
				F	REVISI	ONS										
LTR	DESCRIPTION				RIPTION DATE (YR-MO-DA)					APPROVED						
REV SHEET		JESCK							DA		R-IVIO-	DA)		APPR	NOVE I	
REV																
SHEET																
REV STATUS	REV															
OF SHEETS	SHEET		1	2	3	4	5	6	7	8	9	10	11	12		
STANDARD MICROCIRCUIT DRAWING	PREPARED BY Gary Zahn CHECKED BY Michael C. Jones			DEFENSE SUPPLY CENTER COLUMBUS POST OFFICE BOX 3990 COLUMBUS, OHIO 43216-5000												
THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS	APPROVED BY Raymond Monnin			MICROCIRCUIT, HYBRID, LINEAR, ±5-VOLT, DUAL CHANNEL, DC-DC CONVERTER				_T,								
AND AGENCIES OF THE DEPARTMENT OF DEFENSE	DRAWING		ROVA 0-02	L DAT	E											
AMSC N/A	REVISION	N LEVE	L				ZE A		GE CC 67268			59	962-	005	22	
											1					

- 1. SCOPE
- 1.1 <u>Scope</u>. This drawing documents five product assurance classes, class D (lowest reliability), class E, (exceptions), class G (lowered high reliability), class H (high reliability), and class K, (highest reliability) and a choice of case outlines and lead finishes which are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.
 - 1.2 PIN. The PIN shall be as shown in the following example:

- 1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. Device classes H and K RHA marked devices shall meet the MIL-PRF-38534 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. Only the RHA levels specified herein are available. See 4.3.5.
 - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>
01	MSA2805D/883, MGA2805D	DC-DC converter, 5 W, ±5 V outputs

1.2.3 <u>Device class designator</u>. This device class designator shall be a single letter identifying the product assurance level as follows:

Device class

Device performance documentation

D, E, G, H, or K

Certification and qualification to MIL-PRF-38534

1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
X	See figure 1	8	Dual-in-line
Υ	See figure 1	20	Flat pack
Z	See figure 1	20	Flat pack with formed leads

- 1.2.5 <u>Lead finish</u>. The lead finish shall be as specified in MIL-PRF-38534.
- 1.3 Absolute maximum ratings. 1/

Input voltage range	-0.5 V dc to +50 V dc 2.2 W 5.23 W
Lead soldering temperature (10 seconds)	+300°C
Storage temperature range	-65°C to +150°C

- Stresses above the absolute maximum ratings may cause permanent damage to the device, except for input voltage transients up to 80 V for no more than 120 milliseconds. Extended operation at the maximum levels may degrade performance and affect reliability.
- 2/ Derate output power linearly above case temperature (T_C) of +125°C to 0 W at +130°C.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 2

1.4 Recommended operating conditions.

Input voltage range	+16 V dc to +40 V dc
Case operating temperature range (T _C)	-55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38534 - Hybrid Microcircuits, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's).

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 may include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. Therefore, the tests and inspections herein may not be performed for the applicable device class (see MIL-PRF-38534). Furthermore, the manufacturer may take exceptions or use alternate methods to the tests and inspections herein and not perform them. However, the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.
 - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 3

- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.
- 3.5 <u>Marking of device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked in MIL-HDBK-103 and QML-38534.
- 3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSCC-VA) upon request.
- 3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DSCC-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.
- 3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. QUALITY ASSURANCE PROVISIONS

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
 - 4.2 Screening. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) TA as specified in accordance with table I of method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 4

	7	TABLE I. Electrical performance	characteristic	<u>s</u> .			
Test	Symbol	Conditions $-55^{\circ}C \le T_C \le +125^{\circ}C$	Group A subgroups	Device type	Lir	nits	Unit
		V_{IN} = 28 V dc ±0.5 V, C_L = 0 unless otherwise specified			Min	Max	
Output voltage	+V _{OUT}	<u>+</u> l _{OUT} = 0.5 A	1	01	+4.95	+5.05	V dc
			2,3		+4.80	+5.20	
	- V _{OUT}		1	01	-4.90	-5.10	V dc
			2,3		-4.75	-5.25	
Output current <u>1</u> /	I _{OUT}	V _{IN} = 16 V dc to 40 V dc	1, 2, 3	01	0	0.8	А
V _{OUT} ripple voltage	V_{RIP}	±Ι _{ΟUΤ} = 0.5 Α,	1	01		150	mV p-p
(±V _{OUT})		BW = 10 kHz to 2 MHz	2,3			300	
V _{OUT} line regulation (+V _{OUT})	VR _{LINE}	$\pm I_{OUT} = 0.5 \text{ A},$ V _{IN} = 16 V dc to 40 V dc	1,2,3	01		25	mV
(-V _{OUT})			1,2,3	01		75	
V _{OUT} load regulation (+V _{OUT})	VR _{LOAD}	±I _{OUT} = 0 to 0.5 A, both outputs changed simultaneously	1,2,3	01		50	mV
(-V _{OUT})			1,2,3	01		200	
Input current	I _{IN}	$\pm I_{OUT} = 0$ A, Inhibit (see figure 2) = 0	1,2,3	01		5	mA
		$\pm I_{OUT} = 0$ A, Inhibit (see figure 2) = open	1,2,3	01		35	
I _{IN} ripple current	I _{RIP}	$\pm I_{OUT} = 0.5 \text{ A}, \ L_{IN} = 2 \mu H,$	1	01		80	mA p-p
		BW = 10 kHz to 10 MHz	2,3			160	
Efficiency	Eff	<u>+</u> I _{ОUТ} = 0.5 А	1	01	68		%
			2,3		65		
Isolation	ISO	Input to output or any pin to case (except case ground pin(s) at 500 V dc, (see figure 2) T _C = +25°C	1	01	100		ΜΩ
Short circuit internal power	P _D	Short circuit	1	01		1.8	W
dissipation		$P_D = P_{IN} - total P_{OUT}$	2,3			2.0	
Switching frequency	Fs	±I _{OUT} = 0.5 A	4	01	450	600	kHz
			5,6		400	620	

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 5

TABLE I. <u>Electrical performance characteristics</u> - Continued.								
Test	Symbol	Conditions $-55^{\circ}C \le T_{C} \le +125^{\circ}C$	Group A subgroups	Device type	Limits		Unit	
		$V_{IN} = 28V \text{ dc } \pm 0.5 \text{ V, } C_L = 0$ unless otherwise specified			Min	Max		
V _{OUT} response to step	VO _{TLOAD}	50% load to / from 100%	4	01	-150	150	mV pk	
transient load changes <u>2/</u> (±V _{OUT})		load; balanced loads on each output	5,6		-500	500		
V _{OUT} recovery time from	TT _{LOAD}	50% load to / from 100%	4	01		100	μS	
step transient load changes 2/3/4/		load; balanced loads on each output	5,6			1000		
V_{OUT} response to step line transient $4/5$	VOTLINE	Input step from 16 V dc to 40 V dc, ±I _{OUT} = 0.5 A	4,5,6	01	-750	750	mV pk	
		Input step from 40 V dc to 16 V dc, ±I _{OUT} = 0.5 A	4,5,6	01	-500	500		
V _{OUT} recovery time from step line transient <u>3</u> / <u>4/ 5</u> /	TT _{LINE}	Input step from 16 V dc to 40 V dc, ±I _{OUT} = 0.5 A	4,5,6	01		1.2	ms	
		Input step from 40 V dc to 16 V dc, $\pm I_{OUT} = 0.5$ A	4,5,6	01		1.2		
Start up overshoot <u>4</u> /	Vtonos	$\pm I_{OUT} = 0.5 \text{ A},$	4	01		500	mV pk	
(±V _{OUT})		V _{IN} = 0 to 28 V dc	5,6			750		
Start up delay 3/6/	Ton _D	$\pm I_{OUT} = 0.5 \text{ A},$	4,5,6	01		25	ms	
(±V _{OUT})	Т.,	V _{IN} = 0 to 28 V dc	4 5 6	01		F 0		
Load fault recovery 3/4/ (±V _{OUT})	Tr _{LF}	$\pm I_{OUT} = $ from S.C. to 0.5 A	4,5,6	01		50	ms	
Capacitive load, 4/ 7/ (both outputs)	CL	No effect on DC performance, T _C = +25°C	4	01		10	μF	

The total output power available is 80 percent from either output up to 4 watts, providing the opposite output is simultaneously carrying 20 percent of the total output power. Each output must carry a minimum of 20 percent of the total output in order to maintain regulation on the negative output. Load step transition time greater than 10 μ s. Recovery time is measured from the initiation of the transient to where $\pm V_{OUT}$ has returned to within ± 1 percent of

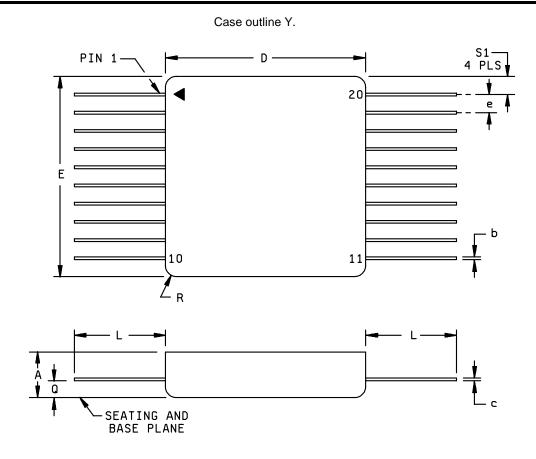

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 6

[±]Vout final value.

Parameter shall be tested as part of device characterization and after design and process changes. Thereafter, parameters shall be guaranteed to the limits specified in table I.

Input step transition time greater than 10 μ s. Start up delay time measurement is either for a step application of power at the input or the removal of a ground signal from the inhibit pin (see figure 2) while power is applied to the input.

Capacitive load may be any value from 0 to the maximum limit without compromising dc performance.

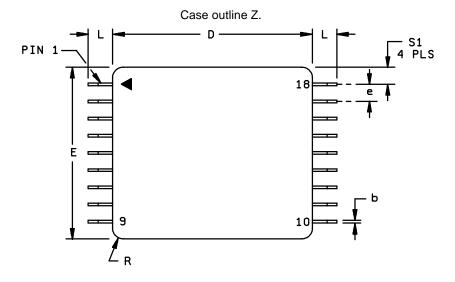

Symbol	Millimeters		Inc	hes
	Min	Max	Min	Max
Α		6.86		0.270
b	1.78	3 DIA	0.07	O DIA
b1	0.64	4 DIA	0.02	5 DIA
D/E		27.31		1.075
E1	20.19	20.45	0.795	0.805
e/S	3.23	3.48	0.127	0.137
e1	8.31	8.56	0.327	0.337
e2	13.39	13.64	0.527	0.537
e3	18.47	18.72	0.727	0.737
e4/S1	23.55	23.80	0.927	0.937
L		5.59		0.220
R	1.14	1.40	0.045	0.055

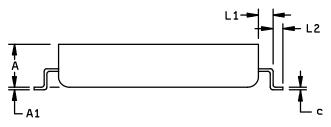
NOTES:

- 1. The U. S. Government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall take precedence.
- 2. Pin numbers are for reference only.
- 3. Case outline X weight: 15 grams maximum.

FIGURE 1. Case outline(s).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 7


Symbol	Millimeters		Inc	hes
	Min	Max	Min	Max
Α		6.35		0.250
b	0.30	0.56	0.012	0.022
С	0.20	0.41	0.008	0.016
D/E	27.81	28.07	1.095	1.105
е	2.54 BSC		0.100 BSC	
L	12.7	0 TYP	0.500) TYP
Q	1.78	2.29	0.070	0.090
R		1.52		0.060
S1	2.29	2.79	0.090	0.110


NOTES:

- 1. The U. S. Government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall take precedence.
- 2. Pin numbers are for reference only.
- 3. Case outline Y weight: 15 grams maximum.

FIGURE 1. Case outline(s) - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 8

Symbol	Millimeters		Inc	hes
	Min	Max	Min	Max
Α		6.35		0.250
A1	0.13	0.51	0.005	0.020
b	0.30	0.56	0.012	0.022
С	0.20	0.41	0.008	0.016
D/E	27.81	28.07	1.095	1.105
е	2.54 BSC		0.100 BSC	
L	3.43 REF		0.135	REF
L1	1.52	2.03	0.060	0.080
L2	1.14	1.65	0.045	0.065
R		1.52		0.060
S1	2.29	2.79	0.090	0.110

NOTES:

- 1. The U. S. Government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall take precedence.
- 2. Pin numbers are for reference only.
- 3. Case outline Z weight: 15 grams maximum.

FIGURE 1. Case outline(s) - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 9

Device type	01	01
Case outlines	Y and Z	Х
Terminal number	Terminal symbol	Terminal symbol
1	Inhibit	Positive output
2	Positive input	Output return
3	Positive input	Negative output
4	No connection	No connection
5	Input common	Inhibit
6	Input common	Input
7	Case ground	Input return
8	Case ground	Case ground
9	No connection	
10	No connection	
11	Positive output	
12	Positive output	
13	Output common	
14	Output common	
15	Negative output	
16	Negative output	
17	No connection	
18	No connection	
19	Case ground	
20	Case ground	

FIGURE 2. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 10

TABLE II. Electrical test requirements.

MIL-PRF-38534 test requirements	Subgroups (in accordance with MIL-PRF-38534, group A test table)
Interim electrical parameters	
Final electrical parameters	1*, 2, 3, 4, 5, 6
Group A test requirements	1, 2, 3, 4, 5, 6
Group C end-point electrical parameters	1
End-point electrical parameters for radiation hardness assurance (RHA) devices	Not applicable

^{*} PDA applies to subgroup 1.

- 4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.
 - 4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7, 8, 9, 10, and 11 shall be omitted.
 - 4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534.
 - 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) T_A as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
 - 4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 11

- 4.3.5 Radiation Hardness Assurance (RHA) inspection. RHA inspection is not currently applicable to this drawing.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-PRF-38534.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Post Office Box 3990, Columbus, Ohio 43216-5000, or telephone (614) 692-0512.
- 6.6 Sources of supply. Sources of supply are listed in MIL-HDBK-103 and QML-38534. The vendors listed in MIL-HDBK-103 and QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DSCC-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-00522
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	12

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 00-10-02

Approved sources of supply for SMD 5962-00522 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38534 during the next revisions. MIL-HDBK-103 and QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revisions of MIL-HDBK-103 and QML-38534.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-0052201HXA	50821	MSA2805D/883
5962-0052201HXC	50821	MSA2805D/883
5962-0052201HYA	50821	MGA2805D/883
5962-0052201HYC	50821	MGA2805D/883
5962-0052201HZA	50821	MGA2805DZ/883

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

50821

Vendor name and address

Interpoint Corporation 10301 Willows Road Redmond, WA 98073-9705

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.