## DESCRIPTION

The LX5512B is a power amplifier optimized for WLAN applications in the $2.4-2.5 \mathrm{GHz}$ frequency range. The PA is implemented as a threestage monolithic microwave integrated circuit (MMIC) with active bias and input/output pre-matching. The device is manufactured with an InGaP/GaAs Heterojunction Bipolar Transistor (HBT) IC process (MOCVD). It operates at a single low voltage supply of 3.3 V with 32 dB power gain between $2.4-2.5 \mathrm{GHz}$, at a low quiescent current of 65 mA .

For 19 dBm OFDM output power (64QAM, 54 Mbps ), the PA provides a low EVM (Error-Vector Magnitude) of $3 \%$, and consumes 140 mA total DC current.

The LX5512B is available in a 16 pin 3 mmx 3 mm micro-lead package (MLP). The compact footprint, low profile, and excellent thermal capability of LX5512B meets the requirements of high-gain power amplifiers for IEEE $802.11 \mathrm{~b} / \mathrm{g}$ applications.

## KEY FEATURES

- Advanced InGaP HBT
- $2.4-2.5 \mathrm{GHz}$ Operation
- Single-Polarity 3.3V Supply
- Low Quiescent Current ICQ $\sim 65 \mathrm{~mA}$
- Power Gain ~ 32 dB at 2.45 GHz \& Pout=19dBm
- Total Current ~140mA for Pout $=19 \mathrm{dBm}$ at 2.45 GHz OFDM
- EVM ~3 \% for 64QAM/ 54Mbps \& Pout=19dBm
- Small Footprint: $3 \times 3 \mathrm{~mm} 2$
- Low Profile: 0.9 mm

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

APPLICATIONS

- IEEE 802.11b/g


Note: Available in Tape \& Reel. Append the letters "TR" to the part number. (i.e. LX5512BLQ-TR)

This device is classified as ESD Level 0 in accordance with JESD22-A114-B, (HBM) testing. Appropriate ESD procedures should be observed when handling this device.


## THERMAL DATA

## LQ Plastic MLPQ 16-Pin

| THERMAL RESISTANCE-JUNCTION TO CASE, $\theta_{J C}$ | $10^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :--- |
| THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta_{J A}$ | $50^{\circ} \mathrm{C} / \mathrm{W}$ |

thermal resistance-Junction to Ambient, $\theta_{\text {JA }}$

Junction Temperature Calculation: $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \mathrm{x} \theta_{\mathrm{JA}}\right)$.
The $\theta_{\mathrm{JA}}$ numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.


RoHS / Pb-free 100\% Matte Tin Lead Finish

## FUNCTIONAL PIN DESCRIPTION

| FUNCTIONAL PIN DESCRIPTION |  |
| :---: | :---: |
| Name | Description |
| RF IN | RF input for the power amplifier. This pin is directly connected to base, a 10pF decoupling capacitor may be needed. |
| VB12 | Bias current control voltage for the first and second stage. |
| VB3 | Bias current control voltage for the third stage. The VB3 pin can be connected with the first and second stage control voltage (VB12) into a single reference voltage (referred to as $\mathrm{V}_{\text {REF }}$ ) through an external resistor bridge. |
| VCC | Supply voltage for the bias reference and control circuits. The VCC feed line should be terminated with a 10 nF bypass capacitor close to connector pin. This pin can be combined with VC1, VC2 and VC3 pins, resulting in a single supply voltage (referred to as $\mathrm{V}_{\mathrm{C}}$ ). |
| RF OUT | RF output for the power amplifier. This pin is DC-decoupled from the transistor collector of the third stage. |
| VC1 | Power supply for first stage amplifier. The VC1 feed line should be terminated with a 10 pF bypass capacitor, followed by a 36 Ohm resistor. This pin can be combined with VC2,VC3 and VCC pins, resulting in a single supply voltage (referred to as $\mathrm{V}_{\mathrm{C}}$ ). |
| VC2 | Power supply for second stage amplifier. The VC2 feed line should be terminated with a 18 pF bypass capacitor. This pin can be combined with VC1,VC3 and VCC pins, resulting in a single supply voltage (referred to as $\mathrm{V}_{\mathrm{C}}$ ). |
| VC3 | Power supply for the third stage amplifier. The VC3 feed line should be terminated with 27 pF and 10 nF bypass capacitors. This pin can be combined with $\mathrm{VC} 1, \mathrm{VC} 2$ and VCC pins, resulting in a single supply voltage (referred to as $\mathrm{V}_{\mathrm{c}}$ ). |
| REF | Power detector reference output pin should be terminated with a $100 \mathrm{~K} \Omega$ loading resistor |
| DET | Power detector output pin should be terminated with a $100 \mathrm{~K} \Omega$ loading resistor |
| GND | The center metal base of the MLP package provides both DC and RF ground as well as heat sink for the power amplifier. |

## ELECTRICAL CHARACTERISTICS

Test conditions: $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.95 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Test Conditions | LX5512B |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |
| Frequency Range | f |  | 2.4 |  | 2.5 | GHz |
| Power Gain @ P out $=19 \mathrm{dBm}$ | Gp |  |  | 32 |  | dB |
| EVM @ P ${ }_{\text {out }}$ = 19 dBm |  | 64QAM / 54Mbps |  | 3.0 |  | \% |
| Total Current @ Pout $=19 \mathrm{dBm}$ | $\mathrm{Ic}_{\text {_total }}$ |  |  | 140 |  | mA |
| Quiescent Current | $\mathrm{I}_{\mathrm{CQ}}$ |  |  | 65 |  | mA |
| Bias Control Reference Current | $\mathrm{I}_{\text {REF }}$ | For $\mathrm{I}_{\mathrm{CQ}}=65 \mathrm{~mA}$ |  | 1.8 |  | mA |
| Small-Signal Gain | S21 |  |  | 32 |  | dB |
| Gain Flatness | $\Delta \mathrm{S} 21$ | Over 100MHz |  | $\pm 0.25$ |  | dB |
| Gain Variation Over Temperature | $\Delta \mathrm{S} 21$ | 0 to $+85^{\circ} \mathrm{C}$ |  | $\pm 0.25$ |  | dB |
| Input Return Loss | S11 |  |  | 10 |  | dB |
| Output Return Loss | S22 |  |  | 10 |  | dB |
| Reverse Isolation | S12 |  |  | 45 |  | dB |
| Second Harmonic |  | $\mathrm{P}_{\text {out }}=19 \mathrm{dBm}$ |  | -40 |  | dBc |
| Third Harmonic |  | $\mathrm{P}_{\text {Out }}=19 \mathrm{dBm}$ |  | -40 |  | dBc |
| Total Current @ P ${ }_{\text {Out }}=23 \mathrm{dBm}$ |  | 11Mbps CCK |  | 215 |  | mA |
| $2^{\text {nd }}$ Side Lobe @ 23dBm |  | 11Mbps CCK |  | -55 |  | dBc |
| Ramp-On Time | $\mathrm{t}_{\mathrm{on}}$ | 10 ~ 90\% |  |  | 100 | ns |
| Differential Detector Response |  | 19dBm OFDM |  | 1.4 |  | V |

Note: All measured data was obtained on a 10 mil GETEK evaluation board without heat sink.




ACP (30MHz) \& Differential Detector Voltage with 54Mbps 64QAM $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.95 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=65 \mathrm{~mA}$, Frequency $=2.45 \mathrm{GHz}$


CURRENT @11MBPS CCK





PRODUCTION DATA - Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

