uPD4264800, 4265800

8,388,608 x 8-Bit **Dynamic CMOS RAM**

NEC NEC Electronics Inc.

Preliminary

September 1993

Description

The μ PD4264800 and μ PD4265800 are 64M-bit dynamic RAMs organized as 8,388,608 words by 8 bits. They are designed to operate from a single +3.3-volt power supply and have an optional fast-page mode.

Advanced polycide technology minimizes silicon areas and provides high storage cell capacity, high performance, and high reliability. A single-transistor dynamic storage cell and advanced CMOS circuitry throughout ensure minimum power dissipation, while an on-chip circuit internally generates the negative voltage substrate bias—automatically and transparently.

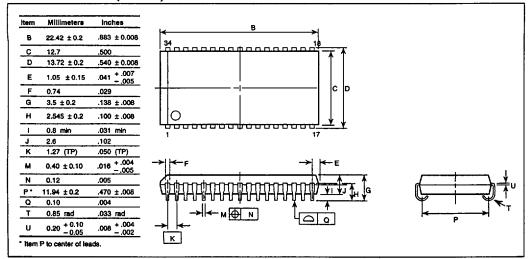
The three-state outputs are controlled by CAS independent of RAS. After a valid read or read-modify-write cycle, data is held on the outputs by maintaining CAS low. Data outputs return to high impedance when CAS goes high. Fast-page read and write cycles can be executed by cycling CAS.

Refreshing may be accomplished by a CAS before RAS cycle that internally generates the refresh address. Refreshing can also be accomplished by RAS-only refresh cycles or by normal read or write cycles during a 64-ms refresh period.

Two versions of the 8M x 8-bit DRAM are available. The μ PD4264800 uses 8192 combinations of A₀ - A₁₂ for RAS-only refreshing and 4096 address combinations of A₀ - A₁₁ to perform CAS before RAS and hidden refreshing of the memory during a 64-ms period. The μ PD4265800 uses 4096 address combinations of A₀ -A₁₁ during a 64-ms period for all refresh modes.

The μ PD4264800 and μ PD4265800 are available in a 34-pin plastic SOJ and 34-pin plastic TSOP.

Features


- 8,388,608 x 8-bit organization
- Single +3.3-volt power supply
- Fast-page option
- Low power dissipation: 1.80 mW (max) standby
- CAS before RAS refresh cycles
- Multiplexed address inputs
- On-chip substrate bias generator
- TTL-compatible inputs and outputs
- Nonlatched, three-state outputs
- Low input capacitance
- 34-pin plastic SOJ and TSOP packaging

Ordering Information

Part Number	Access Time (max)	R/W Cycle (max)	Fast-Page Cycle (max)	Active Power (max)	Package
μPD4264800LG-A50	50 ns	90 ns	35 ns	378 mW	34-pin plastic SOJ
-A60	60 ns	110 ns	40 ns	342 mW	
-A70	70 ns	130 ns	45 ns	306 mW	<u>.</u>
-A80	80 ns	150 ns	50 ns	270 mW	-
μPD4264800G7-A50	50 ns	90 ns	35 ns	378 mW	34-pin plastic TSOP
-A60	60 ns	110 ns	40 ns	342 mW	•
-A70	70 ns	130 ns	45 ns	306 mW	-
-A80	80 ns	150 ns	50 ns	270 mW	-
μPD4265800LG-A50	50 ns	90 ns	35 ns	486 mW	34-pin plastic SOJ
-A60	60 ns	110 ns	. 40 ns	414 mW	_
-A70	70 ns	130 ns	45 ns	378 mW	-
-A80	80 ns	150 ns	50 ns	342 mW	-
μPD4265800G7-A50	50 ns	90 ns	35 ns	486 mW	34-pin plastic TSOP
-A60	60 ns	110 ns	40 ns	414 mW	
-A70	70 ns	130 ns	45 ns	378 mW	_
-A80	80 ns	150 ns	50 ns	342 mW	_

μPD4264800, 4265800

34-Pin Plastic SOJ (500-mil)

SOJ or TSOP 34 □ V_{SS} 33 □ VO₈ VO1 □ 32 107 vo₂ □ 31 1 106 VO3 □ 104 🗖 5 30 1 105 NC G 29 🗖 V_{SS} VCC C 28 CAS 27 D OE RAS 🗆 9 26 1 NC NC 🗖 10 25 A12 A₀ \square 11 24 □ A11 23 A A 10 A₁ □ 12 A2 4 13 22 Ag A3 🗖 14 21 A8 A4 🗖 15 20 A 7 19 🗆 A₆ A5 🗆 16 V₀₀ □ 17 18 🗆 V_{SS}

A₀ to A₁₁(A₁₂) Address inputs 101 to 1/08 Data inputs/outputs RAS Row address strobe CAS Column address strobe WE Write enable ᅂ Output enable Vcc Supply voltage **V**SS Ground NC No connection

34-Pin Plastic TSOP (500 mil)

Item	Millimeters	Inches	34 Enlarged detail of lead end
A	22.66 max	.893 max	
В	120 max	.048 max	
С	1.27 (TP)	.050 (TP)	
D	0.40 ± 0.10	.016 ± .004	1 1 1
Ε	0.05 ± 0.05	.002 ± .002	E 5'45'
F	1.10 max	.044 max	
G	0.97	.038	
Н	14.3 ± 0.2	.563 ± 0.008	
ı	12.7 ± 0.1	.500 ± 0.004	1 17 H - H
J	0.8 ± 0.2	.031 ± .008	
K	0.125 + 0.10 - 0.05	.005 + .004 002	, J
L	0.5 ± 0.1	.020 + .004 005	
M	0.21	.009	
N	0.10	.004	→ <u>-</u> → +-C → +-
			□ □ M

NEC NEC Electronics Inc.

CORPORATE HEADQUARTERS

475 Ellis Street P.O. Box 7241 Mountain View, CA 94039 TEL 415-960-6000

For literature, call toll-free 7 a.m. to 6 p.m. Pacific time: 1-800-366-9782

or FAX your request to: 1-800-729-9288

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics (NECEL). The information in this document is subject to change without notice. Devices sold by NECEL are covered by the warranty and patent indemnification provisions appearing in NECEL Terms and Conditions of Sale only. NECEL makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL makes no warranty of merchant ability or fitness for any purpose. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitment to update or to keep current. Information contained in this document. The devices listed in this document are not sultable for use in applications such as, but not limited to, aircraft, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices in these applications or they intend to use "standard" quality grade NEC devices in applications not intended by NECEL, please contact our sales people in advance. "Standard" quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. "Special" quality grade devices are recommended for automotive and transportation equipment, traffic control systems, anti-disaster and anti-crime systems, etc.