

GENERAL DESCRIPTION

The EM65240 is a 240-channel LCD driver LSI used to drive large scale dot matrix LCD panels, like PDA, personal computers and workstations. Which is made by power CMOS high voltage process technology. Through the use of TCP technology, it is deal for substantially decreasing the size of LCD module frame. This product can function as a common and a segment driver, which is used for liquid crystal dot matrix display.

In common driver mode, it can be selected in single mode and dual mode by a mode pin (MD), data input/output pins are bi-directional, four data shift direction are pin selectable. In segment driver mode, it can be selected 4-bit parallel input mode or 8-bit parallel input mode by a mode pin (MD).

FEATURES

Both common mode and segment mode

- Display duty application: up to 1/480 duty
- Supply voltage for the logic system: +2.5 to +5.5V
- Supply voltage for LCD driver: +15 to +42V
- Number of LCD driver outputs: 240
- Low output impedance
- Low power consumption
- CMOS silicon process (P-type Silicon substrate)
- 268 pin TCP (tape carrier package) package: EM65240U

Common mode

- Shift clock frequency: 4.0MHz (Max.) (V_{DD}=+2.5 to +5.5)
- Built-in 240 bits bi-directional shift register (divisible into 120bits*2)
- Available in a single mode or in a dual mode
- Data input/output pins are bi-directional, four data shift direction are pin selectable.
- Shift register circuit reset function when /DSPOF active

Preliminary

Segment mode

- Shift clock frequency: 20MHz(Max.) (V_{DD}=+ 5V±10%)

15MHz(Max.) (V_{DD}=+ 3.5V to + 4.5V)

- 12MHz(Max.) (V_{DD}=+ 2.5V to + 3.0V)
- Adopts a data bus system
- 4-bits/8-bits parallel input mode are selected by MD pin
- Automatic transfer function of an enable signal
- Automatic counting function which, in the chip select, causes the internal clock to be stopped by automatically counting 240 of input data
- Line latch circuit reset function when /DSPOF active

PIN CONFIGURATION

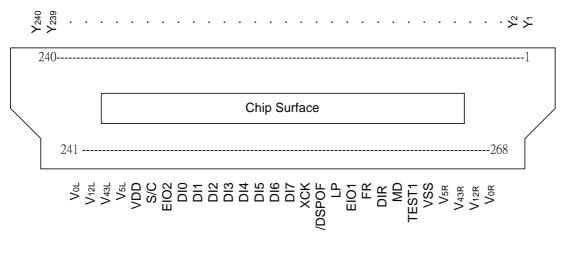


Figure1 pin configuration

Preliminary

Table 1 pin designation

Pin NO.	Symbol	I/O	Description
1 to240	$Y_1 - Y_{240}$	0	LCD driver output
241,268	V _{OL} ,V _{OR}	-	Power supply for LCD driver
242,267	V _{12L} ,V _{12R}	-	Power supply for LCD driver
243,266	V _{43L} ,V _{43R}	-	Power supply for LCD driver
244,265	V_{5L}, V_{5R}	-	Power supply for LCD driver
245	V _{DD}	-	Power supply for logic system
246	S/C	I	Segment/common mode selection
247	EIO ₂	I/O	Input /output for chip select or data of shift
259	EIO ₁		register
248 to 254	$DI_0 - DI_6$	I	Display data input for segment mode
255	DI ₇		Dual mode data input for common mode
256	XCK	I	Display data shift clock input for segment
			mode
257	/DSPOF		Control input for non-select output level
258	LP	I	Latch pulse input/shift clock input for shift
			register
260	FR	I	AC-converting signal input for LCD driver
			waveform
261	DIR	I	Display data shift direction selection
262	MD	I	Mode selection input
263	TEST ₁	I	Test mode selection input
264	V _{SS}	-	Ground (0 V)

PIN DESCRIPTIONS

Segment mode

Table2 pin description of segment mode

Symbol	I/O	Connected to	Functions		
V _{DD}	Ι	Power Supply	Power supply for internal logic connects to +2.5 to +5.5V		
V _{SS}	I	GND	Connect to Ground		
V _{0R} [,] V _{0L} V _{12R} [,] V _{12L} V _{34R} [,] V _{34L} V _{5R} [,] V _{5L}	Ι	Power Supply	Power supply for LCD driver level • Normally , the bias voltage used is set resistor divider • Ensure that the voltage are set such th $V_{SS} \leq V_5 < V_{34} < V_{12} < V_0$ • To further reduce the difference betwee the output waveforms of LCD driver output		
			pin Y_1 and Y_{240} , externally connect V_{iR} and V_{iL} (i=0 , 12 , 34 , 5)		
DI ₀ – DI ₇	I	Controller	Input for display data • In 4-bit parallel input mode · input data into 4 pins DI ₀ – DI ₃ • In 8-bit parallel input mode · input data into8 pins DI ₀ – DI ₇		
XCK	Ι	Controller	Clock signal for taking display data Data is read on the falling of the clock pulse		
LP	Ι	Controller	Latch signal for display data Data is latched on the falling edge of the clock pulse 		
S/C	Ι	Controller	Selection of segment mode/common modeS/CMode selectionHsegment modeLcommon mode		

Preliminary

Segment mode (continuous)

DIR	I	Controller	Directional selection for reading display data			
			DIR Data read direction			
			L Y ₂₄₀ to Y ₁			
			H Y ₁ to Y ₂₄₀			
/DSPOF	I	Controller	Control signal for output deselect level			
			• The input signal is level-shifted from logic			
			voltage level to LCD driver voltage level ,			
			and controls LCD drive circuit			
			• When the signal is low $,$ the output (Y ₁ –			
			Y_{240}) of LCD drive be set to level V_5 , the			
			contents of line latch are reset, but read the			
			display data in the data latch regardless of			
			condition of /DSPOF			
			 When this signal return to high, the 			
			operation returns to the normal status.			
FR	I	Controller	AC signal for LCD driver			
			 Input a frame inversion signal 			
			The LCD driver output voltage level can			
			be set by line latch output signal and FR			
			signal			
MD	I	Controller	Mode selection			
			MD Mode selection			
			H 4-bit parallel input			
			L 8-bit parallel input			

Preliminary

Segment mode (continuous)

EIO ₁ , EIO ₂	1/0	Controller	Input/output for chip selection • In output state , after 240-bit of data have been read , set to "L" then set to "H" • In input state , the chip is selected when EI is set to "L", then 240-bit of data have been read, the ship is deselected <u>DIR EIO₁ EIO₂ H input output L output input</u>				
Y ₁ -Y ₂₄₀ TEST ₁	0		LCD driver output. • One of four levels is output according to the combination of the FR signal and display data Test mode selection • during normal operation , connect to V _{ss}				

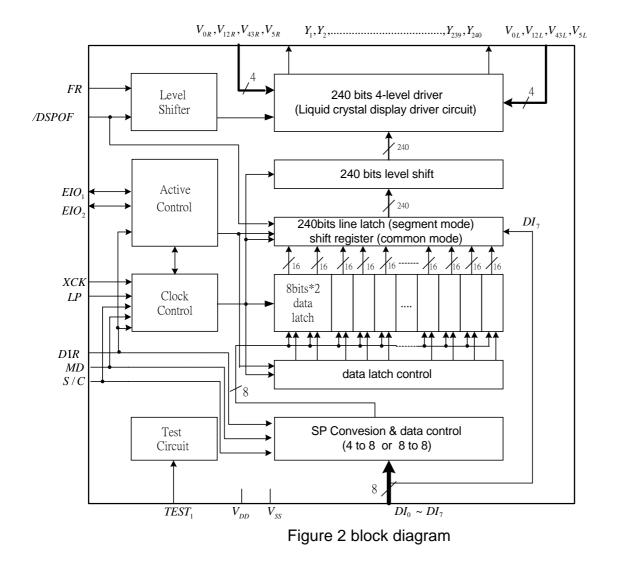
Preliminary

Common mode

Table3 pin description of common mode

Symbol	I/O	Connected to	Functions			
0,11001	., 🗸					
V _{DD}	I	Power supply	Power supply for internal logic connects to			
			+2.5 to +5.5V			
V _{SS}		GND	Connect to Ground			
V_{0R}, V_{0L}	I	Power supply	Power supply for LCD driver level			
V_{12R}, V_{12L}			 Normally the bias voltage used is set by 			
V_{34R}, V_{34L}			resistor divider			
V_{5R}, V_{5L}			 Ensure that the voltage are set such that 			
			$V_{SS} \leq V_5 < V_{34} < V_{12} < V_0$			
			• To further reduce the difference between			
			the output waveforms of LCD driver output			
			pin Y_1 and Y_{240} , externally connect V_{iR} and			
			V _{iL} (i=0 , 12 , 34 , 5)			
EIO_1 , EIO_2	I/O		Data input/output shift for bi-directional shift			
			register			
			• When EIO1(EIO ₂) is input , it will be			
			pull-down			
			• When EIO1(EIO ₂) is output [,] it will not be			
			pull- <u>down</u>			
			DIR EIO ₁ EIO ₂			
			H input output			
			L output input			
LP	-	Controller	Shift clock for bi-directional shift register			
	1	CONTOLLE	Data is shifted on the falling edge of the			
			clock			
DIR		Controller	Directional selection of bi-directional shift			
	1		register			
			DIR Data read direction			
			L Y_{240} to Y_1			
			H Y ₁ to Y ₂₄₀			
			· · · · · · · · · · · · · · · · · · ·			

Common mode (continuous)


/DSPOF	I	Controller	Control signal for output deselect level • The input signal is level-shifted from logic voltage level to LCD driver voltage level , and controls LCD drive circuit • When the signal is low , the output $(Y_1 - Y_{240})$ of LCD drive be set to level V_5 , the contents of shift register are reset not read • When this signal return to high, the operation returns to the normal status.			
FR	Ι	Controller	 AC signal for LCD drive Input a frame inversion signal The LCD driver output voltage level can be set by shift register output signal and FR signal 			
MD	I	Controller	Mode selectionMDMode selectionHDual modeLSingle mode			
S/C	I	Controller	Selection of segment mode/common modeS/CMode selectionHsegment modeLcommon mode			
DI ₇	I	Controller	Dual mode data input In dual mode data can input from 121st bit			
DI ₀ -DI ₆	Ι	V_{SS} or V_{DD}	Not used			
XCK	I	V _{SS} or open	Not used			
Y ₁ -Y ₂₄₀	0	•	LCD driver output. • One of four voltage levels is output according to the data of shift register and FR signal			
TEST₁	Ι		Test mode select • during normal operation [,] connect to V _{SS}			

8

Preliminary

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTIONS

. Active Control

In case of segment mode, controls the selection or deselection of the chip. Following a LP signal, and after the chip select signal is input, a select signal is generated internally until 240 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the chip is non-selected. In case of common mode, controls the input/output data of bi-directional pins.

. SP Conversion & Data Control

In case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bits parallel mode into latch circuit, after that they are put on the internal data bus 8 bits at a time.

. Data Latch Control

In case of segment mode, selects the state of the data latch which reads in the data bus signals. The shift direction is controlled by the control logic, for every 16 bits of data read in, the selection signal shifts one bit based on the state of the control circuit.

. Data Latch

In case of segment mode, latches the data on the data bus. The latched state of each LCD driver output pin is controlled by the control logic and the data latch control, 240 bits of data are read in 30 sets of 8 bits.

. Line Latch / Shift Register

In case of segment mode, all 240 bits, which have been read into the data latch are simultaneously latched on the falling edge of the LP signal, and output to the level shifter block. In case of common mode, shifts data from the data input pin on the falling edge of the LP signal.

. Level Shifter

The logic voltage signal is level-shifted to the LCD driver voltage level, and output to the driver block.

. 4-level Driver

Drive the LCD driver output pins from the line latch/shift register data, selecting one of 4 levels $(V_0, V_{12}, V_{43}, V_5)$ based on the S/C, FR and /DSPOF

. Control Logic

Controls the operation of each block. In case of segment mode, when a LP signal has been input, all blocks are reset and the control logic waits for the selection signal output from the active control block.

Once the selection signal has been output, operation of the data latch and data transmission are controlled, 240 bits of data are read in, and the chip is deselected. In case of common mode, controls the direction of data shift.

.Test Circuit

The circuit for the test. During normal operation, it doesn't act.

Relation between FR [,] Latch data [,] /DSPOF and output level

Table 4 LCD driver output voltage level

(a) Segment mode

FR	Latch data	/DSPOF	Driver output voltage level
Н	Н	Н	V ₀
Н	L	Н	V ₁₂
L	Н	Н	V ₅
L	L	Н	V ₄₃
Х	Х	L	V ₅
$V_{SS} \le V_{5} < V_{43}$	$< V_{12} < V_0$ H	:V _{DD} L:	V _{SS} X:Don't care

(b) Common mode

FR	Latch data	/DSPOF	Driver output voltage level
Н	Н	Н	V ₅
Н	L	Н	V ₁₂
L	Н	Н	V ₀
L	L	Н	V ₄₃
Х	Х	L	V ₅
V _{SS} ≦V ₅ < V₄	$_{13} < V_{12} < V_0$ H	l:V _{DD} L:	V _{SS} X:Don't care

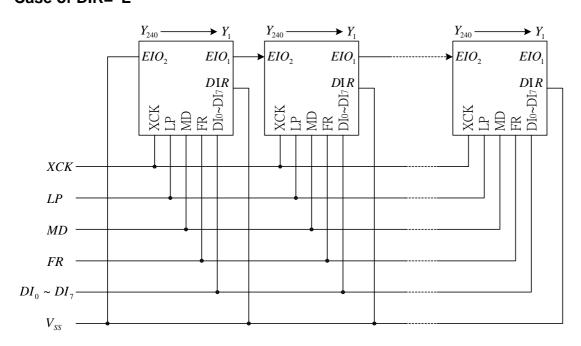
Relationship between the display data and driver output pin

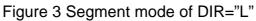
Table 5 Relationship between the display data and driver output pin (a)Segment mode (4-bit parallel mode)

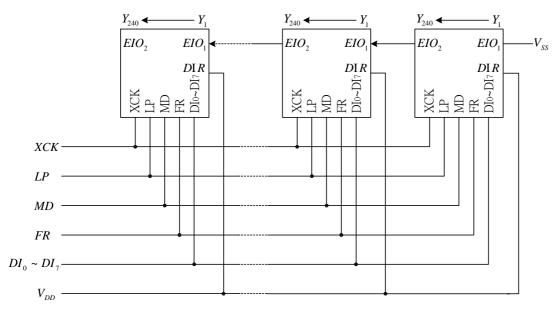
MD	DIR	EIO ₁	EIO ₂	Data	Figure of clock						
				Input	1 _{st}	2 _{nd}	3 _{rd}		38 _{th}	39 _{th}	60 _{th}
Н	Н	Input	Output	DI_0	Y_4	Y ₈	Y ₁₂		Y ₂₃₂	Y ₂₃₆	Y ₂₄₀
				DI_1	Y ₃	Y ₇	Y ₁₁		Y ₂₃₁	Y ₂₃₅	Y ₃₂₉
				DI_2	Y_2	Y_6	Y ₁₀		Y ₂₃₀	Y ₂₃₄	Y ₂₃₈
				DI_3	Y_1	Y_5	Y ₉		Y ₂₂₉	Y ₂₃₃	Y ₂₃₇
Н	L	Output	Input	DI_0	Y ₂₃₇	Y ₂₃₃	Y ₂₂₉		Y ₉	Y_5	Y ₁
				DI_1	Y ₂₃₈	Y ₂₃₄	Y ₂₃₀		Y ₁₀	Y ₆	Y ₂
				DI_2	Y ₂₃₉	Y ₂₃₅			Y ₁₁	Y ₇	Y ₃
				DI_3	Y ₂₄₀	Y ₂₃₆	Y ₂₃₂		Y ₁₂	Y ₈	Y ₄

(b) Segment mode (8-bit parallel mode)

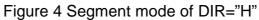
MD	DIR	EIO1	EIO2	Data			Figu	re of c	clock		
				Input	1 _{st}	2 _{nd}	3 _{rd}		28 _{th}	29 _{th}	30 _{th}
L	Н	Input	Output	DI_0	Y ₈	Y ₁₆	Y ₂₄		Y ₂₂₄	Y ₂₃₂	Y ₂₄₀
				DI_1	Y ₇	Y ₁₅	Y ₂₃		Y ₂₂₃	Y ₂₃₁	Y ₂₃₉
				DI_2	Y_6	Y ₁₄	Y ₂₂		Y ₂₂₂	Y ₂₃₀	Y ₂₃₈
				DI_3	Y_5	Y ₁₃	Y ₂₁		Y ₂₂₁	Y ₂₂₉	Y ₂₃₇
				DI_4	Y_4	Y ₁₂	Y ₂₀		Y ₂₂₀	Y ₂₂₈	Y ₂₃₆
				DI_5	Y_3	Y ₁₁	Y ₁₉		Y ₂₂₉	Y ₂₂₇	Y ₂₃₅
				DI_6	Y_2	Y ₁₀	Y ₁₈		Y ₂₂₈	Y ₂₂₆	Y ₂₃₄
				DI_7	Y_1	Y۹	Y ₁₇		Y ₂₂₇	Y ₂₂₅	Y ₂₃₃
L	L	Output	Input	DI_0	Y ₂₃₃	Y ₂₂₅	Y ₂₁₇		Y ₁₇	Y ₉	Y ₁
				DI_1	Y ₂₃₄	Y ₂₂₆	Y ₂₁₈		Y ₁₈	Y ₁₀	Y ₂
				DI_2	Y_{235}	Y ₂₂₇	Y ₂₁₉		Y ₁₉	Y ₁₁	Y ₃
				DI_3	Y ₂₃₆	Y ₂₂₈	Y ₂₂₀		Y ₂₀	Y ₁₂	Y ₄
				DI_4	Y ₂₃₇	Y ₂₂₉	Y ₂₂₁		Y ₂₁	Y ₁₃	Y ₅
				DI_5	Y ₂₃₈	Y ₂₃₀	Y ₂₂₂		Y ₂₂	Y ₁₄	Y ₆
				DI_6	Y_{239}	Y ₂₃₁	Y ₂₂₃		Y ₂₃	Y ₁₅	Y ₇
				DI_7	Y ₂₄₀	Y ₂₃₂	Y ₂₂₄		Y ₂₄	Y ₁₆	Y ₈

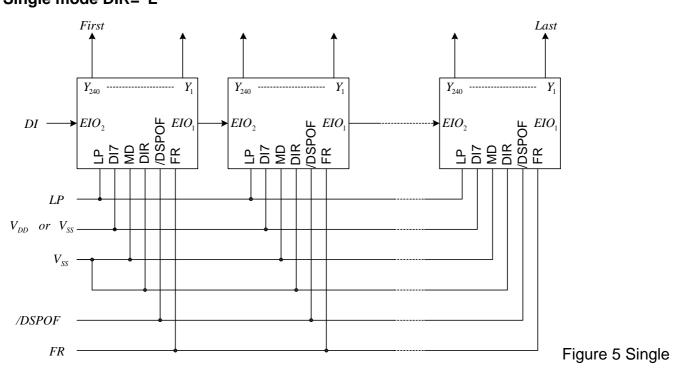

(c) Common mode

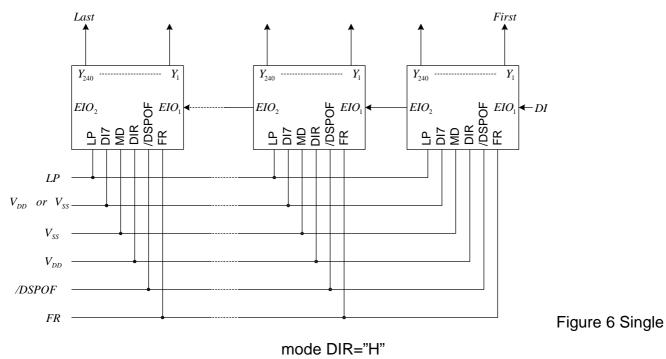

MD	DIR	Data transfer direction	EIO ₁	EIO ₂	DI ₇
Н	Н	Y ₁ ~Y ₁₂₀	Input	Output	Input
(Dual)		Y ₁₂₁ ~Y ₂₄₀			
	L	Y ₂₄₀ ~ Y ₁₂₁	Output	Input	Input
		Y ₁₂₀ ~ Y ₁			
L	Н	Y ₁ ~Y ₂₄₀	Input	Output	Х
(Single)	L	Y ₂₄₀ ~ Y ₁	Output	Input	Х
		H:V _{DD} L:V _{SS}	X:Dor	n't care	



Preliminary


Connection example of plural segment driver Case of DIR="L"


Case of DIR="H"



Preliminary

Connection of plural common driver Single mode DIR="L"

mode DIR="L"

Single mode DIR="H"

Preliminary

Connection of plural common driver

Dual mode DIR="L"

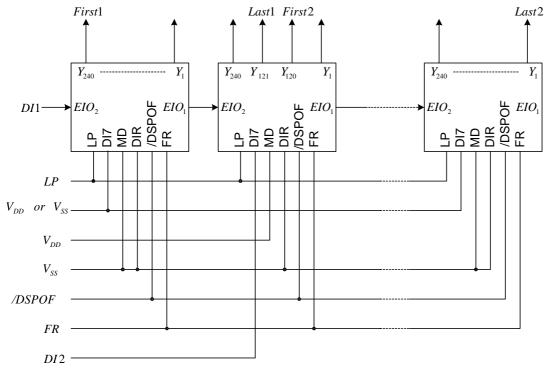
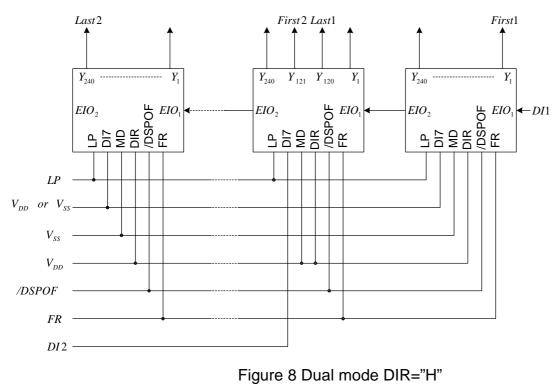



Figure 7 Dual mode DIR="L"

Preliminary

Timing chart of 4-device cascade connection of segment driver

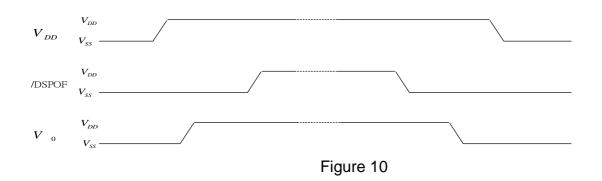
FR	_χ	
LP	Л	
ХСК		Л
$DI_0 \sim DI_7$	Top data n 1 2 3 n 1 2 3 n 1 2 3 n 1 2 3	Last data
EI	device A device B device C device D	L
(device A) EO (device A)		
EO (device B)		
EO (device C)		
	n:4-bit parallel mode 60	

8-bit parallel mode 30

Figure 9 Timing chart of 4-device cascade connection of segment driver

Power supply circuit for liquid crystal drive

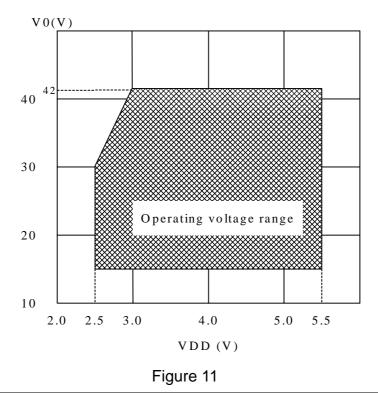
Precaution when Connecting or Disconnecting the Power


This LSI has a high-voltage LCD driver, so it may be permanently damaged by a high current which may flow if a voltage is supplied to the LCD driver power supply while the logic system power supply is floating.

. We recommend you connecting the serial resistor (50~100 Ω) or fuse to the LCD drive power V₀ of the system as a current limiter. And set up the suitable of the resistor in consideration of LCD display grade.

^{*} This specification are subject to be changed without notice.

When connecting the power supply, show the following recommend sequence.


Drive by operational amplifier

In graphic displays, the size of the liquid crystal becomes larger and the display duty ratio becomes smaller, so the stability of liquid crystal drive level is more important than a small display system.

Since the liquid crystal for graphic display is large and has many picture elements, the load capacitance becomes large. The high impedance of power supply for liquid crystal drive produce distortion in the drive waveforms, and degrades display quality. For the reason, the liquid crystal drive level impedance should be reduced with operational amplifiers.

Range of Operating Voltage: V0

It is necessary to set the voltage for V0 within the VDD operating voltage range shown in the diagram below.

* This specification are subject to be changed without notice.

Preliminary

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Applicable pins	Ratings	Unit
Supply voltage (1)	V_{DD}	T _a =25℃	V _{DD}	-0.3 to +7.0	V
	V ₀	Reference	V _{0L} , V _{0R}	-0.3 to +45.0	V
Supply voltage (2)	V ₁₂	d to	V _{12L} , V _{12R}	-0.3 to	V
		V _{SS} (0V)		V ₀ +0.3	
	V ₄₃		V _{43L} , V _{43R}	-0.3 to	V
				V ₀ +0.3	
	V ₅		V _{5L} , V _{5R}	-0.3 to	V
				V ₀ +0.3	
Input voltage	VI		DI ₀₋₇ , XCK, LP,	-0.3 to	V
			DIR,	V _{DD} +0.3	
			FR, MD, S/C, EIO ₁ ,		
			EIO ₂ ,		
			/DSPOF,TEST ₁		
Storage	T _{stg}			-45 to +125	°C
temperature	Ŭ				

Table 6 absolute maximum ratings

Recommended operation conditions

Parameter	Symbol	Conditions	Applicable	Min.	Тур.	Max	Unit		
			pins						
Supply voltage (1)		Reference	V_{DD}	+2.5		+5.5	V		
Supply voltage (2)	V ₀	d to V _{SS} (0V)	V_{0L}, V_{0R}	+15		+42	V		
Operating temperature	T _{opr}			-20		+85	°C		

Table 7 recommended operation conditions

Preliminary

DC CHARACTERISTICS

Segment mode

Table 8 DC characteristics of segment mode

 $(V_{SS} = V_5 = 0V, V_{DD} = +2.5 \text{ to } +5.5V, V_0 = +15 \text{ to } +42V, T_a = -20 \approx +85^{\circ}C)$

Parameter	Symbo		ditions	Applicable	Min			Unit
Farameter	J	Cond	unions	pins	IVIIII	Туре	Wax	Unit
Input voltage	V _{IH}			DI₀ -DI⁊, XCK, LP,DIR,FR,M	0.8V _D			V
Ū	V _{IL}			D, S/C,EIO ₁ , EIO ₂ , /DSPOF	_		0.2V _D	V
Output voltage	V _{OH}	I _{ОН} =-0	.4mA	EIO ₁ , EIO ₂	V _{DD} -0. 4			V
-	V _{OL}	$I_{OL}=+0$.4mA				+0.4	V
Input	I _{LIH}	V _I =V _{DI})	DI ₀ -DI ₇ , XCK,			+10	uA
leakage current	I _{LIL}	V _I =V _{SS}	3	LP, DIR, FR, MD, S/C,EIO ₁ , EIO ₂ , /DSPOF			-10	uA
Output resistance	R _{ON}	∆ V _{ON}	V ₀ =+40 V			1.0	1.5	kΩ
		=0.5V	V ₀ =+30 V			1.5	2.0	
			V ₀ =+20 V			2.0	2.5	
Stand-by current	I _{STB}	*1		V _{SS}			75.0	uA
Consumed current (Deselectio n)	I _{DD1}	*2		V _{DD}			2.0	mA
Consumed current (Selection)	I _{DD2}	*3		V _{DD}			12.0	mA
Consumed current	I ₀	*4		V ₀			1.5	mA

NOTE : 1. V_{DD} = +5V, V_0 = +42V, V_1 = V_{SS}

2. $V_{DD} = +5V$, $V_0 = +42V$, $f_{XCK} = 20MHz$, No-load, EI = V_{DD} The input data is turned over by data taking clock (4-bit parallel input mode) 3. $V_{DD} = +5V$, V0 = +42V, $f_{XCK} = 20MHz$, No-load, EI = V_{SS} The input data is turned over by data taking clock (4-bit parallel input mode) 4. $V_{DD} = +5V$, V0 = +42V, $f_{XCK} = 20MHz$, $f_{LP} = 41.6$ kHz, $f_{FR} = 80$ Hz, No-load The input data is turned over by data taking clock (4-bit parallel input mode)

Preliminary

Common mode

Table 9 DC characteristics of common mode

(VSS = V5 = 0V, VDD = +2.5 to 5.5V, V0 = +15 to +42V, Ta = -20~85°C)

Parameter	Symbo	Conditions	Applicable	Min	Тур	Max	Unit
	Ī		pins		e		
Input	V _{IH}		DI ₀ -DI ₇ , XCK,	$0.8V_{DD}$			V
voltage	VIL		LP,DIR,FR,M			$0.2V_{\text{D}}$	V
			D,			D	
			S/C,EIO ₁ ,				
			EIO ₂ , /DSPOF				
Output	V _{OH}	I _{OH} = -0.4mA	EIO ₁ , EIO ₂	V _{DD} -0.4		<u> </u>	V
voltage	V _{OL}	I_{OL} = +0.4mA				+0.4	V
Input leakage current	I _{LIH}	VI=V _{DD}	DI ₀ -DI ₇ , XCK, LP, DIR, FR, MD, S/C, /DSPOF			+10	uA
	I _{LIL}	V _I =V _{SS}	DI_0 - DI_7 , XCK, LP, DIR, FR, MD, S/C,EIO ₁ , EIO ₂ , /DSPOF			-10	uA
Output resistance	R _{ON}	$ \Delta $ V ₀ =+40	Y ₁ - Y ₂₄₀		1.0	1.5	kΩ
Tesistance		$ V_{ON} = 0.5V V_0=+30 V_$	-		1.5	2.0	
		V ₀ =+20 V			2.0	2.5	
Input pull-down current	I _{PD}	V _I =V _{DD}	XCK,EIO ₁ ,EIO 2, DI ₇			100.0	uA
Stand-by current	I _{STB}	*1	V _{SS}			75.0	uA
Consumed current (1)	I _{DD}	*2	V _{DD}			120.0	uA
Consumed current(2)	I ₀	*2	V ₀			240.0	uA

NOTE: 1. V_{DD} = +5V, V_0 = +42V, V_I = V_{SS}

2. V_{DD} = +5V, V_0 = +42V, f_{LP} = 41.6kHz, f_{FR} = 80Hz, 1/480 duty, No-load

Preliminary

AC Electrical characteristic

Segment mode 1

Table 10 AC electrical characteristics of segment mode 1

$$(V_{SS} = V_5 = 0V, V_{DD} = +4.5 \text{ to } +5.5V, V_0 = +15 \text{ to } +42V, T_a = -20 \sim 85^{\circ}C)$$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Shift clock period *1	Т _{иск}	$T_R, T_F \leq 10$ ns	50	тур	ΙΠάλ	ns
Shift clock "H" pulse			15			
width	Т _{искн}		15			ns
	т		45			
Shift clock "L" pulse	T _{WCKL}		15			ns
width	т		10			20
Data setup time			12			ns
Data hold time	T _{DH}					ns
Latch pulse "H" pulse width	T _{WLPH}		15			ns
Shift clock rise to latch	T _{LD}		0			ns
pulse rise time						
Shift clock fall to latch	T _{SL}		30			ns
pulse fall time						
Latch pulse rise to shift	T_{LS}		25			ns
clock rise time						
Latch pulse fall to shift	T _{LH}		25			ns
clock fall time						
Input signal rise time *2	T _R				50	ns
Input signal fall time *2	T _F				50	ns
Enable setup time	Ts		10			ns
/DSPOF removal time	T _{SD}		100			ns
/DSPOF "L" pulse time	T _{WDL}		1.2			us
Output delay time (1)	T _D	C _L =15pF			30	ns
Output dolov time (2)	Τ	015pE			1.2	
Output delay time (2)	T _{PD1} T _{PD2}	C _L =15pF				us
Output delay time (3)	T _{PD3}	C∟=15pF			1.2	us

NOTES: 1. Take the cascade connection into consideration.

2. $(T_{WCK} - T_{WCKH} - T_{WCKL}) / 2$ is maximum in the case of high speed operation.

Preliminary

Segment mode 2

Table 11 AC electrical characteristics of segment mode 2

$(V_{SS} = V_5 = 0V, V_{DD} = +3.0 \text{ to } +4.5V, V_0 = +15 \text{ to } +42V, T_a = -20 -8 \text{ °C})$

Parameter	Symbol	Condition	Min	Тур	Max	1 1
	- ,			71		
Shift clock period *1	Т _{WCK}	T _R ,T _F ≦10ns	66			ns
Shift clock "H" pulse	Т _{WCKH}		23			ns
width						
Shift clock "L" pulse	Т _{WCKL}		23			ns
width						
Data setup time	T _{DS}		15			ns
Data hold time	Т _{DH}		23			ns
Latch pulse "H" pulse	T _{WLPH}		30			ns
width						
Shift clock rise to latch	T_{LD}		0			ns
pulse rise time						
Shift clock fall to latch	T _{SL}		50			ns
pulse fall time						
Latch pulse rise to shift	T_{LS}		30			ns
clock rise time	_					
Latch pulse fall to shift	T _{LH}		30			ns
clock fall time	-					
	T _R				50	ns
Input signal fall time	T _F				50	ns
*2	-		4.5			
Enable setup time	T _S		15			ns
/DSPOF removal time	T _{SD}		100			ns
/DSPOF "L" pulse time		a	1.2			us
Output delay time (1)	T _D	C∟=15pF			41	ns
Output dolay time (2)	Τ	C _L =15pF			1.2	us
Output delay time (2)	T _{PD1}	CL=10PF			1.2	us
Output delay time (3)	T _{PD2} T _{PD3}	C _L =15pF			1.2	us
	1 PD3			l	1.4	uS

NOTES: 1. Take the cascade connection into consideration.

2. $(_{TWCK} - T_{WCKH} - T_{WCKL}) / 2$ is maximum in the case of high speed operation.

Preliminary

Segment mode 3

Table 12 AC electrical characteristics of segment mode 3

$(V_{SS} = V_5 = 0V, V_{DD} = +2.5 \text{ to } +3.0V, V_0 = +15 \text{ to } +42V, T_a = -20 \sim 85^{\circ}C)$

Parameter	Symbol	Condition	Min	Тур		Unit
	Ŧ	T T (10				
Shift clock period *1	Т _{WCK}	T _R ,T _F ≦10ns	82			ns
Shift clock "H" pulse	Т _{WCKH}		28			ns
width	_					
Shift clock "L" pulse	T _{WCKL}		28			ns
width	_					
Data setup time	T _{DS}		20			ns
Data hold time	Т _{DH}		23			ns
Latch pulse "H" pulse	T _{WLPH}		30			ns
width						
Shift clock rise to latch	T _{LD}		0			ns
pulse rise time						
Shift clock fall to latch	T _{SL}		65			ns
pulse fall time						
Latch pulse rise to shift	T_{LS}		30			ns
clock rise time						
Latch pulse fall to shift	T _{LH}		30			ns
clock fall time						
	T _R				50	ns
Input signal fall time	Τ _F				50	ns
*2						
Enable setup time	Τ _S		15			ns
/DSPOF removal time	T _{SD}		100			ns
/DSPOF "L" pulse time	T _{WDL}		1.2			us
Output delay time (1)	T _D	C∟=15pF			57	ns
Output delay time (2)	Τ	C _L =15pF			1.2	us
	T _{PD1} T _{PD2}				1.2	us
Output delay time (3)	T _{PD3}	C _L =15pF			1.2	us

NOTES: 1. Take the cascade connection into consideration.

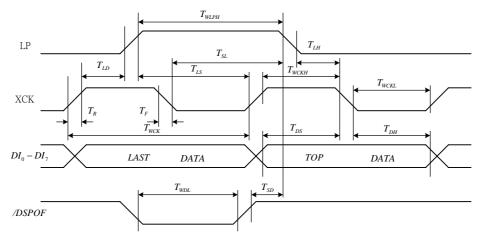
2. $(T_{WCK} - T_{WCKH} - T_{WCKL}) / 2$ is maximum in the case of high speed operation.

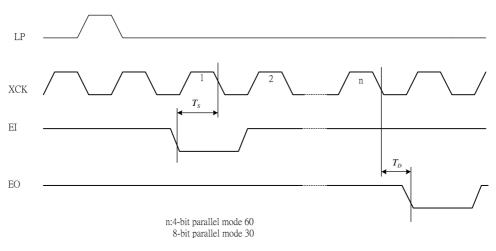
Preliminary

Common mode

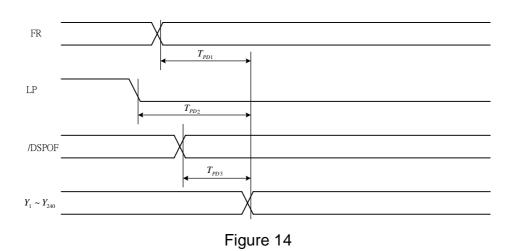
Table 13 AC electrical characteristics of common mode

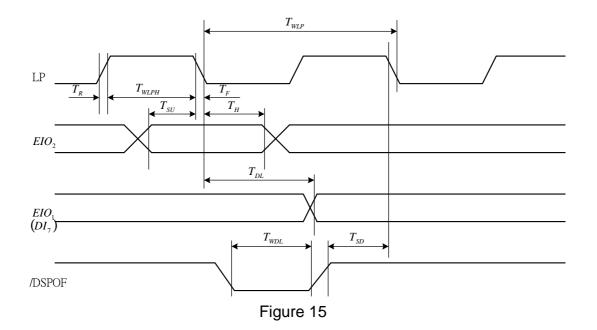
 $(V_{SS} = V_5 = 0V, V_{DD} = +2.5 \text{ to } +5.5V, V_0 = +15 \text{ to } +42V, T_a = -20 \approx +85 \circ \text{C})$


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Shift clock period	T _{WLP}	T _R ,T _F ≦20ns	250			ns
Shift "H" pulse width	T _{WLPH}	V _{DD} =+5.0V±10%	15			ns
		V _{DD} =+2.5V~+4.5V	30			ns
Data setup time	Τ _{SU}		30			ns
Data hold time	Τ _Η		50			ns
Input signal rise time *2	T _R				50	ns
Input signal fall time	T _F				50	ns
*2						
/DSPOF removal time	T_{SD}		100			ns
/DSPOF "L" pulse time	T _{WDL}		1.2			us
Output delay time (1)	T _{DL}	C∟=15pF			200	ns
Output delay time (2)	T _{PD1} ,T _{PD2} T _{PD3}	C _L =15pF			1.2	us
Output delay time (3)	T _{PD3}	C _L =15pF			1.2	us


Preliminary

TIMING DIAGRAMS


Timing characteristics of segment mode



Preliminary

Timing characteristics of common mode

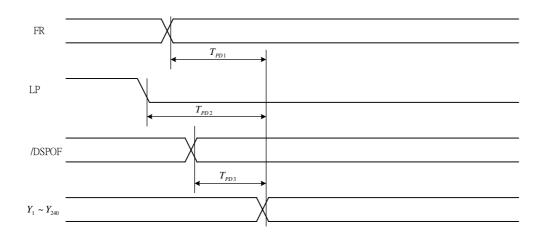


Figure 16

Preliminary

APPLICATION CIRCUIT

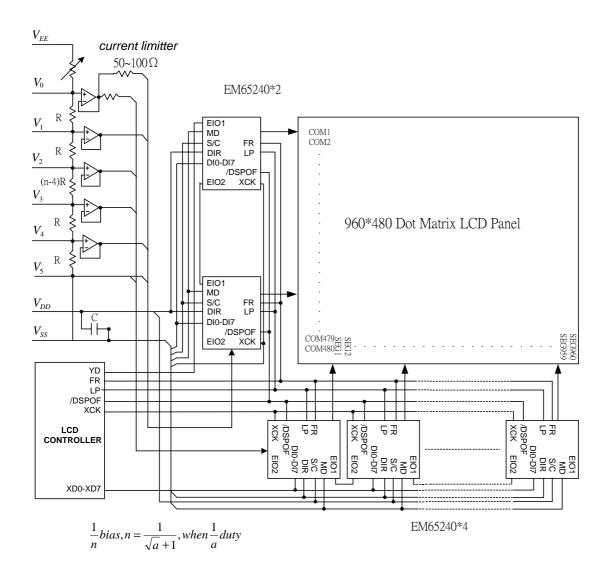


Figure 17 Application circuit of 960*480 dot matrix LCD panel

Preliminary

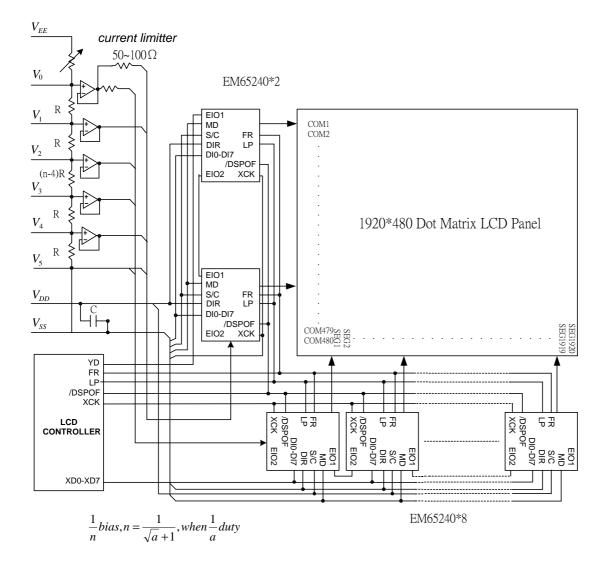
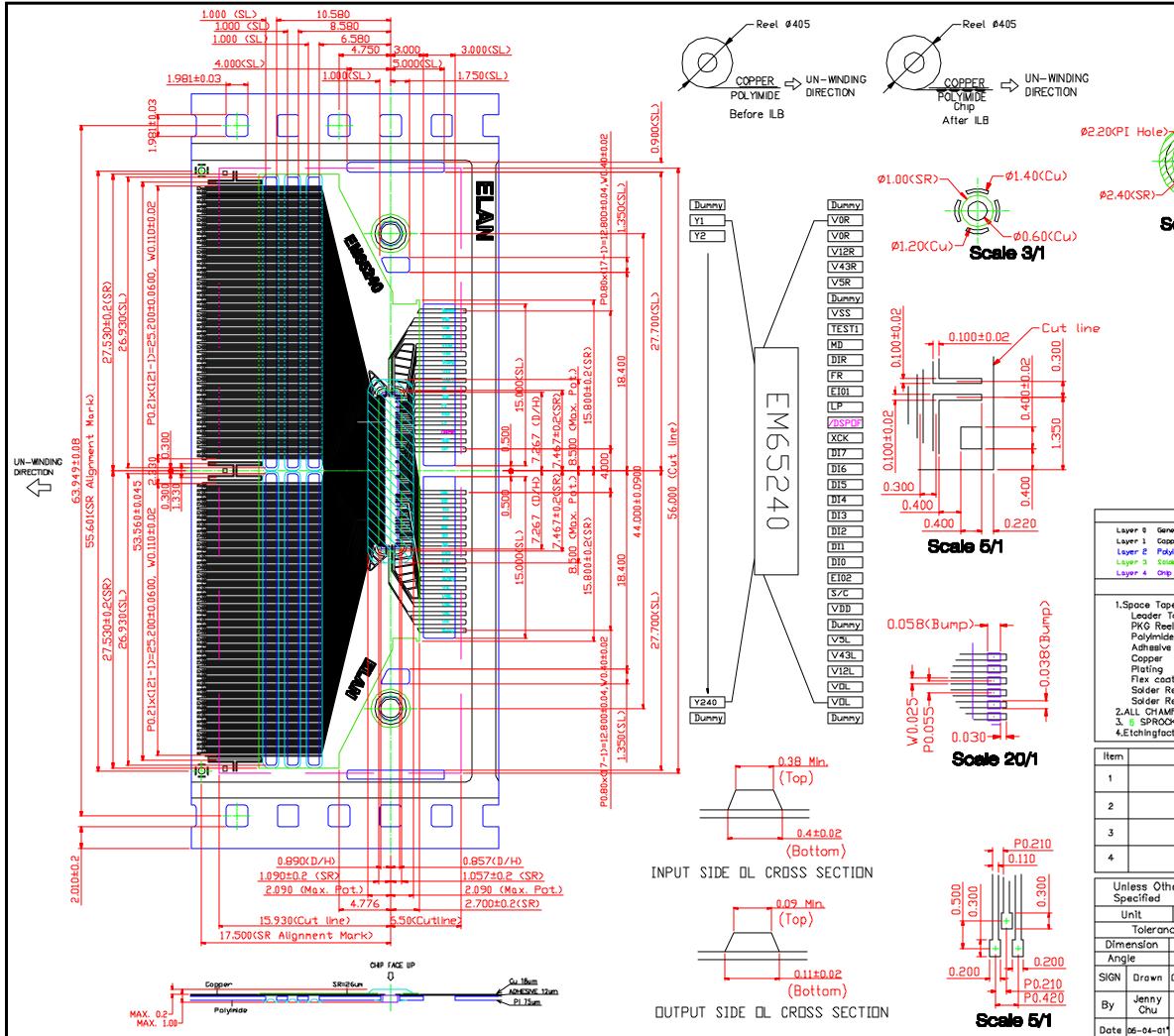



Figure 18 Application circuit of 1920*480 dot matrix LCD panel

Scale	ø3.0	0(Cu) Ø3.60(SF 00(Cu)				a 				
		25±0.00	7 INNI 20.055		ADS	E' 0.018(typ.)				
aneral apper olyinid aldernesist 11p		Layer 5 Layer 6 Layer 7 Layer 8 Layer 9	yer Defi Pinn Leadar Cutline Potting Ilhension	nition	L.	ayer il ayer i2 ayer 13	Center li			
ape Materi Tape Mat eel Size de Nesist Resist Tol MFER IS R KKET HOL actor >2 5	erance, ±(20,200mm ES (70W)	Polyesta Polymia 405mm UPILEX- #7100 FQ-VLF Sn FS-100 AR-710 0.200mm	de(PI) -S I L DD	75±6 12±3 1 18±5 1 0,21±0	um um 205 um 205 um	ן ג א א א א א	Dainichi JBE Gald JBE forny Aitsui WUS WUS WUS	Kosei		
			Modifíca	tion				Date		
therwise mm nce	International Semiconductor Technology LTD, mm					Scale Proj 🔶				
±0.05 ±1		240 Ou [.]	FT	awing Approved		Bou				
Checked	REVIEW	REVIEW	REVIE₩	טפעט ייקיין		awing I		Rev 1		
1					Sheet	1 Ōf 1	Size	A4		