MAXIAM

2.1MHz, High-Voltage, 600mA Mini-Buck Converter

Abstract

General Description The MAX16904 is a small, synchronous buck converter with integrated high-side and low-side switches. The device is designed to deliver 600 mA with input voltages from +3.5 V to +28 V while using only $25 \mu \mathrm{~A}$ quiescent current at no load. Voltage quality can be monitored by observing the PGOOD signal. The MAX16904 can operate in dropout by running at 97% duty cycle, making it ideal for automotive and industrial applications. The MAX16904 operates at a 2.1 MHz frequency, allowing for small external components and reduced output ripple. It guarantees no AM band interference. SYNC input programmability enables three frequency modes for optimized performance: forced fixed-frequency operation, SKIP mode (ultra-low quiescent current of $25 \mu \mathrm{~A}$), and synchronization to an external clock. The MAX16904 can be ordered with spread-spectrum frequency modulation, designed to minimize EMI-radiated emissions due to the modulation frequency. The MAX16904 is available in a thermally enhanced, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 10-pin TDFN package or a 16-pin TSSOP package. The MAX16904 operates over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

Applications
Automotive
Industrial
Military
High-Voltage Input-Power DC-DC Applications
Features
Wide +3.5V to +28V Input Voltage Range
Tolerates Input Voltage Transients to +42V
(P00mA Minimum Output Current with Overcurrent
Fixed Output Voltages (+3.3V and +5V)
2.1MHz Switching Frequency with Three Modes of
Operation
$25 \mu \mathrm{~A}$ Ultra-Low Quiescent Current SKIP Mode

- Optional Spread-Spectrum Frequency Modulation
- Power-Good Output
- Enable-Pin Compatible from +3.3V Logic Level to $+42 \mathrm{~V}$
- Thermal Shutdown Protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Automotive Temperature Range
- 10-Pin TDFN-EP or 16-Pin TSSOP-EP Packages
- AEC-Q100 Qualified

Ordering Information

| PART | SPREAD
 SPECTRUM | TEMP
 RANGE | PIN-
 PACKAGE |
| :---: | :---: | :---: | :---: | :--- |
| MAX16904RATB___N+ | Disabled | $-40^{\circ} \mathrm{C}$ to
 $+125^{\circ} \mathrm{C}$ | 10 TDFN-EP* |
| MAX16904RAUE__N+ | Disabled | $-40^{\circ} \mathrm{C}$ to
 $+125^{\circ} \mathrm{C}$ | 16 TSSOP-EP* |
| MAX16904SATB__N+ | Enabled | $-40^{\circ} \mathrm{C}$ to
 $+125^{\circ} \mathrm{C}$ | 10 TDFN-EP* |
| MAX16904SAUE__N+ | Enabled | $-40^{\circ} \mathrm{C}$ to
 $+125^{\circ} \mathrm{C}$ | 16 TSSOP-EP* |

Note: Insert the desired suffix letters (from Selector Guide) into the blanks to indicate the output voltage. Alternative output voltages available upon request.
+Denotes a lead(Pb)-free/RoHS-compliant package.
N denotes an automotive qualified part.
*EP = Exposed pad.

Selector Guide appears at end of data sheet.
2.1 MHz, High-Voltage,

600mA Mini-Buck Converter

\qquad

2.1MHz, High-Voltage, 600mA Mini-Buck Converter

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)

SUP, EN.	-0.3V to +42V
BST to LX	-0.3V to +6V
LX.	-0.3V to (VSUP + 0.3V)
BST-0.3V to +47V
OUTS	-0.3V to +12V
SYNC, PGOOD, BIAS	-0.3 V to +6.0 V
PGND to GND	-0.3V to +0.3V
LX Continuous1.0A
UTS Short-Circuit D	Continuo

ESD Protection	
Human Body Model .. $\pm 2 \mathrm{kV}$	
Machine Model	$\pm 200 \mathrm{~V}$
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
TDFN (derate $24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................... 1951 mW	
TSSOP (derate $26.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2089 mW	
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature \qquad	
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$	
Soldering Temperat	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TDFN
Junction-to-Ambient Thermal Resistance (θ_{JAA}) $\ldots1^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}) $9^{\circ} \mathrm{C} / \mathrm{W}$

TSSOP
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) $33^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{W}$
Junction-to-Case Thermal Resistance ($\theta \mathrm{JC}$) \ldots.
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

(VSUP $=+14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VSUP	(Note 2)		3.5		28	V
		t < 1s				42	
Supply Current	ISUP	EN = low			4	8	$\mu \mathrm{A}$
		EN = high, no load			25	35	
		EN = high, continuous, no switching			1		mA
UV Lockout	VUVLO	Bias rising		2.8	3	3.2	V
	VUVLO,HYS	Hysteresis		0.4			
Bias Voltage	VBIAS	$+5.5 \mathrm{~V} \leq \mathrm{V}_{\text {SUP }} \leq+42 \mathrm{~V}$		5			V
Bias Current Limit	IBIAS			10			mA
BUCK CONVERTER							
Voltage Accuracy	Vout,5v	VOUT $=5 \mathrm{~V}$, fixed frequency	$\begin{aligned} & 6 \mathrm{~V} \leq \mathrm{V} \text { SUP } \leq 18 \mathrm{~V}, \\ & \mathrm{ILOAD}=0 \text { to } 600 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	-2.0\%	5	+2.5\%	V
		VOUT $=5 \mathrm{~V}$, SKIP mode (Note 3)		-2.0\%	5	+4\%	
	Vout,3.3V	VOUT $=3.3 \mathrm{~V}$, fixed frequency		-2.0\%	3.3	+2.5\%	
		VOUT $=3.3 \mathrm{~V}$, SKIP mode (Note 3)		-2.0\%	3.3	+4\%	

2.1 MHz, High-Voltage, 600mA Mini-Buck Converter

ELECTRICAL CHARACTERISTICS (continued)

(VSUP $=+14 \mathrm{~V}, T_{A}=T_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SKIP-Mode Peak Current	ISKIP			350		mA
High-Side DMOS RDSon	Ron,HS	VBIAS $=5 \mathrm{~V}$		400	800	$\mathrm{m} \Omega$
Low-Side DMOS RDSon	Ron,LS			250	450	$\mathrm{m} \Omega$
DMOS Peak Current-Limit Threshold	1 max		0.85	1.05	1.22	A
Soft-Start Ramp Time	tss		7	8	9	ms
LX Rise Time	trise,LX			5		ns
Minimum On-Time	ton			80		ns
PWM Switching Frequency	fsw	Internally generated	1.925	2.1	2.275	MHz
SYNC Input Frequency Range	fSYNC		1.8		2.6	MHz
Spread-Spectrum Range	SS	Spread-spectrum option only		+6		\%
PGOOD						
PGOOD Threshold	VTHR,PGD	Vout rising		93		\%
	$\mathrm{V}_{\text {THF, PGD }}$	Vout falling	88	91	94	
PGOOD Debounce	tDEB			10		$\mu \mathrm{s}$
PGOOD High Leakage Current	ILEAK,PGD	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
PGOOD Output Low Level	VOUT,PGD	Sinking 1mA			0.4	V
LOGIC LEVELS						
EN Level	VIH,EN		2.4			V
	VIL,EN				0.6	
EN Input Current	lin,EN	$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {SUP }}=+42 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
SYNC Switching Threshold	$\mathrm{V}_{\mathrm{IH}, \mathrm{SYNC}}$		1.4			V
	VIL, SYNC				0.4	
SYNC Internal Pulldown	RPD,SYNC			200		k Ω
THERMAL PROTECTION						
Thermal Shutdown	TSHDN			175		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	TSHDN,HYS			15		${ }^{\circ} \mathrm{C}$

Note 2: When the typical minimum on-time of 80 ns is violated, the device skips pulses.
Note 3: Guaranteed by design; not production tested.
\qquad

2.1MHz, High-Voltage, 600mA Mini-Buck Converter

Typical Operating Characteristics

$\left(\mathrm{V}_{\text {SUP }}=+14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

2.1 MHz, High-Voltage, 600mA Mini-Buck Converter

Typical Operating Characteristics (continued)

$\left(V_{\text {SUP }}=+14 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

40 $\mu \mathrm{s} / \mathrm{div}$

LOAD TRANSIENT RESPONSE

(5V, FIXED MODE)

40 $\mu \mathrm{s} / \mathrm{div}$

LOAD TRANSIENT RESPONSE
(5V, SKIP MODE)

$40 \mu \mathrm{~s} / \mathrm{div}$

2.1MHz, High-Voltage, 600mA Mini-Buck Converter

Pin Configurations

Pin Description

PIN		NAME	FUNCTION
TDFN-EP	TSSOP-EP		
1	1	BST	Bootstrap Capacitor for High-Side Driver ($0.1 \mu \mathrm{~F}$)
2	2, 3	SUP	Voltage Supply Input. Connect a 4.7μ F ceramic capacitor from SUP to PGND. Place the capacitor very close to the SUP pin. For the TSSOP-EP package, connect both SUP pins together for proper operation.
3	4, 5	LX	Buck Switching Node. LX is high impedance when the device is off. For the TSSOP package, connect both LX pins together for proper operation.
4	6, 7	PGND	Power Ground. For the TSSOP-EP package, connect both PGND pins together for proper operation.
5	8	OUTS	Buck Regulator Voltage-Sense Input. Bypass OUTS to PGND with a $10 \mu \mathrm{~F}$ or larger X7R ceramic capacitor.
6	11	PGOOD	Open-Drain Power-Good Output. External pullup resistor required for automatic SKIP mode operation.
7	12	SYNC	Sync Input. SYNC allows the device to synchronize to other supplies. When connected to GND or unconnected, SKIP mode is enabled under light loads. When connected to a clock source or BIAS, forced PWM mode is enabled.
8	13	BIAS	+5V Internal Logic Supply. Connect a $2.2 \mu \mathrm{~F}$ ceramic capacitor from BIAS to GND.
9	14	GND	Analog Ground
10	15	EN	Enable Input. EN is high-voltage compatible. Drive EN HIGH for normal operation.
-	9, 10, 16	N.C.	No Connection. Not internally connected.
-	-	EP	Exposed Pad. Connect EP to PGND. Do not use EP as the only ground connection.

2.1 MHz, High-Voltage, 600mA Mini-Buck Converter

2.1MHz, High-Voltage, 600mA Mini-Buck Converter

Detailed Description

The MAX16904 is a small, current-mode buck converter that features synchronous rectification and requires no external compensation network. The device is designed for 600 mA output current, and can stay in dropout by running at 97% duty cycle. It provides an accurate output voltage within the +6.5 V to +18 V input range. Voltage quality can be monitored by observing the PGOOD signal. The device operates at 2.1 MHz (typ) frequency, which allows for small external components, reduced output ripple, and guarantees no AM band interference.

The device features an ultra-low $25 \mu \mathrm{~A}$ (typ) quiescent supply current in standby mode. Standby mode is entered when load currents are below 5 mA and when SYNC is low. The device operates from a +3.5 V to +28 V supply voltage and tolerates transients up to +42 V , making it ideal for automotive applications. The device is available in factory-trimmed output voltages from 1.8 V to 10.7 V in 100 mV steps. Contact the factory for availability of voltage options.

Enable (EN)

The device is activated by driving EN high. EN is compatible from a +3.3 V logic level to automotive battery levels. EN can be controlled by microcontrollers and automotive KEY or CAN inhibit signals. The EN input has no internal pullup/pulldown current to minimize overall quiescent supply current. To realize a programmable undervoltage lockout level, use a resistordivider from SUP to EN to GND.

BIAS/UVLO
The device features undervoltage lockout. When the device is enabled, an internal bias generator turns on. LX begins switching after VBIAS has exceeded the internal undervoltage lockout level VUVLO $=3 \mathrm{~V}$ (typ).

Soft-Start

The device features an internal soft-start timer. The output voltage soft-start ramp time is 8 ms (typ). If a short circuit or undervoltage is encountered, after the softstart timer has expired, the device is disabled for 30 ms (typ) and it reattempts soft-start again. This pattern repeats until the short circuit has been removed.

Oscillator/Synchronization and Efficiency (SYNC)

The device has an on-chip oscillator that provides a switching frequency of 2.1 MHz (typ). Depending on the condition of SYNC, two operation modes exist. If SYNC is unconnected or at GND, the device must operate in highly efficient pulse-skipping mode if the load current is below the SKIP mode current threshold. If SYNC is at

BIAS or has a frequency applied to it, the device is in forced PWM mode. The device offers the best of both worlds. The device can be switched during operation between forced PWM mode and SKIP mode by switching SYNC.

SKIP Mode Operation
SKIP mode is entered when the SYNC pin is connected to ground or is unconnected and the peak load current is $<350 \mathrm{~mA}$ (typ). In this mode, the high-side FET is turned on until the current in the inductor is ramped up to 350 mA (typ) peak value and the internal feedback voltage is above the regulation voltage (1.2 V typ). At this point, both the high-side and low-side FETs are turned off. Depending on the choice of the output capacitor and the load current the high-side FET turns on when OUTS (valley) drops below the 1.2 V (typ) feedback voltage.

Achieving High Efficiency at Light Loads
The device operates with very low quiescent current at light loads to enhance efficiency and conserve battery life. When the device enters SKIP mode the output current is monitored to adjust the quiescent current.

When the output current is $<5 \mathrm{~mA}$, the device operates in the lowest quiescent current mode also called the standby mode. In this mode, the majority of the internal circuitry (excluding that necessary to maintain regulation) in the device, including the internal high-voltage LDO, is turned off to save current. Under no load and with SKIP mode enabled, the device draws only $25 \mu \mathrm{~A}$ (typ) current. For load currents > 5mA, the device enters normal SKIP mode while still maintaining very high efficiency.

Controlled EMI with Forced-Fixed Frequency

 In forced PWM mode, the device attempts to operate at a constant switching frequency for all load currents. For tightest frequency control, apply the operating frequency to SYNC. The advantage of this mode is a constant switching frequency, which improves EMI performance; the disadvantage is that considerable current can be thrown away. If the load current during a switching cycle is less than the current flowing through the inductor, the excess current is diverted to GND. With no external load present, the operating current is in the 10 mA range.
Extended Input Voltage Range

In some cases, the device is forced to deviate from its operating frequency independent of the state of SYNC. For input voltages above 18 V , the required duty cycle to regulate its output may be smaller than the minimum on-time (80 ns, typ). In this event, the device is forced to lower its switching frequency by skipping pulses.

2.1MHz, High-Voltage, 600mA Mini-Buck Converter

If the input voltage is reduced and the device approaches dropout, it tries to turn on the high-side FET continuously. To maintain gate charge on the highside FET, the BST capacitor must be periodically recharged. To ensure proper charge on the BST capacitor when in dropout, the high-side FET is turned off every $6.5 \mu \mathrm{~s}$ and the low-side FET is turned on for about 150 ns. This gives an effective duty cycle of $>97 \%$ and a switching frequency of 150 kHz when in dropout.

Spread-Spectrum Option

The device has an optional spread-spectrum version. If this option is selected, then the internal operating frequency varies by $+6 \%$ relative to the internally generated operating frequency of 2.1 MHz (typ). Spread spectrum is offered to improve EMI performance of the device. By varying the frequency 6% only in the positive direction, the device still guarantees that the 2.1 MHz frequency does not drop into the AM band limit of 1.8 MHz . Additionally, with the low minimum on-time of 80 ns (typ) no pulse skipping is observed for a 5 V output with 18 V input maximum battery voltage in steady state.
The internal spread spectrum does not interfere with the external clock applied on the SYNC pin. It is active only when the device is running with internally generated switching frequency.

Power-Good (PGOOD)

The device features an open-drain power-good output. PGOOD is an active-high output that pulls low when the output voltage is below 91% of its nominal value. PGOOD is high impedance when the output voltage is above 93% of its nominal value. Connect a $20 \mathrm{k} \Omega$ (typ) pullup resistor to an external supply or the on-chip BIAS output.

Overcurrent Protection

The device limits the peak output current to 1.05A (typ). To protect against short-circuit events, the device shuts off when OUTS is below 1.5 V (typ) and one overcurrent event is detected. The device attempts a soft-start restart every 30 ms and stays off if the short circuit has not been removed. When the current limit is no longer present, it reaches the output voltage by following the normal soft-start sequence. If the device die reaches the thermal limit of $+175^{\circ} \mathrm{C}$ (typ) during the current-limit event, it immediately shuts off.

Thermal-Overload Protection

The device features thermal-overload protection. The device turns off when the junction temperature exceeds
$+175^{\circ} \mathrm{C}$ (typ). Once the device cools by $15^{\circ} \mathrm{C}$ (typ), it turns back on with a soft-start sequence.

Applications Information

Inductor Selection

Three key inductor parameters must be specified for operation with the device: inductance value (L), peak inductor current (IPEAK), and inductor saturation current (ISAT). The minimum required inductance is a function of operating frequency, input-to-output voltage differential, and the peak-to-peak inductor current ($\Delta \mathrm{IP}-\mathrm{P})$. Higher $\Delta \mathrm{lP}-\mathrm{P}$ allows for a lower inductor value, while a lower $\Delta l p-p$ requires a higher inductor value. A lower inductor value minimizes size and cost, improves large-signal and transient response, but reduces efficiency due to higher peak currents and higher peak-topeak output-voltage ripple for the same output capacitor. On the other hand, higher inductance increases efficiency by reducing the ripple current. Resistive losses due to extra wire turns can exceed the benefit gained from lower ripple current levels especially when the inductance is increased without also allowing for larger inductor dimensions. A good compromise is to choose Δl P-p equal to 30% of the full load current. Use the following equation to calculate the inductance:

$$
L=\frac{V_{\text {OUT }}\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{V_{\text {IN }} \times f_{\text {SW }} \times \Delta l_{P-P}}
$$

VIN and VOUT are typical values so that efficiency is optimum for typical conditions. The switching frequency is $\sim 2.1 \mathrm{MHz}$. The peak-to-peak inductor current, which reflects the peak-to-peak output ripple, is worse at the maximum input voltage. See the Output Capacitor section to verify that the worst-case output ripple is acceptable. The inductor saturation current is also important to avoid runaway current during continuous output short circuit. The output current may reach 1.22 A since this is the maximum current limit. Choose an inductor with a saturation current of greater than 1.22A to ensure proper operation and avoid runaway.

Input Capacitor

The discontinuous input current of the buck converter causes large input ripple current. The switching frequency, peak inductor current, and the allowable peak-topeak input-voltage ripple dictate the input capacitance requirement. Increasing the switching frequency or the inductor value lowers the peak-to-average current ratio yielding a lower input capacitance requirement.
The input ripple comprises mainly of $\Delta \mathrm{V}_{\mathrm{Q}}$ (caused by the capacitor discharge) and $\Delta V_{E S R}$ (caused by the

2.1MHz, High-Voltage, 600mA Mini-Buck Converter

ESR of the input capacitor). The total voltage ripple is the sum of $\Delta \mathrm{V}_{\mathrm{Q}}$ and $\Delta \mathrm{V}_{\mathrm{ESR}}$. Assume the input-voltage ripple from the ESR and the capacitor discharge is equal to 50% each. The following equations show the ESR and capacitor requirement for a target voltage ripple at the input:

$$
\begin{aligned}
& \mathrm{ESR}=\frac{\Delta \mathrm{V}_{\mathrm{ESR}}}{\left(\mathrm{loUT}+\frac{\Delta \mathrm{P}-\mathrm{P}}{2}\right)} \\
& \mathrm{C}_{\mathrm{IN}}=\frac{\mathrm{lOUT}^{2} \times \mathrm{D}(1-\mathrm{D})}{\Delta \mathrm{V}_{\mathrm{Q}} \times \mathrm{fSW}_{\mathrm{W}}}
\end{aligned}
$$

where:

$$
\Delta_{\mathrm{P}-\mathrm{P}}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\text {IN }} \times \mathrm{f}_{\mathrm{SW}} \times \mathrm{L}}
$$

and:

$$
D=\frac{V_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}
$$

where IOUT is the output current, D is the duty cycle, and fSW is the switching frequency. Use additional input capacitance at lower input voltages to avoid possible undershoot below the UVLO threshold during transient loading.

Output Capacitor

The allowable output-voltage ripple and the maximum deviation of the output voltage during step load currents determine the output capacitance and its ESR. The output ripple comprises of $\Delta \mathrm{VQ}_{\mathrm{Q}}$ (caused by the capacitor discharge) and Δ VESR (caused by the ESR of the output capacitor). Use low-ESR ceramic or aluminum electrolytic capacitors at the output. For aluminum electrolytic capacitors, the entire output ripple is contributed by $\Delta \mathrm{V}_{\mathrm{ESR}}$. Use the ESROUT equation to calculate the ESR requirement and choose the capacitor accordingly. If using ceramic capacitors, assume the contribution to the output ripple voltage from the ESR and the capacitor discharge to be equal. The following equations show the output capacitance and ESR requirement for a specified output-voltage ripple.

$$
\begin{gathered}
\mathrm{ESR}=\frac{\Delta \mathrm{V}_{\mathrm{ESR}}}{\Delta \mathrm{l}_{\mathrm{P}-\mathrm{P}}} \\
\mathrm{C}_{\mathrm{OUT}}=\frac{\Delta \mathrm{l}_{\mathrm{P}-\mathrm{P}}}{8 \times \Delta \mathrm{V}_{\mathrm{Q}} \times \mathrm{f}_{\mathrm{SW}}}
\end{gathered}
$$

where:

$$
\begin{aligned}
& \Delta \mathrm{IP}_{\mathrm{P}}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}} \times \mathrm{S}_{\mathrm{SW}} \times \mathrm{L}} \\
& \mathrm{~V}_{\text {OUT_RIPPLE }} \cong \Delta \mathrm{V}_{\mathrm{ESR}}+\Delta \mathrm{V}_{\mathrm{Q}}
\end{aligned}
$$

$\Delta I P-P$ is the peak-to-peak inductor current as calculated above and fSW is the converter's switching frequency. The allowable deviation of the output voltage during fast transient loads also determines the output capacitance and its ESR. The output capacitor supplies the step load current until the converter responds with a greater duty cycle. The response time (treSPONSE) depends on the closed-loop bandwidth of the converter. The device's high switching frequency allows for a higher closed-loop bandwidth, thus reducing tresponse and the output capacitance requirement. The resistive drop across the output capacitor's ESR and the capacitor discharge causes a voltage droop during a step load. Use a combination of low-ESR tantalum and ceramic capacitors for better transient load and ripple/noise performance. Keep the maximum out-put-voltage deviations below the tolerable limits of the electronics being powered. When using a ceramic capacitor, assume an 80% and 20% contribution from the output capacitance discharge and the ESR drop, respectively. Use the following equations to calculate the required ESR and capacitance value:

$$
\begin{gathered}
E S R_{\text {OUT }}=\frac{\Delta V_{\text {ESR }}}{I_{\text {STEP }}} \\
C_{\text {OUT }}=\frac{I_{\text {STEP }} \times t_{\text {RESPONSE }}}{\Delta \mathrm{V}_{\mathrm{Q}}}
\end{gathered}
$$

where ISTEP is the load step and tRESPONSE is the response time of the converter. The converter response time depends on the control-loop bandwidth.

PCB Layout Guidelines

Careful PCB layout is critical to achieve low switching power losses and clean stable operation. Use a multilayer board wherever possible for better noise immunity. Refer to the MAX16904 Evaluation Kit for recommended PCB layout. Follow these guidelines for a good PCB layout:

1) The input capacitor $(4.7 \mu F$, see the applications schematic in the Typical Operating Circuits) should be placed right next to the SUP pins (pins 2 and 3 on the TSSOP-EP package). Because the device operates at 2.1 MHz switching frequency, this placement is critical for effective decoupling of high-frequency noise from the SUP pins.

2.1 MHz, High-Voltage, 600mA Mini-Buck Converter

2) Solder the exposed pad to a large copper plane area under the device. To effectively use this copper area as heat exchanger between the PCB and ambient, expose the copper area on the top and bottom side. Add a few small vias or one large via on the copper pad for efficient heat transfer. Connect the exposed pad to PGND ideally at the return terminal of the output capacitor.
3) Isolate the power components and high current paths from sensitive analog circuitry.
4) Keep the high current paths short, especially at the ground terminals. The practice is essential for stable jitter-free operation.
5) Connect the PGND and GND together preferably at the return terminal of the output capacitor. Do not connect them anywhere else.

Figure 1. Human Body ESD Test Circuit
6) Keep the power traces and load connections short. This practice is essential for high efficiency. Use thick copper PCB to enhance full load efficiency and power dissipation capability.
7) Route high-speed switching nodes away from sensitive analog areas. Use internal PCB layers as PGND to act as EMI shields to keep radiated noise away from the device and analog bypass capacitor.

ESD Protection

The device's ESD tolerance is rated for Human Body Model and Machine Model. The Human Body Model discharge components are $\mathrm{CS}=100 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{D}}=1.5 \mathrm{k} \Omega$ (Figure 1). The Machine Model discharge components are $\mathrm{Cs}=200 \mathrm{pF}$ and $\mathrm{RD}_{\mathrm{D}}=0 \Omega$ (Figure 2).

Figure 2. Machine Model ESD Test Circuit

2.1MHz, High-Voltage, 600mA Mini-Buck Converter

Selector Guide

PART	OUTPUT VOLTAGE (V)	PIN-PACKAGE	SPREAD-SPECTRUM SWITCHING FREQUENCY	TOP MARK
MAX16904RATB50/V+	5	$\begin{gathered} 10 \text { TDFN-EP* } \\ (3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}) \end{gathered}$	-	AVY
MAX16904RAUE50/V+	5	16 TSSOP-EP* ($5 \mathrm{~mm} \times 4.4 \mathrm{~mm}$)	-	-
MAX16904SATB50/V+	5	$\begin{gathered} 10 \text { TDFN-EP* } \\ (3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}) \end{gathered}$	Yes	AWA
MAX16904SAUE50/V+	5	$\begin{aligned} & 16 \text { TSSOP-EP* } \\ & (5 \mathrm{~mm} \times 4.4 \mathrm{~mm}) \end{aligned}$	Yes	-
MAX16904RATB33/V+	3.3	$\begin{gathered} 10 \text { TDFN-EP* } \\ (3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}) \end{gathered}$	-	AVX
MAX16904RAUE33/V+	3.3	16 TSSOP-EP* ($5 \mathrm{~mm} \times 4.4 \mathrm{~mm}$)	-	-
MAX16904SATB33/V+	3.3	$\begin{gathered} 10 \text { TDFN-EP* } \\ (3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.75 \mathrm{~mm}) \end{gathered}$	Yes	AVZ
MAX16904SAUE33/V+	3.3	16 TSSOP-EP* ($5 \mathrm{~mm} \times 4.4 \mathrm{~mm}$)	Yes	-
MAX16904RAUE18/V+	1.8	16 TSSOP-EP* ($5 \mathrm{~mm} \times 4.4 \mathrm{~mm}$)	-	-

Note: All devices operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
N denotes an automotive qualified part.
*EP = Exposed pad.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
10 TDFN-EP	$\mathrm{T} 1033+1$	$\underline{\mathbf{2 1 - 0 1 3 7}}$	$\underline{\mathbf{9 0 - 0 0 0 3}}$
16 TSSOP-EP	$U 16 \mathrm{E}+3$	$\underline{\mathbf{2 1 - 0 1 0 8}}$	$\underline{\mathbf{9 0 - 0 1 2 0}}$

2.1 MHz, High-Voltage, 600mA Mini-Buck Converter

REVISION NUMBER	REVISION DATE	PAGES PHANGED	
0	$9 / 10$	Initial release	-
1	$11 / 10$	Added new output voltage trim to Selector Guide	12
2	$3 / 11$	Updated the Voltage Accuracy and the DMOS Peak Current-Limit Threshold parameters in the Electrical Characteristics, updated TOCs 1,6, and $8-13$	$3,4,5,6$

