O OPERATION

## UPPER, LOWER (INPUTS)

The UPPER and LOWER are active high CMOS Schmitt-trigger inputs and control the gate drives of the output transistors. (TTL compatibility requires external pull-up resistors) Each input is electrically isolated from the output. A deadband, as shown in FIGURE 2, between UPPER and LOWER inputs is necessary to prevent output cross conduction.

## $\overline{S C ~ F A U L T}$ (OUTPUT)

The $\overline{\text { SC FAULT }}$ is an active low open collector output signal that indicates when the output of the module has experienced a short circuit condition with faults cleared. The signal is inactive at a logic high (H). The signal goes active, logic low (L), when a short circuit condition is detected. See SHORT CIRCUIT PROTECTION for more detail. $\overline{\text { SC FAULT }}$ remains active (L) until $\overline{\text { DISABLE/RESET }}$ is made active ( L ).

## $\overline{\text { DISABLE }} / \overline{\text { RESET }}$ (INPUT)

$\overline{\text { DISABLE }} / \overline{\text { RESET }}$ is an active low CMOS Schmitt-trigger input that is active when a logic low is applied. When DISABLE/RESET is held active it does two things: 1.) Resets the SC FAULT (if it was active), and 2.) Disables the output (makes the output high impedence). If this line is used solely to clear SC FAULT then it only needs to be pulsed active then inactive. The width of the active pulse must be at least the width of the trip reset pulse (100ns) to ensure that SC FAULT is cleared properly. When this line is inactive, the OUTPUT is allowed to respond to the other control lines of the module (UPPER, LOWER, SLEEP).
Note: TTL compatibility requires an external pull-up resistor.

## AUTO RESET (INPUT)

 protection circuit will reset automatically after the short circuit fault has occurred, enabling the output to respond to the input commands. See SHORT CIRCUIT PROTECTION for more detail.


FIGURE 2. PW-8X075P6 DEAD BAND REQUIREMENT

## SHORT CIRCUIT PROTECTION

The PW-8X075P6 modules have provisions for complete short circuit protection from either a hard or soft short to the Vbus+ or Vbuslines. Each output transistor on all PW-8X075P6 modules is protected from a hard (direct, low impedence) short to the Vbus+ or Vbus- lines by circuitry that detects the desaturation voltage for that transistor during a short condition. Once a hard short circuit condition is detected, the active output transistors are shut down and SC FAULT output is set active (logic low (L)). The SC FAULT signal can be used by the controller as a signal to initiate a fault routine to reset or shut down the system. The DISABLE/RESET can be used to shut down the gate drivers if a short persists. If the AUTO RESET is tied to SC FAULT, the circuit will automatically reset when a fault occurs. This inactivates SC FAULT and reactivates the output transistor within 40 to 100 ms . If the short is still present, the circuit will repeat the shut down and automatically reset until the short is clear. Protecting against a soft-short requires using a PW-84075 for current sensing and external circuitry. When a soft-short occurs, the external circuit can set DISABLE/RESET low (L) to shut down the gate drivers.

## SLEEP MODE (INPUT)

The SLEEP MODE input turns the internal power supply on or off. A logic high $(\mathrm{H})$ on the SLEEP MODE input disables the internal power supply, disabling the motor drive output. No damage will occur to the motor drive during turn on or turn off of the power supply. Additionally, no special power up sequence is required. A logic low (L) enables the power supply and allows the motor drive to operate normally.
The UPPER and LOWER logic gate driver inputs should not be active while transitioning in and out of sleep mode. If the UPPER and LOWER logic inputs must be active while entering sleep mode then DISABLE/RESET must be held active while coming out of sleep mode.

## Vcc, Vcc-rtn (INPUTS)

The Vcc and Vcc-rtn are power connections that supply input power to the internal power supply, the gate drive and fault control circuits.

Vbus+, Vbus- (INPUTS)
Vbus+ and Vbus- are the high voltage power connections to the output stage. The high voltage can be either unipolar (+V and ground) or bipolar (+/- V). Care must be taken to ensure that the transient bus voltage Vbus at the module terminals never exceeds the absolute maximum excursions during switching. External capacitor filtering will be required (See DDC applications note AN/H-7).

## OUTPUT (OUTPUT)

The output connects to one input of the motor and applies VBus+, Vbus-, or high impedance to the motor based on the state of the
control inputs. It is capable of sourcing or sinking up to 75 Amps , and the output can withstand a short circuit to Vbus+ or Vbus- without any damage by automatically turning itself off (Zstate).

## Vdd, VDD RTN (APPLIES TO THE PW-84075P6 ONLY)

The VdD and VdD RTN supply input power to the current amplifier.

Virsense (OUTPUT) (APPLIES TO PW-84075P6 ONLY)
The voltage on the VIRsense pin represents current passing through RSENSE in the direction shown in the block diagram. This Virsense voltage is scaled by the input voltage at VIREF, where

$$
\text { Virsense }=\left(\text { VIREF/2 }_{\text {IR }}\right)+\left(\text { VIREF/168 }^{\prime}\right)^{*} \text { I_RSENSE }
$$

Note: I_RSENSE is current through RSENSE.
Zero amps in RSENSE is indicated when Virsense = Viref/2. A voltage greater (less) than Viref/2 indicates a positive (negative) current flow through RSENSE with a value defined by the Virsense equation. Virsense is electrically isolated from the output stage. A Positive (negative) current flow from Rsense+ to Rsense- produces a positive (negative) voltage measurement (See figure 2A). When the power supply is shut down (SLEEP MODE input high), the voltage at VIRsense will indicate OV.

## VIREF (INPUT) (APPLIES TO PW-84075P6 ONLY)

A precision voltage reference from an external source is connected to the Viref pin to set the output voltage scale for Virsense and Virsense_Abs. Note: The accuracy of the Virsense and Virsense_ABS outputs are subject to the accuracy and temperature coefficient of Viref. These must be taken into account in calculating the overall accuracy of Virsense.

## Rsense+, Rsense- (INPUTS) (APPLIES TO PW-84075P6 ONLY)

The Rsense+ and Rsense- pins are conected to an internal shunt resistor and monitoring circuitry. These pins can be connected anywhere within the isolation restrictions on the pins ( 600 V to power pins, 2500 V to logic pins). These pins are typically connected in series with the output, Vbus+ or Vbus-, to measure motor drive current.


FIGURE 3. PW-8X075P6 OUTPUT PHASE CURRENT VS. MAXIMUM OPERATING CASE TEMPERATURE

Virsense_abs (OUTPUT) (APPLIES TO PW-84075P6 ONLY)
Virsense_Abs output voltage is the absolute value of the Virsense voltage signal. Virsense_ABs is zero volts when there is no current flowing through the RSENSE resistor. It will increase towards the value of VIREF as the current in RSENSE approaches either -85 or +85 amps (measurement limits of Virsense). Virsense_ABs is an open source output and is "wire-OR-able". When two or more VIRsense_ABS outputs are "wire-OR-ed", the highest voltage will appear on the common signal. A typical use for combining these outputs is for determining when an overload condition has occurred. The Virsense_Abs voltage is scaled by the input voltage VIRsense where:

$$
\text { VIRsense_ABS }=2 \times\left[\text { VIRsense }- \text { VIREF/2 }^{2}\right]
$$

## OC FAULT (OUTPUT) (APPLIES TO PW-84075P6 ONLY)

$\overline{\text { OC FAULT }}$ is an active low open drain output. $\overline{\text { OC FAULT }}$ goes active when the current flowing through RSENSE has exceeded the OC_FAULT trip level. This signal is not latched like SC FAULT, and goes inactive as soon as the overcurrent condition stops.

## REGEN STATUS (OUTPUT) (APPLIES TO PW-85075P6 ONLY)

The REGEN STATUS pin is referenced to REGEN CLAMP-. It indicates the state of the regen clamp switch ( $\mathrm{H}=\mathrm{on}, \mathrm{L}=\mathrm{off}$ ). An external opto-isolator input can be connected between REGEN STATUS and REGEN CLAMP- to translate this status to logic circuits if desired. The REGEN STATUS output is connected to the 0 V amplifier through a 5 K resistor. When the regen clamp switch is active (inactive), the 0 V amp sources $+15 \mathrm{~V}(0 \mathrm{~V})$ through the 5 K resistor. (see Fig. 1C)

## OV_ADJ (INPUT) (APPLIES TO PW-85075P6 ONLY)

The PW-85075P6 is internally set for a trip voltage of 400V. To set a different trip voltage, an external OV adjust resistor (Ref. R21on FIGURES 9A and 9B) is connected from the OV_ADJ pin to either the OV_ADJ_HIGH or the OV_ADJ_LOW pin. This resistor should be selected for the trip voltage, Vmax, for the regen clamp switch to turn on. (See FIGURES 4A and 4B)
NOTE:
OV_ADJ_LOW (pin 22), OV_ADJ_HIGH (pin 17), and OV_ADJ (pin 20) are available on the control side of the module for ease of connecting the external OV adjust resistor.

## REGEN CLAMP+, REGEN CLAMP- (OUTPUTS) (APPLIES TO PW-85075P6 ONLY) <br> (REF. R20 ON FIGURES 9A AND 9B)

An external load dump resistor is connected between REGEN CLAMP+ and Vbus+. When Vbus+ reaches the over voltage trip level set by the OV_ADJ, the internal clamp circuit will apply the load dump resistor from Vbus+ to the REGEN CLAMP-, thereby dissipating the regenerative energy in the external resistor. In addition, REGEN CLAMP- has to be externally connected to Vbusfor the clamp circuit to work properly. This connection (PCB traces or wire) has to be able to carry the regenerative current.


FIGURE 4A. PW-8X075P6 TYPICAL OVER VOLTAGE TRIP VS. OV ADJUST SETTING WITH AN EXTERNAL OV ADJUST RESISTOR CONNECTED TO OV_ADJ_HIGH


NOTE: $\quad \mathrm{V}_{\mathrm{H}}=$ HYSTERESIS VOLTAGE
FIGURE 4B. PW-8X075P6
TYPICAL OVER VOLTAGE TRIP VS. OV ADJUST SETTING WITH AN EXTERNAL OV ADJUST RESISTOR CONNECTED TO OV_ADJ_LOW


FIGURE 5. PW-8X075P6 INPUT/OUTPUT TIMING RELATIONSHIP


FIGURE 6. TYPICAL POSITION AND VELOCITY CONTROL LOOP

TABLE 6. PW-8X075P6 TRUTH TABLE					
UPPER	LOWER	$\overline{\text { DISABLE/ }}$   RESET	SLEEP-   MODE	$\overline{\text { SC-FAULT }}$	OUT
0	0	$X$	$X$	$X$	$Z$
1	0	1	0	1	BUS+
0	1	1	0	1	BUS-
1	1	$X$	$X$	$X$	$Z$
1	0	1	0	0	$\star$
0	1	1	0	0	$\star$
$X$	$X$	0	$X$	$X$	$Z$
$X$	$X$	$X$	1	$X$	$Z$
$X$					

$X=$ Indicates that this input is irrelevant
Z = High Impedance (off).
*= Fault will disable the transistor that caused the fault. The output state could be Z or ON.

## POWER DISSIPATION (see FIGURE 7)

There are three major contributors to power dissipation in the motor driver: conduction losses, switching losses, and flyback diode losses. Consider the following operating conditions

TCASE $=85^{\circ} \mathrm{C}$
VBUS $=+270 \mathrm{~V}$
$\mathrm{I}_{\mathrm{O}}=40 \mathrm{~A}$ (see FIGURE 7);)
ton $=50 \mu \mathrm{~s}$ (see FIGURE 7); $T=100 \mu \mathrm{~s}($ period $)$
$\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}=2.2 \mathrm{~V}$ (see TABLE 2)
$\mathrm{tr}_{\mathrm{r}}=200 \mathrm{~ns}$ (see Figure 7); $\mathrm{tf}=200 \mathrm{~ns}$ (see FIGURE 7)
$\mathrm{fpwm}=10 \mathrm{kHz}$ (switching frequency)
$\mathrm{V}_{\mathrm{F}}$ is the diode forward voltage, TABLE 2, $\mathrm{I}_{\mathrm{O}}=50 \mathrm{~A}, \mathrm{TC}=+25^{\circ} \mathrm{C}$
$V_{F}($ avg $)=1.35 \mathrm{~V}$
$\mathrm{T}_{\mathrm{J} \text { MAX }}=150^{\circ} \mathrm{C}\left(\right.$ Table 2, $\left.\mathrm{T}_{\mathrm{J}}\right) \Theta_{\mathrm{JC}}=55^{\circ} \mathrm{C} / \mathrm{W} \quad$ (Table 2)

1. Conduction Losses ( $\mathrm{P}_{\mathrm{C}}$ )
$P_{C}=I_{0} \times V_{C E(S A T)} \times($ ton $/ T)$
$\mathrm{P}_{\mathrm{C}}=45 \mathrm{~A} \times 2.2 \mathrm{~V} \times(50 \mu \mathrm{~s} / 100 \mu \mathrm{~s})$
$\mathrm{P}_{\mathrm{C}}=44 \mathrm{~W}$

## 2. Switching Losses (PS)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{S}}=\left(\mathrm{E}_{\mathrm{ON}}+\mathrm{E}_{\mathrm{OFF}}\right) \times \text { fpwm } \\
& \mathrm{E}_{\mathrm{ON}}=\left(\mathrm{E}_{\mathrm{T}-\mathrm{ON}} \times(\mathrm{VBUS} / 270) \times\left(\mathrm{I}_{\mathrm{O}} / 50 \mathrm{~A}\right)\right) \\
& \mathrm{E}_{\mathrm{ON}}=(4.0 \times(270 / 270) \times(40 / 50)) \\
& \mathrm{E}_{\mathrm{ON}}=3.2 \mathrm{~mJ}
\end{aligned}
$$



FIGURE 7. OUTPUT CHARACTERISTICS
$\mathrm{E}_{\text {OFF }}=\left(\mathrm{E}_{\text {T-OFF }} \times\left(\mathrm{V}_{\text {BUS }} / 270\right) \times\left(\mathrm{I}_{\mathrm{o}} / 50\right)\right)$
$\mathrm{E}_{\text {OFF }}=(2.4 \mathrm{~mJ} \times(270 / 270) \times(40 / 50))$
$E_{\text {OFF }}=1.92 \mathrm{~mJ}$
$P_{S}=10000 \times(.0032+.00192)$
$\mathrm{P}_{\mathrm{S}}=51.2 \mathrm{~W}$
3. Flyback diode Losses (Pdf)

Pdf $=I_{0} \times V_{F}($ avg $) \times(1-($ ton $/ T))$
Pdf $=50 \mathrm{~A} \times 1.35 \mathrm{~V} \times[1-(50 \mu \mathrm{~s} / 100 \mu \mathrm{~s})]$
$\mathrm{Pdf}=33.8 \mathrm{~W}$
Transistor Power Dissipation ( $\mathrm{P}_{\mathrm{T}}$ )

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{C}}+\mathrm{P}_{\mathrm{S}}=95.2 \mathrm{~W}
$$

To calculate the maximum power dissipation of the output transistor / diode pair as a function of the case temperature, use the following equation.

$$
\begin{gathered}
\mathrm{P}_{\mathrm{MAX}}=\left(\left(\mathrm{T}_{\text {JMAX }}-\mathrm{T}_{\text {CASE }}\right) / \Theta_{\mathrm{JC}}\right) \\
118 \mathrm{~W}=\left(\left(150^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\right) / 0.55^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{gathered}
$$

## CHARACTERISTIC CURVES FOR OUTPUT POWER TRANSISTORS ON PW-8X075P6



FIGURE 8A. TEMPERATURE DEPENDENCE OF $\mathrm{V}_{\text {ce(SAT); }}$


FIGURE 8C. TURN-OFF SAFE OPERATING AREA


FIGURE 8E. PEAK FORWARD VOLTAGE Vfr AND FORWARD RECOVERY TIME Tfr


FIGURE 8B. DEPENDENCE OF Eon AND Eoff ON Ic


FIGURE 8D. MAXIMUM FORWARD VOLTAGE DROP


FIGURE 8F. JUNCTION TEMPERATURE DEPENDENCE OF Irm AND Qr

## CHARACTERISTIC CURVES FOR OUTPUT POWER TRANSISTORS ON PW-8X075P6



FIGURE 8G. MAXIMUM REVERSE RECOVERY CHARGE


FIGURE 8H. PEAK REVERSE RECOVERY CURRENT


FIGURE 8I. MAXIMUM REVERSE RECOVERY TIME

CHARACTERISTIC CURVES FOR OVERVOLTAGE SWITCH TRANSISTORS ON PW-85075P6


FIGURE 9A. TYPICAL OUTPUT CHARACTERISTICS


FIGURE 9C. COLLECTOR-TO-EMITTER VOLTAGE VS. JUNCTION TEMPERATURE


IC, Collector-to-Emitter Current (A)
FIGURE 9E. TYPICAL SWITCHING LOSSES VS. COLLECTOR-TO-EMITTER CURRENT


FIGURE 9B. MAXIMUM COLLECTOR CURRENT VS. CASE TEMPERATURE


FIGURE 9D. TYPICAL SWITCHING LOSSES VS. JUNCTION TEMPERATURE


VCE, Collector-to-Emitter Voltage (V)
FIGURE 9F. TURN-OFF SAFE OPERATING AREA

TABLE 7: PIN ASSIGNMENTS			
$\begin{gathered} \text { PIN } \\ \# \end{gathered}$	FUNCTIONS DESCRIPTION		
	PW-83075P6	PW-84075P6	PW-85075P6
Control			
1	$\overline{\text { DISABLE/RESET }}$	DISABLE/RESET	DISABLE/ $/ \overline{\text { RESET }}$
2	$\mathrm{V}_{\text {c }}$	$\mathrm{V}_{\text {c }}$	$\mathrm{V}_{\text {c }}$
3	UPPER	UPPER	UPPER
4	$\mathrm{V}_{\text {CC-RTN }}$	$\mathrm{V}_{\text {CC-RTN }}$	$\mathrm{V}_{\text {CC-RTN }}$
5	LOWER	LOWER	LOWER
6	SLEEP MODE	SLEEP MODE	SLEEP MODE
7	$\overline{\text { SC FAULT }}$	$\overline{\text { SC FAULT }}$	$\overline{\text { SC FAULT }}$
8	$\overline{\text { AUTO RESET }}$	$\overline{\text { AUTO RESET }}$	AUTO RESET
17	N/C	$\mathrm{V}_{\text {IREF }}$	OV_ADJ_HIGH*
18	N/C	$\mathrm{V}_{\text {IRsense }}$	REGEN STATUS
19	N/C	$\mathrm{V}_{\text {IRsense_ABS }}$	N/C
20	N/C	$V_{\text {DD }}$	OV_ADJ
21	N/C	$\mathrm{V}_{\text {DD-RTN }}$	N/C
22	N/C	$\overline{\text { OC FAULT }}$	OV_ADJ_LOW*
23	N/C	N/C	N/C
24	N/C	N/C	N/C
Power			
25	N/C	$\mathrm{R}_{\text {SENSE }}{ }^{-}$	REGEN CLAMP+
26	N/C	$\mathrm{R}_{\text {SENSE }}{ }^{+}$	REGEN CLAMP-
27	$\mathrm{V}_{\text {Bus }}{ }^{+}$	$\mathrm{V}_{\text {Bus }}{ }^{\text {d }}$	$\mathrm{V}_{\text {Bus }}{ }^{+}$
28	OUTPUT	OUTPUT	OUTPUT
29	$\mathrm{V}_{\text {Bus }}{ }^{-}$	$\mathrm{V}_{\text {Bus }}{ }^{-}$	$\mathrm{V}_{\text {Bus }}{ }^{-}$
* Connection for external OV adjust resistor only.			
HALL-EFFECT SENSOR PHASING vs.MOTOR BACK EMF FOR CW ROTATION ( $120^{\circ}$ Commutations)			
FIGURE H1. HALL PHASING			

## APPLICATIONS:

## POSITION OR VELOCITY CONTROL USING DSP

Figure 9A shows an example of position and/or velocity control hook-up with inner torque loop using the Digital Signal Processor (DSP) for motor control. Using software, the DSP can be implemented with one of several motor control algorithms such as FOC (Field Oriented Control) with SVM (Space Vector modulation).

## TORQUE HOOK-UP USING UC-1625 MOTOR CONTROLLER

Figure 9B shows an example of torque control loop with regenerative clamp protection using UC-1625, two PW-84075P6, and one PW-85075P6. Two PW-84075P6 ( $1 / 2$ bridge with current sense) sense the current in motor phase A and C. Virsense_ABS pins on each of the PW-84075P6 can be tied together to generate a single composite analog output which is compared to the torque commanded input to produce an error signal. UC1625 uses this error signal to regulate the output current (or torque) by controlling the duty cycle of the output transistors.

For the case when a resolver is available instead of Hall-effect devices, the circuit shown in Figure 9C converts the resolver (sin and cos) signals to Hall signals which can be used to commutate the output transistors.

## hall signal commutation

The hall A, B, C signals are logic signals from the motor Halleffect sensors. The UC-1625 uses a phasing convention referred to as 120 degree spacing; that is, the output of HA is in phase with motor back EMF voltage VAB, HB is in phase VBC, and HC is in phase with VCA. Logic " 1 " (or HIGH ) is defined by an input greater than 2.4 Vdc or an open circuit to the controller; Logic " 0 "(or LOW) is defined as any Hall voltage input less than 0.8 Vdc .

The UC-1625 will operate with Hall phasing of $60^{\circ}$ or $120^{\circ}$ electrical spacing. If $60^{\circ}$ commutation is used, then the output of HC must be inverted as shown in FIGURES H1 and H2. In FIGURE H1 the Hall sensor outputs are shown with the corresponding back emf voltage they are in phase with.


REMOTE POSITION SENSOR (HALL) SPACING FOR 120 DEGREE COMMUTATION


REMOTE POSITION SENSOR (HALL) SPACING FOR 60 DEGREE COMMUTATION

FIGURE H2. HALL SENSOR SPACING


NOTES:

1. Dimensions are in inches (MM).

MOUNTING CONSIDERATIONS:

1. Minimum spacing center line to center line -1.5 inches ( 38.1 mm )
2. Mounting torque using 4-40 stainless steel mounting screws - 5 to 6.5 in.-lbs.

FIGURE 8. PW-8X075P6 OUTLINE


## NOTES:

1. C8 is a ceramic capacitor and should be selected per DDC Application Note AN/H-7, PW-82351 Motor Drive Power Supply, equation 1.
2. C9 is an electrolytic capacitor and should be selected per DDC Application Note AN/H-7, PW-82351 Motor Drive Power Supply, equation 1.
3. C10 is $22 \mu \mathrm{~F}, 15 \mathrm{~V}$ electrolytic capacitor. C 11 is $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$ ceramic capacitor.
4. Resistance and power of R20 (Load dump resistor), and R21 (OV Adjust resistor) is application specific. (See OV Adjust and Regen description for details)


## NOTES:

1. C8 is a ceramic capacitor and should be selected per DDC Application Note AN/H-7, PW-82351 Motor Drive Power Supply, equation 1.
2. C9 is an electrolytic capacitor and should be selected per DDC Application Note AN/H-7, PW-82351 Motor Drive Power Supply, equation 1.
3. C 10 is $22 \mu \mathrm{~F}, 15 \mathrm{~V}$ electrolytic capacitor. C11 is $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$ ceramic capacitor.
4. Resistance and power of R20 and R21 is application specific.
5. All resistors have a tolerance of $\pm 10 \%$, unless otherwise specified.
6. The CD4050 converts the +15 V logic output of the UC-1625 to +5 V logic signals.
7. The CD4049 (or equivalent) inverts the upper signal from the UC-1625.
8. $1 \%$ or better, depending on required accuracy.
9. $Q_{1}$ can be either IRML2402 or IRMU014 ir IRLD014.
10. These high impedance inputs and summing junctions of the operational amplifiers are highly sensitive to noise.
11. These grounds should be closely tied together to reduce ground noise effect.
12. Connect Hall sensor inputs to motor shaft position sensors that are 120 electrical degrees apart. Motors with 60 electrical degree position sensor coding can be used if one or two of the position sensor signals are inverted.

FIGURE 9B. PW-8X075P6 TORQUE HOOK-UP USING UC-1625 MOTOR CONTROLLER


FIGURE 9C. RESOLVER TO HALL SIGNAL CONVERSION CIRCUIT


FIGURE 9D. PW-8X075P6 CURRENT DECOMMUTATION CIRCUIT

```
PW-8 X 075 PX - X X O
 0 = Standard DDC Procedures no Burn-In
 2 = High Reliability Processing with Burn-In
 Temperature Grade/Data Requirements:
 1= -55 鱼 to +125*'C
 3 =-0' C to +70' C
 4=-55呂 to +125 ' C with Variables Test Data
 8=0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70}
 9=-55'⿳ C to 85 C
 Voltage Rating
 6=600V
```


## Current Rating

```
\(075=75 \mathrm{~A}\)
Features
3 ＝Standard \(1 / 2\) Bridge
4 ＝Standard \(1 / 2\) Bridge w／current sense
5 ＝Standard \(1 / 2\) Bridge w／regenerative voltage clamp
```

NOTES

NOTES

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith.

Specifications are subject to change without notice.


105 Wilbur Place, Bohemia, New York 11716-2482
For Technical Support - 1-800-DDC-5757 ext. 7420
Headquarters - Tel: (631) 567-5600 ext. 7420, Fax: (631) 567-7358
West Coast - Tel: (714) 895-9777, Fax: (714) 895-4988
Southeast - Tel: (703) 450-7900, Fax: (703) 450-6610
United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264
Ireland - Tel: +353-21-341065, Fax: +353-21-341568
France - Tel: $+33-(0) 1-41-16-3424$, Fax: $+33-(0) 1-41-16-3425$
Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089
Sweden - Tel: +46-(0)8-54490044, Fax +46-(0)8-7550570
Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689
World Wide Web - http://www.ddc-web.com

