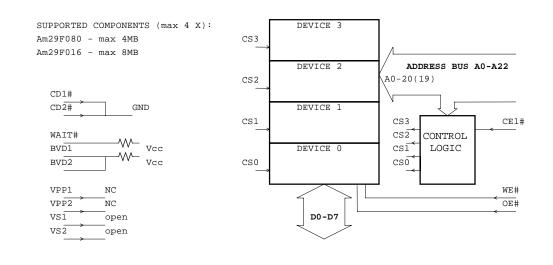


Eight Bit Flash Memory Card (AMD based) 1

General Description

The FEB Econo Flash card series offers a low cost eight bit linear Flash solid state storage solution for code/data storage and embedded applications.

Packaged in PCMCIA type I or a type I half-card housing, the FEB card series is based on AMD Flash memories: Am29F080 (8Mb) or Am29F016 (16Mb) devices whose device codes are D5h and ADh respectively. Systems should be able to recognize both codes. The symmetrically blocked architecture and 5V operation provides a cost effective, high performance, nonvolatile storage solution. The PC Card form factor offers an industry standard pinout and mechanical outline, allowing density upgrades without system design changes.


The FEB card series is designed as a simple x8 linear array of Flash devices. The 2MB and 4MB density options may be built with either 8Mb or 16Mb components. Both components have uniform 64Kbyte sectors and use identical embedded automated write and erase algorithms. The 8 bit design provides very low power operation as only one component is active at a time. The AMD based components allow for very low standby currents without entering Reset mode. This allows for standard access time immediately from low power standby mode.

1, 2, and 4 MEGABYTE

Features

- Low cost Linear Flash Card
- Single 5 Volt Supply
- •Based on AMD Flash Components - very low power without entering reset mode
 - allows standard access from low power mode
- •Fast Read Performance - 100ns or 150ns Maximum Access Time
- x8 Data Interface
- High Performance Random Writes - 10µs Typical Word Write Time
- Automated Write and Erase Algorithms - AMD Command Set
- 50µA Typical Deep Power-Down
- 100,000 Erase Cycles per Block
- 64K word symmetrical Block Architecture
- PC Card Standard Type I Form Factor

Block Diagram

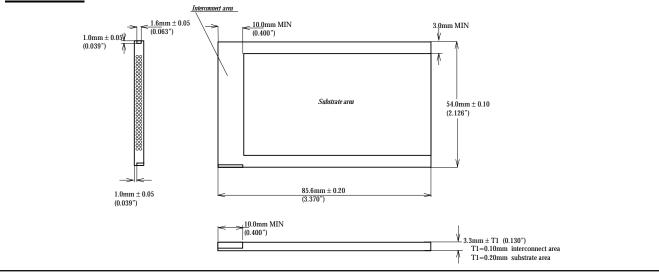
PCMCIA Flash Memory Card

FEB Series

Pinout

Pin	Signal name	I/O	Function	Active
1	GND		Ground	
2	DQ3	I/O	Data bit 3	
3	DQ4	I/O	Data bit 4	
4	DQ5	I/O	Data bit 5	
5	DQ6	I/O	Data bit 6	
6	DQ7	I/O	Data bit 7	
7	CE1#	Ι	Card enable 1	LOW
8	A10	Ι	Address bit 10	
9	OE#	Ι	Output enable	LOW
10	A11	Ι	Address bit 11	
11	A9	Ι	Address bit 9	
12	A8	Ι	Address bit 8	
13	A13	Ι	Address bit 13	
14	A14	Ι	Address bit 14	
15	WE#	Ι	Write Enable	LOW
16	RDY/BSY#	0	Ready/Busy	N.C.
17	Vcc		Supply Voltage	
18	Vpp1		12VProg. Voltage	N.C.
19	A16	Ι	Address bit 16	
20	A15	Ι	Address bit 15	
21	A12	Ι	Address bit 12	
22	A7	Ι	Address bit 7	
23	A6	Ι	Address bit 6	
24	A5	Ι	Address bit 5	
25	A4	Ι	Address bit 4	
26	A3	Ι	Address bit 3	
27	A2	Ι	Address bit 2	
28	A1	Ι	Address bit 1	
29	A0	Ι	Address bit 0	
30	DQ0	I/O	Data bit 0	
31	DQ1	I/O	Data bit 1	
32	DQ2	I/O	Data bit 2	
33	WP	0	Write Potect	1)
34	GND		Ground	

Pin	Signal name	I/O	Function	Active
35	GND		Ground	
36	CD1#	0	Card Detect 1	LOW
37	DQ11	I/O	Data bit 11	N.C.
38	DQ12	I/O	Data bit 12	N.C.
39	DQ13	I/O	Data bit 13	N.C.
40	DQ14	I/O	Data bit 14	N.C.
41	DQ15	I	Data bit 15	N.C.
42	CE2#	I	Card Enable 2	N.C.
43	VS1	0	Voltage Sense 1	N.C.
44	RFU		Reserved	
45	RFU		Reserved	
46	A17	-	Address bit 17	
47	A18	-	Address bit 18	
48	A19	Ι	Address bit 19	1MB ²⁾
49	A20	I	Address bit 20	2MB 2)
50	A21	Ι	Address bit 21	4MB ²⁾
51	Vcc		Supply Voltage	
52	Vpp2		12V Prog. Voltage	N.C.
53	A22	Ι	Address bit 22	8MB ²⁾
54	A23	Ι	Address bit 23	N.C.
55	A24	I	Address bit 24	N.C.
56	A25	Ι	Address bit 25	N.C.
57	VS2	0	Voltage Sense 2	N.C.
58	RST	-	Card Reset	N.C.
59	Wait#	0	Extended Bus cycle	N.C.
60	RFU		Reserved	
61	REG#	-	Attrib Mem Select	N.C.
62	BVD2	0	Bat. Volt. Detect 2	
63	BVD1	0	Bat. Volt. Detect 1	
64	DQ8	I/O	Data bit 8	N.C.
65	DQ9	I/O	Data bit 9	N.C.
66	DQ10	0	Data bit 10	N.C.
67	CD2#	0	Card Detect 2	LOW
68	GND		Ground	


White Electronic Designs

Notes:

1. Connected to GND - no write protection.

2. Shows density for which specified address bit is MSB. Higher order addresses are not connected (i.e. for 4MB card A21 is MSB, A22-A25 are N.C.).

Card Signal Description

Symbol	Туре	Name and Function
A0 - A25	INPUT	ADDRESS INPUTS: A0 through A25 enable direct addressing of
		up to 64MB of memory on the card. The memory will wrap at the
		card density boundary. The system should not try to access memory
		beyond the card density. The upper addresses are not connected.
DQ0 - DQ15	INPUT/OUT	DATA INPUT/OUTPUT: DQ0 THROUGH DQ15 constitute the
		bi-directional databus. DQ0 - DQ7 constitute the lower (even) byte.
		DQ8 – DQ15 are not connected. DQ7 is the MSB.
CE1#, CE2#	INPUT	CARD ENABLE 1 AND 2: CE1# enables even byte accesses,
		CE2# enables odd byte accesses. CE2# is not connected.
OE#	INPUT	OUTPUT ENABLE: Active low signal enabling read data from the
		memory card.
WE#	INPUT	WRITE ENABLE: Active low signal gating write data to the
		memory card.
RDY/BSY#	N.C.	READY/BUSY OUTPUT: Indicates status of internally timed erase
		or program algorithms. A high output indicates that the card is ready
		to accept accesses. This signal is not connected.
CD1#, CD2#	OUTPUT	CARD DETECT 1 and 2: Provide card insertion detection. These
		signals are connected to ground internally on the memory card. The
		host socket interface circuitry shall supply 10K-ohm or larger pull-up
		resistors on these signal pins.
WP	OUTPUT	WRITE PROTECT: This signal is pulled low internally. This
	NG	signifies write protect = "off " for all cases.
VPP1, VPP2	N.C.	PROGRAM/ERASE POWER SUPPLY: 12V. Not connected for
NGG		5V only card.
VCC		CARD POWER SUPPLY: 5.0V
GND	NG	GROUND: for all internal circuitry.
REG#	N.C.	ATTRIBUTE MEMORY SELECT: This signal is not connected
DOT	NG	- card does not have attribute memory.
RST	N.C.	RESET: Active high signal for placing cards in Power-on default
		state. Reset can be used as a Power-Down signal for the memory
WAIT#	OUTPUT	WAIT: This signal is pulled high internally for compatibility. No
		wait states are generated.
BVD1, BVD2	OUTPUT	BATTERY VOLTAGE DETECT: These signals are pulled high to
VC1 VC2	OUTPUT	maintain SRAM card compatibility. VOLTAGE SENSE: Notifies the host socket of the card's VCC
VS1, VS2	OUIPUI	
		requirements. VS1 and VS2 are open to indicate a 5V card has been inserted.
RFU		Inserted. RESERVED FOR FUTURE USE
N.C.		
N.C.		NO INTERNAL CONNECTION TO CARD: pin may be driven or left floating
		or ien noating

Functional Truth Table

Function Mode	/REG	/CE2	/CE1	/OE	/WE	D15-D8	D7-D0
Standby Mode	Х	Х	Н	Х	Х	High-Z	High-Z
Read Low Byte Access	X	Х	L	L	н	High-Z	Even-Byte
Write Low Byte Access	X	Х	L	Н	L	Х	Even-Byte

DC Characteristics (1)

Symbol	Parameter	Density (MBytes)	Notes	Typ ³⁾	Max	Units	Test Conditions
ICCR	VCC Read Current	1,2,4,8			30	mA	VCC = 5.25V tcycle = 100ns
ICCW	VCC Program Current	1,2,4,8			60	mA	
ICCE	VCC Erase Current	1,2,4,8			60	mA	
ICCS	VCC Standby Current	1,2,4,8	2)	20	50	μA	VCC = 5.25V Control Signals = VCC Reset = X

CMOS Test Conditions: VIL = VSS ± 0.2V, VIH = VCC ± 0.2V

Notes:

1. All currents are RMS values unless otherwise specified.

2. Control Signals: CE1#, CE2#, OE#, WE#.

3. Typical: VCC = 5V, T = $+25^{\circ}$ C.

AC Characteristics (1)

 $VCC = 5V \pm 5\%$, TA = 0°C to + 70°C

Symbol	Parameter	100 ns		150 ns		
		Min	Max	Min	Max	Unit
t _c (R)	Read Cycle Time	100		150		ns
t _a (A)	Address Access Time		100		150	ns
t _a (CE)	Card Enable Access Time		100		150	ns
t _a (OE)	Output Enable Access Time		50		75	ns
t _C W	Write Cycle Time	100		150		ns
t _W (WE)	Write Pulse Width	60		80		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

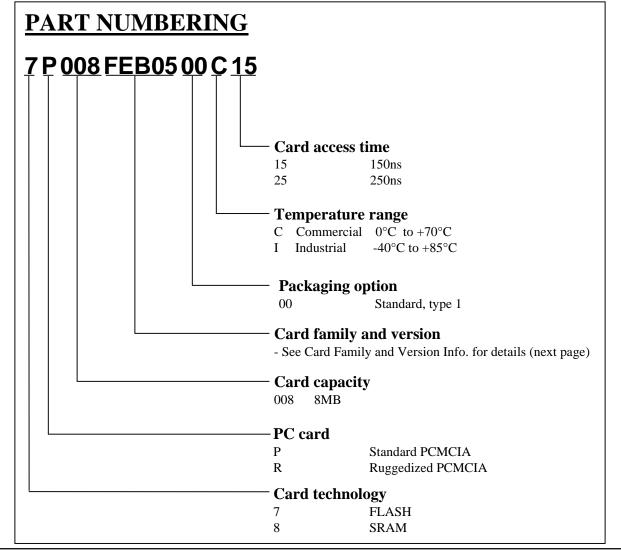
Data Write and Erase Performance (1,3)

 $VCC = 5V \pm 5\%$, TA = 0°C to + 70°C

Symbol	Parameter	Notes	Min	Typ(1)	Max	Units	Test Conditions
^t WHQV1 ^t EHQV1	Byte Program time	2,4		7	1000	μs	
^t WHQV2 ^t EHQV2	Block Program Time	2		0.15	0.7	sec	Word Program Mode
	Block Erase Time	2		1	15	sec	

Notes:

1. Typical: Nominal voltages and TA = 25° C.


2. Excludes system overhead.

3. Valid for all speed options.

- 4. To maximize system performance RDY/BSY# signal should be polled.
- 5. Chip erase time based on 8 Mbit Flash components.

PRODUCT MARKING WED 7P008FEB0500C15 C995 9915 EDI Date code Lot_code / trace number Part number Company Name

Eight Bit Flash Memory Card

7P XXX FEB YY 00 T ZZ

where

XXX:	001 002 004 008	1MB(03 only)2MB(03, 05)4MB(03, 05)8MB(05 only)
YY:	03 05	29F080 base 29F016 base
T:	C I M	Commercial Industrial Military Temp
ZZ:	10 15	100ns 150ns

Revision history:							
rev level	description	date					
rev 0	initial release	Feb 2, 1998					
rev 1	Logo change	May 27, 1999					
rev 2	Added page 5 Page Header change	June 1, 2000					
rev 3	Corrected Errors on pg. 4	August 1, 2000					

August 2000 Rev. 3 - ECO #13124

PC Card Products