Am25S18

Quad D Register with Standard and Three-State Outputs

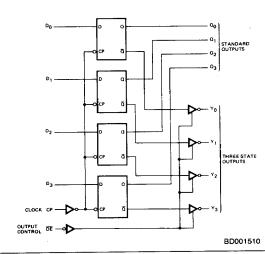
DISTINCTIVE CHARACTERISTICS

- Advanced Schottky technology
- Four D-type flip-flops
- · Four standard totem-pole outputs
- Four three-state outputs
 - 75MHz clock frequency

GENERAL DESCRIPTION

The Am25S18 consists of four D-type flip-flops with a buffered common clock. Information meeting the set-up and hold requirements on the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock.

The same data as on the Q outputs is enabled at the threestate Y outputs when the "output control" (\overline{OE}) input is LOW. When the \overline{OE} input is HIGH, the Y outputs are in the high-impedance state.

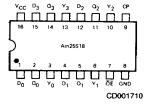

The Am25S18 is a 4-bit, high speed Schottky register intended for use in real-time signal processing systems

where the standard outputs are used in a recursive algorithm and the three state outputs provide access to a data bus to dump the results after a number of iterations.

The device can also be used as an address register or status register in computers or computer peripherals.

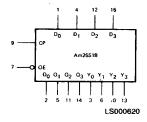
Likewise, the Am25S18 is also useful in certain display applications where the standard outputs can be decoded to drive LED's (or equivalent) and the three-state outputs are bus organized for occasional interrogation of the data as displayed.

BLOCK DIAGRAM

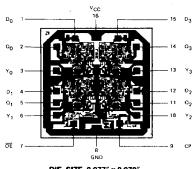

RELATED PRODUCTS

Part No.	Description	
Am25S07	Register	
Am25S08	Register	
Am25S09	Register	
Am25S374	Register	
Am29821-26	Register	

03613B

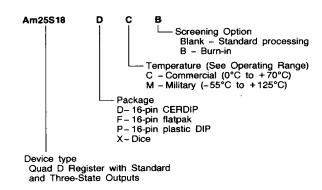

Refer to Page 13-1 for Essential Information on Military Devices

CONNECTION DIAGRAM Top View



Note: Pin 1 is marked for orientation

LOGIC SYMBOL


METALLIZATION AND PAD LAYOUT

DIE SIZE 0.077" x 0.079"

ORDERING INFORMATION

AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired).

01150

Valid Combinations					
Am25S18	PC DC, DM FM XC, XM				

Valid Combinations

Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish.

03613B

PIN DESCRIPTION

Pin No.	Name	1/0	Description
	Di	ī	The four data inputs to the register.
	Qi	0	The four data outputs of the register with standard totem-pole active pull-up outputs. Data is passed non-inverted.
	Yi	0	The four three-state data outputs of the register. When the three-state outputs are enabled, data is passed non-inverted. A HIGH on the "output control" input forces the Y _i outputs to the high-impedance state.
9	СР	1	Clock. The buffered common clock for the register. Enters data on the LOW-to-HIGH transition.
7	ŌĒ	0	Output Control. When the OE input is HIGH, the Y _i outputs are in the high-impedance state. When the OE input is LOW, the TRUE register data is present at the Y _i outputs.

TRUTH TABLE

	INPUTS		оит		
ŌĒ	CLOCK CP	D	Q	Y	NOTES
Н		Х	NC	Z	_
н	н	х	NC	Z Z Z Z	-
Н	1	L	L	Z	-
Н	Ť	н	н	Z	-
L	1	L	L	L	l –
L	İ †	н	Н	Н	-
L	_	-	L	L	1
L	-		н	Н	1

L = LOW NC = No change

H = HIGH t = LOW to HIGH transition

X = Don't care Z = High impedance

Note: 1. When OE is LOW, the Y output will be in the same logic state as the Q output.

LOADING RULES (In Unit Loads)

			Fan-out		
Input/Output	Pin Nos.	Input Unit Load	Output Outp HIGH LOV		
D ₀	1	1	-		
Q ₀	2	-	20	10*	
Yo	3	-	40/130	10*	
D ₁	4	1	-	-	
Q ₁	5	-	20	10*	
Y ₁	6	_	40/130	10*	
ŌĒ.	7	1	-	-	
GND	8	_	-	-	
CP	9	1	-	-	
Y ₂	10	_	40/130	10*	
Q ₂	11	_	20	10*	
D ₂	12	1	-	_	
Y ₃	13		40/130	10*	
Q ₃	14	-	20	10*	
D ₃	15	1			
Vcc	16		-		

A Schottky TTL Unit Load is defined as $50\mu A$ measured at 2.7V HIGH and -2.0mA measured at 0.5V LOW.

03613B

^{*}Fan-out on each Q_i and Y_i output pair should not exceed 15 unit loads (30mA) for $i=0,\ 1,\ 2,\ 3$

03613B

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C
(Ambient) Temperature Under Bias55°C to +125°C
Supply Voltage to Ground Potential
(Pin 16 to Pin 18) Continuous0.5V to +7.0V
DC Voltage Applied to Outputs For
HIGH Output State0.5V to +V _{CC} max
DC Input Voltage0.5V to +5.5V
DC Output Current, Into Outputs 30mA
DC Input Current30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commerciał (C) Devices Temperature	
Military (M) Devices	
Temperature	55°C to +125°C
Supply Voltage	+ 4.5V to + 5.5V
Operating ranges define those limits ality of the device is guaranteed.	over which the function-

DC CHARACTERISTICS over operating range unless otherwise specified

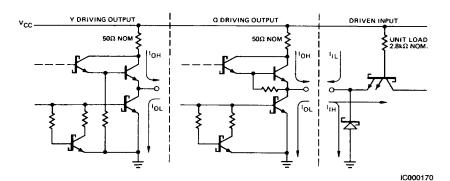
Parameters	Description	Description Test Conditions (Note 2)			2)	Min	Typ (Note 1)	Max	Units
	1				MIL	2.5	3.4		
		V _{CC} = MiN.	Q K	Q lon = -1mA o		2.7	3.4		
VoH	Output HiGH Voltage	VIN = VIH or VIL		XM, I _{OH} = -2mA		2.4	3.4		Volts
			Y	XC, IOH -	-6.5mA	2.4	3.2		
VoL	Output LOW Voltage (Note 6)	V _{CC} = MIN., I _{OL} = 20mA V _{IN} = V _{IH} or V _{IL}					0.5	Volts	
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs				2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts	
VI	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -18mA					-1.2	Volts	
(Note 3)	Input LOW Current	V _{CC} = MAX., V _{IN} = 0.5V					-2.0	mA	
I _{IH} (Note 3)	Input HIGH Current	V _{CC} = MAX., V _{IN} = 2.7V					50	μА	
ų	input HiGH Current	V _{CC} = MAX., V _{IN} = 5.5V					1.0	mA	
	Y Output Off-State	$V_{CC} = MAX.$ $V_{O} = 2.4V$ $V_{O} = 0.4V$			$V_O = 2.4V$			50	
lo	Leakage Current					- 50	μΑ		
ISC	Output Short Circuit Current (Note 4)	V _{CC} = MAX.			-40		- 100	mA	
lcc	Power Supply Current	V _{CC} = MAX. (Note	5)			1	80	130	mA

- Notes: 1. Typical limits are at V_{CC} = 5.0V, T_A = 25°C ambient and maximum loading.

 2. For conditions shown as MIN. or MAX., use the appropriate value specified under Operating Ranges for the applicable device type.

 3. Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules).

 4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.


 5. I_{CC} is measured with all inputs at 4.5V and all outputs open.

 6. Measured on Q outputs with Y outputs open. Measured on Y outputs with Q outputs open.

SWITCHING CHARACTERISTICS ($T_A = +25^{\circ}C$, $V_{CC} = 5.0V$, $R_L = 280\Omega$)

Parameters	Description		Test Conditions	Min	Тур	Max	Units
t _{PLH}	8				6.0	9.0	ns
t _{PHL}	Clock to Q Output				8.5	13	ns ns
	Clastic Bules Middle	HIGH		7.0			
t _{pw}	Clock Pulse Width	LOW		9.0			ns
ts	Data		C _L = 15pF	5.0			ns
h ,	Data Clock to Y Output			3.0			ns
t _{PLH}					6.0	9.0	
t _{PHL}	(ÕĒ LOW)		Г		8.5	13	ns
t _{ZH}			0 45-5		12.5	19	1
^l ZL	Output Control to Output		C _L = 15pF ~		12	18	1
tHZ			0 - 5 n=		4.0	6.0	ns
LZ			C _L = 5.0pF	*	7.0	10.5	1
fmax	Maximum Clock Fro	equency	C _L = 15pF	75	100	·	MHz

SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.