The UC3845A series of high performance fixed frequency current mode controllers are specifically designed for off-line and dc-to-dc converter applications offering the designer a cost effective solution with minimal external components. This integrated circuit features an oscillator, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET.

Semiconductor

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting,

- Output Deadtime Adjustable from 50% to 70%

- Latching PWM for Cycle-By-Cycle Current Limiting

- Low Startup and Operating Current

a latch for single pulse metering, and a flip-flop which blanks the output off every other oscillator cycle, allowing output deadtimes to be programmed for 50% to 70%.

This device is available in an 8-pin dual-inline plastic package as well as the 14-pin plastic surface mount (SOP-14). The SOP-14 package has separate power and ground pins for the totem pole output stage.

The UC3845A is designed for lower voltage applications having UVLO thresholds of 8.5V (on) and 7.6V (off).

- NOTES: 1. Maximum Package power dissipation limits must be observed.
 - 2. Adjust V_{CC} above the Startup threshold before setting to 15 V.
 - 3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible $T_{low} = 0^{\circ}C, T_{high} = +70^{\circ}C.$
 - 4. This parameter is measured at the latch trip point with $V_{_{\rm FB}} = 0V$.
 - 5. Comparator gain is defined as: $A_v = \frac{\Delta V \text{ Output Compensation}}{\Delta V C + \delta V}$ ΔV Current Sense Input

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Total Power Supply and Zener Current	$(I_{CC}+I_Z)$	30	mA
Output Current, Source or Sink (Note 1)	Io	1.0	A
Output Energy (Capacitive Load per Cycle)	W	5.0	μ
Current Sense and Voltage Feedback Inputs	Vin	-0.3 to +5.5	V
Error Amp Output Sink Current	Io	10	mA
Power Dissipation and Thermal Characteristics CS, D8 Suffix, SOP-14, SOP-8 Package			
Maximum Power Dissipation	PD	862	mW
Thermal Resistance, Junction to Air	$R_{\theta JA}$	145	°C/W
CD Suffix, 8-DIP Package			
Maximum Power Dissipation	PD	1.25	W
Thermal Resistance, Junction to Air	$R_{\theta JA}$	100	°C/W
Operating Ambient Temperature Range	T _A	0 to 70	°C
Operating Junction Temperature	TJ	150	°C
Storage Temperature Range	Ts	-65 to 150	°C

ELECTRICAL CHARACTERISTICS

 $V_{cc} = 15V$ (Note 2), $R_T = 10k$, CT = 3.3nF, $T_A = 0$ to 70°C (Note 3) unless otherwise noted. **REFERENCE SECTION**

Item	Symbol	Min	Тур	Max	Unit
Reference Output Voltage ($I_0 = 1.0$ mA, $T_J = 25$ °C)	V_{REF}	4.9	5.0	5.1	V
Line Regulation ($V_{CC} = 12V$ to 25V)	Reg _{line}		2.0	20	mV
Load Regulation ($I_0 = 1.0$ mA to 20mA)	Reg _{load}		3.0	25	mV
Temperature Stability	Ts		0.2		mV/ºC
Total Output Variation over Line, Load, Temp.	V _{REF}	4.82		5.18	V
Output Noise Voltage ($f = 10Hz$ to $10kHz$, $T_J = 25^{\circ}C$)	V _n		50		μV
Long Term Stability ($T_A = 125^{\circ}C$ for 1000 Hours)	S		5.0		mV
Output Short Circuit Current	ISC	-30	-85	-180	mA

OSCILLATOR SECTION

Frequency	f _{osc}				V
$T_J = 25^{\circ}C$		47	52	57	
$T_A = 0$ to $70^{\circ}C$		46		60	
Frequency Change with Voltage ($V_{CC} = 12V$ to 25V)	$\Delta f_{OSC} / \Delta V$		0.2	1.0	%
Frequency Change with Temperature	$\Delta f_{OSC} / \Delta T$		5.0		%
Oscillator Voltage Swing (Peak-to-Peak)	V _{OSC}		1.6		V
Discharge Current ($V_{OSC} = 2.0V$)	I _{dischg}				mA
$T_{\rm J} = 25^{\circ}{\rm C}$			10.8		

ELECTRICAL CHARACTERISTICS

ERROR AMPLIFIER SECTION

Item	Symbol	Min	Тур	Max	Unit
Voltage Feedback Input ($V_0 = 2.5V$)	V _{FB}	2.42	2.5	2.58	V
Input Bias Current ($V_{FB} = 2.7V$)	I _{IB}		-0.1	-2.0	μA
Open Loop Voltage Gain ($V_0 = 2.0V$ to 4.0V)	A _{VOL}	65	90		dB
Unity Gain Bandwidth ($T_J = 25^{\circ}C$)	BW	0.7	1.0		MHz
Power Supply Rejection Ratio ($V_{CC} = 12V$ to 25V)	PSRR	60	70		dB
Output Current					mA
$Sink (V_0 = 1.1V, V_{FB} = 2.7V)$	$\mathbf{I}_{\mathrm{Sink}}$	2.0	12		
Source ($V_0 = 5.0V, V_{FB} = 2.3V$)	I _{Source}	-0.5	-1.0		
Output Voltage Swing					V
High State ($R_L = 15k$ to GND, $V_{FB} = 2.3V$)	V _{OH}	5.0	6.2		
Low State ($R_L = 15k$ to V_{REF} , $V_{FB} = 2.3V$)	V _{OL}		0.8	1.1	
CURRENT SENSE SECTION					
Current Sense Input Voltage Gain (Notes 4 & 5)	Av	2.85	3.0	3.15	V/V
Maximum Current Sense Input Threshold (Note 4)	V _{TH}	0.9	1.0	1.1	V
Power Supply Rejection Ratio ($V_{CC} = 12V$ to 25V)	PSRR		70		dB
Input Bias Current	I _{IB}		-2.0	-10	μΑ
Propagation Delay (Current Sense Input to Output)	t _{PLH(in/out)}		150	300	ns
OUTPUT SECTION					
Output Voltage					V
Low State $(I_{Sink} = 20 \text{mA})$	V_{OL}		0.1	0.4	
$(I_{Sink} = 200 \text{mA})$			1.6	2.2	
High State $(I_{Sink} = 20mA)$	V_{OH}	13	13.5		
$(I_{Sink} = 200 \text{mA})$		12	13.4		
Output Voltage with UVLO Activated	V _{OL(UVLO)}				V
$(V_{CC} = 6.0V, I_{Sink} = 1.0mA)$			0.1	1.1	
Output Voltage Rise Time ($C_L = 1.0nF, T_J = 25^{\circ}C$)	t _r		50	150	ns
Output Voltage Fall Time ($C_L = 1.0nF, T_J = 25^{\circ}C$)	t _f		50	150	ns
UNDERVOLTAGE LOCKOUT SECTION					
Startup Threshold	Vth	7.8	8.4	9.0	V
Minimum Operating Voltage After Turn-On	V _{CC(min)}	7.0	7.6	8.2	V
PWM SECTION					
Duty Cycle Max.	DC _{max}	47	48	50	%
Min.	DC_{min}			0	
TOTAL DEVICE					
Power Supply Current ($V_{CC} = 6.5V$) (Note 2)	I _{CC}				mA
Startup			0.17	0.3	
Operating			12	17	
Power Supply Zener Voltage	Vz	30	36		V

FIGURE 1 - TIMING RESISTOR versus OSCILLATOR FREQUENCY

FIGURE 3 - ERROR AMP SMALL SIGNAL TRANSIENT RESPONSE

FIGURE 5 - ERROR AMP OPEN-LOOP GAIN AND PHASE versus FREQUENCY

FIGURE 2 - OUTPUT DEADTIME versus OSCILLATOR FREQUENCY

FIGURE 4 - ERROR AMP LARGE SIGNAL TRANSIENT RESPONSE

FIGURE 6 - CURRENT SENSE INPUT THRESHOLD versus ERROR AMP OUTPUT VOLTAGE

OUTPUT VOLTAGE CHANGE (2.0mV/DIV) V_{CC} = 15 V Q = 1.0 mA to 20 mAТ́д = 25°С

2.0 mS/DIV

FIGURE 11 - OUTPUT SATURATION VOLTAGE versus LOAD CURRENT

FIGURE 8 - REFERENCE SHORT CIRCUIT CURRENT versus TEMPERATURE

OUTPUT VOLTAGE CHANGE (2.0mV/DIV)

2.0 mS/DIV

FIGURE 12 - OUTPUT WAVEFORM

FIGURE 13 - OUTPUT CROSS CONDUCTION $\int_{C_{L}=15 \text{ pF}} \int_{R=25^{\circ}C} \int_{C_{L}=15 \text{ pF}} \int_{R=25^{\circ}C} \int_{C_{L}=15 \text{ pF}} \int_{R=25^{\circ}C} \int_{C_{L}=15 \text{ pF}} \int_{C$

FIGURE 14 - SUPPLY CURRENT versus SUPPLY VOLTAGE

