16 🛮 ٧፡፡

15 S0

14 OR

11 02

MV66401 13 00

MV66403 12 101

MV66401/2/3/4

64-WORD x 4/5-BIT FIRST-IN FIRST-OUT MEMORIES

402 NE [1

IB ∏ 2

sı∏3

Do [

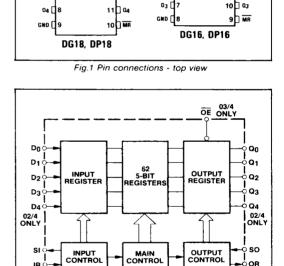
D₂ [

D3 [

The MV66401/2/3/4 are asynchronous first-in first-out memories, organised as 64 by 4 or 5-bit words. Each device accepts a 4/5-bit parallel word, D0 - D4, under control of the shift in (SI) input. Multiple devices can be used to satisfy wider data requirements. Data entered into the FIFO ripples through the device to the outputs Q0 - Q4. Up to 64 words may be entered before any words are read from the memory. The stored words stack up at the output in the order in which they were entered.

Activating the shift out control (SO) causes the next to the last word of data to move to the output and all data shifts one place down the stack. Input ready (IR) and output ready (OR) signals respectively indicate that the device can accept new data or that the output contains valid data. If the input ready output remains inactive, the device is full. If the output ready signal remains inactive, the device is empty.

Since reading and writing operations are completely independent, the device can be used as a buffer between two digital systems operating asynchronously and with widely differing clock frequencies.


The MV66401/2 are respectively four and five bit devices with TTL compatible outputs. The MV66403/4 have the additional feature of tri-state outputs.

FEATURES

- 25MHz Guaranteed Data Rate when Cascaded (MV66401/2/3/4-25)
- < 200mW at 25MHz</p>
- < 55mW Standby</p>
- Industrial Operating Temperature Range - 40°C to +85°C
- Single 5V Supply, ±10% Tolerance
- Tri-State Outputs on the MV66403/4

APPLICATIONS

- Asynchronous Buffer between Digital Systems
- I/O Formatting in DSP Systems
- Video Time Base Correction
- Printer Buffers
- Disk or Tape Interfaces

18 Vcc

17 50

16 OR

15 🗅 😘

14 01

13 1 02

12 03

MV66402

MV66404

401 NC 11

sı 🛮 3

D1 f

02 []6

Fig.2 Block diagram

ASSOCIATED PRODUCTS

MV66030 64x9. Tristate Cascadable FIFO MJ2812/13 32x8/9 Cascadable FIFOs MJ2841 64x4 Cascadable FIFO

FIFO OPERATION

The MV66401/2/3/4 FIFOs contain 64 four or five bit data registers. Data is initially loaded from the data inputs D0 - D4 by applying a low to high transition on the shift in (SI) input. IR goes low indicating that data has been entered into the first data register and the input is now 'busy' unable to accept more data. When SI next goes low the fall-through process begins, (assuming that at least the second location is empty). The data in the first register is copied into the second and the IR goes high indicating the inputs are available for another data word.

The data falling through the registers stacks up at the output end. A high on OR indicates there is valid data on the data outputs Q0 - Q4. A shift out (SO) can then be used to shift the data out of the FIFO. A low to high transition on SO causes OR to go low, indicating that the data on the outputs may no longer be valid. When SO goes low, the data in the next to last register position moves into the last register position and on to the outputs. If the memory is emptied by reading out all of the data, then, when the last word is being read out and SO goes high, OR will go low as before. When SO next goes low however, there is no data to move into the last location so OR will remain low until more data is entered. Similarly, when the memory is full, data written into the first location will not shift into the second when SI goes low, and IR will remain low instead of returning to a high state.

The data word can be extended in width by using more than one FIFO as shown in Fig.10. The status flags must be gated as shown to allow for possible delay variations between devices.

The depth of the FIFO can be extended by tying the data outputs of one device to the data inputs of the next, as shown in Fig.11. The IR input of the receiving device is connected to the SO pin of the sending device. Similarly the OR pin of the sending device is connected to the SI pin of the receiving device

An overriding master reset (\overline{MR}) is used to reset all control register bits and remove the data from the output (i.e. reset the output to all low).

ABSOLUTE MAXIMUM RATINGS

Supply voltage Vcc	-0.5V to 7.0V
Input voltage V _{IN} (see Note 3)	-0.9V to Vcc +0.9V
DC voltage applied to output	
when high impedance	-0.5V to 7.0V
Clamp diode current per pin (se	ee Note 2) + 18mA
Storage temperature Ts	-65 °C to +150 °C
Ambient temperature with power	er
applied Tamb	-55 °C to ±125 °C
Package power dissipation DP	450mW
DG	1000mW

NOTES

- 1. Exceeding these ratings may cause permanent damage Functional operation under these conditions is not implied
- 2. Maximum dissipation or 1 second should not be exceeded, only one output to be tested at any one time.
- 3. Input voltages more negative than -0.9V cause clamp diode current to flow. The maximum negative voltage depends on the source impedance.

RECOMMENDED OPERATING CONDITIONS

Supply voltage Vcc	$5V \pm 10\%$
Min. input high level VIH	+2V
Max. input low level Vil	± 0.8V
Ambient temperature	-40°C to 85°C

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Under Recommended operating conditions

DC Characteristics

	Symbol	INDUSTRIAL					
Characteristic		MV6640X-10		MV6640X-25		Unit	Conditions
		Min.	Max.	Min.	Max.		
Output high level VIN = VIH or VIL, TOH = -1mA	Vон	2.4		2.4		V	
Output low level VIN = VIH or VIL, IOL = 8mA	Vol		0.5		0.5	V	
Input leakage $V_{IN} = V_{IH}$ or V_{IL}	Lin	-10	+10	-10	+10	μΑ	
Output leakage GND ≤ Vout ≤ Vcc Vcc ·· Vcc max.	loz	-50	+50	-50	+50	μΑ	
Short circuit current	los		100	:	100	mΑ	Note 2
Supply current	Icc	ļ	30		40	mA	Vcc = max.
							Tamb = 85 °C ILOAD = 0mA
Standby current			10		10	mA	Vcc = max. ILOAD = 0mA All inputs at Vil

AC Characteristics - Using test circuit, except where stated.

		INDUSTRIAL					
Characteristic	Symbol MV6640X-10 MV6640X		0X-25	Unit	Condition		
		Min.	Max.	Min.	Max.	,	
Maximum operating frequency	fo	10		25		MHz	Note 4
SI HIGH time	tensi	30		15		ns	+85°C, 4.5V Note 11
SI LOW time	t PLSI	40		20		ns	
Data setup to SI	tssı	0		0		ns	Note 5
Data hold from SI	tHSI (a)	50		30		ns	Note 5,6
	tHSI (b)	tensi -5		tPHSI +5		ns	
Delay, SI HIGH to IR LOW	t DLIR		30		18	ns	Note 10
Delay, SI LOW to IR HIGH	tohir		40		22	ns	Note 10
SO HIGH time	t PHSO	30		12		ns	+85°C, 4.5V Note 11
SO LOW time	t PLSO	40		20		ns	
Delay, SO HIGH to OR LOW	tolor		30		18	ns	Note 10
Delay, SO LOW to OR HIGH	tonor		40		22	ns	Note 10
Data setup to OR HIGH	tsor	-20		-15		ns	
Data hold from SO LOW	tHSO	10		8		ns	
IR pulse HIGH	t PIR	9		6		ns	-40°C, 5.5V Note 11
OR pulse HIGH	tpor	10		7		ns	-40°C, 5.5V Note 11
Data setup to IR	tsir	0		0		ns	Note 8
Data hold from IR	thin	50		30		กร	Note 8
Bubble through time	tвт		2400		1200	ns	
MR pulse width	t PMR	60		50		ns	Note 9
MR HIGH to SI transition	tosi	60		50		ns	
MR LOW to OR LOW	toon		60		50	ns	
MR LOW to IR HIGH	toin		60		50	ns	
MR LOW to output LOW	tizma		60		50	ns	Note 7
Output valid from OE LOW	toos		60		40	ns	
Output HIGH-Z from OE HIGH	tHZOE		60	· '	40	ns	

NOTES

- 4. $1/fo > t_{PHS} + t_{DHIR}$, $1/fo > t_{PHS} + t_{DHOR}$.
- 5. tssi and this apply when memory is not full.
- 6. Hold time is the lesser of the two parameters (a) and (b).
- 7. All data outputs will be at LOW level after reset goes high until data is entered into the FIFO.
- 8. These times apply when the device is full and Si is held high.
- 9. For cascade applications, tems must be double that specified.
- 10. Under cascade conditions.
- 11. Plessey devices are guaranteed to cascade at 25MHz (under typical operating conditions these = 10ns, these = 13ns, these = 8ns, these = 12ns).

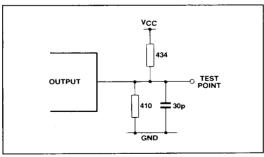


Fig.3 Test circuit

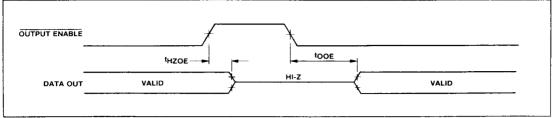


Fig.4 Output enable timing

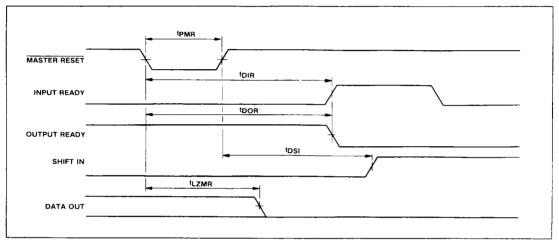


Fig.5 Master reset timing

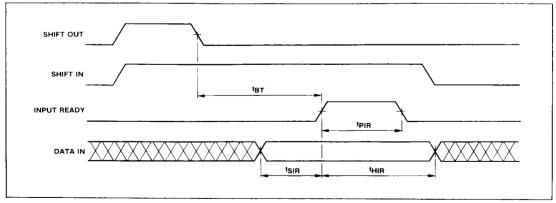


Fig.6 Data Out to Data In bubble through time

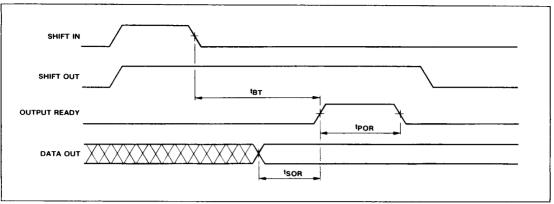


Fig.7 Data In to Data Out fall through time

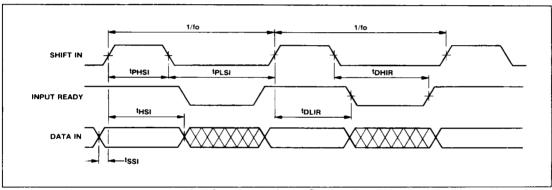


Fig.8 Switching waveforms - Data In timing

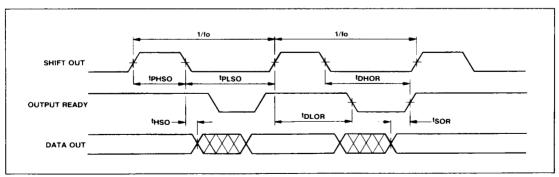


Fig.9 Switching waveforms - Data Out timing

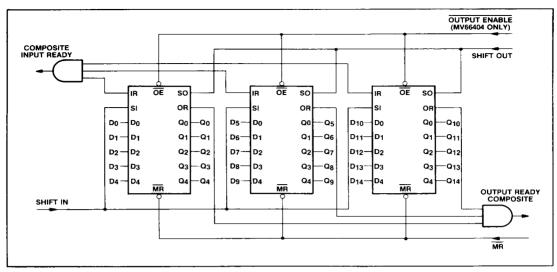


Fig.10 64 x 15 application (MV66402/MV66404)

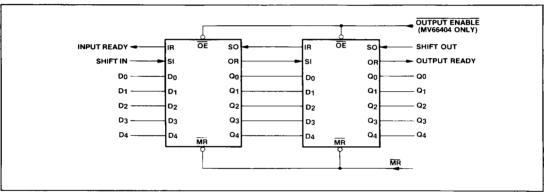
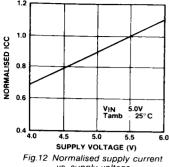



Fig.11 128 by 5 application (MV66402/MV66404)

USER NOTES

- When the memory is empty the last word read will remain on the outputs until the master reset is strobed or a new data word falls through to the output. However, OR will remain LOW, indicating data at the output is not valid.
- 2. When the output changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data.
- 3. If SO is held HIGH while the memory is empty and a word is written into the input, that word will ripple through the memory to the output. OR will go HIGH for one internal cycle (tpon) and then go back LOW again. The stored word will remain on the outputs. If more words are written into the FIFO, they will line up behind the first word and will not appear on the outputs until SO has been brought LOW.
- 4. When the master reset is brought LOW, the outputs are cleared to LOW, IR goes HIGH and OR goes LOW. If SI is HIGH when the master reset goes HIGH then the data on the inputs will be written into the memory and IR will return to the LOW state until SI is brought LOW. If SI is LOW when the master reset is ended, the IR will go HIGH, but the data on the inputs will not enter the memory until SI goes HIGH.
- 5. All MV66XXX FIFO's will cascade with other MV66XXX devices, but may not cascade with pin compatible devices from other manufacturers.
- 6. The IR and OR signals are provided to ensure that data is written into, or read out of, the FIFO correctly. If SI or SO are clocked without reference to these flags, the memory may corrupt and lock out any further data inputs. The memory should be reset to restore normal operation.

TYPICAL CHARACTERISTICS

vs. supply voltage

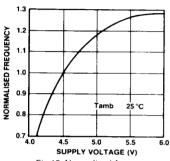


Fig.15 Normalised frequency vs. supply voltage

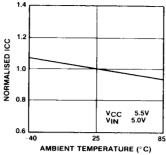


Fig.13 Normalised supply current vs. ambient temperature

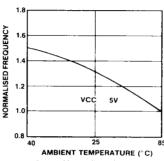


Fig.16 Normalised frequency vs. ambient temperature

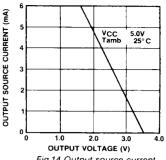


Fig.14 Output source current vs. output voltage

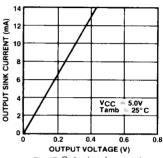


Fig.17 Output sink current vs. output voltage

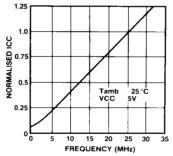


Fig.18 Normalised Icc vs. frequency

ORDERING INFORMATION

N	/IV66401-10	BO DP	(Industrial	- Plastic	DIL	package)
A	/IV66401-25	BO DP	(Industrial	- Plastic	DIL	package)
	AV66402-10					
	AV66402-25					
	AV66403-10					
	AV66403-25					
	AV66404-10					
N	AV66404-25	BO DP	(Industrial	- Plastic	DIL	package)

```
MV66401-10 B0 DG (Industrial - Ceramic DIL package)
MV66401-25 B0 DG (Industrial - Ceramic DIL package)
MV66402-10 B0 DG (Industrial - Ceramic DIL package)
MV66402-25 B0 DG (Industrial - Ceramic DIL package)
MV66403-10 B0 DG (Industrial - Ceramic DIL package)
MV66403-25 B0 DG (Industrial - Ceramic DIL package)
MV66404-10 B0 DG (Industrial - Ceramic DIL package)
MV66404-25 B0 DG (Industrial - Ceramic DIL package)
```