‘_ AN1191
’I® APPLICATION NOTE

Software Drivers for the
M29F040B and M29WO040B Flash Memories

CONTENTS INTRODUCTION

= INTRODUCTION This application note provides library source code in C for the

s THE M29F040B M29F040B and the M29WO040B Flash Memories. The
PROGRAMMING MODEL M29W040B, with a rated power supply of 3V, is a low voltage

version of the M29F040B whose power supply is rated at 5V.
The two devices are otherwise very similar. This application
note supports both devices and all technical information about

= WRITING C CODE FOR
THE M29F040B

= C LIBRARY FUNCTIONS the M29F040B also applies to the M29WO040B, except where
PROVIDED otherwise specified.

= PORTING THE DRIVERS Listings of the source code can be found at the end of this doc-
TO THE TARGET SYSTEM ument. The source code is also available in file form from the

s LIMITATIONS OF THE internet site http://www.st.com or from your STMicroelectronics
SOFTWARE distributor. The c1191_08.c and c1191_08.h files contain librar-

= CONCLUSION ies for accessing both the M29F040B and the M29W040B

= 1191 08.h LISTING Flash Memories.

= 1191 08.c LISTING Also included in this application note is an overview of the pro-

gramming model for the M29F040B and M29WO040B. This will
familiarize the reader with the operation of the memory devices
and provide a basis for understanding and modifying the ac-
companying source code.

The source code is written to be as platform independent as
possible and requires minimal changes by the user in order to
compile and run. The application note explains how the user
should modify the source code for their individual target hard-
ware. All of the source code is backed up by comments explain-
ing how it is used and why it has been written as it has.

This application note does not replace the M29F040B Data
Sheet. It refers to the Data Sheet throughout and it is necessary
to have a copy in order to follow some of the explanations.

The software and accompanying documentation has been fully
tested on a target platform. It is small in size and can be applied
to any target hardware.

The Am29F040B and Am29LV040B from AMD are software
and hardware compatible with the M29F040B and M29W040B
respectively. Source code written to use AMD’s Am29F040B
and Am29LV040B can easily be modified to use STMicroelec-
tronics’s M29F040B and M29W040B instead (see STMicro-
electronics application note AN1185 for more details).

March 2000 1/23

AN1191 - APPLICATION NOTE

Finally, code written for the M29F040 and M29W040 can be used without modification on the M29F040B
and M29WO040B, which are respectively fully backward compatible with the M29F040 and M29W040. The
compatibility with the older revision memories is maintained in this application note: although the software
drivers are aimed at the M29F040B and M29WO040B, they can be used without modification on the
M29F040 and M29W040.

THE M29F040B PROGRAMMING MODEL

The M29F040B is a 4Mb (512Kb x8) Flash Memory which can be electrically erased and programmed
through special coded command sequences on most standard microprocessor buses. The device is bro-
ken down into 8 blocks, each 64 Kbytes in size. Each block can be erased individually, or the whole chip
can be erased at once, erasing all 4Mb.

The M29F040B is a single voltage device. It differs from first generation devices which require a 12V sup-
ply to program or erase. The M29F040B is therefore easier to use since the hardware does not need to
cater for special bus signal levels. The voltages needed to erase the device are generated by charge
pumps inside the device.

Included in the device is a Program/Erase Controller. With first generation Flash Memory devices the soft-
ware had to manually program all of the bytes to 00h before erasing to FFh using special programming
sequences. The Program/Erase Controller in the M29F040B allows a simpler programming model to be
used, by taking care of all the necessary steps required to erase and program the memory. This has led
to improved reliability so that in excess of 100,000 program/erase cycles are guaranteed per block on the
device.

The M29F040B does, however, require some high voltage bus signals if all of the functionality of the de-
vice is to be accessed. Each block can be protected against accidental programming or erasure. Protect-
ing and unprotecting the blocks requires Vid (about 12V) on some of the pins. Most applications of the
device will not include these functions. However, blocks may be pre-programmed, protected and unpro-
tected by an EPROM programmer prior to fitting into the hardware. Unprotected blocks may still be used
to store data and parameters. By protecting a block, accidental data loss through software failure cannot
occur.

Bus Operations and Commands

Most of the functionality of the M29F040B is available via the two standard bus operations: read and write.
Read operations retrieve data or status information from the device. Write operations are interpreted by
the device as commands, which modify the data stored or the behaviour of the device. Only certain special
sequences of write operations are recognized as commands by the M29F040B. The various commands
recognized by the M29F040B are listed in the Commands Table of the datasheet and can be grouped as
follows:

1. Read/Reset

2. Auto Select

3. Erase

4. Program

5. Erase Suspend

The Read/Reset command returns the M29F040B to its reset state where it behaves as a ROM. In this
state, a read operation outputs onto the data bus the data stored at the specified address of the device.
The Auto Select command places the device in the Auto Select mode, which allows the user to read the
Electronic Signature and Block Protection Status of the device. The Electronic Signature (Manufacturer
and Device Codes) and the Block Protection Status are accessed by reading different addresses whilst in
the Auto Select mode.

The Erase commands are used to set all the bits to "1’ in every memory location in the selected blocks
(Block Erase command) or in the whole chip (Chip Erase command). All data previously stored in the

2/23 ﬁ

AN1191 - APPLICATION NOTE

erased blocks will be lost. The Erase commands take longer to execute than the other commands, be-
cause entire blocks are erased at a time.

The Program command is used to modify the data stored at the specified address of the device. Note that
programming cannot change bits from '0’ to '1’. It may therefore be necessary to erase the block before
programming to addresses within it. Programming modifies a single byte at a time. Programming larger
amounts of data must be done one byte at a time, by issuing a Program command, waiting for the com-
mand to complete, then issuing the next Program command, and so on. Each Program command requires
4 write operations to issue. However, after issuing the Unlock Bypass command, Program commands only
require 2 write operations. Using Unlock Bypass will thus save some time when a large number of ad-
dresses need to be programmed at a time.

Issuing the Erase Suspend command during a Block Erase operation will temporarily place the M29F040B
in Erase Suspend mode. In this mode the blocks not being erased may be read or programmed as if in
the reset state of the device. This allows the user to access information stored in the device immediately
rather than waiting until the Block Erase operation completes, typically 0.6s for the M29F040B or 0.8s for
the M29WO040B. The Block Erase operation is resumed when the device receives the Erase Resume com-
mand.

The Status Register

While the M29F040B is programming or erasing, a read from the device will output the Status Register of
the Program/Erase Controller. This provides valuable information about the current Program or Erase
command. The Status Register bits are described in the Status Register Bits Table of the M29F040B Data
Sheet. Their main use is to determine when programming or erasing is complete and whether it is suc-
cessful or not.

Completion of the Program or Erase operation can be determined either from the polling bit (Status Reg-
ister bit DQ7) or from the toggle bit (Status Register bit DQ6), by following the Data Polling Flow Chart
Figure or the Data Toggle Flow Chart Figure in the datasheet. The library routines described in this appli-
cation note use the Data Toggle Flow Chart. However, a function based on the Data Polling Flow Chart is
also provided as an illustration.

Programming or erasing errors are indicated by the error bit (Status Register bit DQ5) becoming '1’ before
the command has completed. If a failure occurs, the command will not complete and read operations will
continue to output the Status Register bits until a Read/Reset command is issued to the device.

A Detailed Example

The Commands Table of the M29F040B Data Sheet describes the sequences of Byte write operations
that will be recognized by the Program/Erase Controller as valid commands. For example programming
an address requires 4 consecutive bus write operations: 3 coded writes followed by the transfer of the ad-
dress and data to be programmed. During the coded write operations, the M29F040B requires only
AO0-A10 of the address to be correctly specified. However the M29F040 also requires A11-A14 to be cor-
rectly specified. In order to maintain compatibility of the software drivers with the older M29F040 revision,
the longer (AO-A14) address codes will be used. Thus, to program 65h to address 03E2h the user would
write the following sequence (in C):

(unsi gned char) (0x5555) = OxAA;
(unsigned char)(0x2AAA) = 0x55;
(unsi gned char) (0x5555) = 0OxAO;
(unsigned char)(0x03E2) = 0x65;

This example assumes that address 0000h of the M29F040B is mapped to address 0000h in the micro-
processor address space. In practice it is likely that the Flash will have a base offset which needs to be
added to the address.

While the device is programming the specified address, read operations will access the Status Register
bits. Status Register bit DQ5 will be "1’ if an error has occurred. Bit DQ6 will toggle while programming is
on-going. Bit DQ7 will be the complement of the data being programmed.

‘ﬁ 3/23

AN1191 - APPLICATION NOTE

There are only two possible outcomes to this programming command: success or failure. Success will be
indicated by the toggle bit DQ6 no longer toggling but being constant at its programmed value (of 1’ in our
example) and the polling bit DQ7 also being at its programmed value (of 0’ in our example). Failure will
be indicated by the error bit DQ5 becoming "1’ while the toggle bit DQ6 still toggles and the polling bit DQ7
remains the complement ("1’ in our example) of the data being programmed. Note that failure of the device
itself is extremely unlikely. If the command fails it will normally be because the user is attempting to change
a’0’to a’l’ by programming. It is only possible to change a '0’ to a '1’ by erasing.

WRITING C CODE FOR THE M29F040B

The low-level functions (drivers) described in this application note have been provided to simplify the pro-
cess of developing application code in C for the STMicroelectronics Flash Memories (M29F040B and
M29WO040B). This enables users to concentrate on writing the high level functions required for their par-
ticular applications. These high level functions can access the Flash Memories by calling the low level driv-
ers, hence keeping details of special command sequences away from the users' high level code: this will
result in source code both simpler and easier to maintain.

Code developed using the drivers provided can be decomposed into three layers:
1. the hardware specific bus operations

2. the low-level drivers

3. the high level functions written by the user

The implementation in C of the hardware specific read and write bus operations is required by the low-
level drivers in order to communicate with the M29F040B. This implementation is hardware platform de-
pendent as it is affected by which microprocessor the C code runs on and by where in the microproces-
sor's address space the memory device is located. The user will have to write the C functions appropriate
to his hardware platform (see Fl ashRead() and Fl ashWite() in the next section).

The low-level drivers take care of issuing the correct sequences of write operations for each command
and of interpreting the information received from the device during programming or erasing. These drivers
encode all the specific details of how to issue commands and how to interpret the Status Register bits.

The high level functions written by the user will access the memory device by calling the low-level func-
tions. By keeping the specific details of how to access the M29F040B away from the high level functions,
the user is left with code which is simple and easier to maintain. It also makes the user's high level func-
tions easier to apply to other STMicroelectronics Flash Memories.

When developing an application, the user is advised to proceed as follows:

— first write a simple program to test the low level drivers provided and verify that these operate as ex-
pected on the user's target hardware and software environments.

— then the user should write the high level code for his application, which will access the Flash Memories
by calling the low level drivers provided.

— finally test the complete application source code thoroughly.

C LIBRARY FUNCTIONS PROVIDED

The software library provided with this application note provides the user with source code for the following
functions:

FIl ashReadReset () is used to reset the device into the Read mode. Note that there should be no need
to call this function under normal operation as all of the other software library functions leave the device
in this mode.

FI ashAut 0Sel ect () is used to identify the Manufacturer Code, Device Code and the Block Protection
Status of the device.

423 573

AN1191 - APPLICATION NOTE

Fl ashBl ockErase() is used to erase one or more blocks in the device. Multiple blocks will be erased
simultaneously to reduce the overall erase time. This function checks that none of the blocks specified are
protected and does not erase any blocks if some of the specified blocks are protected.

Fl ashChi pEr ase() is used to erase the entire chip. It will not erase any blocks if there is a protected

block on the chip.

Fl ashProgram() is used to program data arrays into the Flash. Only previously erased bytes can be

programmed reliably. The function will not program any data if any of the bytes in the array fall inside a

protected block.

The functions provided in the software library rely on the user implementing the hardware specific bus op-

erations as well as a suitable timing function. This is to be done by writing three functions as follows:

— Fl ashRead() must be written to read a value from the Flash.

— Fl ashWi t e() must be written to write a value to the Flash.

— Fl ashPause() must be written to provide a timer with microsecond resolution. This is used to wait
while the Flash recovers from some conditions.

An example of these functions is provided in the source code.

In many instances these functions can be written as macros and therefore will not incur the function call
time overhead. The two functions which perform the basic I/O to the device have been provided for users
who have awkward systems. For example where the addressing system is peculiar or the data bus has
DO0..D7 of the device on D8..D15 of the microprocessor. They allow any user to quickly adapt the code to
virtually any target system.

Throughout the functions assumptions have been made on the data types. These are:

A char is 8 bits (1 byte). This is not the case in all microcontrollers. Where it is not it will be necessary to
mask the unused bits of the word (particularly in the user's Fl ashRead() function).

Ani nt is 16 bits (2 bytes). Again, like the char , if this is not the case it will be necessary to use a variable
type which is 16 bits or longer and mask bits above 16 bits.

Al ong is 32 bits (4 bytes). It is necessary to have arithmetic greater than 16 bits in order to address the
entire device.

Two approaches to the addressing are available: the desired address in the Flash can be specified by a
32 bit linear pointer or a 32 bit offset into the device could be provided by the user. The FI ashRead()
functions in each case would declared as:

unsi gned char Fl ashRead(unsigned char *Addr);

unsi gned char Fl ashRead(unsigned |ong ul OFf);

The pointer option has the advantage that it runs faster. The 32 bit offset needs to be changed to an ad-
dress for each access and this involves 32 bit arithmetic. Using a 32 bit offset is, however, more portable
since the resulting software can easily be changed to run on microprocessors with segmented memory
spaces (such as the 8086). For maximum portability all the functions in this application note use a 32 bit
unsigned long offset, rather than a pointer.

PORTING THE DRIVERS TO THE TARGET SYSTEM
Before using the software in the Target System the user needs to do the following:

1. Define USE_M29F040B or USE_M29W40B depending on whether an M29F040B or an M29WO040B is
fitted. The top of the source file provided defines USE_M29F040B as an example.

2. Write Fl ashRead(), Fl ashWite() and Fl ashPause() functions appropriate to the Target Hard-
ware.

3. Search through the code forthe/* DSI */ and/* ENI */ comments and disable/enable interrupts
at the appropriate points.

573 5123

AN1191 - APPLICATION NOTE

The example Fl ashRead() and Fl ashW it e() functions provided in the source code should give the
user a good idea of what is required and can be used in many instances without much modification.

To test the source code in the Target System start by simply reading from the M29F040B. If it is erased
then only FFh data should be read. Next read the Manufacturer and Device codes and check they are
correct. If these functions work then it is likely that all of the functions will work but they should all be tested
thoroughly.

The programmer needs to take extra care when the device is accessed during an interrupt service routine.
Three situations exist which must be considered:

1. When the device is in Read mode interrupts can freely read from the device.

2. Interrupts which do not access the device may be used during the Program, Autoselect and Chip Erase
functions.

3. During the time critical section of the Block Erase function interrupts are not permitted. An interrupt dur-
ing this time may cause a time-out and result in some of the blocks not being erased correctly.

The programmer should also take care when a Reset is applied during Program or Erase operations. The
Flash will be left in an indeterminate state and data could be lost.

C does not provide a standard library function for disabling interrupts. Furthermore different applications
have different tolerances on when interrupts may be disabled. Therefore no protection from the misuse of
interrupts could be incorporated into the library source code. It is strongly recommended that the user dis-
ables interrupts where the /* DSI */ comments are placed in the source code. If this is not possible
then the user should erase one block at a time.

LIMITATIONS OF THE SOFTWARE

The software provided does not implement a full set of the M29F040B’s functionality. It is left to the user
to implement the Erase Suspend and Unlock Bypass commands of the device. The Standby mode is a
hardware feature of the device and cannot be controlled through software.

Care should be taken in some of the whi | e() loops. No time-outs have been implemented. Software ex-
ecution may stop in one of the loops due to a hardware error. A/* Ti meQut! */ comment has been
put at these places and the user can add a timer to them to prevent the software failing.

The software only caters for one device in the system. To add software for more devices a mechanism for
selecting the devices will be required.

When an error occurs the software simply returns the error message. It is left to the user to decide what
to do. Either the command can be tried again or, if necessary the device may need to be replaced.

CONCLUSION

The M29F040B and M29WO040B single voltage Flash Memories are ideal products for embedded and oth-
er computer systems, able to be easily interfaced to microprocessors and driven with simple software driv-
ers written in the C language.

J

6/23

AN1191 - APPLICATION NOTE

/***Cllgl 08 h*'_bader FI I e for Cllgl 08 C***************************************

F | enane: c1191 08. h
Description: Header file for ¢c1191 08.c. Consult the Cfile for details

Gopyright (c) 1999 STM cr oel ect roni cs.

THIS PROGRAM IS PROVIDED “AS IS"WITHOUT WARRANTY OF ANY KIND,EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

1

/
Commands for the various functions

#define FLASH_READ_MANUFACTURER (-2)
#define FLASH_READ_DEVICE_CODE (-1)

1
Error Conditions and return values.

See end of C file for explanations and help

#define FLASH_BLOCK_PROTECTED ~ (OxO1)
#define FLASH_BLOCK_UNPROTECTED (0x00)
#define FLASH_BLOCK_NOT_ERASED (OXFF)

#define FLASH_SUCCESS 1)

#defne FLASH POLL FAL (-2

#define FLASH_TOO_MANY_BLOCKS ~ (-3)
#define FLASH_MPU_TOO SLOW (-4)
#define FLASH_BLOCK_INVALID ~ (5)

#define FLASH_PROGRAM FAIL (-6)
#define FLASH_OFFSET_OUT_OF RANGE (-7)
#define FLASH_ WRONG_TYPE ~ (-8)
#define FLASH_ERASE FAIL (-14)

#define FLASH_TOGGLE_FALL (-15)

I/

Function Prototypes

extern unsigned char FlashRead(unsigned long ulOff);

extern void FlashReadReset(void);

extern int FlashAutoSelect(int iFunc);

extern int FlashBlockErase(unsigned char ucNumBlocks, unsigned char ucBlock]));
extern int FlashChipErase(void);

extern int FlashProgram(unsigned long ulOff, size_t NumBytes, void *Array);
extern char *FlashErrorStr(int iErNum);

J

7/23

AN1191 - APPLICATION NOTE

/****Cllgl 08 C*4|\b FI ash '\kn‘ory**

F | enane: c1191 08.c
Description: Library routines for the M2OF040B and M2OVWA40B 4Mb (512Kb x8)
Fl ash Menori es.

Revi si on: 1.00

Dat e: 17/ 09/ 99

Aut hor : Alex Nairac, xford Technical Solutions (ww ots. ndirect. co. uk)
Gopyright (c) 1999 STM cr oel ect roni cs.

THIS PROGRAM IS PROVIDED “AS IS"WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTY

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

Version History.
Ver. Date Comments

1.00 17/09/99 Initial Release of the Software.

This source file provides library C code for using the M29x040B devices.
The following devices are supported in the code:

M29F040B

M29W040B

The following functions are available in this library:

HashReadReset() to reset the flash for normal memory access
HashAutoSelect() to get information about the device
HashBlockErase() to erase one or more blocks
HashChipErase() to erase the whole chip

HashProgram() to program a byte or an array

HashErrorStr() to retum the error string of an error

For further information consult the Data Sheet and the Application Note. The
Application Note gives information about how to modify this code for a
specific application. Note that AO-A14 are set up correctly during the

special write cycles required to issue commands to the Flash Memories. The
devices supported by this application code only require AO-A10 to be setup
correctly. However this application code sets up A0-A14 to remain compatible
with previous generations of the devices.

The hardware specific functions which need to be modified by the user are:
HashWrite() for writing a byte to the flash
HashRead() for reading a byte from the flash
HashPause() for timing short pauses (in micro seconds)

Alist of the error conditions is given at the end of the code.

There are no timeouts implemented in the loops in the code. At each point

J

8/23

AN1191 - APPLICATION NOTE

where an infinite loop is inplenented a conment /# TinmeQut! # has been
placed. It is up to the user to inplenent these to avoid the code hangi ng
instead of timng out.

Since Cdoes not include a nethod for disabling interrupts to keep tine-
critical sections of code frombeing disabl ed. The user nay w sh to disabl e
interrupt during parts of the code to avoid the FLASH MPU TGO SLONerror from
occuring if an interrupt occurs at the wong tine. Wiere interrupt shoul d be
disabled and re-enabled there is a /# DSI! # or /# EN! # coment.
The source code assunes that the conpiler inplenents the nunerical types as
unsi gned char 8 bits
unsi gned i nt 16 bits
unsi gned | ong 32 hits
Additional changes to the code will be necessary if these are not correct.
***/
#i ncl ude <stdlib. h>
#include “c1191 08.h" /*Header file with global prototypes */

#define USE_M29F040B

1
Constants

#define COUNTS_PER_MICROSECOND (200)
#define MANUFACTURER_ST (0x20) /* Manufacturer code */
#define BASE_ADDR ((volatile unsigned char*)0x0000)

FBASE_ADDR is the base address of the flash, see the functions FlashRead()
and FlashWrite(). Some applications which require a more complicated
HashRead() or FlashWiite() may not use BASE_ADDR */

#define ANY_ADDR (0x0000L)
F Any address offset within the Flash Memory will do */

#ifdef USE_M29F040B
#define EXPECTED_DEVICE (OxE2) /* Device code for the M29F040B */
#endif

#ifdef USE_M29W040B
#define EXPECTED_DEVICE (OxE3) /* Device code for the M29WO040B */
#endif

static const unsigned long BlockOffset]] = / Offset from BASE_ADDR of blocks */
{

0x00000L, /* Start offset of block 0 */

0x10000L, /* Start offset of block 1 */

0x20000L, /* Start offset of block 2 */

0x30000L, /* Start offset of block 3 */

0x40000L, /* Start offset of block 4 */

0x50000L, /* Start offset of block 5 */

0x60000L, /* Start offset of block 6 */

Ox70000L /* Start offset of block 7 */

g

ﬁ 9/23

AN1191 - APPLICATION NOTE

#def i ne NUM BLOCKS (si zeof (Bl ockCi f set)/ si zeof (Bl ockCi fset[0]))
#defi ne FLASH Sl ZE (0x80000L) /* 512K */

/***

Satic Prototypes

The follow ng functions are only needed in this nodul e.
***/
stati c unsi gned char Fl ashwite(unsigned | ong ul &f, unsigned char ucval);
static void Fl ashPause(unsi gned int uM croSeconds);

static int HashDat aToggl e(void);

/**

The function F ashDataPol | () declared belowis not used by this library but is
provided as an illustration of the Data Polling FH ow Chart
***/
#defi ne | LLUSTRATI ON_ O\NLY

fndef | LLUSTRATI ON_ O\NLY

static int HashDataPol | (unsigned long ul &f, unsigned char ucval);

#endi f /* |1 LLUSTRATI ON_ON\LY */

/***

Functi on: unsi gned char FH ashWite(unsigned ong ul Gf, unsigned char ucVval)
Argunent s: ulcff is the byte offset inthe flash to wite to
ucval is the value to be witten
Ret ur ns: ucval
Description: This function is used to wite a byte to the flash. Oh nany
m croprocessor systens a nmacro can be used instead, increasing the speed of
the flash routines. For exanpl e:

#define HashWite(ulff, ucval) (BASE ADDR ul G f] = (unsigned char) ucVal)

A function is used here instead to allowthe user to expand it if necessary.
The function is nade to return ucvVal so that it is conpatible with the nacro.

Pseudo Code:
Sep 1: Wite ucVal to the byte offset in the flash
Sep 2: return ucval

***/

stati c unsi gned char Fl ashWite(unsigned | ong ul &f, unsigned char ucVal)

/* Sepl, 2. Wite ucvVal to the byte offset in the flash and return it */
return BASE ADDRul Cff] = ucVal ;

}
/***
Functi on: unsi gned char F ashRead(unsigned long ul Of)

Argunent s: ulcff is the byte offset into the flash to read from

Ret ur ns: The unsigned char at the byte of f set

Description: This function is used to read a byte fromthe flash. Oh nany
m croprocessor systens a nmacro can be used instead, increasing the speed of
the flash routines. For exanpl e:

#define FlashRead(ul OFf) (BASE ADDR Ul Gf])

J

10/23

AN1191 - APPLICATION NOTE

A function is used here instead to allowthe user to expand it if necessary.

Pseudo Code:
Step 1: Return the value at byte offset ul Of

***/

unsi gned char H ashRead(unsigned long ul Of)

/* Sep 1 Return the value at byte offset ulCff */
return BASE ADDR ul Cff];

}

/***

Functi on: voi d Fl ashPause(unsi gned int uM croSeconds)

Argunent s: UM croSeconds is the I ength of the pause in nicroseconds

Ret ur ns: none

Description: This routine returns after uM croSeconds have el apsed. It is used
in several parts of the code to generate a pause required for correct
operation of the flash part.

The routine here works by counting. The user nay al ready have a nore suitable
routine for tinmng which can be used.

Pseudo Code:
Sep 1. Gonpute count size for pause.
Sep 2. Gount to the required size.

***/

static void F ashPause(unsi gned int uM croSeconds)

{

vol atile unsigned | ong ul Count Si ze;

/* Sep 1. Gonpute the count size */

ul Gount Si ze = (unsi gned | ong) uM croSeconds * COUNTS PER M CRCSECOND,

/* Step 22 Qount to the required size */

while(ulCountSze >0) /* Test to see if finished */

ul Count S ze--; /* and count down */

}
/***
Functi on: voi d H ashReadReset (void)
Argunent s: none

Return Val ue: none
Descri pti on: This function places the flash in the Read node descri bed
inthe Data Sheet. In this node the flash can be read as normal nenory.

Al of the other functions | eave the flash in the Read node so this is
not strictly necessary. It is provided for conpl eteness.

Note: Await of 10us is required if the coomand is called during a program or
erase instruction. This is included here to guarantee correct operation. The
functions inthis library call this function if they suspect an error
during programming or erasing so that the 10us pause is included. Qherw se
they use the single instruction technique for increased speed.

Pseudo Code:
Sep 1. wite command sequence (see Conmands Tabl e of the Data Sheet)
Sep 2: wait 10us

***/

573 11723

AN1191 - APPLICATION NOTE

voi d Fl ashReadReset (void)

{

/* Sep 1. wite command sequence */

H ashWite(Ox5555L, OxAA); [/* 1st Gycle */

H ashWite(Ox2AAAL, 0x55); /* 2nd Gycle */

FlashWite(ANY ADDR OxFO); /* 3rd Gycle: wite OXFO to ANY address */

/* Step 2. wait 10us */

Fl ashPause(10);
}
/******************~k**
Functi on: int FlashAutoSel ect(int iFunc)
Argunent s: i Func shoul d be set to either the Read Signature values or to the

bl ock nunber. The header file defines the val ues for reading the S gnature.
Note: the first block is Bl ock O

Return Value: Wen iFunc is >= 0 the function returns FLASH BLOCK PROTECTED
(01h) if the block is protected and FLASH BLOCK UNPROTECTED (Q0h) if it is
unprotected. See the Auto Select conmmand in the Data Sheet for further
i nformation.

Wien i Func is FLASH READ MANUFACTURER (-2) the function returns the
manufacturer's code. The Manufacturer code for ST is 20h.

WheniFunc is FLASH_READ_DEVICE_CODE (-1) the function retums the Device
Code. The device codes for the parts are:

M29F040B E2h

M29W040B E3h

When iFunc is invalid the function returns FLASH_BLOCK _INVALID (-5)

Description: This function can be used to read the electronic signature of the
device, the manufacturer code or the protection level of a block.

Pseudo Code:
Step 1: Send the Auto Select command to the device
Step 2: Read the required function from the device.
Step 3: Return the device to Read mode.

int FlashAutoSelect(intiFunc)
{
intiRetVal; / Holds the retum value */

P Step 1. Send the Auto Select command */
FlashWiite(0x5555L, OxAA); /* 1st Cycle */
FlashWiite(0x2AAAL, 0x55); #2nd Cycle ¥/
FlashWiite(0x5555L, 0x90); /* 3rd Cycle ¥/

F* Step 2: Read the required function */
ifl iFunc == FLASH_READ MANUFACTURER)
iRetVal = (int) FlashRead(0x0000L); #A0O=A1=0%

else if(iFunc == FLASH_READ_DEVICE_CODE)
iRetVal = (int) FlashRead(Ox0001L); # A0 = 1, A1 = 0%/

else if((iIFunc >=0) && (iFunc < NUM_BLOCKS))

iRetVal = FlashRead(BlockOffsetfiFunc] + 0x0002L);
FA0=0,A1L=1%

12/23

J

AN1191 - APPLICATION NOTE

el se
i RetVal = FLASH BLOXK | NVALI D

/* Sep 3 Return to Read node */
Flashwite(ANY ADDR OxFO); /* Wse single instruction cycle nethod */

return i RetVal ;

/***

Functi on: int Fl ashB ockErase(unsigned char ucNunBl ocks,
unsi gned char ucBl ock[])

Argunent s: ucNumBl ocks hol ds the nunber of blocks in the array ucBl ock
ucBlock is an array containing the bl ocks to be erased.

Return Val ue: The function returns the foll owi ng conditions:

FLASH SUCCESS (-1)
FLASH TOD MMNY_BLOCKS (-3)
FLASH MPU TQD SLOWV (-4)
FLASH VWRONG TYPE (-8)
FLASH ERASE FAI L (-14)

Nunber of the first protected or invalid bl ock

The user's array, ucBlock]] is used to report errors on the specified
blocks. If a time-out occurs because the MPU is too slow then the blocks
in ucBlocks which are not erased are overwritten with FLASH_BLOCK_NOT_ERASED
(FFh) and the function returns FLASH_MPU_TOO_SLOW.

If an error occurs during the erasing of the blocks the function retums
FLASH_ERASE_FAIL.

If both errors occur then the function will set the ucBlock array to
FLASH_BLOCK_NOT_ERASED for the unerased blocks. It will return
FLASH_ERASE_FAIL even though the FLASH_MPU_TOO_SLOW has also occurred.

Description: This function erases up to ucNumBlocks in the flash. The blocks
can be listed in any order. The function does not return until the blocks are
erased. If any blocks are protected or invalid none of the blocks are erased.

During the Erase Cycle the Data Toggle Flow Chart of the Data Sheet is
followed. The poliing bit, DQ7, is not used.

Pseudo Code:
Step 1: Check for correct flash type
Step 2: Check for protected or invalid blocks
Step 3: Write Block Erase command
Step 4: Check for time-out blocks
Step 5: Wait for the timer bit to be set.
Step 6: Follow Data Toggle Flow Chart until Program/Erase Controller has
completed
Step 7: Return to Read mode (if an emror occurred)

y
int FlashBlockErase(unsigned char ucNumBlocks, unsigned char ucBlock]])
{
unsigned char ucCurBlock; # Range Variable to track current block */
intiRetVal = FLASH_SUCCESS; /* Holds return value: optimistic initially! */

F* Step 1. Check for correct flash type */

if(!(FlashAutoSelect{ FLASH_READ MANUFACTURER) = MANUFACTURER_ST)

I '(FashAutoSelect{ FLASH_READ_DEVICE_CODE) ==EXPECTED_DEVICE))
retum FLASH_WRONG_TYPE;

ﬁ 13/23

AN1191 - APPLICATION NOTE

/* Step 2. Check for protected or invalid blocks. */
i f(ucNunmBl ocks > NUM BLOCKS) /* Check specified bl ocks <= NUM BLOKS */
return FLASH TGD MANY_BLOKS;

for(ucQurBl ock = 0; ucQurB ock < ucNunBl ocks; ucQurB ock++)

/* We HashAutoSel ect to find protected or invalid bl ocks*/
i f(FlashAut oSel ect ((int)ucBl ock[ucQurBl ock]) !'= FLASH BLOCK UNPROTECTED)
return (int)ucB ock[ucQurBl ock]; /* Return protected/invalid blocks */

}

/* Sep 3: Wite B ock Erase conmand */

Fl ashWite(0x5555L, OxAA);

Fl ashWite(Ox2AAAL, 0x55);

Fl ashWite(0x5555L, 0x80);

Fl ashWite(0x5555L, OxAA);

Fl ashWite(Ox2AAAL, 0x55);

/* D8l!l: Tine critical section. Additional blocks nust be added every 50us */
for(ucQurBl ock = 0; ucQurB ock < ucNunBl ocks; ucQurB ock++)

F ashwite(Bl ockd fset[ucB ock[ucQurB ock]], 0x30);
/* Check for Erase Timeout Period (is bit DB set?) */
if((FlashRead(Bl ockCffset[ucBl ock[0]]) & Ox08) == 0x08)
break; /* Cannot set any nore bl ocks due to tineout */
}* EN! ¥/

/* Step 4. Check for tine-out blocks */
i f(ucQurBl ock < ucNunBl ocks)

/* Indicate that sone bl ocks have been tined out of the erase list */
i RetVal = FLASH MPU TQO SLON

/* Now specify all other blocks as not being erased */

/* Note that we cannot tell if the first (potentially timed out) block is
erasing or not */

whi | e(ucQurBl ock < ucNunBl ocks)

ucBl ock[ucQur Bl ock++] = FLASH BLOCK NOT_ERASED,

}
}
/* Sep 5. Vit for the Erase Tiner Bit (D@B) to be set */
while(1) /* TineQut!: If, for sone reason, the hardware fails then this
loop may not exit. Wse a tiner function to inplement a tineout
fromthe loop. */
if((HashRead(Bl ockCifset[ucBlock[0]]) & Ox08) == 0x08)
break; /* Break when devi ce starts the erase cycle */
}

/* Sep 6: Follow Data Toggle H ow Chart until Program Erase Gontroll er
conmpl etes */
i f(HashDataToggl e() != FLASH SUCCESS)

i RetVal = FLASH ERASE FAI L;
/* Step 7: Return to Read node (if an error occurred) */
Fl ashReadReset () ;

J

14/23

AN1191 - APPLICATION NOTE

return i Ret Val ;
/***
Functi on: int FlashChi pErase(void)
Argunent s: none

Return Val ue: n success the function returns FLASH SUCCESS (-1)
If ablock is protected then the function returns the nunber of the bl ock and
no bl ocks are erased.
If the erase algorithns fails then the function returns FLASH ERASE FAL (-2)
If the wong type of flash is detected then FLASH WRONG TYPE (-8) is
ret ur ned.

Description: The function can be used to erase the whol e flash chip so | ong as
no bl ocks are protected. If any blocks are protected then nothing is
er ased.

Pseudo Code:
Sep 1. Check for correct flash type
Sep 2: Check that all bl ocks are unprotected
Sep 3: Send Chip Erase Cormand
Sep 4: Follow Data Toggl e Flow Chart until Programi Erase Gontroll er has
conpl et ed.
Sep 5 Return to Read node (if an error occurred)

***/

int FlashChi perase(void)
{

unsi gned char ucQurBl ock; /* Wsed to track the current block in a range */

/* Sep 1. Check for correct flash type */

i f(!(HashAut oSel ect (FLASH READ MANUFACTURER) == MANUFACTURER ST)

|| ! (H ashAut oSel ect (FLASH READ DEVICE ODE) == EXPECTED DEM CE))
return FLASH WRONG TYPE;

/* Sep 2. Check that all blocks are unprotected */
for(ucQurBl ock = 0; ucQurB ock < NUM BLAXKS, ucCQurBl ock++)

if(HashAutoSel ect((int)ucQurBl ock) != FLASH BLOK UNPROTECTED)
return (int)ucQurB ock; /* Return the first protected bl ock */
}

/* Sep 3. Send Chip Erase Command */
Fl ashWite(0x5555L, OxAA);
Fl ashWite(Ox2AAAL, Ox55);
Fl ashWwite(0x5555L, 0x80);
Fl ashWite(0x5555L, OxAA);
Fl ashWite(Ox2AAAL, O0x55);
Fl ashWwite(0x5555L, 0x10);

/* Sep 4. Follow Data Toggle H ow Chart until Program BErase Gontrol |l er has
conpl eted */

i f(HashDataToggl e() != FLASH SUCCESS)

{

/* Sep 5 Return to Read node (if an error occurred) */
Fl ashReadReset () ;
return FLASH ERASE FA L;

}
(73 15/23

AN1191 - APPLICATION NOTE

el se
return FLASH SUCCESS;
}
/***
Functi on: int FlashProgran{ unsigned long ul Ff, size t NunBytes,
void *Array)
Argunent s: ulcff is the byte offset into the flash to be programmed

NunByt es hol ds the nunber of bytes in the array.
Array is a pointer to the array to be programmed.
Return Val ue: The function returns the foll owi ng conditions:

FLASH SUCCESS (-1)
FLASH_PROGRAM FAI L (-6)
FLASH CFFSET_QUT_CF_ RANGE (- 7)
FLASH VVRONG TYPE (-8)

Nunber of the first protected or invalid bl ock

n success the function returns FLASH SUGCESS (-1).
The function returns FLASH PROCRAM FAIL (-6) if a programming fail ure occurs.
If the address range to be programmed exceeds the address range of the H ash
Device the function returns FLASH CFFSET_QUT_CF RANCE (-7) and nothing is
pr ogr amred.
If the wong type of flash is detected then FLASH WRONG TYPE (-8) is
returned and not hing i s programred.
If part of the address range to be programmed falls within a protected bl ock,
the function returns the nunber of the first protected bl ock encountered and
not hing i s programred.

Description: This function is used to programan array into the flash. It does
not erase the flash first and may fail if the bl ock(s) are not erased first.

Pseudo Code:
Sep 1. Check for correct flash type
Sep 2: Check the offset range is valid
Sep 3: Check that the bl ock(s) to be programmred are not protected
Sep 4. Wile there is nore to be programed
Step 5: Check for changes from ‘0'to ‘1’
Step 6: Program the next byte
Step 7: Follow Data Toggle Flow Chart until Program/Erase Controller has
completed
Step 8: Return to Read mode (if an emror occurred)
Step 9: Update pointers

y
int FlashProgram(unsigned long ulOff, size_t NumBytes, void *Array)

unsigned char *ucArrayPointer; /* Use an unsigned char to access the array */
unsigned long ulLastOff, / Holds the last offset to be programmed */
unsigned char ucCurBlock; /* Range Variable to track current block */

P Step 1. Check for correct flash type */

if(!(FHashAutoSelect{ FLASH_READ MANUFACTURER) = MANUFACTURER_ST)

| {(FlashAutoSelect{ FLASH_READ_DEVICE_CODE) ==EXPECTED_DEVICE))
retumn FLASH_WRONG_TYPE;

P Step 2: Check the offset and range are valid */
ulLastOff = ulOff+NumBytes-1;
if(ulLastOff >= FLASH_SIZE)

return FLASH_OFFSET_OUT_OF_RANGE;

J

16/23

AN1191 - APPLICATION NOTE

/* Step 3. Check that the block(s) to be programmed are not protected */
for(ucQurBl ock = 0; ucQurB ock < NUMBLAXKS, ucCQurBl ock++)

{
/* If the address range to be programmed ends before this bl ock */
if(BlockCfset[ucQurBl ock] > ul LastCff)
br eak; /* then we are done */
/* Hse if the address range starts beyond this bl ock */
else if((ucQurBl ock < (NMMBLOKS- 1)) &&
(uldf >= Bl ockO fset[ucQurBl ock+1]))
conti nue; /* then skip this bl ock */
/* Qherwise if this block is not unprotected */
el se if(HashAut oSel ect ((int)ucQurBl ock) != FLASH BLOCK UNPROTECTED)
return (int)ucQurB ock; /* Return first protected bl ock */
}

/* Step 4. Wile there is nore to be programmed */
ucArrayPoi nter = (unsi gned char *)Array;
vhile(ulOf <= ullLastOf)

{
F* Step 5: Check for changes from ‘0’ to ‘1" */
if ~HashRead(ulOff) & *ucArrayPointer)
F Indicate failure as it is not possible to change a‘0’'toa ‘1’
using a Program command. This must be done using an Erase command */
return FLASH_PROGRAM_FAIL;

* Step 6: Program the next byte */

HashWrite(Ox5555L, OXAA); /* 1st cycle */

HashWrite(Ox2AAAL, 0X55); /*2nd cycle */
HashWrite(0x5555L, 0XAQ); # Program command */
HashWrite(ulOff, *ucAmrayPointer); /* Program value */

F* Step 7: Follow Data Toggle Flow Chart until Program/Erase Controller
has completed */

F* See Data Toggle Flow Chart of the Data Sheet */

ifl HashDataToggle() == FLASH_TOGGLE_FAIL)

{

F Step 8: Return to Read mode (if an error occurred) */
FlashReadReset();
return FLASH_PROGRAM_FAIL;

}

F* Step 9: Update pointers */
uloff++;
ucArrayPointer++;

}

retumn FLASH_SUCCESS;
}

1/

Function: static int FlashDataToggle(void)

Arguments: none

Return Value: The function returns FLASH_SUCCESS if the Program/Erase Controller
is successful or FLASH_TOGGLE_FAIL if there is a problem.

Description: The function is used to monitor the Program/Erase Controller during
erase or program operations. It returns when the ProgranvErase Controller has
completed. In the M29F040B Data Sheet or the M29W040B Data Sheet the Data
Toggle Flow Chart shows the operation of the function.

573

17/23

AN1191 - APPLICATION NOTE

Pseudo Code:
Sep 1. Read DB (into a byte)
Sep 2. Read DB and DB (into another byte)
Sep 3: If DP did not toggl e between the two reads then return FLASH SUCCESS
Sep 4. Hseif D is zero then operation is not yet conplete, goto 1
Sep 5. Hse (DB !'=0), read DPB again
Sep 6: If DP did not toggl e between the last two reads then return
FLASH SUCCESS
Sep 7. Hse return FLASH TOGAE FA L

***********************************;}**/

static int HashDat aToggl e(void)

{
unsi gned char ucl, uc2; /* hold val ues read fromany address of fset within
the Hash Mernory */
while(1) /* TineQut!: If, for sone reason, the hardware fails then this
loop nay not exit. WUse a timer function to inplenent a tineout
fromthe loop. */
{
/* Sep 1. Read DB (into a byte) */
ucl = F ashRead(ANY_ADCR); /* Read D fromthe Hash (any address) */
/* Step 22 Read D@ and DB (into another byte) */
uc2 = F ashRead(ANY_ADCR); /* Read D@ and DB fromthe Fl ash (any
address) */
/* Sep 3. If DPB did not toggl e between the two reads then return
FLASH SUCCESS */
i f((ucl&0x40) == (uc2&0x40)) /* DB == NO Toggl e */
return FLASH SUCCESS;
/* Step 4. Hse if DB is zero then operation is not yet conplete */
i f((uc2&80x20) == 0x00)
cont i nue;
/* Sep 5: Hse (DB == 1), read DF again */
ucl = F ashRead(ANY_ADCR); /* Read D fromthe Hash (any address) */
/* Step 6: If DPB did not toggl e between the last two reads then
return FLASH SUCCESS */
i f((uc280x40) == (ucl&Dx40)) /* == NO Toggl e */
return FLASH SUCCESS;
/* Step 7. Hse return FLASH TOGA.E FA L */
el se /* == Toggl e here neans fail */
return FLASH TOZAE FA L;
} /* end of while | oop */
}

#i fndef | LLUSTRATI ON_ O\LY

/***

Functi on: static int FlashDataPol | (unsigned |ong ul O f,
unsi gned char ucval)
Argunent s: ul ff should hold a valid offset to be polled. For programm ng

this will be the offset of the byte bei ng progranmed. For erasing this can
be any offset in the bl ock(s) being erased.

ucVal shoul d hol d the val ue bei ng programmed. A val ue of FFh shoul d be used
when erasi ng.

J

18/23

AN1191 - APPLICATION NOTE

Return Val ue: The function returns FLASH SUCCESS if the Prograni Erase Control |l er
is successful or FLASH POLL FAIL if there is a probl em

Description: The function is used to nonitor the Programi Erase Control |l er during
erase or programoperations. It returns when the PrograniErase Controll er has
compl eted. In the MROFO40B Data Sheet or the M2OW4O0B Data Sheet the Data
Polling How Chart shows the operation of the function.

Note: this library does not use the Data Polling How Chart to assess the
correct operation of ProgramiErase Gontroller, but uses the Data Toggl e H ow
Chart instead. The FlashDataPol | () function is only provided here as an
illustration of the Data Polling Flow Chart in the Data Sheet.

The code uses the function H ashDat aToggl e() i nstead.

Pseudo Code:
Sep 1. Read DB and D¥ (into a byte)
Sep 2. If D/ is the sane as ucVal (bit 7) then return FLASH SUCCESS
Sep 3: Hseif Dp is zero then operation is not yet conplete, goto 1
Sep 4. Hse (DB !'=0), Read DX
Sep 5. If DZ is nowthe same as ucVal (bit 7) then return FLASH SUCCESS
Sep 6: Hse return FLASH PALL_FAI L

*********************************;}**/

static int HashDataPol |l (unsigned long ul &f, unsigned char ucval)
{

unsi gned char uc; /* hol ds val ue read fromvalid address */

while(1) /* TineQut!: If, for sone reason, the hardware fails then this
loop may not exit. UWse a tiner function to inplement a tineout
fromthe loop. */

/* Step 1. Read D and DY (into a byte) */
uc = HashRead(ul O f); /* Read Db, DQ¥ at valid addr */

/* Step 2. If D¥ is the same as ucVal (bit 7) then return FLASH SUCCESS */
i f((uc&x80) == (ucVal &x80)) [* DY == DATA */
return FLASH SUCCESS;

/* Step 3: Hse if DB is zero then operation is not yet conplete */
i f((uc&x20) == 0x00)
cont i nue;

/* Step 40 Hse (DB = 1) */
uc = HashRead(ul O f); /* Read DQ¥ at valid addr */

/* Sep 5. If D is nowthe sane as ucVal (bit 7) then
return FLASH SUCCESS */
i f((uc&x80) == (ucVal &x80)) [* DY == DATA */
return FLASH SUCCESS;

/* Step 6: Hse return FLASH PQLL FAIL */
el se /* DQ¥