

♦ Structure Silicon monolithic integrated circuit

♦ Product Series Lens control LSI♦ Type BU24033GW♦ Applications Digital still cameras

♦ Functions • Built-in 6 channels Driver block : 1–5ch Voltage control type H-bridge(Adaptable to STM 2systems)

: 6ch Current control type H-Bridge

Built-in 2 channels PI driving circuit
Built-in 3 channels Waveforming circuit
Built-in FLL digital servo circuit

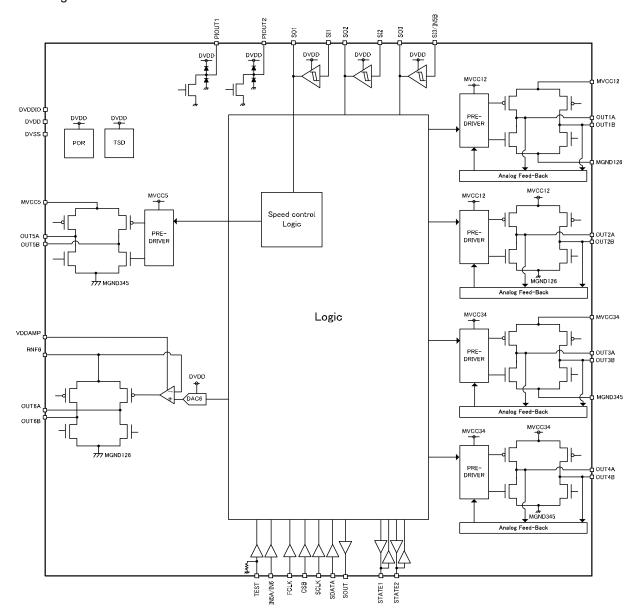
Built-in PLL circuit

♦ Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit	Remark
	DVDDIO DVDD	-0.3∼4. 5	٧	
Power supply voltage	MVCC	-0.3∼7.0	٧	MVCC12,MVCC34, MVCC5,VDDAMP
Input voltage	VIN	-0.3∼supply voltage+0.3	V	
Input/output current *1	IIN	±500	mA	MVCC12,MVCC34,RNF6
		±600	mA	MVCC5
		+50	mA	by PIOUT pin
Storage temperature range	TSTG	−55 ~ 125	°C	
Operating temperature range	TOPE	−20 ~ 85	°C	
Permissible dissipation *2	PD	1000	mW	

This product is not designed for anti-radiation applications.

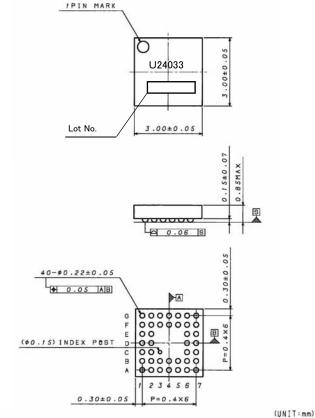
\bigcirc Operating conditions (Ta = 25°C)


Parameter	Symbol	Limits	Unit	Remark
I/O power supply voltage	DVDDIO	1.62~3.6	V	
Digital power supply voltage	DVDD	2.7~3.6	V	DVDD≦MVCC
Driver power supply voltage	MVCC	2.7~5.5	٧	MVCC12,MVCC34, MVCC5,VDDAMP
clock operating frequency	FCLK	1~28	MHz	Reference clock

^{*1} Must not exceed PD.

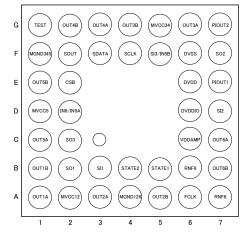
^{*2} To use at a temperature higher than Ta=25 °C, derate 10mW per 1 °C (At mounting 50mm x 58mm x 1.75mm glass epoxy board.)

♦Block Diagram



♦Pin functions

Land Matrix No.	Pin name	Power supply	Function	
E6	DVDD	supply -	Digital power supply	
D6	DVDDIO	-	I/O power supply	
F6	DVSS	-	ground	
A6	FCLK	DVDDIO	FCLK logic input	
E2	CSB	DVDDIO	CSB logic input	
F4	SCLK	DVDDIO	SCLK logic input	
F3	SDATA	DVDDIO	SDATA logic input	
F2	SOUT	DVDDIO	SOUT logic output	
D2	IN6 / IN5A	DVDDIO	IN6 / IN5A logic input	
B5	STATE1	DVDDIO	STATE1 logic input/output	
B4	STATE2	DVDDIO	STATE2 logic input/output	
G1	TEST	DVDDIO	TEST logic output	
E7	PIOUT1	DVDD	PI driving output 1	
G 7	PIOUT2	DVDD	PI driving output 2	
В3	SI1	DVDD	Waveforming input1	
B2	SO1	DVDD	Waveforming output1	
D7	SI2	DVDD	Waveforming input2	
F7	SO2	DVDD	Waveforming output2	
F5	SI3 / IN5B	DVDD	Waveforming input3 / IN5B logic input	
C2	SO3	DVDD	Waveforming output3	
A2	MVCC12	-	1ch, 2ch Driver power supply	
A4	MGND126	-	1ch, 2ch, 6ch Driver ground	
A1	OUT1A	MVCC12	1ch Driver A output	
B1	OUT1B	MVCC12	1ch Driver B output	
A3	OUT2A	MVCC12	2ch Driver A output	
A5	OUT2B	MVCC12	2ch Driver B output	
G5	MVCC34	-	3ch, 4ch Driver power supply	
F1	MGND345	-	3ch, 4ch, 5ch Driver ground	
G6	OUT3A	MVCC34	3ch Driver A output	
G4	OUT3B	MVCC34	3ch Driver B output	
G3	OUT4A	MVCC34	4ch Driver A output	
G2	OUT4B	MVCC34	4ch Driver B output	
D1	MVCC5	-	5ch Driver power supply	
C1	OUT5A	MVCC5	5ch Driver A output	
E1	OUT5B	MVCC5	5ch Driver B output	
C6	VDDAMP	-	6ch Power supply of current driver control	
A7,B6	RNF6	-	6ch Driver power supply	
C7	OUT6A	RNF6	6ch Driver A output	
В7	OUT6B	RNF6	6ch Driver B output	


♦ Outline dimensions/Marking figure

Drawing No: EX908-5009

UCSP75M3

◇Pin assignment diagram (bottom view)

♦Cautions on use

(1)Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you expect that any voltage or temperature could be exceeding the absolute maximum ratings, take physical safety measures such as fuses to prevent any conditions exceeding the absolute maximum ratings from being applied to the LSI.

(2)GND potential

Maintain the GND pin at the minimum voltage even under any operating conditions.

Actually check to be sure that none of the pins have voltage lower than that of GND pin, including transient phenomena.

(3)Thermal design

With consideration given to the permissible dissipation under actual use conditions, perform thermal design so that adequate margins will be provided.

(4)Short circuit between pins and malfunctions

To mount the LSI on a board, pay utmost attention to the orientation and displacement of the LSI. Faulty mounting to apply a voltage to the LSI may cause damage to the LSI. Furthermore, the LSI may also be damaged if any foreign matters enter between pins, between pin and power supply, or between pin and GND of the LSI.

(5)Operation in strong magnetic field

Make a thorough evaluation on use of the LSI in a strong magnetic field. Not doing so may malfunction the LSI.

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/