1 INTRODUCTIONTOTHECY525 1

HISTORY OF STEPPER CONTROL
Boxes to Boards to Chips

The first stepper motor controllers consisted of bulky boxes
controlled by switches and buttons. Step rates were set in
hardware, as were the acceleration and deceleration
characteristics. Switches were used to set the number of steps
and direction of stepping. Buttons were used to actually start
the motion. These controllers were obviously meant for manual
operation. They were very expensive, very heavy, and very large
when compared to the motors to be controlled.

In the next stage of controller design, the functions of the
controller boxes were designed onto single PC boards. These
significantly reduced the cost and packaging requirements, but
did not increase the capability of the controller. One important
benefit of this design was the ability to simulate switch inputs
electronically, allowing another machine to command the
controller.

Figure 1.1 Controller evolution, boxes to boards to chips.

About this time the low cost computer came into fashion. It
became a natural source of input signals to run the stepper motor
controller, providing a pulse train to the translator module. If
the loading of the motor was such that acceleration and
deceleration was required, then the computer provided the timing
of the pulses to affect the acceleration. If, further, the
position control required complex motions that were relative to
either the current location or to some absolute coordinate
system, then the computer also provided these calculations. If
the sequence of motions was to be synchronized with other
external events, the computer provided such synchronization.

At this point, the control of motion became a non-trivial
problem, and the programming of a computer to provide this
control represented a major design effort. If not one, but many,
motors were to be controlled, the problem became even worse, and
quickly exceeded the capabilities of the low cost computer.

In 1979 Cybernetic Micro Systems introduced. the first intelligent
single chip Stepper Motor Controller — the CYs500

In the early days of microprocessors, it was generally true that
motor experts were not computer experts, and vice versa. Thus
the primary rationale behind the CY500 was to provide an
interface chip and to say to both sets of experts:

"Hook your computer here, and your stepper drivers here."

Figure 1.2 The CY500 was the first single chip controller that
provided all the functions necessary for high level
control of stepper motors (introduced 1979).

In addition to a simple interface, the CY500 also offered high
level functions designed for precision positioning, specifically,
the ability to move a specified number of steps (relative move)
and also the ability to move to a specified location (absolute
move). Thus the user could tell the CYS500 to:

"take n steps" (0 <n < 64K)

or
’ "go to positionP" (0 < P < 64K)

In order to allow easy use with high level components (keyboards
& displays) and high level languages like BASIC, the CY500
accepted ASCII commands and ASCII-decimal values. The commands
consist of a single alphabetic character followed by a decimal
number if applicable. For example, the command to step to
position 36003 is sent to the CY500 as

P 36003
where) is the ASCII carriage return character, e gDh.
For convenient interface to machine language or binary arithmetic

systems, the CY500 also accepts binary values for parameters if
the ASCII/Bin pin is held low.

Program Storage on Chip

As powerful as the high level commands are, it is always possible
to achieve even more powerful control via a sequence of commands
with conditional branching. In order to accomodate such a
sequence, the CY5xx Stepper Control chips provide "on chip"
program storage, capable of storing from ten to fifty
instructions, depending upon the chip and the instructions. This
allows the user to write programs that perform tests and react
appropriately.

Conditional Tests

Because of the nature of most stepper applications, emphasis has
been placed on testing external events (as opposed to testing the
results of internal calculations, as is done in general purpose
computers.) Thus the CY¥5xx devices can:

1. Loop til an external event occurs
2. Wait for an external event to occur.
3. Loop for a specified count of events

In addition to sensing external signals, the CY5xx controllers
also generate both specific and general purpose control signals
to be used by external subsystems. The ability to sense, signal,
and synchronize, provides a very powerful subsystem "building
block® for systems involving motion.

Intelligent Motion Control

Although stepper motors may operate with considerable angular
velocity or step rate, most of them must begin (and end) stepping
at a low step rate. Thus a high level controller should provide
acceleration and deceleration, and this should be generally
transparent to the user.

. By "transparent to the user™ we mean that the controller should
determine when to stop accelerating and also when to begin
decelerating to stop at the desired position. The CY500 allows a
"slope" parameter to specify the acceleration.

______ MAXIMUM RATE
STEP

RATE ACCELERATION

f e STARTING RATE
l } POSITION

-

STARY FINISH OR TIME
36003

Figure 1.3 Illustrating a typical move for a stepper motor when a
position command is given to the CY500.

Finally almost all stepper motors are used as system elements and
it is often desirable to synchronize instructions with input and
output lines for easy TTL interfacing.

As the first intelligent stepper motor controller, the CY500 was
well received by customers and won a "Product of the Year" award
from Electronic Products Magazine in 1980. However, as is the
case with most first products, the CY500 was not perfect.
Although it had been designed with precision control of
positioning in mind, many users wanted faster stepping. The
CY500 would step at 3360 steps/sec.

Thus in 1981, Cybernetics introduced the first second-generation
stepper motor controller, the CY512. The CY¥512 was 90% pin- and
instruction-compatible with the CY500 but offered new features:

o First, the CY¥512 was faster than the CY500. With the use of
feedback, the CY¥512 would step almost 8000 steps/sec.
Without feedback, the CY¥512 would step approximately 5000
steps/sec.

® Second, the CY¥512 could be queried. For example, the user
could ask the CY512 for its position and receive the answer
as either a 1l6-bit binary number or a 5 digit decimal
position. The user could also examine the CY512 parameters
such as slope, rate, etc.

® Third, the CY512 could determine the direction (CW/CCW) it
must move to go from its current (arbitrary) position to a
specified target position, unlike the CY500 which must be
"pointed"” in the right direction before the position command
was executed. Also unlike the CY¥500, the CY512 exhibits its
internal direction on an external pin.

® Fourth, a "Loop count" instruction was implemented in the
CY512 and its I/0 structure generalized somewhat.

These changes were welcomed and most users select the higher cost
CY512 over the CY500 because it offers better value.

However...

As proud as we were of the CY512 and as happy as most users were,
we still had numerous customers who wanted:

1. Still faster rates, up to 10K steps/sec.
2. More linear ramp (related to faster)

3. Unlimited stepping

4. More complex rate curves.

5. Miscellaneous other requests.

Each of these will be discussed briefly:

1.

4.

Faster....with the emphasis on productivity, many people need
not only intelligent, easy-~to-control motion, but FAST
motion. The realistic upper limit of the CY512 was 5K
steps/sec, while many motors will go 10K steps/sec (many will
not!).

More linear RAMP....This feature really relates to usable
speed. The CY512 would step at up to 8000 steps/sec, but
most motors would not accelerate fast enough to keep up with
the CY512. The reason for this is the non-linear
acceleration curve of the CY512.

SPEED

Cg

€Y512 PR

CELERAT! 4
ACCELERATION ,‘_ IDEAL
Pie ACCELERATION

= TIME

Unlimited stepping......64K steps of travel is not enough for
some people, so this 1limit in the C¥512 forced such
applications to take multiple moves with automatic
acceleration for each move.

1DEAL
SPEED e e e _
/ V:ysmw \
+ - DISTANCE.
4K 128K 140K
TARGET

As applications become more sophisticated, many people need
velocity curves of the type shown below:

V3 ---

NinTiaL - -----

Finally, there were numerous miscellaneous requests such as
the ability to turn off all phases without altering any
internal parameters, etc.

The response to this market feedback is described next:

THE CY525 INTELLIGENT RAMPING
STEPPER MOTOR CONTROLLER

The Third Generation Stepper Motor Controller

First - it is FASTER - a true 10000 steps/sec (@11.37MHz)

Second - it is LINEAR (that's how we got it to go faster!)

CY525 ACCELERATION
IDEAL ACCELERATION

Third - You can change rates-on-the-fly!

Y

Four th

You can take an unlimited number of steps - run FOREVER!

Fifth - You can read out (binary) position-on-the-fly, that is,
you can ask the CY525 where it is, while it's stepping!

Sixth, Seventh, Eighth, etc.-Of course we allow you to turn the
phases off (with or without a pulse) and have cleaned up
other features (to allow use with slow BASIC
interpreters whose tardy write strobes once terminated
CY512 stepping). And we now let you use labels in a
program so you won't have to count bytes for jumping,
looping, etc.

Last - from R =3 to R = 40, the rates are specified in units
of 100 steps/sec. Thus to go 300 steps/sec (811MH2) the
user specifies R = 3; to go 2900 steps/sec, the user
specifies R = 29 etc. Above R=40 (4000 steps/sec) the
rates change by approximately 60 steps/sec per rate
increment.

As the final feature, the CY525 can be plugged into your present
CY¥512 socket and it will work. Of course to take full advantage
of the "on-the-fly" features you will need two latches, etc., but
if you just want to go faster and smoother, just pull out the
CY512 and slip in the CY525! (note: see ABORT changes.. page 63).

That's the brief history of single chip intelligent motor control
from the CY500 in 1979 to the CY¥512 in 1981 and the CY¥525 in
1984. Of course we have been busy offering a variety of support
chips and circuits such as the CY512/Kit prototyping board, the
CY¥B-002 prototyping kit capable of controlling two CY525s, and
the CYB232 board that allows up to 255 stepper motors to be
controlled over one serial RS232 line.

AND we have software for the IBM-PC and XT!

10

Two Primary Modes: Independent vs Closely Coupled

The CY525 can be operated in two primary modes (although the
modes can be mixed.) The first is the "independent"” mode and is
identical to the CY500 and CY512 operation. In this mode the
parameters are specified and then a motion command is issued or a
program of instructions is executed. The interaction of the
controller with the master computer is typically limited to
signaling either:

1. the motion is complete, or
2. the program has terminated.

This high level control relieves the master computer of worrying
about the details of the motion or motion sequence.

The CY525 offers a second, "closely coupled” mode of operation
that provides extreme flexibility at the expense of some
attention on the part of the master computer. This mode provides
the ability to change the step rate "on the fly" and to read the
current position "on the fly", i.e., while the motor is stepping.
An example of the motion that is possible in this mode is shown
in the figure below.

10000 +
STEP/SEC

INITIAL [77

300 . ———
STEP/SEC SToP START FINISH
A 1 1

UNLIMITED # OF STEPS

Figure 1.4 Example of complex motion possible in "closely
coupled"” mode of operation.

NOTE: Although it is possible to mix the two primary modes of
operation, this should be done with caution. The two modes are
designed to be consistent and coherent as separate modes and
there are some inconsistencies that result when mixing the modes.
These do not prevent useful mixtures, but require understanding
of the differences for successful execution. For example,
attention should be given to both the SLEW line and the ABORT
line when mixing the modes.

11

/o REQ
READY

o
DATA BuUS

ABORT
RUN
PROG/LVE
SLEW
WAIT

a.)

DOWNILE

_ibselect
STEP INAIBIT

b.}

Figure 1.5 The CY525 can operate in two primary modes:

a.) "Independent” mode in which commands and programs
execute in the CY525 independently of the master
computer.

b.) "Closely Coupled"” mode in which the master computer
closely interacts with the CY525 while it is executing
commands and programs.

c.) These modes can be mixed, with care.

ASCII Mode Allows Simple Prototyping

The CY525 is an ASCII-programmable, peripheral controller chip
designed to control stepper motors using an instruction sequence
that may be stored internally in a program buffer. This feature
allows the user to program the device with an ASCII keyboard and
vastly simplifies prototype development and experimentation. When
the user decides that the control sequence is correct, the ASCII
keyboard is replaced by a computer output port, and the motor
can be brought on-line. Of course, the computer can be used
initially in those systems in which keyboard programming is
impractical, but most applications can usually benefit from the
immediacy of the keyboard during the development phase. In this
mode the user simply types a command on the keyboard and the
controller takes the appropriate action. In the Command Mode, the
controller simply executes the command. In the Programming Mode,
the command is stored in sequence in the on-chip program buffer
for later execution.

12

Stored Program Peripheral Controller

The Cybernetic Micro Systems CY525 Intelligent Ramping Stepper
Motor Controller offers the user stored program capability. This
feature significantly increases the power of the device and, as a
consequence, decreases the amount of host time and software
required to perform a given task. Stored program devices operate
in three basic modes:

Command execution mode

The CY525 executes commands as
they are received.

Program entry mode

The CY525 stores commands in an

internal program buffer for
later execution.

Program execution mode

The CY525 executes the commands
that were previously stored in
the program buffer.

Thus, in addition to the Command Execution mode common to all
peripheral controllers, the stored program controller can be
placed in a Program Entry mode in which the sequence of commands
is entered and stored in the program buffer, and then the device
can be placed in the Program Execution mode in which stored
sequences of commands are executed.

In many applications the user will find that the CY¥525 can
function as a stand-alone device, completely independent of the
host processor, except for program loading. In most of these
applications, it may be possible to generate custom devices that
load the desired program upon power-up and are triggered by
external hardware. The user can then employ these custom
controllers in stand-alone applications with no host. See PROM
Stand-alone example in Section 10.

13

ARCHITECTURE OF THE CY525
STEPPER CONTROLLER

The CY525 architecture

may be partitioned BIDIRECTIONAL T0 STEPPER MOTOR
into several func- PARALLEL DRIVE TRANSISTORS

r DATA BUS
tional subsystems:

] g @ OUTPUT REGISTER]
2. Output data ' T ——
subsystem q 16-BIT STEP COUNTER]
3. DProgram para- __16-BIT POSITION REGISTER
meter storage 0T =) T)
4. Mode flags and e

1. Input data
subsystem

pins
&
5. Program storage MODE FLAGS
buffer, 60 bytes . PROGRAM BUFFER
BYTE @
6. Instruction PROGRAM POINTER BYTE 1
selection, BYTE 2
decoding, . i .
and congrol '%g%ﬁng" :
mechanisms. . & CONTROL :
SUBSYSTEM BYTE 59

7. Position
Register

Figure 1.6 Schematic diagram of the
architecture of the CY525 Intelligent
Ramping Stepper Motor Controller.

Input and Output Data Subsystems

The input data subsystem accepts commands and the output data
subsystem holds the output control signals to the stepper drive
circuitry and includes the associated direction and pulse timing
lines.

Program Parameter Storage

The program parameter storage subsystem is used to store the step
rate parameters, ramp rate parameter, and to maintain a 16-bit
position register. The position register is incremented (or
decremented) when stepping in the clockwise (or CCW) direction.
The position register is used when absolute position commands are
specified. The 16-bit step counter is used when relative
commands are employed. The contents of the position register
change with every step, while the step counter register contents
remain unchanged until a specific command is used to change them.

14

Mode Flags and Pins

The mode flags and mode select pins are used during command
execution to perform the appropriate action or to interpret data
or input signals correctly.

Program Storage Buffer

The CY525 contains a program buffer that allows the user to store
a sequence of instructions that can be executed upon command.
This provides all of the benefits of stored program execution
that have made computers such powerful tools.

Instruction Decoding and Control

This subsystem performs the actual execution of commands.

Position Register

The CY525 contains a l6-bit position register that can be read to
determine the current location. The CY525 will accept relative
and absolute position commands; however, the position register
always indicates absolute position. In the CY525, this register
can be read while the CY525 is stepping.

Absolute vs Relative Position

The G command operates in the relative position mode, in which
total travel is specified relative to the current position via
the Number (of steps) command, N n), where 0 < n < 65535, 1In
this mode an internal counter is decremented for each step and
stepping continues until the count reaches zero (or another Halt
condition is detected). If the Position mode command, P p}, is
received, the target position "p" is interpreted as absolute
position with respect to the zero location declared by the Athome
command. The CY525 calculates the stepping direction and the
number of steps to take to reach the specified target position.

1. The relative mode is selected by the G command.
2. The absolute mode is selected by the P command.

When an actual stepping operation is in progress, both a number
of steps value and a target position are used to internally
execute the step command. The current position register is
updated in both the relative and absolute modes, so motions may
be mixed between the modes. In relative mode, the target
position will be calculated, and in absolute mode, the number of
steps to take will be calculated. After that, the two modes use
the same internal stepping routines. Acceleration and
deceleration work in both stepping modes, with the CY¥525 also
calculating the position at which to start deceleration in order
to return to the starting step rate when the motion is completed.

15

2 OVERVIEWOFPINFUNCTIONS 2

COMMUNICATION WITH CY525

Commands can be issued to the CY525 using a parallel data format.
In parallel operation, complete handshaking operation occurs via
the use of a Busy/Ready line on the CY525, and the I/0 Request
strobe line from the host. The handshake protocol is shown below.

Data to CY525 Data Bus VALID DATA
from Master from Master ON DATA BUS
Master Write I/0 Request

Signal to C¥525 from Master

\
Din to Macter Erew Ced _P_\—‘LJ_I_’ -
pin to Master from CY525

Figure 2.1 Handshaking protocol for CY525 parallel input.

KEYBOARD PROGRAMMABLE DEVICE

The CY525 Stepper Motor Controller offers Hi-Level Language
programming with an ASCII keyboard. This design allows the user
maximum utility via the closest possible coupling and facilitates
interactive prototype development and debugging. Note that the
stored program capability makes it possible in many cases to
perfect the operation of the stepper motor completely decoupled
from the host computer. 1In such cases, the host processor is
required to do little more than load the programs at appropriate
times. Of particular importance in many applications is the
dynamic stability of the system. By programming a range of test
conditions through the keyboard, the designer may exercise the
system over broad ranges and thus characterize the system
dynamically. Of course, any designer with access to an easy-to-
use, interactive host computer can achieve everything that the
keyboard user can, and more. Lacking such systems, the designer
will appreciate the extreme power of keyboard programming during
prototyping phases, thus postponing until final systems
integration the slower, costlier, host computer programming

associated with all host-controlled controller devices.
+SV

SPRAGUE

ULN 20688 4 PHASE

steeren f)
MOTOR

ASCI-DECIMAL DATA BUS

STEPPER
MOTOR
CONTROLLER

0

{OR EQUIV) 0

STROBE

DRIVER VOLTAGE

Figure 2.2 Simplest Prototype Development System.

16

SYNCHRONIZATION MECHANISMS

Most stepper motors are employed as parts of functional systems.
These systems often must synchronize the behavior of the various
subsystems to each other or to a real-world occurrence, such as
an operator input. The CY¥525 has been designed with both signal
emitters and detectors to allow easy synchronization of the
device to neighboring (interacting) subsystems.

The motor interface for the CY525 is very simple, consisting of
six output signals. Since the controller is designed for four
phase motors, there is a signal line for each phase. The
patterns necessary to operate the motor, including sequencing for
proper direction, appear on the phase outputs. A simple L/R type
driving circuit may be connected directly to the phase outputs,
so the motor can be run from the controller signals.
Alternatively, the user could drive a more sophisticated pulse-
to-step translator, using the CY525 Pulse and Direction outputs.
The Pulse line gives one pulse at the beginning of each step,
while the Direction line always indicates the current stepping
direction.

- DIRECTION ——-l..

Figure 2.3 Motor Interface

The computer or data interface of the CY525 is also very simple.
Commands and parameters are passed from the command source to the
CY¥525 on an eight bit, bidirectional data bus. Direction of data
is determined by the level on the I/0 Select line, allowing the
C¥525 to not only receive commands, but also to be interrogated
for the current values of its parameters and contents of the
program buffer. Data transfer between the command source and the
CY¥525 1is controlled by a standard two-line handshake protocol.
The master processor waits for the CY525 Busy/Ready line to go
high, indicating that the CY525 is ready for the next command
byte. Data may then be placed on the bus, and data available is
indicated by a high-to-low transition of I/0O Request. Data
should remain stable until the CY525 indicates data accepted by a
high-to-low transition of the Busy/Ready line. During this busy
time, the CY525 is processing the character just received. The
master processor should then raise I/0O Request and wait until the
CY¥525 is ready for the next data byte. Data transfers from the
CY525 to the master processor are handled in a similar way, with
the master requesting the next byte using I/0 Request, and the

17

CY525 indicating data available using Busy/Ready. The simplicity
of the data transfer handshake, combined with the ASCII command
structure of the CY525, allows the commanding device to be any of
a number of things, including a microprocessor or other computer,
a keyboard for manual command entry, or a ROM for fixed, stand-
alone applications. The keyboard is especially useful during
prototype development or system characterization.

VALID DATA

1/0 SEL DATA BUS __ON DATA BUS
1/0 REQ

ifoRea [
BUSY/RDY \

o J L/
— —

DB I [BUSY/RDY I/ \,l I

Figure 2.4 Data interface and handshake waveform

Since most stepper motors are parts of functional systens,
requiring that various parts of the system stay synchronized with
each other, the CY¥525 has been designed with a number of
secondary input and output control lines. These signals may be
used to modify and control the stepping behavior of the device,
or indicate certain conditions within the controller. Two inputs
control the stepping behavior directly. While Step Inhibit is
high, the controller will not step. Stepping is resumed when the
signal goes low again. This signal may be used to halt a motion
under emergency conditions, or to slow the step rate if the motor
cannot keep up. The Abort signal is used to cause a deceleration
to the starting rate (Abort), at which point the motion may be
stopped. Two other inputs modify the way a program is executed.
The Wait line is used to suspend a program until the signal level
on that line is in a certain state. Commands allow the program
to wait for either a high level or a low level, making it
possible to synchronize on either transition of the line. The
Dowhile input is used with the conditional loop command. While
the line is low, the CY¥Y525 will loop back to the specified program
location, repeating the program section over and over. When the
line goes high, the controller will continue with the rest of the
program.

SLEW

STEP INHIBIT
MOTION COMPLETE

ABORT
RUN
WAIT
PROGRAMMABLE QUTPUT
DOWHILE

PROG/LIVE

Figure 2.5 Secondary control inputs and outputs

18

The CY525 also provides a number of output signals which may be
used by other parts of the system. While stepping, the Slew line
indicates that the CY525 has reached the maximum programmed step
rate, and is not accelerating or decelerating. When the CY525
has stepped for the number of steps specified, the Motion
Complete signal indicates the end of the current motion. Run is
used to indicate that a program is executing. 1In addition, the
CY525 provides an uncommitted output, Programmable Output, which
the user may apply as needed. The level on this output is
controlled by two commands, one for a high output, and the other
for a low output.

CY525 PINOUT DIAGRAM

The CY525 pinout diagram is shown below, followed by the table of
pin definitions.

170 REQUEST 1 40 fe— +5VOLTS
YTAL 2 39 fa—T/0 SELECT
o 3 cv525 38 f=— WAIT (PROGRAM)
RESET ‘4 37 |—w WOTION COMPLETE
UNUSED 5 36 f— ASClI/BTHARY
ABORT 6 35 }—» PULSE
GND 1 34 | PROGRAMMABLE OUTPUT
TNSTROBE 8 33— DIRECTION
UNUSED 19 32 |—» RUN (INT REQ 2)
OUTSTROBE d 10 31 fe—» PROG/CIVE
CLOCK /15 g 1 30 f— STEP INHIBIT
0B, g 12 29 —» STEW
08, 13 28 fee— DOWHILE
08, 14 21 |—» BUSY/ROY
08,] 15 26 fe— +5YOLTS
0B, ~=—FiRENN 17 %4 —» &,
D8, ~—FBNN 18 MOTOR 23— 9, ﬂ,‘f{{“
0, ~fl 13 CONTROLLER) L _ 4 ¢ ogive
GND T 20 21 |—» &, | SIGNALS

Figure 2.6 CY525 Pin definition

19

e —————

CY525 PIN DESCRIPTION

l1 (input)

,{ TABLE 1

k DESIGNATION PIN#
vCC 40
VDD 26
vSS 7,20
Xtall-Xtal2 2,3
(input)
Clk/15 11
(output)
Reset 4
(input)
DB@-DB7 12-19
I/0 Select 39
I/0 Request 1
(input)
Busy/Ready 27
(output)
Instrobe 8
(output) i
Outstrobe 10
{output)
ASCII/Binary 36

FUNCTION

+5 volt power supply.
+5 volts.

circuit GND potential.

inputs for crystal or external clock
(not TTL). See Clock Circuits section.

This output represents the crystal
frequency divided by fifteen. The pulse
width is at least 300 nanoseconds.

initializes controller to power-up
state.

bidirectional parallel data bus.

indicates direction of data on the data
(input) bus. Low = input to CY525. Hi
= output from CY¥525, which can only be
generated if CY525 has received "V"
command. Also used to read position
while stepping, i.e., on the fly.

strobe to initiate command input when
writing to CY¥525. 1Initiate data output
when reading from CY525. Interpretation
of pin 1 is a function of I/0O Select
(pin 39). May be used while stepping to
change the step rate on the fly.

handshake line for command data input.
Host must wait until Ready state is
indicated by a high level before
transferring command or data to CY525.
If Run (pin 32) is low, the Prog line
(pin 31) must be used to enter Live
commands while a program is executing.

occurs during data input. The data on
the bus must be valid until the
trailing edge of Instrobe occurs.

Trailing edge indicates valid data
output by CY¥525 on data bus.

selects ASCII-decimal or binary mode of
operation.,

20

DESIGNATION

Prog/Live
(output/input)

Run (Int Req 2)
(Program Complete)
(output)

Motion Complete
(Int Req 1) (output)

Wait
(input)

Dowhile
(input)

Direction
(output)

Pulse (output)

Slew
(output)

Abort
(input)

Step Inhibit (input) 30
Programmable Output 34
$1-94 (output) 21-24

Unused 5,9,25

CY525 PIN DESCRIPTION

(continued)

FUNCTION

indicates program entry mode. Commands
are entered and saved, but not
executed, while pin 31 is low. May be
used as input to enable Live commands

to be executed while a program runs.

indicates program execution mode.
Commands cannot be entered while
program is executing (pin 32 = low)
unless the Prog line (pin 31) is used.

signal to interrupt host at end of
stepping or when position is available.

program Waits for this pin to go LOW
when "Until" command is executed, and
waits for a High signal when "wWait"
command is executed.

is tested by "T" command. Program will
branch to specified target if low,
else it will execute next instruction.

indicates current stepping direction
and is affected by +, -, and"p"
commands (Hi = CW, low = CCW).

low when step begins, hi when step ends.?

goes low when steady stepping rate has
been achieved. Will return high when
ramping begins.

Low during stepping causes the CY525 to
begin ramping down to the initial step
rate. If held low, the CY525 Aborts
stepping at the bottom of the ramp. If
the Abort line is returned high during
the downramp, the CY525 ramps down and
continues stepping to target position
at the initial step rate.

inhibits stepping while held high.
user programmable output pin.
stepper drive signals.

must remain disconnected.

21

CY525 MOTION STATUS SIGNALS

The CY525 provides three status signals that provide information
about the motion during the execution of instructions that cause
the motor to move. These three status lines are:

1. BUSY/READY (pin 27)

2. SLEW (pin 29)

3. MOTION COMPLETE (pin 37)

Each of these will be discussed separately.

Busy/Ready

When a motion command . { P or G) is issued to the CY525 the
BUSY/READY line goes low to acknowledge the terminating carriage
return character and remains low throughout the motion, returning
high at the end of the motion. When a P or G is executed while a
progam is running, the BUSY/READY line goes low prior to the
first step and remains low until the last step is taken.

Slew

The SLEW line (pin 29) indicates constant velocity motion when it
is low. If the CY525 requires acceleration (R not equal to F)
the SLEW line is initially high, going low when the specified
step rate is reached. When the CY525 begins decelerating at the
end of travel, the SLEW line returns high. In the normal mode of
operation the SLEW signal is low only when the CY525 is stepping
at the maximum specified rate. In the continuous step or HALT
mode of operation { initiated via the H command) the SLEW signal
is low when the specified velocity is reached and goes high every
time a new velocity is specified, remaining high while the device
accelerated or decelerates to the new velocity, then returning
low until another change in velocity is specified (on the fly).

Motion Complete

The MOTION COMPLETE signal (pin 37) indicates that the last step
of the current motion has occurred. This signal may be used to
interrupt the master computer. (Note that MOTION COMPLETE also
goes low for a few microseconds when the position is read on the
fly).

22

These signals are shown in the following figure for a typical
motion. An 11 MHz crystal is used.

CY525 |
MOTION

H = 200090
% = 100

R = 127

F

ciszs | ’“"““‘*""1\
MOTION /

N T TN T
L]
-
N
~

i :
‘

Sleu [U |

-] -] 1 1.5 2 2.5 2 2.5 4
TIME IN SECONDS

cvsas | \
MOTION ///
M = zB090@

= s

= 100 /

]

o= 127 ¢
Fes /
z - / \\wh_
End of Motion R
3 .S 1 1,8 2 2.5 3 3.s 4

TIME IN SECONDS

Figure 2.7 1Illustrating the three motion status lines for a
typical CY¥525 motion command.

23

3 OVERVIEW OF COMMAND LANGUAGE 3

BIN-ASCII™ FEATURE

The CY525 user-orientation has been accomplished without the
expense of complicating the host programming job. For example,
the ASCII-decimal integers typed by the user at the keyboard may
not be readily available in the host programming language. For
this reason the CY¥525 can be placed in a binary mode in which
binary number parameters are used instead of ASCII-decimal. This
allows any computer with binary integer arithmetic to send
commands and binary information to the controller. The CY525 is
placed in either the binary or the ASCII-decimal mode via a mode-
select input pin setting.

The use of ASCII instruction and ASCII-decimal integer parameters
allows the user to type commands in familiar high-level language
formats, as shown below:

N 738) ; Set Number of steps = 738
Gy ; Go (begin stepping)

where "N" is the ASCII command specifying NUMBER of steps to
take. The ASCII space character is shown as a space, and the
decimal number "738" is then entered, followed by the carriage
return key, "}"= ODH which terminates the commands. The GO
command is entered as "G)". The controller then steps the motor
for 738 steps. Other parameters, such as rate, may be specified
in similar fashion.

Although the use of ASCII-decimal numbers is ideal for the user
employing BASIC or other languages that can output ASCII-decimal
numbers, it is, of course, desirable that the controller accept
binary number parameters from binary computations. For this
reason, the CY¥525 Stepper Controller may be placed in a BINARY
mode via a strap, or mode-select, pin. In this mode, all numbers
are interpreted as binary data (as are all commands). See
the section on binary data mode for details.

24

PROGRAMMABLE WITH HIGH LEVEL LANGUAGE

The primary advantage of all hi-level languages is their problem-
oriented nature, as opposed to the device-oriented nature of
machine languages. A secondary characteristic is their ASCII
representation, and a third characteristic of most hi-level
languages is their use of the ASCII-decimal numbering system as
natural numbers. In all of these aspects, the CY525 qualifies as
a single chip Hi-Level Language Device. The combination of hi-
level language and ASCII-keyboard programmability is designed to
maximize user ease and convenience.

Every instruction entered in the ASCII decimal mode of operation
consists of one of the following forms:

1. Alphabetic ASCII character followed by the "}" (RETURN) key.

2. Alphabetic ASCII character followed by space, then ASCII
decimal number parameter, then "}" = ODH.

Examples of type one are as follows:

NAME INTERPRETATION

Bitset Set programmable output line
Clearbit Clear programmable output Line
eXecute eXecute program

Enter Enter program mode

Examples of type two are as follows:

T

NAME ASCII COMMAND INTERPRETATION

Absolute A a) Declare absolute position

Number N n) Declare number of steps to be taken
(relative)

Rate) Declare maximum rate parameter

Slope s) Declare ramp rate

Firstrate £) Declare initial step rate

Position P) Declare target position (absolute)

25

TABLE 11

ASCII NAME

kg

Absolute
Bitset
Clearbit
Delay
Enter
Firstrate
Go
Haltmode
Initialize
Jump
Loop
Number
Offset
Position

* Quit*

© v 0 2 0 4 T " @A O O W

Rate

Slope
Branch Til
Until
Verify
Wait
eXecute
divisor

CW

CCw

+ 8N X g < 9 n o

=

Command
Label

»n

e i e S e

CY525 COMMAND SUMMAR
~ INTERPRETATION
Set current location as specified
Set programmable output line high
Reset programmable output line low
Time delay for specified milliseconds
Enter program code
Set initial step rate
Begin relative stepping operation
Set continuous step mode of operation
Turn off step drive lines, reset controller
Go to specified program buffer location
Repeat program segment for specified count
Set number of steps to be taken (relative)
Set next stepper drive signal value
Set and step to target position (absolute)
Quit entering program code, re-enter

command mode.

*Never followed by ")"
Set step rate parameter

Set ramp rate for slew mode operation
Branch "Til"™ dowhile line goes high

Stop execution until wait line is low
Verify internal buffer contents

Stop executing until wait line is high
Begin program execution .
Divide slope by divisor parameter

Set clockwise direction

Set counterclockwise direction

Stop program execution, enter command mode

Marker .for - "jump to" and "loop to" commands

26

DESCRIPTION OF COMMANDS

The command format shown in the following descriptions indicates
the way commands are stored in the program buffer, as well as
showing the binary values of the command letters. Note that in
Binary mode the user must insert a data count between the command
letters and parameters, if any. See section 5 on Binary Data
Mode. Also note that 16 bit parameters (number and position) are
entered least significant byte first in the Binary mode. 1In the
ASCII mode, command letters are separated from parameters by a
single space, and the parameters are entered as ASCII decimal
numbers. ASCII mode commands are terminated by a carriage
return, as indicated in the leftmost column of the description,

A a) ABSOLUTE 0100 0001 3 bytes
a7l a0 LSbyte
b7 b0 MSbyte

The ABSOLUTE instruction defines the current position. This
position is set to the value specified by the 16-bit
argument. Absolute positions are used by all POSITION
commands. The ABSOLUTE command may be used at any time to
define or redefine any position coordinate.

B) BITSET 0100 0010 ' 1 byte

This instruction causes the programmable output pin (#34) to
go HIGH. This is a general-purpose output that may be used
in any fashion.

C) CLEARBIT 0100 0011 1 byte

This instruction causes the programmable output pin (#34) to
go LOW. The user can signal locations in a program sequence
to the external world via B and C instructions.

D d} DELAY 0100 0100 3 bytes
a?l a0 LSbyte
b7 b0 MSbyte

The DELAY command will time delay for the number of
milliseconds specified by its argument. The delay is
calibrated in milliseconds, using an 11 MHz crystal. Other
frequencies will require a linear scaling for the actual
delay time. Since this is a 3 byte command (16 bit
argument) the delay time can range between 1 msec and about
65.5 sec at 11 MH2z, This command is useful in programm1ng a
delay time between stepping motions.

E} ENTER 0100 0101 1 byte

This instruction initiates the program entry mode of
operation. Commands following the ENTER command are saved
in the program buffer in sequence until "Q" is entered. The
PROG line (# 31) goes low to indicate this mode.

27

F £)

Gy

B

I

J 3y

FIRSTRATE 0100 0110 2 bytes
a7 al

The argument, £, is a number from 0 to 127 and is used to
specify the initial step rate for every move.

GO 0100 0111 1 byte

The GO command causes the stepper motor to step as specified
by the rate, direction, etc., commands entered prior to the
GO command. Stepping will be in the relative mode, with the
number of steps defined by the N command.

HALTmode 0100 1000 1 byte

The HALTmode command initiates the continuous run mode. In
this mode the CY¥525 begins stepping when the next P or G
instruction is executed, ramps up to the specified rate and
then continues to run until HALTed by a low signal on pin 6,
the ABORT pin. This allows the CY¥525 to take an unlimited
number of steps instead of the usual 64K step limit. During
this mode the step Rate may be changed "on-the-Fly" and the
current position may be read "on-the-fly". The low ABORT
line will cause the CY525 to begin ramping down until it
reaches the FIRSTrate and then stop (if the ABORT is still
low). Haltmode is reset after the motion stops, returning
the CY525 to the default mode in which the target or number
of steps is specified.

INITIALIZE 0100 1001 1 byte

The INITIALIZE command causes the CY525 to enter the command
mode. None of the distance or rate parameters are altered.
Any commands following "I"™ will be executed with the
parameters specified prior to "I". The INITIALIZE command,
when encountered during program execution, halts the program
execution and returns the system to the command mode. This
command de-energizes the stepper motor coils, erases the
program, if any, sets the direction to CW.

JUMP 0100 1010 2 bytes
a7 a0

The JUMP command will branch program execution to the
program buffer location specified by the argument, which
represents the byte number in the program buffer, starting
with zero. Program execution continues from the specified
byte number after the jump is executed. When the JUMP
command is issued from the Command mode, it enables the Run
(Program execution) mode, and begins executing from the
specified byte number. It is the user's responsibility to
insure that the number specified with the JUMP command is
the correct value for the desired starting point. The first
byte after the "E" command is location zero. The byte count

28

specified in this section determines the number of bytes

used by each instruction. Note that "J @" is equivalent to

"X)". In order to simplify the use of the Jump (and other

branching instructions) the CY525 allows the use of LABELs.

An instruction is given a label (A thru E) by preceding the

instruction with the label character followed by a $. See
description of $ at end of this section.

L c,a) LOOP 0100 1100 3 bytes
a7 ao COUNT
b7 b0 LOCATION

R n)

(o] o)

The LOOP command uses the first argument as a repetition
count, and the second argument as a jump location. Each
time the LOOP command is executed, the count is decremented
by one. if the count is nonzero after the decrement,
program execution will jump to the specified address, which
is the second argument of the command. The jump address
specifies the location to which execution will loop, and the
count represents the number of times the loop is to be
repeated. When the count reaches zero, program execution
continues with the instruction immediately following the
LOOP command. In ASCII mode, the two arguments may be
separated by either a comma, or a single space. LOOP
commands may not be nested one inside the other. Labels may
be used with the LOOP command, as with the JUMP command.

NUMBER 0100 1110 3 bytes
al al LSbyte
b7 b0 MSbyte

The NUMBER command is used to specify the number of steps to
be taken in the "Relative" mode of operation. The argument
may be any number from 1 to 64K-1 (65,535). Note that this
parameter is stored as 2 bytes in the program buffer.

OFFSET 0100 1111 2 bytes
al a0

The OFFSET command specifies the next step pattern to appear
on the STEPPER MOTOR DRIVE SIGNALS, pins 21-24. This
command may be used to synchronize these outputs with the
motor when the desired pattern is known from the motor’'s
position. The OFFSET command can also be used to turn OFF
all of the 4 phases, by specifying a value greater than 3.
If the argument is greater than three, but less than 128,
then all 4 phases are driven high, and the pulse line (pin
35) does not change. If the argument is greater than 127,
the pulse line is brought low and then goes high as all 4
phase lines go high.

29

P p)

R r)

] s)

POSITION 0101 0000 3 bytes
a7 a0 LSbyte
b7 b0 MSbyte

The POSITION command declares the "Absolute"™ mode of
operation. The argument is treated as the target position
relative to position zero. The ABSOLUTE command is used to
define any position. Stepping to the target position begins
when the POSITION command is executed. No "G" command is
required. Direction to the target position is also
determined and set automatically.

QUIT (Programming) 0101 0001 1 byte

NOTE: The QUIT command is self-terminating, and should NOT
be followed by the Linend ")" or data count. Such
termination may result in incorrect operation.

The QUIT command causes the CY525 to exit the "Programming™
mode of operation, wherein instructions are stored in the
program buffer in the order received; and causes the CY525
to return to the. "Command"™ mode of operation, in which
instructions are executed as they are received.

RATE 0101 0010 2 bytes
a7 a0

The RATE instruction sets the rate parameter that determines
the step rate. The rate parameter, r, varies from 0 to 127
corresponding to step rates from275 to 9675 steps/sec
(with an 11 MHz crystal). For rate parameters between 3 and
40 the rate is linear and is specified in units of 100
steps/sec! For rate parameters between 41 and 127 the rate
is still highly linear but the increments are approximately
60 steps/sec. For crystals other than 11 MHz the step rate
should be multiplied by fc/11 Mhz, where fc is the crystal
frequency.

SLOPE 0101 0011 2 bytes
a7 a0

The SLOPE or slew mode of operation is used when high step
rates are required and the initial load on the motor
prevents instantaneous stepping at such rates. In such
cases, the load is accelerated from rest to the maximum rate
and then decelerated to a stop. The user specifies the
distance of total travel (via "N" instruction), the maximum
rate (via "R") and the slope rate ("S") or change in rate
from step to step. The CY525, starting from rest or from a
specified starting rate, will increase the rate in such a
fashion that a maximum acceleration (determined by the value
of the slope parameter) is not exceeded. For very slow
accelerations the slope may be stretched by a slope divider,
specified by the argument of the Z command.

30

T t) loop TIL 0101 0100 2 bytes

U)

W)

X)

a7 a0

The "T" command provides a "Do...While..." capability to the
CY525. This command tests pin 28 and, if low, it branches
to the specified target instruction. Note that the target
can be either a number or a label. If pin 28 is high, the
instruction following the T command is fetched and executed.

wait-UNTIL 0101 0101 1 byte

The wait-UNTIL instruction is used to synchronize the
program execution to an external event. When the "U"
instruction is executed, the WAIT pin (pin #38) is tested.
When the WAIT pin goes low, the next instruction is fetched
from the program buffer and execution proceeds.

VERIFY 0101 0110 2 bytes
a7 al

The VERIFY command allows interrogation of the internal
CY¥525 buffers, including the rate, slope, number of steps,
and current position registers. This command is also used
to examine the current contents of the CY525 program buffer.
The parameter "v" specifies which internal register group is
to be read. VERIFY should only be executed from the command
mode. To read data during the RUN mode, the Prog/Live line
must be used. Note that position can be read "on-the-fly"
while the motor is stepping, but this is NOT done with a
Verify command! See "Verify Mode" in Section 6 for details.

WAIT 0101 0111 1 byte

The WAIT instruction is the opposite of the U command. WAIT
tests the WAIT pin (pin #38) for a high level. The program
will stop until the pin is high, then it will continue with
the next command. Note that the U command may be used to
detect the falling edge of the WAIT line signal, and the W
command may be used to detect the rising edge. Thus, it is
possible to synchronize program execution to either one or
both of the transitions.

EXECUTE 0101 1000 1 byte

This instruction causes the CY525 to begin executing the
stored program. If no program has been entered, the
controller will stay in the Run mode unless a Stop Operation
is executed (via the @ command). If the program exists, the
controller will begin execution of the first instruction in
the program buffer. If the EXECUTE command is encountered
during program execution, it restarts the program (however,
the initial parameters and modes may have been redefined
later in the program) and may be used for looping or cyclic
repetition of the program.

31

Z 2) Divisor 0101 1010 2 bytes

+

)

n$

a7 al

The DIVISOR command provides slower accelerations by
dividing the slope by the value of the argument of Z.

CLOCKWISE 0010 1011 1 byte

Direction is set to clockwise by this command. Relative
mode steps are taken in the direction last specified, so
they will be clockwise until the direction is changed by the
"-" or "P" commands. The current direction is always
indicated on the DIRECTION line (pin # 33).

CCW 0010 1101 1 byte

Direction is set to counter-clockwise by this command.
Comments under CLOCKWISE also apply to the "-" command.

COMMAND . 0011 0000 1 byte

The CY¥525 is placed in the command mode and the next command
is executed as it is received. Programs should be
terminated by a "¢" command, returning the CY525 to command
mode at the end of program execution.

Label Designator

The CYS525 allows the use of the ASCII characters A through E
(in ASCII mode) followed by the ASCII $§ symbol as labels for
instructions in a program. There should be no spaces
between the $ sign and the adjoining characters. The labels
can be used as branch targets for "JUMP" and "LOOP"
instructions and thus relieve the user of the need to count
bytes to determine the target address. Labels accompanying
Jump and Loop are initially stored in the program buffer as
the characters A-E, but are then replaced with the actual
address location when the program is executed. Label
designators are not allowed in binary mode.

Example:
ASC) ; label A for instruction C
B} ; the BITSET instruction
J a ; Jump to instruction with Label A$

The labels can be used in any order, and up to five labels
can be used in one program. The two-character labels do not
take up any space in the program buffer,

32

COMPARISON TO THE CY512

The following summary of differences between the CY512 and the
CY¥525 is provided for those users of the CY512 who are upgrading
to the CY525.

The following instructions are new or modified for the CY525.
All of the remaining instuctions are identical to the CY512.

A a) (a = 0..64k) set current position = a

D4 (4

1..64k) delay 4@ milliseconds (11MHz Xtal)
whereas the CY512 delay command
was eXpend.

F £} (f = 0..127) set FIRST rate = f

H) no argument set HALT mode, in which the CY525
(This was the will ramp from initial rate F to
halfstep com- maximum rate R and then run
mand in the continuously an unlimited number
CY¥512. There of steps until the Abort line (pin
is no half- 6) is asserted low. Note that the
step in the position register contents will
CY525.) "wrap around"™ at 64K but there

will be no other effect.

0 o (o = 0..255) o = (0,1,2,3) --set output phase
and turn on phase outputs.

0 > 3 -- drive all 4 phase lines
high but do not change internal
phase value.

Ry (r 0..127) specifies maximum rate. The curve
is more linear than CY512 and
parameter smaller than the CY512

{(which had up to r=256).

S s (s 1..255) specifies acceleration (slope)
255 maximum acceleration

1 minimum acceleration

T t) (t 0..48) specifies target to branch to when

test is satisfied.

X) no argument execute the stored progranm,
whereas the CY512 run command was
Doitnow.

Z 2) (2 = 1..255) "slope divider" - divides
acceleration by "2"

33

Additional Changes in CY525

Read-on-the-Fly: Binary position readout is now possible
while the step motor is moving. The position appears on the
bus as two binary bytes. The high byte appears first and can
be latched by the Outstrobe (pin 10) and the low byte follows
immediately and can also be latched by the Outstrobe. The
position is requested by keeping I/O Req high and raising I/0
Select.

The Motion Complete line (pin 37) will be high when the
initial strobe (pin 10) signals that the high byte is on the
bus and then will go low and remain low while the low byte is
strobed onto the bus via pin 10. The Motion Complete line
will then return high and remain high until another position
readout occurs or until the motion is complete.

Note that since the Motion Complete line is often used to
interrupt the host, this is simply an extension in the sense
that it can now be used to announce the availability of the
readout information as well as the end of motion. If used
this way, it is up to the user to interpret its meaning.

Labels: Commands with targets can use labels. A label
consists of one of the letters A thru B followed by a $. A
program can use from one to five labels.

Example: ASP 40)
¢
POy

B)
J A} (jump to location A)

Change rate while moving: The CY525 can use the I1/0 Req line
to send a new rate while the device is slewing. The values
sent to the CY525 must be 8-bit binary numbers in the
appropriate range. The CY525 can be in either binary or
ASCII mode. ’

Issue commands while a program is running: The PROG/LIVE
line (pin 31) can be pulled low while a program is running.
This tells the CY525 to finish the currently executing
instruction and wait for a new instruction to appear using
the standard handshake. If several instructions are to be
issued, the PROG/LIVE line should be held low. It should be
brought high before the) = 8Dh character is issued for the
last instruction. Note that the PROG/LIVE line is still held
low by the CY525 when the part is in the Program Entry mode,
i.e., following the command E)} and remains low until this
mode is terminated by the Q command.

34

10.

11.

This feature allows the user to change parameters while a
program is executing. Note that this is different from the
new "On-th-fly" Position readout and rate changes that occur
while the device is actually stepping. To issue "on-the-fly"
commands, the I/O Reqg or I/0 Sel lines are made active while
the device is stepping. To issue instructions, these two are
unchanged until after the PROG/LIVE line is activated (low)
and the RDY line is brought high.

Changes in the ABORT function: (see ABORT section.. page 63)

The PULSE output timing is different, with the pulse line
going high for only 2.5 microseconds (@ 11 MHz) between
steps. Also, when the step inhibit pin is tested to lengthen
a step time (delay the next step), the pulse output will be
low while the CY525 is inhibited. This has no effect on those
applications which use only the phase outputs, i.e., in these
cases the CY512 and CY525 response to the inhibit pin will be
identical.

The BUSY/READY line (pin 27) of the CY525 goes low at the
beginning of each motion and remains low until the motion has
been completed. The CY512 BUSY/READY line did not go low for
motion instructions executed within a program. This feature
is useful for monitoring motion in a program and also allows
handshaking for LIVE commands.

The CY525 allows WAIT and UNTIL commands to be terminated by
bringing the I/O-request line (pin 1) low. Since these
instructions monitor an external line, the master computer
can restore execution in the case in which the external line
is "stuck", thus preventing the system from hanging up.

When a motion command is given, the CY525 will not initiate
stepping until the I/0-request line has returned high. This
prevents the I/O-request from being incorrectly interpreted
as a request to change the step rate on the fly, i.e., while
the motor is moving. The CY512 could begin stepping before
the I/O-request line returned high. This could cause a
software abort to occur if a slow BASIC interpreter left the
I/0~-request line low too long. Note that the CY525 software
abort differs from the CY512 software abort!! (see the ABORT
discussion in section 6)

The CY525 will accelerate even if the travel distance is too
short to reach the specified step rate. This provides optimal
motion for all distances. The CY512 would step at the slowest
rate if it could not reach the specified rate before having
to begin decelerating to stop at the specified location.

In the CY512, the X-command represents a time delay and the
D-command runs the stored program. The CY525 is reversed:
the X-command executes the program and the D-command
represents a time delay. This change provides the CY525
greater compatibility with the entire CYxxx family of chips.

35

4 DETAILED EXAMPLES OF COMMANDS 4

RESET COMMAND (INITIALIZE)

The "I" or Initialize command resets all pointers to the power-up
state and restores the flags to this state. Specifically, the
program is erased and the command mode entered. The direction is
clockwise (CW). Note that this command de-energizes the stepper
coils (phase outputs all go high). If this effect 1is
undesirable, an external latch should be used to latch the four
stepper control outputs using the pulse line (pin 35) to clock
the latch. See Figure 4.1.

EXTERNAL DE-ENERGIZE COMMAND

Figure 4.1 An external latch on the stepper control outputs
prevents de-energizing of stepper drive coils when
CY¥525 1is reset via hardware or software and also
allows an external control line to de-energize the
coils independently of the CY525.

PROGRAM EXECUTION MODE

Once a program is entered into the program buffer, it may be
executed with a run or EXECUTE ("X") command. This code has been
assigned the ASCII value "X" = 58H. It is the last command to be
entered before program execution. It is a normal command in the
sense that it is terminated with a carriage return, "}" = ODH.

ABSOLUTE POSITION

The "Absolute" command, A, is used to declare the current
position, assigned the value of the 1l6-bit argument. Thus the
current position can be specified as any location from P to 64K.
All absolute movements, affected by the POSITION command, P, are
referenced to this position. On power-up, the absolute position
is random. Therefore, the A command should be used to define a
coordinate system, before the absolute position commands are
utilized.

PROGRAM LOOPING, ITERATION

One consequence of stored program execution is the use of program
loops or program repetition. If the EXECUTE command of the CY525

36

is included as a program instruction, the program executes again
beginning with the first instruction (but using the latest
value of parameters set before the EXECUTE instruction was
encountered). In this fashion, rather complex sequences of
motions may be repeated without host intervention or
interruption. Conditional looping may be accomplished with a "Do
While"” type instruction that continues looping until a condition
is fulfilled. This may be combined with the JUMP command, for
unconditional branching to various routines in the program
buffer. Finally, a subsection of a program may be repeated a
specific number of times by use of the LOOP instruction.

Unconditional Program Looping

If the EXECUTE command, "X", is encountered in the program entry
mode, it is stored in the program buffer with the rest of the
program. When this instruction is encountered during the
program execution, its effect is to begin program execution
again, and therefore may be used to achieve cyclical looping if
desired. However, program execution may be aborted via the RESET
line.

- Conditional Program Looping

The ability to repeatedly branch to a specified instruction in a
program until an external event occurs provides a unique
"Do...While..." capability for the CY525. The "T" command (loop
TIL) is used as shown in the following example.

PARAMETER =
ENTRY N n) set number of steps = n
PROGRAM
ENTRY

E) enter program mode

§ EXECUTE INSTRUCTIONS

RUN PROGRAM AS+) label location "A" and
set CW direction

"DOWHILE"

EXECUTE
INSTRUCTIONS
IN L00P R rly set rate =rl

Gy begin stepping

PIN 28 = Hi

EXECUTE

REMAIN ING =) set CCW direction
PROGRAM

R r2) set new rate = r2

§ G) go (same "n")
8
(sPeCiFY) n T A) goto A if pin 28 is LO
TIME
B) set programmable output
wput e — " . . 4 moa
return to command mode
ER S —
[| Q quit progam mode
Figure 4.2 Conditional Loop X) begin executing program

37

Conditional Loop Embedded in an Unconditional Loop

"Do (the preceding program) While (Pin 28 is low)", then proceed
to execute the remaining program instructions. Note that the
program can (but need not) end withan EXECUTE instruction to
provide a conditional loop inside of an unconditional loop:

R rl) set rate parameter
E) enter program mode

label location "C" and
CS$N nl) set first distance

+) set CW direction

G} take nl steps

-) set CCW direction

N n2) distance parameter

G) take n2 steps

T C) loop to C TIL pin #28 =
B) set output HI (pin 34)
R r2) set new rate

Xy repeat program

Q exit program mode

X) begin executing program

The Wait line allows a program
to be suspended until an
external event occurs. As long
as the Wait line is in one
state, the program continually
tests the line without executing
any other instructions. When
the line changes to the state
being waited for, the program
continues with the commands
following the wait instruction.
Figure 4.4 illustrates the wait
Until command, for which the
wait line must be low to
continue.

PARAMETER
ENTRY

PROGRAM

EXECUTE® ENTRY

EXECUTE INSTRUCTIONS

EXECUTE
INNER LOOP
ANSTRUCTIONS

CONDITIONAL LOOP

EXECUTE
QUTER LOOP
INSTRUCTIONS

pewn UNCONDITIONAL
;] LooP

POSITION
-

TIME

]
i——— DOWHILE
‘I—— PROGRAMMABLE
-——-—J ouTPuUT

Figure 4.3
Conditional Loop Embedded
in an Unconditional Loop.

i PROGRAM
f] execution

i

*U" (WAIT UNTIL)

i CONTINUE
PROGRAM EXECUTION

i

Figure 4.4 Wait UNTIL command use.

38

JUMP Command Use

Unconditional branching to any location in the program buffer may
be accomplished by the Jump command. The single argument of the
command specifies the program buffer location at which program
execution will continue. This number is simply the byte number
within the program buffer, with the first location designated as
byte 2ero. Since the program buffer is 60 bytes long, arguments
for the Jump command range in value from # to 59. The actual
value used should correspond to the beginning of the instruction
which is to be executed next. The byte numbers may be determined
by adding the number of bytes used for each of the previous
commands in the buffer. Byte counts are specified in Description
of Commands in Section 3.

Note that the CY525 allows the use of labels, using
the characters A thru E to specify a branch target. A
label is defined by using the label character
followed by the $ symbol preceding the target
instruction. Up to 5 labels may be used in a program.

The following example contains a Jump command used to repeat a
section of the program. The program steps to the home position
at high speed, then repeats motions of 75 steps at a lower speed,
waiting for a synchronizing signal before taking each motion.
The Jump command may also be used in the Command mode, to start
program execution at a location other than the first command of
a program. This example assumes the home position has been
previousy defined, using the "Absolute"” command.

E) enter program mode

BEGINNING
OF PROGRAM

EXECUTE
LOOP
uit ogram mode
Q quit prog JuMp
S 20 define acceleration slope
F 3, define first stepping rate
X) begin running program

Figure 4.5 JUMP Command Use

39

WELDING MACHINE EXAMPLE

Suppose we want a row of six equally spaced welds on a piece of
metal. The welder should be turned on by the CY525 programmable
output line when in position, and be turned off when finished.
After completing six such welds, it will return as quickly as
possible to its starting position, and wait for the next
workpiece to come into position. It will then weld the next six
spots, and continue in this manner until there are no more pieces
to weld, at which time the program will stop and the CY¥525 will
return to the Command mode.

R 120, CY525
S 80) define stepping parameters PROGRAM
F 9) BUFFER
A 0) declare current position as home 4E N
14
E;} enter and save the following program 00 } 20
2B +
BSN 20) take 20 steps between welds 57 W
+) CW direction 47 G
W) wait until workpiece ready 43 C
Cs$G) go 20 steps 44 D
C) activate welder E8 }1000
D 1000} delay 1000 msec (1 sec) to weld 03
B) turn off welder 42 B
L 6,C) repeat six times from G command 4C L
P 0) return to home position after 6 welds 06 6
T B) repeat program until no more pieces 05 C
B} stop program, return to command mode 50 P
00
Q exit program mode 00 } 0
54 T
X) begin executing program 00 0
00 0

Figure 4.6 Loop Command Use.

Figure 4.7 Welding Example.

40

In the welding example, relative mode stepping is used to move
the welder from one spot to the next, while absolute mode
Stepping is used to bring the welder back to the home position,
ready to start the next workpiece. The Wait line is used to
indicate that a workpiece is in position, and the Dowhile line
indicates when there are no more pieces to weld. A real
application may be more complex than what is illustrated, but the
program indicates the level of problems which the CY525 can solve
without help from a host computer. The program uses 20 of the 48
bytes available in the CY525 program buffer.

Note that the use of Labels B$ and C$ allow a branch to be made
without the necessity of counting bytes to determine the actual
location of the target instruction in the Porgram buffer. The

labels can be any of the allowed five label characters in
Also note that labels do no

order.

the program buffer.

any

t require any extra bytes in

OPERATIONAL MODE SUMMARY

| MODE DESCRIPTION MODE 0 MODE 1 MODE SELECTION VIA
i Data Type ASCII-dec Binary (pin 36=Hi/Lo (ASCII/Bin)
Position Type Relative Absolute N command selects relative.
P command selects absolute.
Step Range 64K max Unlimited defaults to 64K mode.
Stepping H command selects unlimited.
Gated operation Triggered non-trigger | pin 30 low if no triggering.
Step on HI-to-LO transition.
Inhibit stepping if held HI.
Execution mode Command Program X command executes program.
re-enters command mode. a
(see section on LIVE commands
entered while program is
executing)
On-the-Fly Change Read I/0 Req pulled low to change
operation Rate Position Rate. 1I/0 Sel pulled high
while stepping to read Position.,

41

5 BINARY DATA MODE OF OPERATION 5

BINARY DATA MODE

To facilitate microprocessor control using binary arithmetic, the
CY¥525 can be placed in the BINARY data mode of command execution
by applying a low voltage to pin 36. The possibility of the QUIT
command occurring in the binary data necessitates the use of a
data count sent after each command byte. 1In binary mode, the
QUIT command, "Q" = S51H, may be inadvertantly transmitted, since
some of the binary Position or Rate data may assume this value.
For this reason it is necessary to specify the number of binary
data bytes to be sent to the CY525. 1In this mode, the data count
and data values are specified in binary form, while the command
letters retain their equivalent ASCII values.

Commands are issued by first sending the command letter, which
has the same value as in ASCII mode. This is followed by a
binary value data count. The data count represents the number of
data bytes to follow the command byte. 1If the command is a
single letter with no parameter, such as "B", "C", or "H", the
data count will be 2ero, indicating the end of the command. This
is similar to sending the command letter and a carriage return in
ASCII mode. Note that the data counts are not ASCII characters,
they are binary values. Commands with parameters in the range of
1 to 255 will have a data count of binary 1, since these values
can all be specified in a single byte. Rate, Slope, etc. listed
in Table IV are in this category. The data count is then
followed by the single byte which is the binary value desired for
that parameter. Commands such as Loop, Number, etc., listed in
the table, will have a data count of binary 2, since their
parameters cannot be specified in a single byte. The data count
is then followed by the two bytes which represent the 16-bit
value for the parameter, or the two parameters used by the Loop
command. Note that 16-bit values are sent least significant byte
first, while the Loop command parameters are sent as count then
address, the same order as specified in the ASCII mode. All
commands except QUIT are of the form:

DATA BYTE 1 DATA BYTE 2

Firstrate, Target,
etc.

Number of Steps,Target Position,etc.
Least significant byte first

Note that the QUIT command is not followed by a data count in the
Binary mode, just as it is not followed by a carriage return in
the ASCII mode. Also, it is possible to load an entire program
with a single byte count value. To do this, issue the ENTER
command with a data count value of zero, followed by the first
command character of the program. Instead of following this
character by the normal data count, use a count equal to the
remaining total characters of the program, up to, and including
the 8 command. Do not include the QUIT command in the count.
The Q command should then be issued separately, ending the
program entry mode and reverting to command mode. When this
method of program loading is used, the 8 command must have a
binary value of zero, not the ASCII character "8". The program
may also be loaded as separate commands, with a normal data count
for each command. The following example illustrates both options
for loading a program in Binary mode:

Binary with Binary with CY525
ASCII Separate Single Buffer
Command Data Counts Data Count Contents

E) 45....000.. 85
00.¢c00vne...00
52.ccieieeceeest2entnnnnnsaab2

R 127) {01...........oc

P T § N 5

4E...........4E.cvvrve....4E
02

2Ceecaceeeese2Cennennaneans2l

0l...........01...........01

+) P - JO -3 : J) -
00

G) . 3 S B ¥ |

00

L) 7R | - J R § -1

02

EEivseveceeseEBEivceeen....EE

1 Y 1 J R)

-3 2Deeceeeeesee2Dienenenaa..2D
00

G) 47 00087l ... 47
00

) 300 c00eteea 000,00
00

Q {51...........51

N 300)

N 750

The program buffer in the CY525 will contain the same 13 bytes
no matter which byte sequence is used. In ASCII mode, it takes
31 characters to define the program, including the "E" and "Q"
commands. In Binary mode, with a separate data count for each
command, the program may be defined in 24 bytes. By using a
single data count for the program, this number may be further
reduced to 17 bytes. Note that the Binary mode values and the
program buffer contents are shown as hex numbers.

43

INTERNAL PROGRAM STORAGE

The CY525 program buffer can contain 60 bytes of program commands

and data.

The Description of Commands contains the length of

each command and is summarized in Table V. Note that program

parameters set in the command mode do not require any space in

the program buffer.

effects on operation will be unpredictable.

operation,

the CY¥525 is treated

as a co-processor,

If the internal storage is exceeded, the
For optimal

with

"subroutines" loaded and executed using Interrupt Req #2 (pin 32)
to inform the host when a given routine has finished executing.

[TABLE v

T

INSTkUCTION LENGTHS AND PARAMETER CHARACTERISTICS

*NOTES:

Command execution times are for command mode.

times are much shorter.
The "L" & "T" commands are normally used only in a program.

(o]
v

44

COMMAND BYTES PARAMETER RANGE *TIME nsec
ABSOLUTE 3 absolute position 0~-64k 375+c+v
BITSET 1 375
CLEARBIT 1 375
DELAY 3 msec time delay 1-65535 100+c+v
ENTER 1 400
FIRSTrate 2 start rate 1-127 240+c+v
GO 1 660+v
HALTmode 1 375

1 INITIALIZE 1 375
JUMP 2 target A-E or 0-59 100+c
LOOP 3 count and address 1-255, 0-59 150+c
NUMBER 3 travel distance 0-65535 180+c
OFFSET 2 drive signal output 0-3,0ff 80+c
POSITION 3 target location 0-65535 550+c+v
QUIT * 175
RATE 2 rate parameter 0-127 80+c
SLOPE 2 acceleration 1-255 80+c
TIL 2 branch target A-E or 0-59 380
UNTIL 1 380+v
VERIFY 2 buffer pointer 0-3 1254c
WAIT 1 380+v
EXECUTE 1 380
DIVISOR 2 slope divisor 1-255 180+c
+ 1 380
- 1 380
[} 1

= ASCII to Binary parameter conversion time.
= variable time depending on parameter values.

600

Program mode

BUFFER
IN HOST
COMPUTER

USER SOFTWARE FOR
PROGRAM LOADING

WAIT RDY:

HOST SOFTWARE CONSISTS OF
BUFFER TO HOLD COMMANDS TO BE
LOADED INTO CY525 PROGRAM BUFFER
PLUS HAND SHAKING ALGORITHM

TO COMMUNICATE WITH CY525.

w4 |E18I8iv g8

Figure 5.1 CY525/BOST Interface Diagram.

The following illustration shows the internal structure of the
C¥525, including the data paths between the various parts of the
device. Note that all parameters are stored in registers which
are separate from the program and command buffer, so parameters
which do not change may be defined in the Command mode, and
require no space in the program buffer.

RATE NUMBER OF STEPS

SLOPE

DIVISOR
HANDSHAKE —
DATA FIRST RATE
CONTROL — nrer- CURRENT POSITION
{ race
DATA
BUS
PHASE OFFSET
DIRECTION
€ .
p"“‘s{, \ MoToR INSTRUCTION.

INTERFACE

DECODE

(1] i
Pt - EXECUTION & CONTROL

REGISTERS

CLocK
INPUTS

SECONDARY CONTROLS &
EVENT SYNCHRONIZATION

Figure 5.2 CY¥525 Internal Structure.

45

INTERFACE EXAMPLE

In the following, it will be assumed that an 8080/8085 transmits
data to the CY¥525 via output port ODCH. The string of ASCII
commands is stored at BUFFER and terminated by a terminal symbol
OFFH. The D-E register pair will be used to access the character
string.

8080 BUFFER
FOR AsCil
MODE

Ascit
COMMANDS

‘e’ 45
5o

8080 BUFFER
FOR BINARY
: MODE
0081 11A800 LXI D,BUFFER| | € 45
GETCHAR:] 00 00
0084 1A LDAX D ™
0085 FEFF CPI OFFH Reas
0087 CA9300 Jz QuIT g'g;ﬁrg;"‘
008A 13 INX D
008B 4F00 MOV c,A
008D CD9400 CALL SNDCHAR
0090 C3840C JMP GETCHAR
QUIT:
0093 CF RST EXIT
éNDCHAR:
0094 DBBS IN 0BSH
0096 E601 ANI 1
0098 CA9400 JZ SNDCHAR ’ 46
009B 79 MOV a,cC : 1'r a6 01 ol 03
009C E67F ANI 7FH £ e
009E D3DC OUT 0DCH 3 — x 0 03
GOTIT: Sat Firsinate 3' 33 58
00A0 DBBS IN - OB5H of 3 ' 0D 4 (
00A2 E601 ANI 1 : — X' g I evTes
00A4 C2A000 JNZ GOTIT -~
00A7 C9 RET 00 00
BUFFER: X) X' 58 -
i {LW) v), oD |x1 58
! &bl e : 00 00
Ix" 58
22 BYTES
t)' oD
29 BYTES

9 COMMANDS

Figure 5.3 8080/8085 Interfaced to Stepper Motor through CY525
Stepper Motor Controller.

46

6 READ-OUT OPERATIONS 6
VERIFY MODE OPERATION

The Verify mode of operation allows the user to examine the
internal register contents of the CY525. This is useful in
determining the current state of the CY525, and in verifying
parameters before or after critical operations, especially if
communications between the CY¥525 and the host system are enacted
in an electrically noisy environment.

The internal contents are divided into four groups, as specified
by the parameter in the Verify command. Before reading the
contents of the CY525, the user must issue a Verify command to
set the internal pointer to the desired group. The contents are
then read back one byte at a time, using the sequence described
in C¥525 Timing and Control Information. As each byte is read
out, the internal pointer is advanced to the next byte value,
allowing the specified group to be read back by repeated single-
byte transfers. Note that I/O SELECT, pin # 39, should be high
while the group is being read.

GROUP # of BYTES DESCRIPTION

| TABLE V1 VERIFY GROUP SUMMARY

POSITION 2o0r 5 current position Binary or ASCII
PROGRAM 0 to 48 program buffer contents

STATUS : 6 pointers and internal flags
PARAMETER 6 N, S, R, F, Z parameter values

v 0)

As indicated in Table VI, issuing the Verify command with a
parameter value of 0 will set the internal pointer to the
current position. The position can then be read back as either
a two-byte quantity in Binary mode, or a five-byte quantity in
ASCII mode. The mode in which the Verify command is issued will
determine the format of the position output. The binary
quantity will be presented most significant byte first, and the
ASCII quantity will be presented most significant digit first.
Internally the position is always maintained in binary, so in
ASCII mode, it is converted to the ASCII-decimal equivalent
before being output by the CY525. The ASCII position is always
a five digit integer quantity, with leading zeroes as required.
Note that position is the only quantity converted to ASCII
decimal when in ASCII mode. All other Verify outputs are
presented in binary, independent of the current command mode.
If the current position value is 750, the five ASCII characters
would be "00750" in left to right order. The binary mode equi-
valent would be 02EE, sent as two bytes, first the 02, then EE.

47

v 1

With a Verify parameter of 1, the CY¥525 will output the
contents of the program buffer. The maximum program size is 48
bytes, representing the longest program which may be read back.
The actual number of bytes which have any meaning will depend
on the length of the current program. Output starts with
location 0 of the buffer, the front of the program. Commands
are stored in the program buffer with the format indicated in
Description of Commands except that the 8 command has a binary
value of zero. Note that two-byte parameters are stored least
significant byte first in the program buffer. Several examples
in this manual illustrate the program buffer contents. All
would be read back in the order shown, from the front of the
program through the end. If additional bytes are read back,
they may not have any meaning, since most programs will not use
the entire buffer.

v 2)

The Status group, accessed with a verify parameter of 2,
consists mostly of pointers and flags used by the internal
operations of the CY¥525. This group is provided mainly for
device testing, and is not expected to be of general interest,
except for one flag, which occurs in the sixth byte of the
group. If the fifth bit (DB4) of the sixth byte is high, the
current direction is set CCW. Direction is CW if the bit is
low. Note that the sense of this bit is opposite that of the
DIRECTION line, pin # 33.

v 3)

The final group accessed by the Verify command is the parameter
group, pointed to when the Verify argument is 3. This is a
six-byte group, consisting of the parameters which may be
specified by the user. The first parameter output is the
number of steps, as specified by the N command. This is a two-
byte value, with the most significant byte output first. Next
is the slope parameter, as specified by the S command. This is
followed by the current rate, set by the R command. The .initial
rate, as specified by the F command, and then the slope divisor
specified by the Z command, is output. SLOPE, RATE, FIRSTrate
and DIVISOR are all single-byte values. With N 513), s 25},
R 27), F 3), and Z 1), the bytes read back would be 02, 01, 19,
7F, 03, and 01 (HEX), for N, S, R, F, and 2 respectively.

The timing sequence of Figure 7.1, in CY¥525 Timing and Control
Information, was generated by sending the command "V 1}", and
then reading the first four bytes of the program buffer. The
other groups may be accessed in an identical manner, by
substituting the desired group number in place of the 1 in the V
command. An example subroutine for reading back a desired number
of bytes is shown in Figure 6.1. The routine is written in 8080
Assembly Language. It assumes that the V command has already

48

been sent.

A routine such as the SENDPARALLEL subroutine,
in Figure 11.6 could be used to send the desired V command.

shown
The

RCVBYTE routine is entered with the B register set to the number

of bytes to read,

and the DE register pair pointing to a RAM

buffer which will hold the data.

003B
003D
003F

0042
0044

0046
0048

004A
004C
004E

0051
0053
0054

0055
0057

0059
005B
005D

0060
0061

0064
0066
0068

DBED
E620
CA3B0O

3E03
D3EF

300
D3EF

DBED
E620
C24A00

DBEC
12
13

3E01
D3EF

DBED
E620
CA5900

05
C24600

3E02
D3EF
c9

;READ CY525 IN VERIFY MODE, V CMD ALREADY SENT

;B = # OF BYTES TO READ, DE = BUFFER POINTER

;
RCVBYTE:

IN 'STATUS
ANI READY

Jz RCVBYTE
MVI A, IOSELOUT
ouT A4CNTRL

i

NEXTCHAR:

MVI A,IOREQ
ouT A4CNTRL

;

WAITDATA:

IN STATUS
ANI READY

JNZ WAITDATA
IN DATA

STAX D

INX D

;

MVI A,NOIOREQ
ouT AACNTRL
WAITCLR:

IN STATUS
ANI READY -
Jz WAITCLR

H

DCR B

INZ NEXTCHAR
MVI A,IOSELIN
ouT A4CNTRL
RET

~ we

;LOW IF BUSY
;WAIT FOR READY

;1/0 SELECT SET HIGH FOR READ BACK
:1/0 REQUEST LOW TO REQUEST A BYTE

;LOW WHEN BUSY
;BUSY MEANS CY525 HAS OUTPUT A BYTE

sREAD THE BYTE

;SAVE IN BUFFER
;POINT TO NEXT BUFFER LOCATION

;1/0 REQUEST HIGH TO ACK BYTE RECEIVED

;WAIT FOR READY AGAIN

;CHAR COUNT
sMORE BYTES TO READ IF NOT ZERO

;I/0 SELECT SET LOW FOR NEXT COMMAND

Figure 6.1 Verify mode read subroutine.

49

Reading Position on the Fly

The Verify instruction can be used in the command mode (or as a
live command) to find out the current position of the CY525.
This is especially useful if a sequence of "relative" moves have
been executed (since for "absolute" moves, the current position
should be the most recently specified targetl) However, in many
cases it is desirable to know the position of the motor during
the stepping operation. The CY525 offers this capability,
although, unlike the VERIFY gquery, some external circuitry is
required (unless a truly fast computer is available). Using two
latches and some NOR gates, the current position can be latched
and read as follows:

1. The I/0 SEL line (pin 39) is brought high while the CY525 is
stepping. This requests the READ-on-the-fly operation.

2. The OUTSTROBE (pin 10) is pulsed with the high position on
the data bus.

3. The INTERRUPT REQUEST (pin 37) goes low to signal that the
high position is on the data bus, and remains low.

4. The OUTSTROBE is again pulsed to signal that the low position
byte is on the data bus and can be latched by the trailing
edge of the pulse.

5. The INTERRUPT REQUEST (pin 37) goes high to complete the
cycle.

6. The I/O SEL should be returned low within approximately 50
microseconds after the interrupt request goes high.

7. The 16-bit position can be read from the latches.

8. If the I/0 SEL is high, the CY525 will output the new
position with each step.

SLEW °IN 2T) \ ‘
HOSEL (PN 39) B \

OUTSTROBE (&) (PIN10) __! _!
NTREQ (8) (Pm37) ; \ E [
DATA BUS ma;l :

Y5 n

A+B

Figure 6.2 Timing Sequence for Reading Position on the fly.

50

Circuit to Latch Position On-the-Fly

An example circuit using popular 74LS373 8-bit latches is shown
in the following figure.

READ HIGH BYTE

Figure 6.3 Typical circuit for latching position on the fly.

In the example circuit, the position is latched into the LS373s
using the high going pulse derived from signals appearing on
CY¥525 pins 10 and 37 as shown in the previous figure. After the
data is latched, the CY525 returns its bus to the high impedance
state and the latches can be read back onto the same data bus and
into your computer. This can be done by enabling the LS373
outputs using low going signals generated by your computer. The
sequence is shown below:

SLEW (P 29) L /
/o SEL (PN 39) [_\

INT REQ (Pmi 37)

DATA BUS

BY HARDWARE
ORCYS525 PINS

GENERATED {wme Hl

WRITE O

GENERATED [READ Hi
BY MASTER

Figure 6.4 Waveforms for circuit shown in figure 6.3.

51

The exact timing for a CY525 with and 11 MHz crystal is shown
below:

= | IR

I

I
MOTION COMPLETE [

»

»
+
o]

(INT REQ 1)
(PN 3T) |

OUTSTROBE \ ’ U
(PIN 10)

3 2 4 6 8 10 12 14 16
TIME IN MICROSECONDS

Figure 6.5 Timing for position readout (with 11 MHz crystal).

A typical data bus line is shown below. In this case the line is
initially in high impedance (A), then the line goes high and
presents a stable "1" when OUTSTROBE (pin 10) rises (B). The
line remains in this state until going low (C) for the second
position byte. The low is held until latched by the trailing
edge of the second OUTSTROBE, and then the bus returns to tri-

state (D).
@
DATA BUS ® A ’ TJ@I ®

OUTSTROBE) i
(PINID) J _LJP

e 2 4 6 8 10 12 14 16
TIME IN MICROSECOKDS

Figure 6.6 Typical data bus line during position readout (11MHz).

Important note: If the position is read while the CY¥525 is
SLEWING, (i.e., while pin #29 is low), there is no effect on the
step period, that is, the READ operation is transparent and has
no effect on the motor. If the readout occurs while the CY525 is
RAMPING, then the READ operation will increase the step period by
20 microseconds (with an 11 MHz clock). This is generally of no
consequence, however, the effect is maximum during the few steps
at the top of the ramp, that is just before or just after the
motor is slewing.

52

. Latch Control Signals

The circuit shown in figure 6.3 uses two 74LS373 latches to
capture the 16-bit position that the CY525 produces in response
to raising the I/0 SEL line (pin 39). Fiqure 6.7 below shows the
timing for a typical "read on the fly" operation. These signals
appear on the pins of the CY525. The READ request is indicated
by raising pin 39 and the write pulses appear on the OUTSTROBE
pin (10). The signal on pin 37 distinguishes between the high
and low byte of the 16-bit location.

OUTSTROBE v M
(PiN10)

INT REGQ
(PN z7)

/0 sEL.
(PN 39)

] 20 49 (1. 8e 10@ 129 140 168
TINE IN MICROSECONDS

Figure 6.7 (Y525 signals for READ on the fly. (11 MHz).

The next figure illustrates typical timing for the latch control
signals that enable the inputs and the outputs of the 74LS373s.
The first two positive going strobes latch the data into the 373
and are derived from the signals on pins 10 and 37 as shown in
figure 6.3. The last two low going pulses enable the output of
the 74LS373s and are generated by the master computer. (11 MHz).

LATCH HIGH BYTE
7415373 h

LATCHING
PULSES <

1531
(P 1t of 153135) ‘J.mu Low BYTE

e e A i e i i .

(PN 1 0F LS373s)

7415373
ouTPUT { . . " —

ENABLE M
FROM HOSY
COMPUTER

Y

] 2@ 40 60 ae 100 120 140 160
TIME IN MICROSECONDS

Figure 6.8 Latch control signals for circuit of figure 6.3

53

7 TIMING AND CONTROL INFORMATION 7

CY525 HANDSHAKE TIMING INFORMATION

With the parallel interface to the CY525, the user must wait for
the CY525 BUSY/RDY line (pin #27) to be high before applying I/0
REQUEST strobe to pin #1. Note that no data set-up time is
required, so the data may appear on the data bus at the same time
that the I/0 REQUEST write strobe goes low. This is especially
convenient in the ASCII mode as bit 7 of the ASCII data byte can
be used to generate the write strobe (figure 10.8). The data is
read into the CY525 from the data bus by a low going read strobe,
INSTROBE, appearing on pin #8. The data should be valid at the
trailing edge of INSTROBE. INSTROBE may be used to enable the
data onto the data bus from an external device. The data may be
removed at any time following the occurrence of INSTROBE, however
the I/0 REQUEST line should be held low until BUSY/ RDY acknow-
ledges the transfer by going low. The simplest interface ignores
INSTROBE and uses BUSY/RDY only (Figure 2.1). I/0O SELECT must be
low while commands are being sent to the CY525.

Timing for the Verify mode, in which the internal contents of the
CY525 may be examined, is similar to that described above. In
order to read the internal contents, the I/O SELECT line must be
high. This will put the CY525 in an output mode. When the
BUSY/RDY line is high (ready), the user should strobe I/0 REQUEST
(pin # 1) low. The CY¥525 will then write the next byte value
onto the data bus. This is indicated by a low going write
strobe, OUTSTROBE, appearing on pin $#10. The data will be
latched and valid on the trailing edge of OUTSTROBE, which may be
used to latch the byte into the user's input port. After
OUTSTROBE, the CY525 will go busy, indicating that the data is
available on the bus. Data will remain valid until I/0 REQUEST
is again set high by the user. Note that the user may read the
data directly, after the CY525 goes busy, before raising I/0
REQUEST. When the C¥525 detects I/0 REQUEST high, the data bus
will be put back into a high impedance state, and data will no
longer be valid. This operation will be indicated by a second
OUTSTROBE pulse. The CY525 will then indicate ready again,
awaiting the next command or another verify read, as indicated by
the I/O SELECT line. See Figure 7.1 for the waveforms.

To enable all CY525 features, the user should connect all 8 lines
of the data bus to his I/O ports, and generate 1/0 REQUEST and
I/0 SELECT as separate lines. I/0 SELECT should be changed only
while the CY¥525 is ready (BUSY/RDY is'high), and may be used to
determine the direction of data on the data bus (low=into CY525,
high=out from CY525). Since the data bus is bidirectional, the
user must turn off (tri-state) the command output port during the
Verify mode, allowing the CY525 to drive the data bus lines.
This may be done by I/0 SELECT, or the command port could be tri-
state at all times except during the INSTROBE pulse. The typical
for a Verify command and response is shown in Figure 7.1 below.

54

il

o—

TR

.

e ---..—..T-__

:
i
%
=
z

PATA DATA DATA H DATA DATA DATA

DATA
STABLE STABLE STABLE STARE SIABLE STARE STABLE

Figure 7.1 C¥525 Verify Command Timing Sequence using 6 MHz xtal

CY525 Interface Timing

The CY525 can receive direct commands or execute a sequence of
commands stored internally in an on-chip program buffer. The
following examples illustrate typical timing for various actions
related to command execution. Specifically, we will consider the
entry and execution of a very short program. We will send the
following commands to the CY525:

-

E}

Initiate the Program-Entry mode

(Bit set)...drive pin 34 to TTL high

-

-

(Clear bit)...drive pin 34 to TTL low

Stop executing program, re-enter
command mode

~

Q Quit entering the above command mode

-

X) eXecute the stored program

-

Each of the above commands is given to the CY525 by testing the
BUSY/RDY line (pin 27) of the CY525. When this pin is high (RDY)
the command is placed on the data bus and the I/0 REQ (pin 1) of
the CY525 is pulled low to signal the presence of data in the
bus. When the CY525 accepts this data, the BUSY line is pulled
low to acknowledge the transfer. At this point the data may be

55

. H R
T
sl Hhind

removed from the bus and the (active low) I/0 REQ signal returned
high., After the CY525 has processed the data, the RDY line will
return high, The RDY line will not return high until the I/O REQ
has been removed. The sequence of handshakes for the entire
program shown above is depicted in figure 7.2 below.

DATA BUS

1/0 REG,
{pm1)

me- LI

sao 10@e 1568 2000 zsea 3980 35086 4000
TIME IN MICROSECONDS (11 MHZ)

Figure 7.2. Handshake timing for example program.

Note that above each I/0 REQ strobe, the ASCII character being
transferred is shown on the bus. There are eleven characters
transferred to the CY525 'in approximately 3300 microseconds. As
may be seen the spacing is very regular, therefore the transfer
time per character is about 300 microseconds. These times are
for an 11 MHz crystal and should be scaled by f£/11 for a crystal
of frequency f. If we expand the timing diagram above and look
at the first transfer only, we see that the CY¥525 actually
completes the transfer of the character (E) and returns to the
READY state within 200 microseconds. The extra 100 microseconds
before the I/0 REQ is pulled low (to signal the) on the bus) is
actually delay caused by the master computér used in this
example. If a faster computer were used, this could be decreased
so that the minimum character transfer time of 200 micro-seconds
per character is approached. This timing is shown below in
figure 7.3.

DATA BUS

DATA STABLE
1/0 REQ
(P|N l) >9
BUSY/READY A1
(PN 27)

2] Se 10@ 150 zna 25e 308 Ise 4na
TIME IH MICROSECONDS

Figure 7.3 1I/0 REQ and BUSY/RDY timing diagram.

56

As discussed elsewhere, if ASCII numbers are entered, there is an
additional processing time after the carriage return while the
decimal-to-binary conversion occurs before the BUSY pin returns
high (Ready). This time is absent in the binary data mode.

Timing of Secondary Signals

The handshake signals I/0 REQ and BUSY/RDY are considered primary
signals and must be observed. There are several secondary
signals that provide convenience but are not strictly necessary.
For example the PROG (pin 31) will go low upon receipt of the E)
command to indicate that the next commands will be ENTERed and
stored in the program buffer instead of being executed as they
are entered. The Q command (with no carriage return) QUITs the
program-entry mode and returns the PROG line high. This is shown
in figure 7.4 below:

L)

PROG/LIVE
(PN 31)

)

a Soe 1eaa 1580 2000 zsa9 7a94a ic5aa 45300
TIME IH MICROSECONDS (11 MHZ)

Figure 7.4 1Illustrating PROG line timing.

To examine the execution time for this program, we expand the
portion of the timing diagram that follows the Q command, which
terminates program entry. The X) command which immediately
follows the Q begins the program execution. The timing diagram
shown in Figure 7.5 below presents the Q, X and) transfers. As
discussed above, the Q causes the PROG line to return high. The
X) command causes the program to begin executing as signaled by
the RUN line (pin 32) going low. As seen below, this occurs
apparently one hundred fifty microseconds after receipt of the X.

DATA BUS

!
i70 REG r [\
(PN 1)
RUN
(P 32)
PROGRAMMABLE ,
QUTPUT (pmi 34)]

r

PROG/ LIVE
(PN 31) _____J

a 181 2an i0a aaa saa 6§69 Tae gan
TIHE IM MICFOSECONDS (nmMz)

Figure 7.5 Timing for PROG, RUN, and PROGRAMMABLE OUTPUT.

57

The short program consists of the commands B, C, and #. The B
causes the PROGRAMMABLE OUTPUT (pin 34) line to go high and the C
causes it to return low. The @ command terminates program
execution and causes the RUN line to return high. The CY¥525 is
now back in the command mode. The program still resides in the
CY525 on-chip program buffer and can be executed an indefinite
number of times by sending a succession of X commands. A new
program can be entered by sending another E command. The last
portion of the above diagram is expanded and shown below. It can
be seen that the B command causes the control pins to go high
with 60 microseconds of the RUN lines going low, however the C
command returns control low with 40 microseconds and the @
command raises the RUN lines to terminate program execution in
less than 40 nsec.

PROGRAMMABLE OUTPUT

(PN 33)
L
ey 0 PR —
RUN @4
(PN 32) o
Q? 26 49 (1) ga 1ea 129 149 160

TINE IN HICRAOSECONDS (1) MH2)

Figure 7.6 Timing for program execution of sample program.

Timing for Command Execution
The B and C instructions executed in the example program above

can also be executed directly in the command mode. The timing for
these commands is shown below in figure 7.7.

DATA BUS

PROGRAMMABLE OUTPUT
(PN 34)

e ! i, *— e T N o e —
{/0 REQUEST
(PN 1)
BUSY/READY
(PN 27)

200 400 6080 8oe tena 1280 1400 1669
TlHE IH MICROSECOHDS (11 MNz)

Figure 7.7. Timing for B and C command execution.

58

STEP INHIBIT PIN

In the triggered mode of operation, the GO command initiates the
stepping sequence if the Step Inhibit pin is low. If the Step
Inhibit pin (pin #30) is high, the controller simply waits for a
low level on this pin and then takes the step. The level of the
pin is tested during the time out loop of every step.

s UL g

STEP INMIBIT ’ ‘
MOTION COMPLETE 2 mSit I__ |

Figure 7.8 Step Inhibit Timing with 6 MHz xtal.

DIRECTION CONTROL

In the Absolute Mode of operation, in which target positions are
specified with the "P" command, direction is determined
automatically. If the specified position is greater than or
equal to the current position, the direction is set to clockwise
(CW), and if the specified position is less than the current
position, the direction is set to counter-clockwise (CCW). The
current setting of direction is indicated by the DIRECTION pin
(pin # 33). HIGH corresponds to CW, and LOW corresponds to CCW.
In Absolute Mode, the DIRECTION pin is set just before stepping.

In the Relative Mode of operation, in which the number of steps
to take from the current position is specified with the "N"
command, and stepping is activated with the "G" command, the user
may control direction with the "+" (CW) and "-" (CCW) commands.
The current setting of direction is still indicated by the
DIRECTION pin, and stepping will occur in the direction last set
when the "G" command is issued. The system powers up in the
clockwise direction. Note that the direction commands are
separate commands; they are terminated by the carriage return
character, }=0DH. Thus, to specify 100 steps in the counter
clockwise direction it is necessary to send two commands:

@ instead of sending
DIRECTION , ‘ ‘ | “I 5°°“5‘°I'
PULSE | "., \ ,‘ , | , l_J
M
1 0

MOTION COMPLETE ‘_r_‘

3 h

POSITION AT END OF MOTION

Figure 7.9 Direction indication. Program: P 2} P 0} +) G - G
using a 6 MHz xtal.

59

LIVE COMMANDS

(While a Program is Executing)
The CY525 has two features that allow control while the CY525 is:

1. executing a program
2. generating step signals

These are quite different operations. The ability to change step
rates on the fly, that is, while the motor is stepping, is
discussed in another section. This section discusses live
commands, that is, commands that are sent to the CY525 while a
program is executing, as indicated by the RUN line (pin 32) in a
low state.

If it is desired to send commands to the CY525 while a program is
running, the PROG/LIVE line (pin 31) must be pulled low. This
informs the CY525 that the master computer has a command for it.
After the CY525 finishes executing the current instruction in a
program, it will enter a mode in which any valid commands will be
accepted and executed. For example, the PROGRAMMABLE OUTPUT line
(pin 34) may be set or reset (via B or C) or any parameter may be
changed. Multiple commands may be issued, as long as PROG/LIVE
is held low. :

To exit the live mode, the PROG/LIVE line is returned high after
the last command has been entered, but before the last carriage

return code (ODH) has been sent. This is illustrated in the
following figure for three commands.

(Pw32) RUN l |
(PN 31) PROG/LIVE l |

(pin 1) 1/OREG

c ';
(PM21) BUSY/RDY Lr1_|
[l
'
'

B, c

e

|
[l
)

(PN 34) PROGRAMMABLE OUTPUT]__I_—]_

Figure 7.10 Illustrating live commands sent while the CY525 is
executing a program.

It should be understood that the BUSY/READY line (pin 27) is to
be observed as usual. In the CY525, the READY line is pulled low
for every motion command (P or G) and returned high at the end of
motion. The I/O REQ line (pin 1) should not be brought low until
the READY line is high. If the I/0 REQ is made low before the
motion is completed, it may be interpreted as a request to change

60

the step rate on the fly | Also, since PROG/LIVE (pin 31) is bi-
directional, the CY525 will drive PROG/LIVE low during progranm
entry mode, so the user should only drive this pin with an open
collector gate or equivalent.

Once the CY525 sees the PROG/LIVE line is low, you must issue one
command before program execution will continue. The PROG/LIVE
line is tested between commands and if low, the CY525 will wait
for a command input. After the command is executed, the line is
tested for another live command. If the line has returned high,
the program will continue, otherwise the CY525 waits for another
command. Note that the 0 command will stop program execution,
which brings the RUN line high and goes back to end mode.

- CONTINUOUS STEP (HALT Mode)

The CY525 has a provision for unlimited stepping (unlike the
CY512 which is limited to 64K). This mode is enabled via the H
instuction. H stands for Halt mode, since the CY525 will step
until Halted by the ABORT line (pin 6). The H command does not
initiate stepping. It merely sets an internal flag that is
tested during execution of a motion command. Note also that the
H instruction must be issued for every continuous stepping
command, since the Halt mode flag is reset when the continuous
motion is aborted. The following example illustrates this point.

N 1000) set number of steps = 1000

G) take 1000 steps and stop
H} set continuous step mode
G) ramp up and step until halted by the ABORT
G) take 1000 steps and stop

Note the ABORT line is used to HALT the continuous
stepping that occurs when a GO command (G) is preceded
by the Halt mode command (H). The ABORT line should be
brought low and held low until the MOTION COMPLETE
signal is pulled low (pin 37).

If the ABORT line is returned high before the MOTION COMPLETE
signal goes low, then unpredictable results will occur. The
‘CY¥525 in the non-continuous mode, will continue stepping at the
First-rate until the target position is reached. In the
continuous mode, the internal bookkeeping may be scrambled, and
the target may be anywhere.

To summarize:

Normal motions of the CY525 terminate at the specified
target position (or after N steps).

Continuous step operation terminates when the ABORT line
is pulled low and held low until the MOTION COMPLETE
signal (pin 37) goes low. There is no target position
in this mode.

61

WRAP AROUND POSITION

When the CY525 is placed in continuous step operation, the
internal position counter is not disabled, but continues to keep
track of the position (modulo 64K). By reading the position on
the fly, a master computer can readily keep track of the position
exactly. Note that at 10,000 steps/sec it takes approximately 6
seconds for the position to wrap around, thus providing plenty of
time for a master computer to monitor (by sampling) the state of
the CY525. There is no external indication of the occurrence of
wrap around, so the monitoring computer must perform simple
arithmetic tests to detect it.

ABORT OPERATIONS

The CY525 uses the ABORT line to cause the motor to ramp down
from its current rate to the Firstrate (F) and either stop or
continue to the target, depending on the condition of the ABORT
line at the bottom of the ramp. Additional abort pulses will be
ignored until motion is completed. Several cases are described
in the following. Only Case III should be used in the continuous
step mode.

. Abort Line Descriptions

Case I. Normal Motion

In this case the Abort line is left. high (+5V) the entire
time and the CY525 ramps up from the specified starting rate,
slews at the specified maximum rate, and ramps down to stop
at the specified final location. The slew line (pin 29) is
used to distinguish accelerated motion (up & down) from
constant velocity (slewing).

SLEW |]
MOTION PROFILE / \

-~y

ABORT I
MOTION COMPLETE I

START STOP -—-.:
|
[}
|

62

Case 11I. ABORT disabled

In the special case that the abort line is initially low
(Ov), the ABORT action is disabled for the duration of the
normal motion. Note that stepping can be inhibited via pin
30, but cannot be aborted. This case is provided for those
people who use a limit switch to abort motion. Without this
case, you could never move away from the limit switch.

SLEW | J
MOTION PROFILE / \,
. Lo~ sTARY]
ABORT : 1 y s
1 1
MOTION COMPLETE ' —

Case III. ABORT and STOP

This case illustrates the ability to abort the CY525 motion
with the normal deceleration to the starting rate (Firstrate
= F) and then, upon finding the ABORT line still low, STOP
and signal motion complete. The Abort line can be brought
high any time following the Motion Complete signal.

sew] |

]
Begasiaide sy
)
MOTION PROFILE / \ \:/
AN
]

1
e START

ABORT ! 1

MOTION COMPLETE l

63

Case 1IV. ABORT and go to TARGET

In this case, the Abort line is brought low to terminate
slewing but is removed before the motion reaches the initial
step rate F (set by FIRSTRATE). Upon reaching the starting
rate and finding the Abort line high, the CY525 continues
moving at the initial step rate until it reaches the
specified target location and then stops and issues the
Motion Complete signal.

SLEW I J

_________ -
MOTION PROFILE / \ AN
N
1 AN

j#— START : A SToP —e!
ABORT ! | | ;
i i
MOTION COMPLETE ! —
Case V. ABORT while RAMPING

This case is included to show that the normal motion can be
aborted before the slew rate is reached, that is, while the
CY525 is still accelerating the motor. Depending on whether
ABORT is returned high or not, the motion will stop at the
bottom of the down ramp or proceed at the slow rate to the
target position.

SLEW 1 o_Jd

MOTION PROFILE 4 N
| AN
|
i
ABORT II :
1
1

MCTION COMPLETE I

64

Case VI. Precautions about ABORTing Continuocus Motion

When continuous run mode is selected (via H), a large number
of steps should be entered, for example N 64000). Any
operation occurring within this range will abort normally as
shown in the CASE examples. Note however, that if the
"target position" is detected while the CY525 is ramping down
Que to an ABORT, the CY¥525 will abruptly stop "on target™!
For extremely long continuous motion, this behavior will
occur modulo 64K.

an example is shown below:

ABORT l_
\ /ABRUPT SToP
MOTION PROFILE / \
\;
MOTION COMPLETE 1
—
ON TARGET S EXPECTED
STOP POSITION

If an application is expected to encounter this situation,
and if an abrupt stop cannot be tolerated, the following
procedure should be used:

Instead of issuing an ABORT signal, change the rate on-the-
fly to the desired minimum step rate. The CY525 will begin
ramping down as if an ABORT had been issued. When the SLEW
line goes low at the bottom of the ramp, issue the ABORT.

CHANGE RATE
& ON-THE-FLY

MOTION PROFILE

SLEW 1] p
| I

ABORT

MOTION COMPLETE

65

ABORT RELATED SIGNALS

The ABORT line (pin 6) is a level sensitive line that causes the
CY¥525 to begin down ramping when it detects a low level on this
pin. The level sensitive nature of this pin is shown in the
following figure.

N 65000 NOTE LEVEL TRIGGERED
S 220} NATURE OF ABORT LINE
R 127)
F 3)
Z 1) \
G}
(Abort)
[
] 20 40 60 80

TiME IN MICROSECONDS —~ 11 MHZ XTAL

ABORT (PING)

SLEW (pn 29)

MOTION COMPLETE
(PN 37)

1

1
100 200 300 400 300 600 700 800
TIME IN MILLISECONDS — 11 mh.xm,

—_——oy - ————-F

- " R=127

MOTION PROFILE

e ———

R=3
SToP

Figure 7,11 The level sensitive ABORT line can be used to trigger
down ramping of the CYS525.

66

THE SLEW LINE

The SLEW line (pin 29) goes low to indicate that the CY525 is
stepping at a steady rate. Thus it is high during both up ramp
and down ramp excursions. The normal mode of operation (as in
continuous stepping) causes the SLEW line to go low when the
maximum step rate is reached. It returns high when the CY525
begins ramping down. This ramp down can result from three
different causes:

1. normal deceleration to the target position.
2. the ABORT line has been pulled low.
3. the step rate has been changed on the fly.

The abort operation can occur in either normal operation or in
the continuous stepping mode selected by the H command. The last
case should occur only in the continuous step mode of operation.

In normal operation, the SLEW line is low only while the CY525 is
stepping at the maximum rate. Note that if this motion is
aborted (via pin 6 going low), the device will ramp down to the
First-rate (specified by the F command) and if the ABORT line has
been returned high, will step at this steady rate until the
target position is reached. Even though the device is stepping
at a steady rate, the SLEW line will remain high. To repeat, for
normal stepping, the SLEW line indicates stepping at the maximum
rate. This operation is shown in the figure below:

MOTION PROFILE TARGET

POSITION '1

{__restsror
(I\F ABORTED)

SLEW r

1
t
i
I
|
t
1

MOTION COMPL I

Figure 7.12 SLEW line behavior during abort in normal mode.

67

Slew Operation in Continuous Step Mode

The meaning of slew is more general in the continuous step mode
of operation. In this mode, SLEW going low indicates that the
CY525 has completed ramping and is moving at a steady rate, not
necessarily the maximum rate! Thus, when the rate is changed on
the fly, the CY525 raises the slew line while accelerating or
decelerating to the new rate, then lowers it when the new rate is
reached. This is shown in the following figure with 11 MHz xtal.

cysa2s |
MOTION

N = 20009
S = 109
R
F

= 127

L
»
—_

a 208 400 6060 8eo 16080 12080 14006 16092
TIME IN MILLISECONDS

Figure 7.13 Illustrating the operation of SLEW in continuous step
mode when rate changes are executed on the fly.

RATE CHANGES ON THE FLY

The CY525 offers a major new feature -- the ability to specify
rate changes on the fly, that is, while the motor is stepping!
This allows much more complex motion profiles and much closer
control of motor movement. In order to make use of this feature,
the CY525 should be placed in the continuous step mode of
operation by preceding the G command with the H command (H stands
for Halt mode, since in this mode stepping must be halted via the
ABORT line (pin 6) as opposed to the normal mode of operation in
which stepping halts at the target position. There is no target
position in the continuous step mode.)

In order to change the step rate on the fly, two conditions
should be met:

1. continuous step mode should be invoked via H.

2. the SLEW line should be low, indicating steady
stepping (not ramping).

68

Once these condition are met, the step rate can be changed as
follows:

1. place the new 8-bit binary rate on the CY¥525 bus.
2. 1lower the I/O REQ line (pin 1) to the CY525.
3. raise the I/O REQ when the SLEW line goes high.

The CY525 will now ramp up or down as appropriate until the new
rate is reached, then continues stepping at this rate until
changed again or aborted.

- Rate Change Timing

When the CY525 is slewing in the continuous step mode, a new rate
can be entered as described above. Although this entry can be
synchronized with the pulse line (pin 35), this is unnecessary
and does not offer any advantage. The normal method of changing
rates while slewing consists of simply placing the new (binary)
rate parameter on the CY525 data bus and asynchronously pulling
the I/0 REQ line low. Since the I/0 REQ line is checked only
once per step, there is an indeterminate delay from the time
I/0 REQ is lowered until the SLEW line goes high to acknowledge
it. This is illustrated in the following figure. At the left of
the figure, the CY525 is slewing at a low rate, therefore each
step is longer and the average response time to I/0 REQ is
accordingly longer. This is observed by the initial wider 1/0
REQ pulse that is held until SLEW goes high. The CY525 then
ramps up to the new high step rate and lowers the SLEW line when
it reaches the new rate. We now place a low rate on the bus and
lower 1/0 REQ again. Since the step period is much shorter at
the high rate than it was at the low rate, the CY525 detects the
I/0 REQ much sooner (on the average) and responds by raising SLEW
and ramping down to the new low rate.

Note that since I/0 REQ is lowered asynchronously, these are
typical responses. Of course, if the I/0 REQ happens to occur

just before it is tested, then the response time would be short
even at low rates.

| AN A A
SEW (PiN29)) , '

MOTION pkocu.sh/

[} 20 40 6e 80 108 128 140 1€0
TIME IN MILLISECONDS

Figure 7.14 Illustrating typical timing for changing rates on the
fly using an 11 MHz xtal.

69

Rate Change Examples

The fiqure below shows several motion profiles obtained by
changing the rate on the fly. It can be seen that the
acceleration curve between any two specified rates is simply the
section of curve that would be found between those two rates when
the CY525 accelerates from minimum to maximum velocity (and the

corresponding deceleration segment.) Note the behavior of the
SLEW line.

cvsa2s |
MOTION
N = 208000
$ = 109
= 127

= 3 \ -

\
1 \
_/

N M o

SLEW

TIME IN SECONDS

cvsa2s |

MOTION f\

N = 29099 // N,

1@ e N

-
= 127 h}//’——ﬁj e,

on
L]

N T T
"

SLEW

[z09 40@ €@9 200 1000 1200
TIME IN MILLISECONDS

CYS25 |
LY
MOTION / !

N = 20009 N,
T, N,
= 100 : .
= 127 ™

N D oW
[

SLEHW oot T
2 200 400 606 8eo 180@ 1200 1420 1609
TIME IN MILLISECONDS -

Fiqure 7.15 Typical profiles for "on the fly" changes.

70

Typical Response Times

If the CY525 is stepping with R = 3 (300 steps/sec @ 11MH2z) then
the step period is 3333 microseconds and the average response
will be about one half of this, i.e., 1600 microseconds. If the
rate is R = 127 (9675 steps/sec @ 11MHz) then the step period is
103 microseconds and the average response time will be 50
microseconds. The two scope traces shown below tvpifv this
timing. The I/0 REQ qoes low to signal that the new rate is on
the bus. The SLEW line qoes high to indicate that the CY525 has
bequn accelerating or decelerating to the new rate. (In any
case, the maximum response time to the I1/0 REQO line is the
current step period.)

R=3] 400 8ee 1200 1600 2000 24080 2600 3200
TIME IN MICROSECONDS

SLEW

R=127
] 20 40 1 8o 100 120 140 169

TIME IN MICROSECONDS

Fiqure 7.16 Typical response times for changing the rate.

71

SPECIAL CONSIDERATIONS

As mentioned previously, the CY525 should be placed in the
continuous step mode (via the H command) in order to change the
step rate while the motor is stepping. If this is not done,
unpredictable behavior will occur, includina the possibilitv of
an abrupt halt from any step rate.

If the Continuous run mode is to be used, then the Number-of-
Steps command, N, should be used with a large argument, say 64K
or so. This is to ensure that the CY525 begins slewing. If a
very large Z factor is used, it is possible that the C¥525 will
not reach the slew state in 32K steps, in which case, the C¥525
will not enter the Continuous run mode. This is a very unlikely
case, and one which can be avoided by using N 64000) and
relatively small values of 2, say < 10. The exact value of 2
depends on the value of the slope parameter, S. Although this
limitation is very unlikey to occur in most applications, you
should be aware of it. If for some reason, your system halts
unexpectly in the Continuous run mode, you should increase N and
decrease Z.

Example of commands for initiating Continuous Stepping:

N 65000) ; set large value of N

zZ 1) ; set small value of Z

S s) ;s set appropriate value of slope
F) ; set appropriate First rate

R r}) ; set appropriate Max rate

H) ; issue HALT-mode command

G) : begin stepping....

A second consideration is the following. When the CY525 is
slewing (at any rate) and is given a new rate (by lowering 1/0
REQ, with the rate on the bus) the CY525 will ramp up to the new
rate if it is higher than the current rate or down to.the new
rate if it is lower. The effect of this is to temporarily
establish a new value of R and F to last until either another new
rate is presented or the current motion is terminated. If the
new rate is higher than the current rate, then the new rate
replaces the maximum rate. If the new rate is lower than the
current rate, then the new rate replaces the first rate. This
has important consequences! When the ABORT line is pulled low to
end the motion, the CY525 ramps down to the first rate and stops.
In the second case described above, the CY¥525 is already slewing
at the first rate, therefore it will abruptlv halt with no
ramping!

72

To clarify the above situation, let us consider the following two
cases in detail:

CASE I. Begin stepping with F=3 and R=80, then change rate
while stepping to a new rate of 60. Since this is
lower than 80, the CYS525 ramps down to the 60,
which becomes the effective new first rate. (F=3
is lost for the duration of this motion but will
still apply to the next motion command.) If the
ABORT line goes low, the CY525 comes to a crash
stop from a rate of 60, without ramping down as is
probably necessary.

CASE II. Begin stepping with F=3 and R=80, then change rate
while stepping to a new rate of 127. Since this
is higher than 80, the CY525 ramps up to the 127,
which becomes the effective new maximum rate.
(R=80 is lost for the duration of this motion but
will still apoplvy to the next motion command.)
When the ABORT line qoes low, the CY525 ramps down
from R=127 to the first rate = 3, then stops if
the ABORT line is still low.

Note that in the first case, the CY525 halts without ramping,
while in the second, the normal (desirable) ramp down occurs.
These motions are shown in the following fiaqure.

MOTION
CASE I

MOTION
CASE I

Figure 7.17 Illustrating two cases occurring for aborting motion
while issuing rate changes on the fly.

73

In the continuous step mode, it is possible to change rates an
indefinite number of times. In every case, the last rate change
determines the effective values of F and R (as seen by the ABORT
operation). If the last rate change caused the CY525 to ramp up,
then the upper rate is changed and the lower rate is not
(although it may have been changed bv a previous on the-fly-
operation). If the last change caused the CY525 to ramp down,
then it is effectively at the first rate, and aborting will not
ramp down but will stop immediately.

A VERY SPECIAL CASE

As a general rule, any valid rate parameter from 1 to 127 can be
issued on the fly (while the motor is stepping). If the special
case of R=0 occurs, i.e., if the data bus is held at zero when
I/0 REQ is pulled low, then the CY¥525 will immediately stop
stepping (with no ramp down). To indicate this special case the
SLEW line goes hiah and then returns low (the CY525 is now
slewing at zero steps/sec!) but the MOTION COMPLETE line also
qoes low to sianal this unique state. Internally, the CY525 is
still slewing and will continue to slew (at zero rate) until a
new rate is presented in the usual manner, bv placina the rate on
the bus and lowering I/0 REQO. The onlv requirement is that the
new rate be gqreater than the slew rate before R=0 was given.
Thus if the CYS525 was slewing with a rate of 2 when it was
stopped (via 0) then it must be given a rate of 3 or greater to
continue stepping (it will ramp up to the new rate). An example
of motion is shown in the following fiqure.

DATA BUS

1/0 REQUEST

MOTION
PROFILE

SLEW

MOTION COMPLETE u L
KBORT |

Figure 7.18 1Illustrating several rate changes on the fly
(including the special case of 2zero rate) and the
corresponding behavior of I/O lines associated with
rate changes.

74

Aborting from the ZERO-SLEW State

If the CY525 is placed in the Zero-SLEW state by issuing a rate
of 2zero while the CY525 is slewing, the ABORT line can be used to
terminate this state and prepare the CY525 for normal commands.
The behavior of the relevant lines is shown below:

1
MOTION PROFILE Q/

SW : : - r_-
BUSY/READY 3 —
ABORT : —

MOTION COMPLETE l—-_

In response to the G command (issued after H) the CY525
begins ramping from the Firstrate (specified by F) to the
maximum rate (specified by R).

In response to a new, lower, rate issued on the fly, the
CY525 begins ramping down until it reaches the specified
new rate.

When the new rate is reached, the CY525 begins slewing at
this rate.

® 0 & ©

When a new rate of zero is issued on the flv, the CY525
immediatelv halts without ramping down. To indicate that
the CY¥525 is "slewing at zero velocity" the SLEW line
returns low but, to indicate the special nature of this
state, the Motion Complete line goes low also.

If, instead of issuing a new rate command, the ABORT line
is brought low, the CY525 will raise the READY line,
raise the SLEW line, and leave the Motion Complete line
low. The CY525 is now ready to accept new commands,
includina the Verify command.

SUMMARY

The CY525 provides two major operational modes: The normal mode
is characterized by specifving all relevent parameters and then
forgetting about the CY525 until the motion (or proaram) is
complete.

©)

The continuous step mode of operation allows much more exotic
motion profiles but requires close attendence to the CY525
behavior, as well as careful consideration of abort behavior,
etc. Choice of mode should of course be based on vour svstem
requirements.

75

PHASE SIGNALS

The tables and waveforms below indicate the sequential values
assumed by the stepper drive signals. The tables also indicate
how the step patterns correspond to the Offset parameter
specified in an OFFSET (O) command. Note that the OFFSET command
will set the internal step pattern pointer to that specified by
the parameter indicated, and the pulses will appear on the drive
signal lines. If the Offset parameter is greater than three, and
less than 128 (3 < o < 128), the phase lines will all go high
with no pulse. They will go high with a pulse on pin 35 for
parameter values greater than 127.

PHASE OUTPUT SIGNALS
STEP 1 2 3 4 1
51 0 1 1 0 0
2 1 0 0 1 1
3 0 0 1 1 0
o4 1 1 0 0 1
OFFSET| 0 1 2 3 0

L e hs Re A T
. —
: | r
. e
- \ ,

Fiqure 7.19 Phase Step Control Outputs.

The stepping waveforms indicate that outputs ¢l and ¢2 are paired
together, as are outputs ¢3 and ¢4. ¢l and ¢2 should be
connected to opposite ends of the same winding of a four phase
motor, and @3 and ¢4 should be connected to the other winding of
the motor. The user should study the waveforms and the motor
requirements carefully to determine the proper connection between
the phase outputs and the wires coming from the motor.

The phase outputs are considered on, or energized, when they are
low (@) and off, or de-energized, when they are high (1).

76

8 Y525 STEP RATE INFORMATION 8
CY525 RAMP CURVES

The CY525 will operate at 127 different step rates for a given
crystal frequency. Prior to issuing the first motion command,
the user should specify the initial or first rate via the First
rate command, F., for example F 3) tells the CY525 to begin
stepping at 300 steps/sec. The rate command, R, is used to
specify the maximum step rate, for example R 127) tells the CY525
that the maximum rate should be 9675 steps/sec. The Slope
command, S, is then used to specify how rapidly the CY525
accelerates from 300 steps/sec. to 9675 steps/sec. Finally the
Slope divisor, Z, is set at one for the time being. After these
parameters have been specified, the CY525 can be commanded to
begin stepping in the relative mode via a G command or to step to
an absolute position via the P command. When either of these
commands is issued (or executed in a program) the CY525 begins
stepping at the first rate and keeps increasing the step rate at
a rate determined by the slope command. The following sections
describe the slope parameter in detail.

THE SLOPE PARAMETER

The SLOPE command, S, allows you to control the acceleration and
deceleration performance of the CY525. In general, the greater
the loading on a motor, the more time is needed to accelerate the
load up to full speed. Control of this variable is provided by
specifying the argument of the slope command. The range of this
argument is from one to 255 with the larger values corresponding
to larger accelerations. Thus the larger the slope parameter,
the faster the CY525 reaches its maximum stepping rate.

$:=250 $=200 S=150 82100
cvsas | " _5:50
MOTION P
N = 20009 /
R o= 127 _:/_///-/,-/M""
F = 3
Z =t

SLEW

9 S0 1ee 1590 200 2350 300 3s%e 489
TIME IN HILLISECONDS

Figure 8.1 Typical velocity-vs-time curves for values of S.

How do you choose the correct slope? In most cases, simply start
with the minimum slope, S=1, and increase S until the system
fails to keep up with the CY¥Y525. While this method is the most
realistic, the following discussion and tables will help
calculate accelerations based on slope. We will also calculate
ramp times, defined as the time required to accelerate from the
first rate to the final rate.

77

Optimal Acceleration Curves

Before we calculate travel times for particular slopes we will
discuss the general behavior of the CY525as a function of slope.
The first observation is that the shape of the acceleration
profile is optimal for a rate parameter of 80 corresponding to a
maximum velocity of 6000 steps/sec if an 11 MHz clock is used.
For rate parameters above 80, the acceleration curve has a slight
inflection, however it is not enough to seriously affect the
performance, in fact, if the motor can accelerate through the
rates from 3 to 40, then it should be able to reach the maximum
speed of 10,000 steps/sec.

cYs2s i

MOTION

N = 10000

s = 100 !,/’““”—"_'"""_\\

R = 80 // N
F = 3 K "

~N

1}

-
A
-

] -1 1 1.5 2 2.5 3 3.5 4
TIME IN SECONDS

Figure 8.2 Optimal acceleration curve for R = 80.

Acceleration Curve as a Function of R

As seen in the fiqure below, the shape of the acceleration curve
is fixed for a given value of the slope parameter and the rate
parameter merely specifies when the CY525 will begin slewing at
a constant velocitv. The total travel is the same for all of
these curves, thus the travel time (horizontal axis) depends on
the travel speed, as is obvious from the figure.

AN

P
/ ORI
/

STEP RATE

NN

Ti\ME

Fiqure 8.3 A family of curves for various rates with fixed
slope parameter and fixed travel distance.

78

In order to calculate times we note that in general, the time
required to travel from the first rate, RO, to the maximum rate
Rmax is a function of the change in rate 4R and the acceleration
a(RrR), i.e.,

t (Rmax) t(Rmax) Rmax Rmax
dr
R = a(R) 4t = --1 4t = dr = r
dat
t (RO) t(RO) RO RO
therefore
t (Rmax)
(Rmax ~ RO) = f a dt
t (RO)

If we make the simplifying approximation that the acceleration is
constant, and also set t(R0)=0, then we have: .

(Rmax - RO) = a t(Rmax)

or

Since this only works for constant acceleration, we need to
examine this aspect. From the rate table and from the curves in
figure 8.5, we see that the ramps are approximately linear, or at
least piecewise linear, i.e. either:

A =~ 100 steps/sec -,
A = 50 steps/sec

“+A ~ 100 steps/sec
1st Approximation 2nd Approximation

From rate parameters 3 thru 40, the rate changes 100 steps per
unit, From 40 thru 100, the rate changes approximately 50
steps/unit. Finally, above rates of 100, the change per unit
varies from about 75 to 125 steps. Since the highest rates were
determined by constraints inherent in the implementation of the
CY525, the lower rates were chosen with several features in mind:

79

First, many customers have asked for meaningful rate
parameters, and the rate parameters from 3 to 40 are
now meaningful in the sense that

rate parameter = ~—=—=——-=-- (steps/sec)

Second, in order to use the full range of rates, the
system must be able to accelerate with greater than
100 steps/sec. between successive rates, therefore the
use of 100 at the low end imposes no severe constraints
on the system.

Third, for maximum rates up to about 8000 steps/sec.,
the curve is almost optimal in shape, i.e.:

Fourth, the total travel time is minimized by
accelerating faster at the slower rates as mav be seen
in figure 8.4.

Fifth, consistent with the above conditions, the dynamic
range of the CY525 is maximized.

CY523 RAMFPING

vl \
g = 200 VY
35 T00 MUCH TIME EXPENDED IN ..
7 ACCELERATION CURVES :
o PRIOR TO THE CY525

'l’.rﬁ,\ AN ST T AN Ay
B LN

TOTAL TRAVEL TIME
i MINIMIZED WITH

€525 ACCELERATION
0 1689 z0o zZaa 480 S@ £@ i Tas

TIME IN MILLISECOMNDS

Figure 8.4 1Illustrating optimal performance via minimal travel
time associated with CY525 acceleration curves.

80

After this digression on the slope, we see that there are two
possibilities for our formula. The first one is to use an
approximate constant for the whole curve and the other is to use
a piecewise linear approximation to the curve. With this value
the formula for acceleration as a function of the slope
parameter, is given by

av(s) (22988 * p)

]
0
Q
]
[}
"
|
1
1
|
|
|
1
1
[
1
1
|
|
]
[}
1
|
]
1
]
"
]
n
~

where a(s) is expressed in (steps/sec2). If we now substitute
this function into our expression for ramp time,

| Rmax - RO |
t =& e

22988 * D)

(256 ~ s)

For a clock frequency different from 11 MH2, this time should be
scaled by (11/f) where P is the new frequency in MHz. Similarly,
if the ramp time is desired for a slope S°, different from 80
(steps/sec./unit), then scale by (80/S”).

If we consider the case RO = 300 steps/sec and Rmax = 9675
steps/sec then we can compute ramp times from the above formula
for various values of slope parameter, s, as shown below. Also
shown are the measured times from the curves shown in fiqure 8.5.

RAMP TIME ACCELERATION
(in milliseconds) in (steps/sec?)

COMPUTED MEASURED COMPUTED

1299 1350 7211
1294 1350 7240
1254 1250 7475
1177 1200 7961
1050 1050 8927

795 800 11788
540 550 17349
285 270 32840
158 150 59323
30 38 306506

81

The formulas used in these calculations are summarized below:

22988 * D
accel = e in (steps / sec?)
(256-S)
| RL - RO |
time R seconds
22988 * D)
(256 - S)
where D = "distance” between two adjacent rate parameters in

(steps/sec.) i.e., the "incremental slope”.
Rl = maximum rate ... (argument of R command)
RO = initial rate ... (argqument of F command)
S = slope parameter (argument of S command)
Below is a sample BASIC program for the HP-85 desk computer.
This program accepts values for D, Rl and RO, and then computes

time and acceleration for a sequence of slopes, input one at a
time.

2080 PRINT "CY525 RAMPs" I

a1 PRINT " * TR
2aa3 OISP *INPUT D(steps- cec> "
30@4 INPUT D -
3805 DISP "INPUT MAX RATE , R1" 2
Ige6 INPUT Rl

Z@a7 DISP “INPUT MIN RATE , R@"
2pa8 INPUT R@

2889 PRINT "R1=";R1;" R@=";R@;" e
o=";0 ST L]
2018 PRING "memmmmmm—mmmmmmee " S8 8327 105@
2a12 PRINT "S. .ACCEL..time" L e =
2814 DISP "INPUT slope S" tem 11782 793
315 INPUT S e ,
3n16 A=22988%D/(256-5) 158 17343 548
2616 PRINT S:INTCR): INTC18@8%(R1 P
-RO3 RO o zes 283
3625 PRINT * * ey
2036 GOTO 3014 €2 59323 15
SR ImESeE 3@

The CY525 performance for typical values of the slope parameter
are shown in the following figures. These figures are followed by
the CY525 RATE table, which lists the step rates (at 11 MHz) for
each of the 127 possible rate parameters.

82

—

. . 1
L] -3 1 1.3
TINE IN SECOMDS TINE I SECOMDS

¥ aee 300
. 10 .20 30
TIKE IM WILLiSECONDS TI®E In mILLISECONDS

.] 1
TINE 1N SECONDS

108 3¢ 4 .. 200 308
TINE IR MILLISECONDS TIAE 1IN MELLISECONDS

. . 1
TINE IN SECOMDS

crs

NOT T an

N 20000

s v ose
=27

100 138 L] 290 1) coe 188 1200
TINE IN WILLISECONDS TINE I RILLISECONDS

83

CY525 Slope Curves

L /_ N\ 5=25
R
o
—_—
Tew 1 [

:l!l H; lttﬂl“ﬂl ® : s ? 33 ¢ :I'(IH. S!Cﬂll‘o‘
Te82e ']

" o= 29808
s - 23

Z= - 2. 7

L

. 200 a0e cos. wee 1008 1200 1400 16
TINE N MILLISECONDS

s 1
. 200 400 <o 280 1008 1200 1480 |6
TINE IM WILLISECONOS

. - i
TINE 1M SECOWDS
|

Iy
PR

LIS] -
=1 -~

SLEM |
L] 200 a0 (11] " 1988 1200 1400 e
TENE LW MILLISECONDS

L

. 208 400 o ot Te8s 1200 teve 1600
TIME [M WILLISECONDS

Figure 8.5 Example CY525 slope curves.

84

The Slope Divisor Z

If the acceleration is expressed as dv/dt for 2=1, then the
average acceleration will be (1/2)*(dv/dt) for any value of 2
from 1 to 250. Typical accelerations are shown below. The range
of rates from 300 to 4000 steps/sec (with 11 MHz clock) are very
linear and the slope divisor calculations are most accurate in
this range.

CYS2S
MOTION
N = zZoape

S
R

= 127

a 299 400 600 gae 1000 1200 1400 1600
TIME IN MILLISECONDS

Fiqure 8.6 Effects of various Z factors using S = 1.

Special Case - Short Slew

If at the end of acceleration, there are fewer
than 256 steps to take before starting to
decelerate, the CY525 will immediately begin
deceleration. No slew steps will be taken.
When the CY525 reaches the first rate, it will
continue stepping at this rate until the
target position is reached.

85

TABLE VII CY525 RATE TABLE
S R
R RATE R RATE
1] *+t 40 4000
1 * 41 4062
2 * 42 4107
3 300 43 4154
4 400 44 4201
5 500 45 4250
6 600 46 4299
7 700 47 4350
8 800 48 4402
9 900 49 4456
10 1000 50 4511
11 1100 51 4567
12 1200 52 4624
13 1300 53 4683
14 1400 54 4743
15 1500 55 4805
16 1600 ‘56 4869
17 1700 . 57 4934
18 1800 58 5002
19 1900 59 5070
20 2000 60 5141
21 2100 61 5178
22 2200 62 5214
23 2300 63 5252
24 2400 64 5289
25 2500 65 5328
26 2600 66 5367
27 2700 67 5406
28 2800 68 5446
29 2900 69 5487
30 3000 70 5528
31 3100 71 5570
32 3200 72 5612
33 3300 73 5656
34 3400 74 5699
35 3500 75 5744
36 3600 76 5789
37 3700 77 5835
38 3800 78 5882
39 3900 79 5929
x sli 80 5978
Tese"chan 300 s/s, 8l 6027
subject to change 82 6076
+ R=0 halts stepping 83 6127
in continuous mode 84

6178

86

STEP TIMING SIGNALS

The PULSE output (pin #35) mav be used as a step timing signal.
When the CY525 is not stepping, this output is high. It qoes low
at the beainning of everv step, and stavs low for the duration of
the step. When the step time is over, PULSE qoes high again.
PULSE remains hiah for about 5 microseconds between steps. This
time has been included in the rate equation.

R=5
500 s/s

(] seo 1000 1See 2000 2500 3000 3500 4
TIME IN MICROSECONDS

R=10

1000 s/s
8- 200 400 11 800 1000 1200 1400 1600
TIME IN MICROSECONDS

R=20

2000 s/s
e 180 200 300 400 see eeo res soo
TIME IN MICROSECONDS

R=25

2500 s/s
——
] se 100 150 200 250 300 350 400
TIME IN MICROSECONDS

Fiqure 8.7a Pulse Times for various rates.

87

R=30

3000 s/s
8 59 100 150 200 - 2580 200 350 409
TINE IN MICROSECONDS
R=40
4000 s/s
° 50 190 150 200 2s8@ 300 3s0 PY-T)
TIME IN MICROSECONDS
R=58
5000 s/s
] se " 1ee 158 200 250 200 350 400
TINE IN MICROSECONDS
R=88
6400 s/s
'Y 280 40 60 80 100 120 148 160
TIME IN MICROSECONDS
R=98
7000 s/s

-] 20 49 60 8o 100 120 140 160
TIME IN MICROSECONDS

Fiqure 8.7b Pulse times for various rates

88

The CY525 will beqin ramping from the Firstrate specified as the
arqument of the P command and ramp up until it reaches the
maximum rate specified by the R command. At this point the SLEW
line (pin #29) will be brought low indicating that the maximum
specified step rate has been attained. The CY525 will continue
slewing until it is time to down ramp to hit the taraet position.
The point at which this occurs is determined automatically by the
CY525. The SLEW line is then turned off (set higqh), and the
CY525 begins ramping down until the first rate is reached and
then travels at this rate until the target position is reached.
In most cases only a few steps will be taken at the slow rate.

If the number of steps to travel is less than the number required
to reach the slew rate and then ramp down again, the C¥525 will
ramp up to the maximum rate possible that allows an equal ramp
down in order to reach the target while traveling at the minimum
rate. This assures that the total travel time is minimal for the
specified Firstrate, slope, and travel.

For an approximation of how many ramp steps will be taken there
are two important parameters:

l. how much time it takes to reach a certain rate
2. how far the motor has moved in that time

To determine the number of steps the motor has traveled during
acceleration, simplv compute the average step rate, and multiply
by the elapsed time. Note that the average rate for a linear
function is aiven bv

so the travel distance is

{R1-RO| |R1-RO|
Rav * time = * - --—— * gteps

89

O ELECTRICAL SPECIFICATIONS 9

ABSOLUTE MAXIMUM RATINGS:

Ambient Temperature under bias...........0°C to 70°C
Storage TemMpPeratuUr@...cccecessessosssesass—65°C to +150°C
Voltage on any pin with respect to GND...-0.5V to +7V
Power DissipatioN...ceecesescecsecsssassssle5 Watts

PRI IGN SRS

TABLE VIII

R

R R R B L

DC & OPERATING CHARACTERISTICS

(Ty = 0°C to 70°C, Vo = +5V410%)

T e

. SYMBOL PARAMETER. MIN (MAX |UNIT REMARKS
Icc pwr supply current 100 mA
Vig | input high level 2.0 | Vool vV | (3.8V for x'rm.LZ,R.n:sxe:'r)ij
Vi, input low level -.5| .8/ V | (0:6V for XTALj ,/RESET)}
ILio data bus leakage 10 uA |high impedance state
Vou output hi voltage 2.4 v Iog = —40 pA {
'VOL output low voltage .45 V Ig, = 1.6 maA
Foy crystal frequency 1 11 MHz |see clock circuits

T P A TR T

ELECTRICAL CONVENTIONS

All CY525 signals are based on a positive logic convention, with
a high voltage representing a "1" and a low voltage representing
a "0". Signals which are active low are indicated by a bar over
the pin name, i.e., PULSE.

All input lines except pins 1, 6, and 39 (I/O Req, Abort,and I/0
Select) include 50K ohm pull-up resistors. If the pins are left
open, the input signals will be high.

The data bus is bidirectional, and is tri-state during nonactive

modes. Note that data bus signals are positive logic, and all
command letters are upper case ASCII.

90

RESET CIRCUITRY

The RESET (pin #4) line
must be held low upon
power-up to properly
initialize the CY525.
This is accomplished via
the use of a 1 npF4d
capacitor as shown in
Fiqure 9.1. RESET must
be low for 10 msec after
power stabilizes on
power-up. Once the CY525
is running, RESET need
only be low for about 15 a.
nsec (6 MHz crystal).

Fiqure 9.1 a)Reset Circuitry.
b)External Reset.

CLOCK CIRCUITS

The CY525 mav be operated with crystal, LC, or external clock
circuits. These three circuits are shown in Fiqure 9.2. Unless
otherwise specified, all timing discussed in this manual assumes
a 6MHz series resonant crystal such as a CTS Knights MP060 or
Crystek CY6B, or equivalent. The CY525 will operate with any
crystal from 1 to 11 MHz, including a standard 3.58 MHz TV color
burst crystal. All timing values specified in this manual will
be changed by using different crystal frequencies. Time values
must be scaled by 6/fcy, and stepping rates must be scaled by
fcv/6, where fcy is the crvstal frequency in MHz. Note, however,
that the "D" command is calibrated for milliseconds at 11 MHz.

1

CRYSTAL SERIES RESISTANCE = _z_h';'“ —— BOTH XTAL1 & XTAL2
SHOULD BE LESS THAN 7550 ¢ f=2n YTy +5v SHOULD BE DRIVEN.
AT 6MHz AND LESS THAN
180 01 AT 3.6 MHz.

Cpp == 5-10pF PIN T0
i P5|NCAPPMITANCE 2

EACH C SHOULD BE KETSOISII:)IG TO *5V ARE NEEDED

APPROX 20pF, INCLUDING SURE Vi = 3.8V |F
%= INCLUDES XYAL, STRAY CAPACITANCE TTL CIRCUITRY 15 USED.
SOCKET, STRAY. EACH PIN MUST BE HIGH FCR 35-65%
NOT HEEDED OF THE PERIOD-
ABOVE 4 MHZ. RISE AND FALL TIME MUST NOT EXCEED
20 NANOSECONDS.
CRYSTAL LC

EXTERNAL
Fiqure 9.2 Clock Circuits for C¥525.

91

10 crcuitsanpexampies 10
CY512/KIT

Since the CY525 contains all the logic needed to operate a
stepper motor, including instruction decoding, parameter
maintenance, and step timing, very little external circuitry is
required to get a minimal stepper motor subsystem operating. A
circuit indicating what is required is shown in Figure 10.2. As
a convenience to our customers, Cybernetic Micro Systems has
implemented such a circuit on a small printed circuit board.
This board is made available as a kit, including all parts
necessary to put the board together. A photograph of the
CY¥512/Kit is shown in Figure 10.1.

The design consists of a CY¥512 (or substitute a CY525) with
associated peripheral parts (crystal, socket, capacitors, etc.),
buffers with LED indicators on CY525 output signals, switches for
CY¥525 inputs, Abort/Terminate logic for closed loop motor
operation, and a simple, unipolar driver circuit for the motor.
Three edge connectors make the various signals available to the
rest of the system. Sidgnals are divided into a Data Interface,
Secondary Control lines, and Motor and Power Supply connections.
Finally, about half of the board consists of a wire-wrap area,
useful for special data interfaces or motor driver circuits.

The kit supplies all parts needed to assemble the board, with
assembly requiring only a few hours. In addition to the kit, the
user must have a power supply, a source of commands for the CY525
(keyboard or computer), and a four-phase stepper motor. Complete
documentation is provided. The CY512/Kit is ideal for
prototyping, allowing first time users of the CY525 to quickly
and easily get their part into operation.

6"

4

[

Figure 10.1 CY512/KIT board available for prototyping.

92

TEST DEMONSTRATION CIRCUIT

AWV BOLSISNVAL NOLDNI1AYG
AIND3 A0 3NIVALS
(YW ASE)
3IOVLI0N J010W ossc 10w
1690 OND ==
T
{3SVHd HOV3 VoL 014n) :
YOLOW ¥3dd3LS 5w
ISYHd ¥ OL
vivd
QXVOGAIN
4007 9L 435000
: z EEEE——
== SENVWI0D 3A1T -238._«.”. qus EST
L1
ASs "z, .
T
™
ASe o5
asf 0a1% <2, |A
26.¥ o't °Z, =
>m.ﬁ o8l »hr.'./olu..
“z N
AG
]
*(193ndwoo 3soy M e 300216
saatnbai) Arj-syz-uo] L GAVOaAIN
uoT3tsod peay 03 Xi13Inoiro ASs
ppe 03 €°9 2anbr3y 03 1833y
‘osodand STyl 103 Teapt ST T°0T 2InbTd ut

umMoys LIN/ZTSAD @yl °dyay osTe TT1T# Aousnbeiag

Te3SA10 19mMOTs ¥ °s3nd3no sy3 uo pasn aie sqaE JT a9sn

943 03 IIqTISTA 91@ SUOT3ITSURII 3Y3 3By} OS ‘parIroads sajex #OTS aaey saTduexs
Butwry 8y3 ut pasn sweiboad ayg ‘Tenuew sSIY3 JO jObg @2Yy3j ul sweaberp Hbutwil
P2T1Te3Id8p 8y3z ybnoayj bBuryiom usym aniy ATTeroodse ST STUL °*SUOT]ITSURI] a3e3s
pue aje3s ayy ALerdsip ATTensta o3 saurT 3ndino TTIe uo (saporp bur3ljzrTwa 3JybIT)
SQdT dsn 03 Tn3ydTay ArTesausb ST 3T *GZGAD aYy3 [0IJUOD 03 paeoqdiay IIDSVY ue
JO @sn smoTTe 3ey3 dnias afdurs e sapracad Z°0T 2anbtd utr umoys XI3INOATO ayg

Test Demonstration Circuit

Figure 10.2

93

CYB-002 MULTI-PURPOSE CONTROL BOARD

A general purpose prototyping board is available which will allow
the user to easily interface his computer, keyboard, or CRT to
his control application. The CYB-002 board comes ready to
assemble as a kit, with the capability of accepting any two
Cybernetic Micro Systems control chips in any combination. Thus
the board can become a dual axis stepper controller, waveform
synthesizer, programmable controller, printer controller, data
acquisition controller, and the like, with very little additional
effort. Support software will also be available soon.

The core of the CYB-002 is Cybernetic's new Local System
Controller, the CY250, which accepts ASCII commands, and
addresses either of the two target chips via a pass-through mode,
or accepts the data as direct commands to its own program buffer.
Since the CYB-002 is wired to accept an optional EEPROM, then
once programmed, it may also operate as an independent system.
The board has additional circuitry for an optional LCD display
and CY300 display controller, and for a network mode via the
CY¥232. The CY232 will give the user the option of stringing
boards together in a network with each having the ability to
address up to 256 devices.

User definable switches and LEDs are available for various input
and output signals, and an additional wire-wrapping area allows
the user to customize the board to his particular application--in
the case of the C¥525, this could include the motor driver
circuitry. While the board was designed as a prototyping aid for
implementing the CYxxx family of chips, many users find that it
is the ideal solution to their control problems. The CYB-002 is
available with a variety of options: Display with CY300, Network
with CY232, Memory with EEPROM, Keyboard, and Target with any
CY¥xxx, as shown in the figure below:

VME CONNECTORS NOT INCLUDED.

6.3"

KIT SHOWN ASSEMBLED WITH DISPLAY,
MEMORY, AND NETWORK OPTIONS.

Figure 10.3 CYB-002 Multi-purpose Control Board

94

DRIVER CIRCUIT CONSIDERATIONS

The CY525 provides the timing and logical signals necessary to
control a stepper motor. However, to make a complete system, a
driver circuit must be added to the CY525. This circuit will
take the logical signals generated by the CY525 and translate
them into the high-power signals needed to run the motor.

The user has two choices in the selection of driver circuits.
Existing designs, usually in the form of pulse-to-step
translators, may be used, or special designs may be created.
Translators usually require a pulse and direction input, or two
pulse streams, one for CW stepping and one for CCW stepping. The
translator takes the pulse inputs and generates the proper four
phase outputs for the motor. Note that it is also possible to
drive motors with this scheme which are not four phase designs.
Since the translator generates the actual motor driver signals,
it only requires the pulse timing and direction information
generated by the CY525 Pulse and Direction signals. This allows
the CY525 to control three and five phase motors as well as the
standard four phase designs.

PULSE

DIRECTION

TRANSLATOR

TRANSLATOR

Figure 10.4 CY525 to Translator Driver connections.

If the user opts for his own driver design, the Pulse and
Direction lines may be used, or the four phase outputs may
directly control the driver circuits. This type of design makes
" full use of the CY525 signals. The following paragraphs are
meant as a guide to various types of driver circuits, but should
not be used as final driver designs. Detailed switching
characteristics, transient suppression, and circuit protection
logic have been omitted for clarity and simplicity.

Unipolar designs are the simplest drivers, and are generally
useful when running at less than 600 steps per second. These
designs require motors with six or eight leads, since the power
supply is connected to the middle of each winding. The end of
each winding is pulled to ground through a transistor controlled
by one of the phase output lines from the CY525. Motor
performance may be improved by adding a dropping resistor between
the power supply output and the center tap of each winding. This
decreases the field decay time constant of the motor, giving

95

faster step response. The performance increase is paid for by a
higher voltage power supply and heat losses through the dropping
resistors. This type of circuit is know as an L/xR circuit,
where the x represents the resistor value relative to the winding
resistance. An L/R circuit would not have any external
resistors, while an L/4R circuit would use a resistor of three
times the value of the motor winding resistance. Note that the
power supply could be four times the nominal motor value with
this circuit. Also note that this circuit requires only a single
voltage and one transistor per phase.

vt v vt
DROPPING RESISTOR

&, ®, b4

Figure 10,5 Unipolar driving circuits.

The second basic type of driver circuit is the bipolar design.
In this case, the motor is driven only from the ends of each
winding, with switching logic used to control the direction of
current through the winding. These circuits may be implemented
with a four lead motor, since only the ends of each winding are
needed. Bipolar designs are more efficient in driving the motor,
and result in higher performance than the unipolar designs. Two
methods of switching the direction of current may be used. With
a single voltage power supply, eight transistors are used, two
per phase. Transistors are turned on in alternate pairs across
each winding to control the current. The second alternative uses
only four transistors, but requires a dual voltage power supply.
In this case, one side of each winding is connected to ground,
and the other side is switched between the positive and negative
power supplies. 1In both designs it is very important to insure
that both transistors on one side of the winding are not on at
the same time, as this would short the power supply through the
transistors, generally destroying the transistors in the process.
Protection logic is usually included to insure that one
transistor is off before the other is allowed to turn on.

DROPPING
RESISTOR

DROPPING
RESISTOR ¢

Figure 10.6 -Bipolar driver designs.

96

The most advanced driver designs are variations on the unipolar
or bipolar types, although they are generally implemented using
the bipolar approach. These drivers are capable of the highest
step rates attainable. They work by switching current or voltage
through the motor at much higher than the rated value. This is
done for only a short period of time, causing the magnetic field
in the motor to change very quickly, without exceeding the
maximum power dissipation of the motor. As long as the average
dissipation does not exceed the motor rating, the motor will
perform without problems. Once the maximum limit is reached, the
motor may overheat and self destruct. One technique for
increasing motor performance would simply apply a high voltage to
the motor at the beginning of each step. This makes the motor
react very quickly to the change in phase signals. After a short
period of time, the voltage is switched to a lower value,
allowing the motor to continue its motion without overheating. A
second approach, known as a constant current design, senses the
amount of current flowing through the winding, and adjusts the
voltage applied to the motor to maintain the current at its
maximum rated value. At the beginning of a motion, the voltage
would be low, with a constant adjustment to a higher value as the
motor speed increases, and back EMF decreases the current draw
for a fixed voltage level. Another technique, known as chopping,
may also be applied to these driver designs. This approach
applies a voltage much higher than the rated value for a short
period of time. The voltage is then turned off for another time
period. This occurs many times per step, with the frequency of
switching known as the chopping frequency. This frequency may be
controlled by time, switching at a given rate, or it may be
controlled by sensing the current flow through the motor,
switching at a variable rate. The highest performance drivers
are usually designed as bipolar chopper circuits.

The user should consult design guides available from the various
motor manufacturers for additional information.

97

HANDSHAKE PROTOCOL

All commands and data transmitted from the master processor to
the CY525 peripheral processor are sent asynchronously with
complete handshaking performed. The master processor waits for
the CY525 READY line to go HIGH before sending the active LOW I/0
REQUEST signal. The data may be placed on the bus at any time
prior to the HIGH-to-LOW transition of I/0 REQUEST. The data
should be stable on the bus until the CY¥525 RDY line goes LOW,
indicating that the transfer has been acknowledged and that the
CY525 1is BUSY processing the command or data. The master then
brings I/0 REQUEST to

the HIGH state. The DATA VALID DATA
next transfer can occur Y% ON DATA BUS
as soon as BUSY/RDY = o e
returns HIGH. The \/o

\
sequence described is RE& | . [L_J\ \)

shown in Figure 10.7. \

Example 8080/85 Driver: ASCII mode operation Bit 7 of data used
as I1/0 REQUEST strobe, Routine entered with ASCII in C-register.

SENDCHR:
0069 DBED IN STATUS
006B E620 ANI READY
006D CA6900 Jz SENDCHR ;WAIT TIL READY
0070 79 MOV A,C
0071 E67F ANI 7FH
0073 D3EC ouT DATA ;WITH 1/0 REQ LOW
BUSY:
0075 DBED IN STATUS
0077 E620 ANI READY
0079 C27500 JNZ BUSY sWAIT TIL BUSY
007C 3EFF . MVI A, OFFH
007E D3EC ouT DATA ;I/0 REQ HIGH
0080 C9 RET

Figure 10.7 Data Transfer Handshake Sequence

ASCI] *
KEYBOARD AN

DATA BUS

Figure 10.8 Write Strobe Generator for keyboards without strobe.

98

In the example shown in Figure 10.9, the C¥525 is operating in
the PARALLEL ASCII input mode. 1In this mode, bit 7 is always
2ero and b7 line of the CY525 data bus may be tied to ground.
Since the user will normally transfer bytes of data from memory
to the output port, the most significant bit of the data byte may
be used to generate the I/0O REQUEST strobe, thus allowing only
one 8 bit output port to suffice. The "SENDCHR" routine, shown
in Figure 10.7, demonstrates the coding used to achieve this. Of
course, a separate port line may be used to generate I/O REQUEST,
if this 1is desired. If the CY¥S25 is operated in the
PARALLEL BINARY mode, all 8 data bus lines are used, and a
separate I/O REQUEST line is required. Note that in the example
shown, use is made of the fact that the data and the I/0 REQUEST
signal may be applied simultaneously in parallel operation. If
Verify mode is to be used, all 8 bits of the data bus must be
free to operate bidirectionally. 1In this case, it is generally
best to make I/0 REQUEST and I/0 SELECT separate lines from the
data ports. See Timing and Control Information in section 7.

¥ ASCI| MODE OF OPERATION OF
CY525 ALLOWS B7 OF DATA BYTE
TOSERVE AS 1/0 REQUEST PULSE.
(S€E PROGRAM CODE)

1 1/0 REQUEST

DATA
Bus

31 BUSY/ROY

M- MM ASCii/BIN

E 1/0 SELECT

Figure 10.9 Example interface to CY¥525 using 8255 PIO.

OPERATION OF SEVERAL CY525s
USING A COMMON DATA BUS

In systems where multiple CY525s are to be controlled by a host
computer it is possible to use one eight-bit port to establish a
common data bus for sending instructions to the CY¥525s. Each of
the separate RDY lines (pin 27) of each CY525 must be monitored
individually and each 1/0 REQUEST line (pin 1) must be activated
separately. This technique effectively uses the I/0 REQUEST line
as a chip select (CS). A CY525 will ignore all bus information
if its I/O REQUEST line is inactive. Note that On-the-fly
operations could restrict the sharing of the data bus between
multiple CY525s,

99

FROM HOST
P o DATA BUS , L 4
s

t/o

SEPARATE | 1/OREQy
1/0 REQUEST 4 1/0 REQy
LINES | t/oReaz

Figure 10.10 CY525s share common data bus by using separate 1/0
REQUEST lines for chip select.

SYNCHRONIZATION OF TWO CY525s

Two CY525s, executing the same program, may be synchronized as
shown in Figure 10.11. The master controller can control the
WAIT line of the slave CY525 via the BITSET or CLEARBIT commands.
The slave CY525 is started first, with an EXECUTE command, and
executes a WAIT command and waits until the wait line (pin #38)
is driven low by the CLEARBIT command executed by the master
CY525 when it receives the (second) EXECUTE command. Both CY¥525s
then proceed to the next
: | instruction and are
PULSE, : synchronized as shown in Figure
; 10.11la, to within approximately
| 10 microseconds. Note that
sfgpmnt—-l_____ll when the two programs are not
i identical, the master can also
wait for the slave to execute
| its own CLEARBIT instruction,
and thereby achieve a more
general synchronization.

PULSE 2

re——£1OpSEC—
|

PROG OUTPUT nggﬁ ’ Pg&:in
WAIT C} — U}

IDENTICAL PROGRAMS

STEP INHIBIT,

b.) Hardware c.) Softwaré

Figure 10.11 . Synchronization of two CY525s.

100

COORDINATION OF MULTIPLE CY525s

Multiple CY525s may be synchronized to each other by use of the
Programmable Qutput line, the Wait functions, Dowhile signal, and
time delays. These may also be combined with other signals, such
as Direction, Slew, or Motion Complete, used to select the point
in the motion when the signal is presented to the waiting
controller. Consider a general parts handling function in which
the part must be handed off between two controllers. The
geometry of the parts and the arms used to carry the parts
requires that the hand off be carefully synchronized between the
two controllers. The one to receive the part waits at the
receiving position until the CY525 which has the part signals
that it has arrived. The two arms then move together in a
coordinated motion, reaching a point at which the distance
between them is a minimum. The part is exchanged and the arms
move apart, again in a coordinated motion. Once a certain
position is reached, the arms are free to move independently, and
continue with their assigned programs. If the motion is
repetitious, both controllers can work with the same progranm,
always being resynchronized at the hand off. The following
program illustrates such a motion.

A 0) Declare current position as home

R 120;

S 25) iDefine stepping parameters

F 5

P li) Move to the receiving position

E) Define hand off program

U) Wait for a part to arrive

P 0) Arms move togethek .to handoff position-
+) Change direction

C) Activate mechanism to transfer part

D 90) Delay for part to actually transfer

P 14) Move apart, back to receiving position

D 90} Delay for part to stabilize, arms apart

P 108} Transport part to next handoff position
- Low DIR & PROG OUT indicates part arrived
P 122) Move together with receiving arm

Release mechanism which holds part

90) Delay for part transfer to receiving arm
108) Move apart, back to receiving position
90) Delay for part to stabilize, arms apart
20} Change step rate to slower rate
0 Move empty arm back for next part
Stay at the receiving position
120) Change rate back to faster rate
0) Repeat program if Dowhile low
Else stop program
End of program
Execute program

XO®wH WYY PO O W
> L =
H
S

-~

Figure 10.12 Synchronized part transfer example. \\\\\

101

EXAMPLE PROGRAMS AND WAVEFORMS

| REPEAT PROGRAM

PULSE T v

!
k

RN

! 1
MOTION
COMPLETE & n
®

A b

PROG
ouTPUT

L

WAIT l

STEP INHIBIT

® |
S
{ —| .55 k—

X)

(6 MNZ XTAL)

The timing sequence for a typical program
is shown in Figure 10.12. In this
example, the first-rate value, rate, and
number of steps are present before
entering the program-entry mode via the
"E" command. These parameters are chosen
to allow easy observation of the outputs
using the test/demonstration circuit
shown in Figure 10.2. The program
entered sets the programmable output (pin
#34), then takes three steps, clears the
programmable line, and waits for the WAIT
line (pin #38) to go low when the wait
UNTIL instruction is executed. As shown,
the STEP INHIBIT line has gone high, and
the CY525 waits for this line to go low
before stepping. The three-step motions
are done one step at a time, using the
LOOP command and a time delay between
each step. The time delay is used to
create a very slow step rate, which can
be more easily observed. If the Dowhile
line (pin 28) is low when the Til command
is executed, the program will repeat from
the beginning. When pin 28 is high, the
program stops and the CY525 returns to
the Command mode. Two program loops are
shown in the waveforms.

Figure 10.13 Sample Program and Timing Diagram.

102

Figure 10.14 provides timing relations for a command sequence
that inputs the parameters and executes a "G" command to begin
stepping. The I/O REQUEST, BUSY/RDY, and INSTROBE signals are
related to the data bus and several outputs are shown as a
function of the STEP INHIBIT input.

COMMAND MODE INPUT SEQUENCE:
R 80) set RATE = 80
S 255) set SLOPE = 255
F 10) - set FIRSTrate = 10
N 4) set NUMBER of steps = 4
G) GO, begin stepping
G) G}
1o reavest | N

s | M [
varion courie | | I
" 1 [L
= L1 |

Figure 10.14 Timing Diagram for Commands.

The use of the "loop TIL" instruction is illustrated in Figure
10.15. The PROG/LIVE and RUN outputs are also shown as a
function of the "Q" and "X" commands and the "@" instruction.
The program loops until the DOWHILE line (pin #28) goes high,
then fetches the next instruction. The effect of the STEP
INHIBIT input on the MOTION COMPLETE output is also shown.

103

1muu| I ‘ ' \l
BUSY/ROY ‘ [\ |
MOTION COMPLETE J U U 1

Q X) DATA CAN CHANGE.

PULSE

STEP INHIBIT

s\

N

\
!
]
|

|
I’
]

PROG OUTPUT , \ / (
rocan: OOOOO® DOOEOO®

(NoT TO

PRESET:

ENTER PROG: E)

PROGRAM
CODE

QUIT:
EXECUTE:

Figure 10

SCALE)

c) clear output line

R 90) set RATE = 90

S 200) set SLOPE = 200

F 10) set FIRSTRATE = 10

N 3) set NUMBER steps = 3

B) set output line
+) set CW direction
G} GO, begin stepping
C) clear ouput line
-) set CCW direction
G} GO, begin stepping

-
Pl”

T 0) repeat above prog Til DOWHILE =

B} set output line
C) clear output line

DOO®

a1 v/

4
7

Pp’

@) exit run mode, enter command mode

Q
X) EXECUTE

PRESET PARAMETERS

TEST EXTERNAL
CONDITION AND
LOOP TiL TRUE

"% EXECUTE
Py | AFTER TEST
" Laaaticd PASSED

.15 Timing and Control for Program Entry and

- Conditional Looping.

104

RS-232-C RECEIVE ONLY INTERFACE

When the user wishes to communicate with the CY¥525 over a serial
data link, a special data interface, such as the RS-232-C design
shown in this section, must be used. The main component of such
a design is the UART (Universal Asynchronous Receiver
Transmitter), which transforms the serial data from the data link
into the parallel form required by the CY525.

The design shown here is a "receive only” type, meaning that it
can only receive data, not transmit. This design will allow the
user to send commands to the CY525, but will not allow the Verify
mode to work. Bidirectional communication through a UART is very
difficult with the CY525, because there is no direct control over
the I/0 SELECT line or the number of bytes to transmit from the
CY525, Those who require the Verify mode must use a more
sophisticated design to control the handshake protocol during the
verify portion.

As shown in the schematic below, only two signals are needed from
the RS-232-C lines. Transmitted Data contains the data sent by
the host to the CY525, and Signal Ground is a reference for the
data line. Since signals on the RS-232-C interface are not TTL
compatible, the transistor circuit connected between Transmitted
Data and the UART acts as a converter, generating the TTL
equivalent of the data signal for the UART.

The type of UART shown is a single, 40 pin IC. It was chosen
because the operating mode is set by connecting the control lines
either high or low. Other types of UARTs require a command word
to be written to an internal register which controls the mode,
something the CY¥525 is not capable of doing. The type of UART
shown is made by several manufacturers, and is readily available.
The mode control lines should be connected so that the operating
mode of the UART matches that of the host system. This is very
important in getting data transmitted properly to the CY525.

Whenever the UART receives a character, the data available line
(DAV) goes high. This signal runs I/0 REQUEST, indicating to the
CY525 that a command character is ready. As the CY525 reads the
‘character, the INSTROBE signal is used to put the character onto
the CY525 data bus, by controlling RDE, which brings the received
data lines (RD1 to RD8) to their active state. BUSY/READY,
connected to RDAV, then resets the DAV signal, clearing the I1/0
BEQUEST. Thus, the standard signals from the UART fully
implement the two-line data transfer handshake used by the CY¥525.

The rest of the circuitry is a baud rate generator. 1It creates
the clock rates needed to operate the UART at most of the common
data transfer rates. The 7404 and crystal circuit is an
oscillator which runs at 2.4576 MHz. This frequency is an exact
multiple of the popular baud rates used. The CD4040 is a CMOS,
twelve stage counter. It takes the 2,4576 MH2 clock rate and
divides it through twelve binary stages, creating one half the
frequency of the preceeding stage in each case. The outputs are

105

labeled with the resulting data baud rate, although the actual
signal frequency is sixteen times this rate. The clock inputs of
the UART should be connected to the desired rate. It will do an
internal divide by sixteen, generating the data rate needed by

the interface.
%z.zx
IN9I4

2N2222

33K

TRANSMITTED
DATA
1= No Parity O+ Parity

: L+2 stopBits O+ I Stop Bit
STGNAL * P

13 GROUND 0,0 =5Bt/char. 0,16 Bet/Char
: = 1,0=78it/Char. 1,18 Bt /Char
{ +Even Parity Or Odd Parity

L5K 1.5K

O

2.4576 MHz 20pF

CONNECT CLOCKS
FOR DESIRED
BAUD RATES

Figure 10.16 RS-232-C Receive-Only Interface Schematic.

106

RS-232-C TRANSMIT/RECEIVE INTERFACE WITH CY232

The CY232 Parallel/Serial Network controller enables the user to
both transmit and receive data from the CY525 parallel device via
a serial RS-232-C port. The actual CY232 to CY525 interface is
very easy as shown in the schematic below. However, since the
CY¥232 gives the user the ability to address multiple devices on a
network, the CY232 address lines should be tied high or low to
provide the CY525 with a specific address, and this address
should be used when writing to the CY232/CY525. Also, multiple
CY¥525s can be addressed this way by preceding each with a
separate CY232 with a different address or by connecting multiple
CY¥525s to a single CY232. 1In the second case, the CY232 address
decoding logic should be combined with the CY232 DAV to generate
a unique I/0 REQUEST for each CY525 (see also Figure 10.10). The
CY232 manual gives complete details on this interface.

Figure 10.17 CY525 connections to Cy232.

107

PROM STAND-ALONE INTERFACE DESIGN

When the CY¥525 is to be used in specific applications, with fixed
commands or a small number of different programs, the user may
eliminate the need for a keyboard, which is prone to typing
errors, and the need for a computer, which may not be justified
for the application. By programming the CY525 commands into a
PROM or EPROM, a stand-alone design may be generated, in which
the program may be selected by switch position, and a push button
is used to get things going. The BUSY/READY signal from the
CY525 is used to advance the address counter of the PROM, and the
hardware automatically loads the commands, one byte at a time,
until the end of the program is reached. The end of program then
inhibits further program loading until the procedure is restarted
by setting the address to the front of a program again.

The circuit shown in this section is started by selecting the
desired program starting address for the PROM. With the 74193
counters, any address may be chosen by setting the counter inputs
and pulsing the load signal low. The schematic shows the load
signal controlled from the CY525 RESET, but a separate load
switch could be used. The outputs from the counters control the
address inputs to the PROM. Each address corresponds to a single
CY525 command character, so the PROM should be organized as eight
data outputs per address. Many popular PROMs and EPROMs are
organized this way, including 2708s, 2508s, and 6309-1ls. Enough
address lines must be provided to access the number of bytes
required by the program or programs. The design shows eight
lines, allowing for 256 bytes, but more could be added by simply
cascading additional 74193s.

When the starting address is loaded, the PROM will output the
first command byte to the CY¥525, so the data bus will have the
byte ready when the CY525 reads it. When the CY525 becomes
ready, with a high level on the BUSY/READY line, the 7400 nand
gate generates a low output to the CY525 I/O REQUEST line. This
will tell the CY525 that a command byte is available. The CY¥525
will read the byte from the data bus and then go busy, indicated
by a low level on the BUSY/READY line. This will generate a high
level on I/0 REQUEST, indicating that the byte transfer has been
completed. The same signal also clocks the 74193 counters,
advancing the PROM to the next byte location, and putting the
next command byte on the data bus. When the CY525 has finished
processing the last command byte, it will go ready again,
generating another I/O REQUEST, and causing the CY¥525 to read the
next command byte.

The above procedure continues until the PROM address reaches a
value at which the data byte output is all bits high, OFFH. This
will generate a low output from the 7430, which will keep the
CY525 READY signal from generating another I/0 REQUEST. The
circuit stops clocking at this point, and stays frozen with 1/0
REQUEST high and the 74193 counters set at the address which
contains the OFFH byte value. No more bytes will be transferred

108

until the address is changed by another load pulse to the 74193.
This means that the user must end the program to be loaded into
the CY525 with a byte containing the OFFH. Note that the OFFH is
not read into the CY525, it is only used to stop the circuit from
advancing any further. Since OFFH is not a legal ASCII
character, it may be used to end the program without fear that
such a value might be part of the program, so long as the CY525
is operated in the ASCII mode. If the CY¥525 must be operated in
the Binary mode, and the program to be loaded must contain an
OFFH data value, some other means of stopping the program must be
found. 1In this case, the best approach would detect the end of
program by a unique address from the 74193 counters. This would
require the user to place the program in the PROM so that the
last program byte occurs at the address just before this end of
program address. Note that the same logic now used will work if
the last address is OFFH. 1In this case, the 7430 inputs connect
to the 74193 outputs instead of the data bus. The last byte of
the program should be at location OFEH, one before OFFH, since
the byte at location OFFH would not be read by the CY525. With
this scheme, the starting address of the program would depend on
the length of the program, and must be set properly before the
load pulse is given to the 74193, The design shown in the
schematic allows the starting address to be fixed, with the end
indicated by the OFFH data byte value.

TERMINATE
N SFFR
SYTE VALUE

Figure 10.18 PROM Stand-alone Interface

109

EEPROM STAND-ALONE INTERFACE DESIGN

The CY250 Local System Controller will allow the user to
interface the CY525 to an EEPROM for easy storage of often used
programs and for a stand alone system. The CY250 accepts serial
or parallel commands and can address either of two CY¥525s via a
pass-through mode, or accepts data as direct commands to its own
program buffer. Alternately, the command sequences may be
defined once and sent to the EEPROM, where the various command
sequences are stored as named procedures, with the CY250 taking
care of the EEPROM operation, space allocation, and name
directory. This allows frequently used programs to be remembered
by name and recalled whenever they are needed. For stand-alone
operation, the CY250 has an "auto recall"” feature which calls a
specified routine from the EEPROM on power up or reset. This
EEPROM interface has been implemented on the CYB-002 board shown
in figure 10.2. More details on the EEPROM interface may be
found in the CY250 manual and the CYB-002 manual.

PARALLEL INTERFACE SERIAL INTERFACE
To HOST

Figure 10.19 CY525 interface to EEPROM through CY¥250.

110

11 cOMPUTER CONTROLOFTHECY525 11
COMPUTER CONTROL OF CY525

The ability to control all of the CY525 control inputs and
monitor all of the CY525 outputs allows the designer to exercise
the maximum control over the device. The following sections
present information that may be used as a guide to interfacing
the CY525 to a computer via the use of programmable I/O devices
such as the Intel 8255. The programs are written for the 8080
microprocessor, but the general scheme will, of course, work with
any computer using two parallel 8-bit output ports and one
parallel 8-bit input port. For Verify mode, the data bus port
may be bidirectional, or replaced by a tri-~statable output port
and another input port. The setup is as shown below:

STATUS
N
CONTROL
- &
OATA BUS
N OR]
our crs2s

Figure 11.1 Example setup for Test/Display/Control of CY525
Stepper Controller.

By using a loop in the host computer (or in the CY525) the user
can achieve a repetitive operation of the CY525 that allows easy
display of CY¥525 signals on a standard oscilloscope. The use of
externally triggered horizontal sweep circuits to synchronize the
scope display is particularly convenient. The MOTION COMPLETE
(INT REQ 1) output (C¥525 pin 37) and the PROGRAMMABLE OUTPUT
(pin 34) serve well as external triggers.

ENTER/QUIT PROGRAM MODE

A key feature of the CY525 is the capability to accept and
execute sequences of instructions; i.e., stored programs. The
device powers—-up in the "Command" mode of operation in which
valid instructions are executed as they are received. If the
ENTER command, "E", is given, the device initializes the relevent
(internal) pointers and prepares to accept the program entered.
All commands received prior to the receipt of the "Q" command are
stored in the program buffer in the order in which they are
received. Each command is entered just as in the command mode;

111

that is, the opcode is entered followed by either the "Linend"
character ")" (carriage return) or a delimiter and parameter
string terminated with the "j}". The only command NOT terminated
with a Linend (@DH) is the QUIT command, "Q"=51H. The Linend
should not be used immediately following the *Q" character. The
escape (QUIT) command terminates the program entry mode of
operation, and returns the system to the command execution mode.
The maximum efficiency in use

of the CY525 may be gained by , h
presetting parameter values 1)

before entry and execution of SOFTWARE
the program. All parameter INITIALIZATION
values have their own storage ’%ﬁ”“
registers, so they need not LOADING
occupy program buffer space,)

if the values stay constant .

during program execution. The :

host program may treat the Q

CY525 program as a "Co- -
routine™ that can be passed a Rr) D

set of parameters and invoked Ss

via the EXECUTE command. The ;q

host can then sample the RUN Zz

output (pin #32) or utilize USE OF CY525
this output in an interrupt %%es
mode to detect program X) BY HOST 1S
completion and load new | LN
parameters or programs, as ﬂﬁgﬁ&
appropriate. This mode of THEDETECTION | INVOKING
operation is particularly well edasisreg EXECUTION
suited for inclusion in multi- MAY BE

tasking systems, when two or ﬂfﬁﬁﬁf”

more CY525s are controlled by gﬁgg&n

a single host. MECHANISM.

Fig. 11.2 CY525 used as "co-routine”

CY525 STAND-ALONE APPLICATIONS

The CY525 receives data and commands from an 8-bit data bus. The
source of data in most cases will be from an ASCII keyboard
during prototype development and a microcomputer in the final
system. The CY525, of course, does not know or care where the
commands and data actually come from. This means that as long as
the handshake protocol is properly implemented, the commands can
be stored in a ROM, PROM, or EPROM and can be sequenced to
control the CY525 with no host processor at all. For certain
limited repertoire machines and stand-alone applications, this
may be a very practical solution. A conceptual diagram of this
type of system is shown in Figure 11.3. See also PROM Stand-
Alone Interface Design in section 10.

112

WRITE
ROY STROBE
CIRCUITRY

1/0 REQUEST

ROM
Cooe

DATA

DATA Bus

Figure 11.3 The CY525 can receive commands and data from a ROM
sequencer for many stand-alone applications not
requiring a host microcomputer.

PROGRAMMING EXAMPLES

The following pages illustrate several programming examples,
including waveforms and program listings. Programs are all
written in 8080 Assembly Language, but the comments should allow
those readers who are not familiar with the 8080 to understand
what the various subroutines are doing. The programs were used
on an SDK80 board, with the CY525 included in the wire wrap area.

We start with an equate table, indicating how the CY525 was
connected to the SDK80 I/0 signals. The names assigned to the
various signals are used in the other routines. The table is
followed by a Binary mode example, with the data buffer,
BINBUFFER, showing the exact data bytes sent to the CY525 in this
program. All bytes except the OFFH at the end of the table are
sent by the SENDPARALLEL program, which is shown next. This
routine implements the basic data transfer between the SDK80 and
the CY¥525, illustrating an example of the handshake protocol
needed to transfer the bytes. It may be used in either Binary or
ASCII mode. The ASCII mode example, which follows the
SENDPARALLEL program, sends the same commands to the CY525 in
ASCII mode as the Binary mode example shown previously, with
ASCIIBUFFER containing the ASCII data bytes sent by this program.
Finally, another Binary mode example is used to generate a
repeating oscilloscope waveform.

113

| TABLE X

EQUATE TAB

S

L

00F5

0001
0002
0004

00EC
00ED

0001
0002
0004
0008
0010
0020
0040
0080

00EF

0000
0001

0002
0003

0004
0005

0008
0009

000A
000B

000C
000D

000E
000F

000D

[}

nn 1t

"ton

non

; EQUATE TABLE

i
LEDS

EQU OFS5H
GREEN EQU 1
RED EQU 2
YELLOW EQU 4
DATA EQU OECH
STATUS EQU OEDH
MOTION EQU 1
PULSE EQU 2
RUNBAR EQU 4
PROGBAR EQU 8
BITOUT EQU 10H
READY EQU 20H
DIRECT EQU 40H
SLEW EQU 80H
A4CNTRL EQU OEFH
IOREQ EQU 0

NOIOREQ EQU 1

IOSELIN EQU 2
I0SELOUT EQU 3

i
DOWHILE EQU 4
NOLOOP EQU 5

:
’
'

ABORT EQU 8
NOABORT EQU 9

H

TRIGGER EQU OAH
STPINH EQU OBH
H

LOWAIT EQU OCH
HIWAIT EQU ODH
RESETLO EQU OEH
NORESET EQU OFH
H

CR EQU ODH

The C¥525 is connected to 8255-A4 ports OECH
to OEEH on the Intel SDK80 board.

8255 P10

81 fe— piLSE
;TESTING LEDS ON PORT B=F5H < 82 fo— pun
& ©3 = PROG MoDE
';2??‘ < 84 fe— proc outeur
:IN PROGRESS & 85 fe— Busv/READY
€ B la— pigecTion

;PORT A IS DATA BUS ON Ad
;CY525 STAT READBACK ON PORT B

;B0--MOTION COMPLETE
;Bl--PULSE OUTPUT

;B2--RUN MODE PIN
;B3--PROGRAM MODE PIN
;B4--PROGRAMMABLE OUTPUT
;B5--BUSY/READY PIN
;B6--DIRECTION INDICATOR PIN
3B7--SLEW INDICATOR PIN

PORT C (OEEW)

; CY525 INPUTS RUN FROM PORT C

;C0--LOW I/0 REQUEST
;C0--HIGH FOR NO REQUEST

;C1--LOW FOR COMMAND INPUT
;Cl--1/0 SELECT HI FOR VERIFY

;C2--LOW DOWHILE TO LOOP
;C2--HIGH FOR NO LOOP

PORT A (OECH)

;C4--LOW FOR ABORT
;C4--HIGH FOR NORMAL STEPPING

;C5--LOW TO ALLOW STEPPING
;C5--HIGH STEP INHIBIT

;C6--LOW ON WAIT PIN By
;C7--HIGH ON WAIT PIN .
4
;C7--HARDWARE RESET ON LOW ’

;C7--HIGH TO RUN CY525

PORT B (OFSH)

;ASCII CARRIAGE RETURN CODE

8255 Pl0

114

AND 8255 PORT ASSIGNMENTS

[MOTIONCOMPLETE

SLEW INDICATOR

e~ 1/0 REQUEST
—-1/0 SELECT
== D0 WHILE
S

[ABORT
[STEP INHIBIT

= PASS (GREEN)
e FAIL (RED)

[TEST tN PROGRESS
[— Ascit/BIN

BINARY DATA PROGRAMMING EXAMPLE

The binary data mode is illustrated by the programs and timing

diagrams that follow:

’
TESTBINARY:
00A8 11C300 LXI D,BINBUFFER
00AB CDD700 CALL SENDPARALLEL
RDYERROR:
O0CAE DBED IN STATUS
00BO E620 ANI READY
00B2 C2E803 JNZ ERROR ;FALSE READY
TSTINTREQL:
00B5 DBED IN STATUS
00B7 E601 ANI MOTION
00B9 CAAEO00 Jz RDYERROR
’
00BC 3E01 MVI A,GREEN .
00BE D3F5 our LEDS
00C0 C3A800 JMP TESTBINARY
BINBUFFER:
00C3 4300 DB 'C*',0 ;CLEAR CY525 PIN 34
00C5 4200 DB 'B',0 ;SET PIN 34 HIGH
00C7 520164 DB 'R',1,100 ;SET RATE = 100
00CA 5301FE DB 's',1,254 ;SET SLOPE = 254
00CD 460103 b 'r',1,3 ;SET FIRSTRATE = 3
00D0 4E020500 DB °'N',2,5,0 ;SET 5 STEPS
00D4 4700 DB 'G',0 ;GO FOR 5 STEPS
00D6 FF DB OFFH ; STOPPER
’

In the command mode, the
BUSY/RDY output remains low
after a GO command is received
until the CY525 finishes the
last of the "N" Steps
specified. This is indicated
- by the END-of-MOTION (INTREQ1)
output (pin 37). The RDY line
returns high approximately 30
microseconds after the INTREQ1
goes low. INTREQl rises when
the next command is sent to
the Cy525.

MoTIoN
COMMLETE

o = [

BusY/ROY ,

L

Figure 11.4 End-of-Motion Timing.

115

LIGHY:
i

{ REPEAT

e .
orea |_J | | - LI send 'c¢',9,'B',8 in

BINARY command mode

200, Use
PROGRAMMABLE OUTPUT 1 come [J 1/0 REQUEST to

trigger scope display
of Programmable Output
Figure 11.5 Binary Timing Example. (pin 34)

HANDSHAKE SUBROUTINE

The parallel ASCII data is sent to the CY525 Stepper Motor
Controller using the 8080 SENDPARALLEL code shown below. In this
system the I/O REQUEST strobe is generated via a separate
programmable control line and is removed after the data is
acknowledged by the CY525.

SENDPARALLEL: ;sROUTINE TO SEND COMMAND BYTES TO CY525
;DE = POINTER TO BYTE STRING, OFFH IS STOPPER

00D7 1A LDAX D ;GET NEXT BYTE FROM BUFFER
00D8 FEFF CPI OFFH ;IS IT STOPPER?
00DA C8 RZ +RETURN IF STOPPER, ALL BYTES SENT
oopB 13 INX D ;UPDATE POINTER
00DC 4F MOV C,A
00DD CDE300 CALL SENDCHAR ;SEND THIS BYTE TO CY525
00E0 C3D700 JMP SENDPARALLEL ;KEEP LOOPING TIL STOPPER
i
SENDCHAR: ;OUTPUT CHAR IN C TO CY¥525
00E3 DBED IN STATUS
00E5 E620 ANI READY ;LOW IF BUSY
0CE7 CAE300 JZ SENDCHAR ;WAIT FOR READY
00EA 79 MOV A,C
00EB D3EC our DATA ;PUT CHAR ON DATA BUS
’
00ED 3E00 MVI A, IOREQ
00EF D3EF our . A4CNTRL ;LOWER I/0 REQUEST, DATA IS AVAIL
WAITBSY:
00F1 DBED IN STATUS
00F3 E620 ANI READY
00FS5 C2F100 JNZ WAITBSY ;WAIT FOR BUSY (CY525 GOT DATA)
00F8 3E01 MVI A,NOIOREQ
OOFA D3EF our A4CNTRL ;RAISE I/0O REQUEST

00FC C9 RET

’

Figure 11.6 Example command output subroutine.

116

ASCII DATA PROGRAMMING EXAMPLE

MOTION
OMPL

o

C

8 }

£/0 REQ | ,
BUSY/RDY ‘ |

U
i

J S R
[

PROG OUT

r
g - | [

Figure 11.7 Expanded Handshake Timing Diagram.

C}8) R 100}

s NG A

S 2%54) F

3I) N S) G)

PULSE

STEP sTEr
1 5

MOTION COMPLETE

PROG ourm

Figure 11.8 Complete Timing for Sample Program.

—*1 5 mSec

QeMuz

<U—
R l

00FD
0100

0103
0105
0107

010A
010C
010E

0111
0113

0115

0118
0lla
01l1c

0122

0128
012¢
0130
0132

111801
CDbD700

DBED
E620
C2E803

DBED
E601
CA0301

3E01
D3IFS

C3FDOO

430D
420D
52203130
300D
53203235
340D
4620330D
4E20350D
470D

FF

L4
TESTASCII:

;ASCII MODE
LXI D,ASCIIBUFFER
CALL SENDPARALLEL 1SEND THE COMMANDS IN THE BUFFER
i
RDYLOOP:
IN STATUS
ANI READY .
JINZ ERROR ;SHOULD BE BUSY STEPPING
i
IN STATUS
ANI MOTION
Jz RDYLOOP ;WAIT FOR MOTION COMPLETE
i
MVI A,GREEN
our LEDS {LIGHT GREEN LED
Jup TESTASCII ;LOOP FOR SCOPE DISPLAY
;
ASCIIBUPFER: ;COMMAND STRING FOR CYS525
DB 'C',CR ;CLEAR PROGRAMMABLE OUTPUT (PIN 34)
DB °'B',CR sPIN 34 HIGH
DB 'R 100',CR ;SET RATE = 100
DB 'S 254',CR ;SET SLOPE = 254
DB 'P 3',CR ; SET PIRSTRATE = 3
DB °'N 5',CR ;SET FOR 5 STEPS
DB ‘G',CR ;GO FOR 5 STEPS
DB OFFH iSTOPPER POR SENDPARALLEL ROUTINE

i

Figure 11.9 Sample program.

117

OSCILLOSCOPE DISPLAY EXAMPLE

RESET V r

MOTION

COMPLETE, \ '

oot [M
CORICGASIFFFI3IN2SP ¢+B GD

BusY/RoY mummuu“mmmu.___‘ \AM
- t
S 2msec [
PULSE W @oMHL |

Figure 11.10 Timing for Program Shown Below.

The 8080 (or equivalent) sends the following commands and binary
data to the CY525:

-—= reset CY525 using pin 4
'ct 0 clear programmable output (pin 34)
(used to trigger scope display)
'R' 1 64H set rate parameter = 064H
'S' 1 FFH set slope parameter = OFFH
'P'1 3 set First rate = 3
'N' 2 5 0 set number of steps = 5
'+* 0 set CW direction (redundant)
'G' 0 begin stepping

After sending the above commands, the host computer polls the
MOTION COMPLETE output (pin 37) and, upon finding it active,
after the 5th step has been taken, the host delays a fixed time
interval and then loops back, resets the CY525 and repeats this
process. The programmable output may be used to trigger an
oscilloscope.

— PULSE v
@ e BuSY/ROY Jn TRIGGE
— INT REQ !
CYs25 PROGRAMMABLE OUTPUT
Pre———

Figure 11.11 ~Test Setup.

118

12 IEEE-488 INTERFACE 12

IEEE-488 INTERFACE TO THE CY525

Using only a few SSI TTL gates, the CY525 can be made to work as
a "LISTENER" on the IEEE-488 or GPIB (General Purpose Interface
Bus). This section describes the timing and control involved in
the GPIB interface and identifies the CY525 signal names with the
appropriate GPIB signals. This implementation represents a
simple GPIB interface. If a more complete bus interface is
required, especially in a multi-instrument environment, the user
should employ a separate GPIB interface device between the C¥525
and the bus. This would allow the user to assign device
addresses and communicate in both directions, using the CY525
Verify mode. A suitable GPIB interface device would be
Fairchild“s 96Ls488.

GPIB HANDSHAKE SIGNALS

The "TALKER", or device desiring to send 8 bits of data to the
CY525 over the data bus, uses the DAV (Data AvVailable) signal
that corresponds to the I/0 REQUEST line on the CY525. Before
lowering the DAV line, the TALKER must test the NRFD (Not Ready
For Data) line. This line corresponds to the CY525 BUSY/RDY
line. When this line is low, the LISTENER (CY525) is Not Ready
For Data. When the TALKER finds the NRFD line high, it can
assert (lower) its DAV write line to the CY525. Thus far, the
interface is identical to the standard CY525 handshake. The
third handshaking signal is an acknowledge line from the listener
named NDAC (Not Data ACcepted). This line must initially be low
and is raised to indicate that the data has been accepted by the
CY525. The NDAC line is tested by the TALKER to determine
whether or not the LISTENER has accepted the data. The CY525
BUSY/RDY line actually acknowledges the data transfer by going
low, thus by inverting the RDY line, an NDAC signal can be
generated. This completes the three line handshake required for
the GPIB.

Figure 12.1 CY525/GPIB Interface.

119

DATA LINES F-——-——-- -6) S
FALSE o

AVAILABLE) | JTRUE .

NRFD i P

(NoT READY | lreue P D

FOR DATA)

wjEause ——
NDAC @ |’ .f |’ |’ O, O,
{NOT DATA TRUE 3 i
ACCEPTED) ‘O ®
] 1 Ll] L ST W B 1
T T Ty T s T T 8 T9 To Tu

Figure 12.2 GPIB Handshake Signals.

The flowchart for the TALKER that controls the CY525 is shown in
Figure 12.3. This procedure can be implemented simply using any
microprocessor and describes the manner in which most GPIB
interface devices function.

TALKER LISTENER

START

ARE
NRFD AND NDA
HIGH ?
NO

PUT NEW DATA
ON DI0 LINES
END o
o
DELAY FOR DATA " et
TOSETTLE o weh /U““
0 _\?ﬁr& S hRE «
M e 160 N ¥
~Tak CePit -
-« » NBE N’/ -
NO MR
" Lo A0
< “\':"\J PV
YES 09\/
-
SET DAV LOW
NDAC LINE STAYSEM_NH.&L_I_\ECE_PTORS
" % T TWAVE ACCEPTED DATA
= THE DATAIS TO 8E COI‘EPE_R_E(_)_T!_A:ID

e et

T T T TRAFTER THISTIME

SET DAV HIGH
SET NOAC LOW

Figure 12.3 .TALKER/LISTENER handshaking procedure.

120

GPIB INTERFACE MANAGEMENT SIGNALS

In addition to the three line handshake, there are several other
control lines defined by the IEEE-488 interface specifications.
These are described below and identified with appropriate CY525
signal lines.

IFC

RESET (pin 4)

j -
——‘ l'_ 100 msec

Interface Clear goes low after power on. This line is
used to reset the CY525 and can replace the power on
startup circuitry.

SRQ MOTION COMPLETE
- 1 J or RUN

$1...END OF MOTION
$#2...~>o— RON

Service Request is used to inform the TALKER that the

LISTENER (CY¥525) has completed an action and is ready
for more commands.

ATN I/0 REQUEST=DAV
— g I/0 REQUEST
ATN (pin 1)

The Attention line is used to signify that the data on
the bus is a device address. For multiple CY525s this
may be used for selection. The ATN line should inhibit
the CY525 I/0 REQUEST line. Note that ATN may also be
used to prevent the CY¥525 from seeing line feeds (0AH)
sent after linends (0DH) as is done by many BASIC
language controllers. ATN may also be used to inhibit
other interface commands to which the CY525 cannot
respond.

121

IEEE-488 TALKER SENDS CY525 STEPPER MOTOR
COMMANDS TO CY525 CONTROLLER RECEIVES
COMMANDS

e AR R B IR .

(okt fowen)
()

ATR

1/0 REG

DAV

BUSY/RDY

o}

NRFD
NDAC
SRa

INT REG L

RESET
{ DATA BUS - INVERTED BY INTERFACE

Figure 12.4 Simple IEEE-488/CY525 Interface.

12-19

In some systems the REN (Remote ENable) and EOI (End Or Identify)
IEEE-488 control signals may be useful. For further information
on the IEEE-488 interface the reader is referred to the following
references:

IEEE STANDARD 488 - 1978
available from
IEEE Service Center
445 Hoes Lane
Piscataway NJ 08854 USA

PET and the IEEE 488 BUS
by Fisher and Jensen, 1980
Osborne/McGraw Hill
630 Bancroft Way
Berkeley CA 94710 USA

122

GPIB SCHEMATIC EXAMPLE

The following pages illustrate the logic used in an actual
project which connected the CY525 to the IEEE-488 bus, using the
Fairchild 96L5488. The schematics indicate general data flow,
handshake control logic for bidirectional data transfers, and
interrupt logic to control stepping and detect when a limit has
been reached. Such a design supports many functions of the GPIB,
and allows several CY525s or other GPIB instruments to reside on
the same bus. This design is included with the permission of
Christopher R. Hansen of the Mayo Foundation.

. i

1/0 SELECT L _ j i /]
TXST | J
(
1/0 REQUEST “{[L
BUSY/ROY __________ 1 L
TXROY I

Figure 12.5 Timing for Talker addressed.

TAD | /o [
"
{

10.0 MKz

w10

1S

AN
\J

Figure 12.6 Clock and Reset Logic

The figure above shows the implementation of the clock inputs for
both the CY525 and the 96LS488 from a single crystal, and a
manual reset. It also shows the timing for the handshake
circuits when the CY525 is asked to output its values from a
Verify command.

123

cwW LIMIT

W LM
RQGS

- —_— UNUSED
)

Figure 12.7 Data Paths

The data path schematic illustrates general data flow between the
GPIB, the 9615488, and the CY525. All control signals from the
GPIB connect directly to the 96LS488, which interprets the
bus commands and controls the handshake logic to the CY525. The
eight data lines connect to the 96L5488, and through 74L5240
buffers to the CY525. The buffers invert the data signals
between the CY525, which uses positive logic, and the GPIB, which
uses negative logic. Two modes are used to read back information
from the CY525. To read the internal parameters, using the
Verify mode, a normal GPIB read operation is performed, by making
the 9618488 and CYS525 the bus talker. To read back the states of
various CY525 control lines, the 96LS488 is asked to perform a
status read as a result of a poll command. Note that any eight
of the CY525 signals may be connected to the status port.
Internal CY525 data and the status information are multiplexed by
the 74LS157. .

124

+5v
K 500
1500 = .
; '
L 5719 f
; i
: E
1
1504 1500 : i
! :
]
Y '
(504
504 1520
1504 F N

v #SET L5123
R b FOR 2 mSEC
Lsi123 PULSE
o0 | * A
LS Q 27
B
LS04

ﬁ°<hso4'

Figure 12.8 Handshake Control Logic

The handshake control logic is the key to connecting the CY525 to
the 96LS488. This logic converts the appropriate signals between
the simple handshake of the CY525, and the more complex handshake
performed by the 96LS488. By combining the various signals from
the 96LS488, the proper values for 1/0 Select and I/0 Request are
generated. Much of this logic distinguishes between the Listen
mode (sending commands to the CY525) and the Talk mode (sending
data from the CY525). This enables the Verify command to be used
with the GPIB design. The CY525 Busy/Ready signal is used to
complete the handshake between the CY525 and the 96LS488.

125

8820 A
PPUE— se

Cw Limiv

-—

CCw LiMiT

4
CLK

ot

1508

Figure 12.9 Interrupt Logic

The interrupt logic illustrates two functions. In the first, the
GPIB may be used to control the start of stepping. The 96LS488
Trig, CLR, and MR signals are combined and connected to the CY525
Step Inhibit. This allows the GPIB master controller to stop any
stepping operations by issuing a Device Clear command. Stepping
may also be synchronized to other events by allowing the master
to start the stepping using a Device Trigger command. The second
function of the interrupt logic is to monitor the stepping
operation, and warn the master controller when a limit has been
reached. By monitoring the limits, a Service Request can be
generated when a limit is reached. The Step Inhibit is also
controlled by this process, keeping the CY525 from inadvertently
stepping too far. Service Requests are also generated by the
CY525 Motion Complete signal.

126

13 GETTING YOUR CY525 RUNNING 13

The following checklist will simplify getting your CY¥525 up and

running.
1. Connect pins 7 & 20 to ground and pins 26 & 40 to +5 volts.
2. Be sure that pin 39 is low and pin 6 is high.
3. Set pin 36 high (ASCII mode), set pin 30 low for now.
4. Be sure RESET (pin 4) is low for at least 10 milliseconds
after power stabilizes. The CY525 can be reset at any time.
5. Upon proper reset all outputs should be at logic 1 (>3V).
6. Observe the RDY line (pin 27) to be sure it is high.
7. Observe CLK/15 (pin 11 A 400 KHz with 6 MHz Xtal).
8. Place the "CLEARBIT" command "C" (=43H) on the data bus.
DBO =1
DBL = 1
DB2 = 0
DB3 =0
DB4 = 0
DB5 = 0
DB6 = 1
DB7 = 0
9. Lower the I/O REQUEST line (pin 1).
10. wait for RDY (pin 27) to go low before bringing I/0 REQUEST
high. 1If using I/0 REQUEST strobe circuitry that generates
a low write signal when an ASCII character is placed on the
bus, be sure that your software detects low RDY line (Busy)
before looking for High RDY., 1If you are using a debounced
keyboard this should not be a problem.
1ll1. when I/0O REQUEST is brought back high, RDY will return high.
12. Wait for RDY to return high before placing the RETURN code

()=0DH) on the data bus.

pin 12... DBO
DB1
DB2
DB3
DB4
DBS
DB6
pin 19... DB7

W nunn
OO0OO0OOHMOK

127

13.

14.

15.

16.

17.

18.

19.

20.

Generate the low I/0 REQUEST strobe until RDY goes low, then
return I/O REQUEST high, as before.

Upon completion of the above sequences of steps, the
Programmable Output (pin 34) will go low.

Repeat steps 8 through 13, replacing "C" (=43H) with "B"

(=42H). This "BITSET" command will cause the Programmable
Output (pin 34) to return high. All other outputs (except
RDY) should have remained high during the above procedure.

Repeat steps 8 through 13, replacing "C" (=43H) with "-"
(=2DH). This is the "CCW" command. The result of this
command will be to bring the DIRECTION Line (pin 33) low.

Following the CCW command with a CW command ("+" =2BH) will
again raise the DIRECTION line.

1f you have reached this point successfully you should be
able to enter any of the commands and obtain the correct
responses.

Suggested sequences:

a. enter "E)" followed by "Q" and observe the PROG/LIVE
(pin 31) go low with "E)" and return high with "Q".

b. with STEP INHIBIT (pin 30) low, enter "A 0)" followed by
"P 1)". The STEPPER MOTOR DRIVE SIGNALS, pins 21-24,
will be activated, and PULSE, pin 35, will go low and
return high, indicating the duration of the step. The
drive signals will change from step to step as the above
sequence is repeated.

c. raise the STEP INHIBIT line and enter the single step
sequence as in "b" above. Nothing will happen on PULSE,
or the stepper control lines, until the STEP INHIBIT
line is lowered.

d. refer to Figures 10.13, 10.14, and 10.15. Enter.these
commands as listed and observe the outputs. Note that
LEDs on the relevant outputs are very useful.

After initial checkout is accomplished using ASCII input,

the user may place pin 36 low to select Binary. Read the
manual carefully for differences in the two modes.

128

CYS00

¢ STORED PROGRAM
% STEPPERMOTORCONTROLLER

The CY500 stored program stepper motor controller is a standard
5 volt, 40 pin LS| device configured to control any 4-phase stepper
motor. The CY500 will interface to any computer using asynchronous
parallel TTL input and provides numerous TTL inputs and outputs for

auxiliary control and interfacing. The CY500 allows programming with an ASCI|
keyboard for prototype development and allows sequences of hi-level type commands to
be stored internally in a program buffer and be executed uponcommand. The TTL outputs
sequence the stepper drive circuits that consist of standard power transistors or transistor
arrays.

STANDARD FEATURES

® ASCII-DECIMAL OR BINARY COMMUNICATION
SINGLE 5 VOLT POWER SUPPLY .

HI-LEVEL LANGUAGE COMMANDS .

STORED PROGRAM CAPABILITY * SINGLE/MULTIPLE STEP INSTRUCTIONS
HALF-STEP/FULL-STEP CAPABILITY * RAMP-UP/SLEW/RAMP-DOWN MODE
ABSOLUTE/RELATIVE POSITION MODES ¢ 24 INSTRUCTIONS IN SET
L]
L]
L]
L]

* HARDWARE/SOFTWARE DIRECTION CONTROL
HARDWARE/SOFTWARE START/STOP
‘ABORT CAPABILITY

L]
L]
L]
L]
.
¢ PROGRAMMABLE VIA ASCIl KEYBOARD TRIGGERED OPERATION
¢ 3300+ STEPS PER SECOND (6 MHz XTAL) ‘DO-WHILE' COMMAND

* PROGRAMMABLE OUTPUT LINE ‘WAIT-UNTIL' COMMAND
® TWO INTERRUPT REQUEST OUTPUTS SEVERAL SYNC INPUTS AND QUTPUTS

PIN CONFIGURATION LOGIC DIAGRAM

— % SVoLT
WA 1 40 peu— +5YOLTS PARALLEL 8
AL {.- bt +5 VOLTS DATABUS ____
- = WAIT [PROGRAM) — STEPPER
RESET —o= CYSOO - INT REQ 1 WA STROBE — 4 4) CONTROL
UNUSED — o= TOGGLE FEET —t
ABORT —m s PULSE bt PULSE
L = CONTROL BUSY/READY ~=—)4 TORBLE
M~ [, AsCil/aiw mope — INT REQ 1
UNUSED — == RON (INT REQ 2
IRESERVED] =] e CONTROL _3 MOTION COWPLETE
CLK/15 =] TORE| e TRIGGER L - INT REQ 2 RUN)
U8, ~o=t :nocn:u s~ EXT DIRECTION EXT. DIR. —e PROGRAM COMPLETE
08, —»={ GSYEPPER e EXTSTART/STOP EXT. START/STOP ——jmip [PAOG ENTRY
DB, = o= BUSY/RDY \WHILE
g, —f MOTOR L o vouts DO-WHILE ——pmg "B
o8, —= CONTROLLER |\ crn ABORT — g LT
08— [%4 sTeppen TRIGGER ——mp o PROGRAMMABLE
DB, — ™ @3 MoTOR WAIT UNTIL —ug Bmui QUTPUT
08, —= ™o, [DRIVE ASCH/BIN — & EXEC. | {
+1n 2o,] sieNALS

CyberneticMicro Systems

129

position.

INTELLIGENT POSITIONING
«® STEPPER MOTOR CONTROLLER

The CY512 intelligent positioning stepper motor controller is a
standard 5 volt, 40 pin LS| device configured to control any 4-phase

stepper motor. The CY512 willinterface to any computer using parallel

TTL input and provides numerous TTL inputs and outputs for auxiliary

control and interfacing. The CY512 allows sequences of hi-level type commands to
be stored internally in a program buffer and be executed upon command. The TTL outputs
sequence the stepper drive circuits that consist of standard power transistors or transistor
arrays. When absolute position commands are executed, the CY512 automatically
determines whether it is necessary to move CW or CCW to reach the specified target

STANDARD FEATURES

* ASCII-DECIMAL OR BINARY COMMUNICATION
® SINGLE 5 VOLT POWER SUPPLY

® 25 HI-LEVEL LANGUAGE COMMANDS

o STORED PROGRAM CAPABILITY

* HALF-STEP/FULL-STEP CAPABILITY

o ABSOLUTE/RELATIVE POSITION MODES

¢ PROGRAMMABLE VIA ASCII KEYBOARD

e 8000+ STEPS PER SECOND (11 MHz XTAL)

¢ PROGRAMMABLE OUTPUT LINE

e TWO INTERRUPT REQUEST QUTPUTS

e MORE LINEAR RAMP THAN CY500

e HIGHER RATE RESOLUTION THAN CY500

* PROGRAMMABLE DELAY

PIN CONFIGURATION

————— "
170 REQUEST —ad 1 40
—jine
o {
we - CY512
_______UNUSED —
TERMINATE/ABORT —am
— <
INSTROBE ~=—] —y
UNUSEQ —]
QUTSTROBE ~=—

CLK/15 ~——] INTELLIGENT
08— POSITIONING
0B, -1 STEPPER
08,1 MOTOR
18,1 CONTROLLER
DBy wesg-20
DB~
n%‘-

DB, -t
Lj20 21

ha— +5 VOLTS

ee—1/0 SELECT

fa— WAIT PROGRAM __
|- MOTION COMPLETE
e~ ASCII/BIR

——FUIISE
o= PROGRAMMABLE OUTPUT
-~ DIRECTION
- W (INT REQ 2)
PROR

-
js— STEP INHIBIT
o= SLEW

e D0-WHILE
b= BUSY/READY
P +5 YOLTS

— UNUSED

- &4 STEPPER
&3 MOTOR
o DRIVE

& SIGNALS

* SOFTWARE DIRECTION CONTROL

o HARDWARE/SOFTWARE START/STOP

e 'ABORT CAPABILITY

e AUTOMATIC DIRECTION DETERMINATION

* RAMP-UP/SLEW/RAMP-DOWN

e VERIFY REGISTER/BUFFER CONTENTS

e STEP INHIBIT OPERATION

& ‘DO-WHILE' AND ‘WAIT-UNTIL' COMMANDS
* 'JUMP TO' COMMAND

e SEVERAL SYNC INPUTS AND QUTPUTS

o ‘SLEWING' INDICATION OUTPUT

* 'TERMINATE STEP LINE FOR MAXACCELERATION
e LOOP COMMAND WITH REPETITION COUNT

LOGIC DIAGRAM

+5VOLT
raaLLEL g
DATA BUS STEPPER
170 REQUEST ——powe 4) CONTROL
TNSTROBE i - PULSE
OUTSTAOBE <o L SLEW i
RESEY G * DIRECTION
TEV/AEAY e | Comm B
_Ascu/m et L e maad] nm‘? e
170 SELECT —Tom PROGAAM CONPL
DO-WHILE PROG ENTRY
TEAMINATE/ABGRT 85 XA
STEP INWIBIT —
WAIT UNTIL o an%%'mm
v

CyberneticMicro Systems

130

ASCII-DECIMAL TO HEX CONVERSION TABLE |

ASCII HEX

CR 0D
SP 20
2B
2C
2D

30
31
32
33
34
35
36
37
38
39

WODAUTE WO

ol
(SN =]
VodOUw dWwN O

41
42
43
44
45

|l ol el ol ol
O OJO BT W

N
(=]

46
47
48
49
4A

A
B
o
D
E
F
G
H
I
J

4B
4C
4D
4E
4F

OZXP X

50
51

52
53
54

H®»»mo

55
56
57
58
59
5a

(SR N]

131

