

DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC2799GR$

UP CONVERTOR FOR CABLE MODEM

DESCRIPTION

The μ PC2799GR is Silicon monolithic IC designed for use as up-converter for cable modem. This IC consists of local oscillator, AGC amplifier, mixer and so on. μ PC1686GV and μ PC2798GR are also available as for kit-use with this IC.

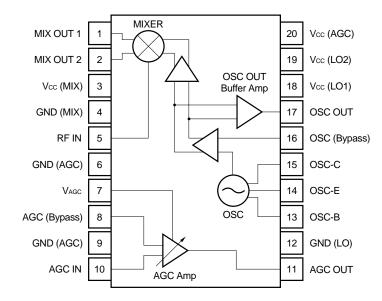
So, these devices contribute to make RF block small.

The package is 20-pin SSOP (shrink small outline package) suitable for surface mount.

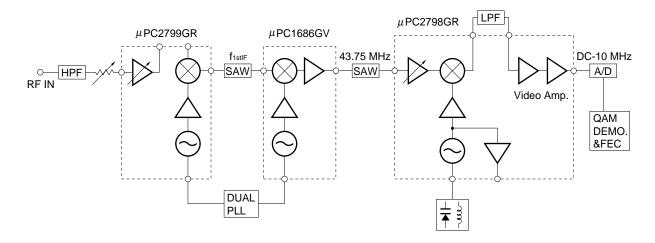
FEATURES

- On-chip low distortion AGC amplifier, mixer
- Low phase noise OSC transistor
- Packaged in 20-pin SSOP suitable for high-density surface mounting

ORDERING INFORMATION


PART NUMBER	PACKAGE	PACKAGE STYLE
μPC2799GR-E1	20-pin plastic SSOP (225 mil)	Embossed tape 12 mm wide. 2.5 k/REEL Pin 1 indicates pull-out direction of tape

For evaluation sample order, please contact your local NEC office. (Part number for sample order: µPC2799GR)


Caution electro-static sensitive device

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

INTERNAL BLOCK DIAGRAM AND PIN CONFIGURATION (Top View)

EXAMPLE FOR SYSTEM APPLICATION (CABLE MODEM)

PIN EXPLANATIONS

Pin No.	Symbol	Pin Voltage (V, TYP.)	Explanation	Equivalent Circuit
1	MIX OUT	-	Output pin of mixer. This pin is assigned for the open collector	1 2
2	MIX OUT	-	output with high impedance dependent on external inductance.	
3	Vcc (MIX)	5	Power supply pin of mixer block. Must be connected bypass capacitor to minimize ground impedance.	from OSC
4	GND (MIX)	0	Ground pin of mixer block. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.	
5	RF IN	1.89	Input pin of RF signal.	
6	GND (AGC)	0	Ground pin of AGC block. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.	
7	Vage	0 to 5	Automatic gain control pin. This pin's bias govern the AGC output level. Minimum gain at $V_{AGC} = 0 V$ Maximum gain at $V_{AGC} = 5 V$ Recommend to use by deviding AGC voltage with externally resistor (ex. 100 k Ω).	
8	AGC (bypass)	2.58	Bypass pin for AGC amplifier. Grounded through 2200 pF capacitor.	20
9	GND (AGC)	0	Ground pin of AGC block. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.	
10	AGC IN	1.10	Signal input pin of AGC amplifier.	

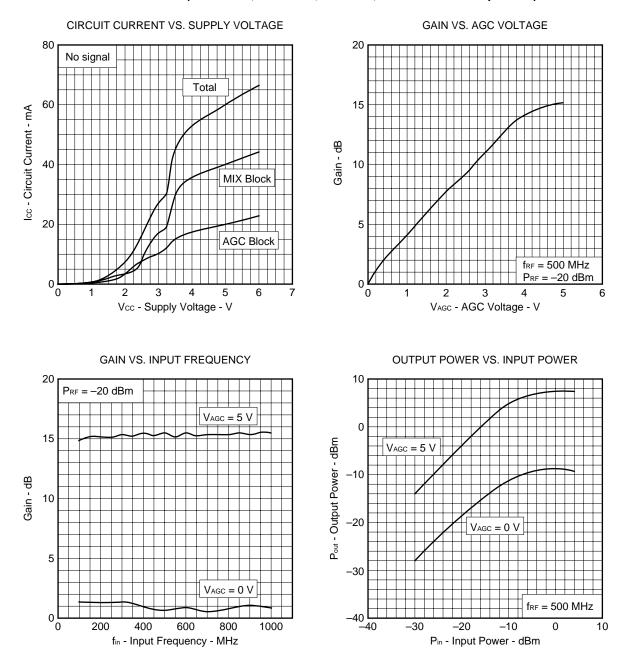
Pin No.	Symbol	Pin Voltage (V, TYP.)	Explanation	Equivalent Circuit
11	AGC OUT	2.5	Output pin of AGC amplifier. This pin features low-impedance because of its emitter-follower output port.	
12	GND (LO)	0	Ground pin of AGC block. Must be connected to the system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.	
13	OSC base	-		
14	OSC emitter	_		
15	OSC collector	_		
16	OSC (bypass)	3.18	Bypass pin of OSC amplifier. Grounded through 100 pF capacitor.	/// (12) ///
17	OSC OUT	3.2	Output pin of Oscillator frequency. Connected to PLL synthesizer IC's input pin.	
18	Vcc (LO1)	5	Power supply pin of local block. Must be connected bypass capacitor to	
19	Vcc (LO2)	5	minimize ground impedance.	
20	Vcc (AGC)	5	Power supply pin of AGC block. Must be connected bypass capacitor to minimize ground impedance.	

ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	RATING	UNIT
Supply Voltage	Vcc		6.0	V
Power Dissipation	PD	T _A = 85 °C ^{*1}	433	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature Range	Tstg		–55 to +150	°C
OSC Collector Current	losc		48	mA
OSC Collector to Base Voltage	Vсво		6.0	V
OSC Collector to Emitter Voltage	Vceo		4.0	V
OSC Emitter to Base Voltage	Vево		2.5	V

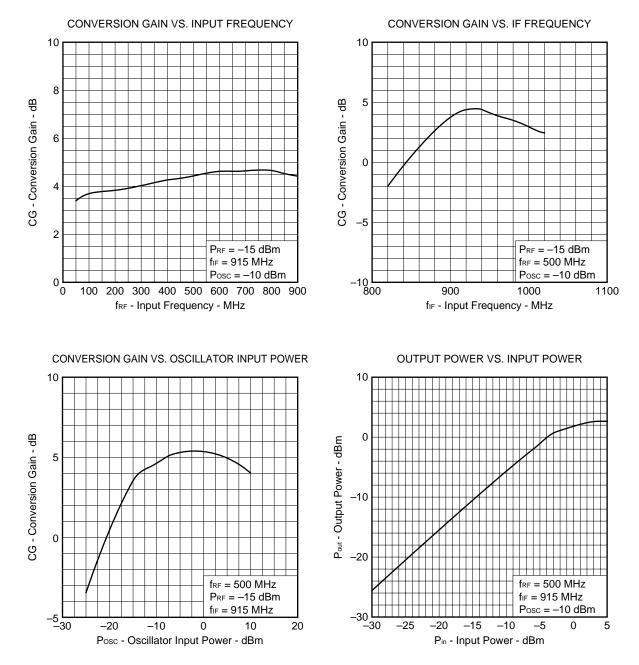
*1. Mounted on $50 \times 50 \times 1.6$ mm double epoxy glass board.

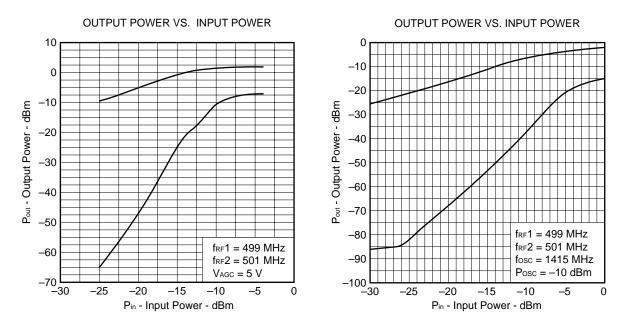
RECOMMENDED OPERATING RANGE


PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	Vcc	4.5	5.0	5.5	V
Operating Ambient Temperature	TA	-40	+25	+85	°C
RF Input Frequency Range	frf	250	-	850	MHz
AGC Voltage	VAGC	0	_	Vcc	V

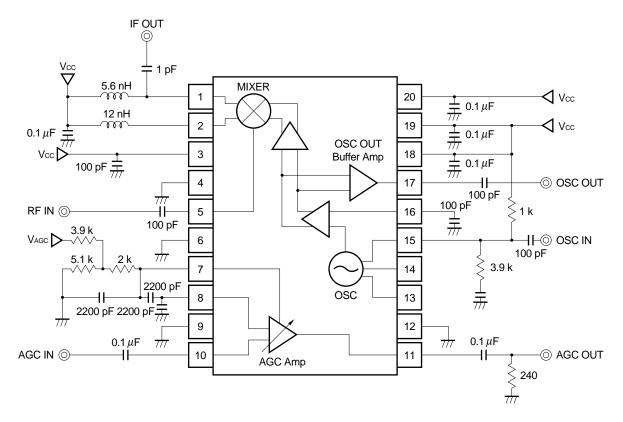
ELECTRICAL CHARACTERISTICS (TA = 25 °C, V_{CC} = 5 V, V_{AGC} = 5 V, frF = 500 MHz, PrF = -20 dBm, Pmixin = -15 dBm, fosc = 1415 MHz, Posc = -10 dBm, frF = 915 MHz, unless otherwise specified)

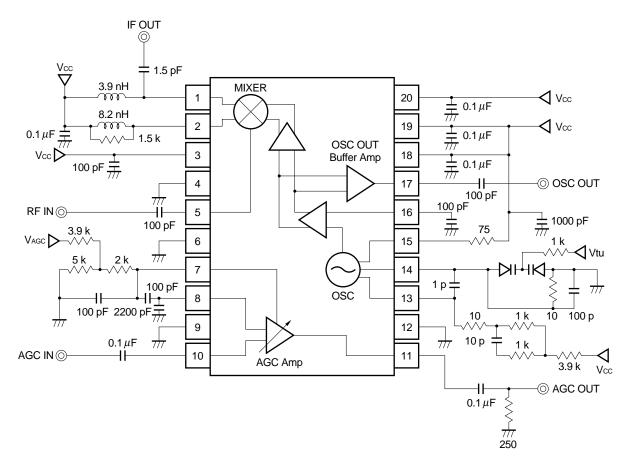
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS			
TOTAL									
Circuit Current	lcc	_	60	78	mA	no input signal			
AGC AMPLIFIER BLOCK									
AGC Maximum Gain	GAGCMAX	12.5	15.0	17.5	dB				
AGC Minimum Gain	GAGCMIN	-	0.5	-	dB	VAGC = 0 V			
Gain Control Range	GCR	10	14.5	_	dB	V _{AGC} = 0 to 5 V			
Maximum Output Power 1	Po (sat) 1	3.0	6.0	-	dBm	P _{RF} = 0 dBm			
Maximum Output Power 2	Po (sat) 2	_	-9.0	_	dBm	$V_{AGC} = 0 V, P_{RF} = 0 dBm$			
MIXER BLOCK									
Conversion Gain	CG	1.5	4.5	7.5	dB				
Maximum Output Power 3	Po (sat) 3	-1.5	1.5	_	dBm	Р _{міх} іn = 0 dBm			


STANDARD CHARACTERISTICS (FOR REFERENCE) (TA = 25 °C, Vcc = 5 V, VAGc = 5 V, fRF = 500 MHz, fosc = 1415 MHz, Posc = -10 dBm, fIF = 915 MHz, unless otherwise specified)


PARAMETER	SYMBOL	REFERENCE VALUES	UNIT	TEST CONDITIONS					
AGC AMPLIFIER BLOCK									
Noise Figure 1	NF1	8.5	dB						
Input Intercept Point 1	IIP₃1	+0.5	dBm	frf1 = 499 MHz, frf2 = 501 MHz					
Input Intercept Point 2	IIP32	-2	dBm	$f_{RF1} = 499 \text{ MHz}, f_{RF2} = 501 \text{ MHz}, V_{AGC} = 0$					
MIXER BLOCK									
Noise Figure 2	NF2	17	dB	DSB, Posc = -10 dBm					
Noise Figure 3	NF3	13	dB	DSB, Posc = 0 dBm					
Input Intercept Point 3	IIP33	+5	dBm	frf1 = 499 MHz, frf2 = 501 MHz					

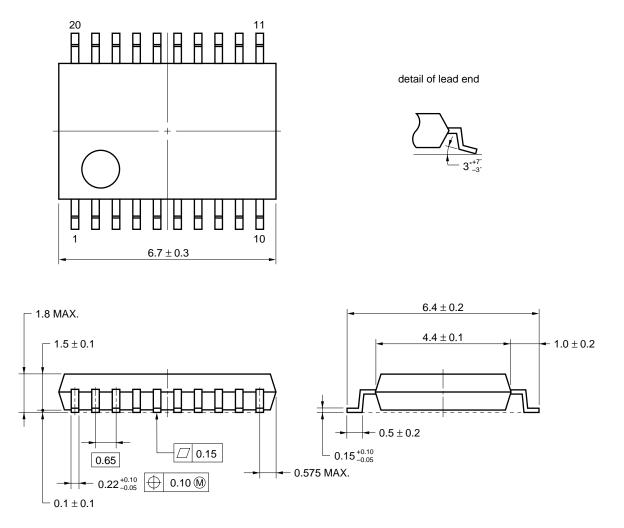
TYPICAL CHARACTERISTICS (AGC block, TA = 25 °C, Vcc = 5 V, unless otherwise specified)


TYPICAL CHARACTERISTICS (MIX block, TA = 25 °C, Vcc = 5 V, unless otherwise specified)



STANDARD CHARACTERISTICS (TA = 25 °C, Vcc = 5 V, unless otherwise specified)

MEASUREMENT CIRCUIT


APPLICATION CIRCUIT EXAMPLE

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

PACKAGE DIMENSIONS

★ 20 PIN PLASTIC SSOP (225 mil) (UNIT: mm)

NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.

Please consult with our sales officers in case other soldering process is used or in case soldering is done under different conditions.

For details of recommended soldering conditions for surface mounting, refer to information document **SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).**

µPC2799GR

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: 235 °C or below, Reflow time: 30 seconds or below (210 °C or higher), Number of reflow process: 3, Exposure limit ^{Nee} : None	IR35-00-3
VPS	Peak package's surface temperature: 215 °C or below, Reflow time: 40 seconds or below (200 °C or higher), Number of reflow process: 3, Exposure limit ^{Note} : None	VP15-00-3
Partial heating method	Terminal temperature: 300 °C or below, Flow time: 3 seconds or below, Exposure limit ^{Note} : None	

Note Exposure limit before soldering after dry-pack package is opened.

Storage conditions: 25 °C and relative humidity at 65% or less.

Caution Do not apply more than single process at once, except for "Partial heating method".

[MEMO]

[MEMO]

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these circuits,
 software, and information in the design of the customer's equipment shall be done under the full responsibility
 of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
 parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
 customer designated "quality assurance program" for a specific application. The recommended applications of
 a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
 before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.