5

P4C231 64Kx9 BIT SYNCHRONOUS SRAM with BURST MODE and SELF-TIMED WRITE

FEATURES

Σ.

- Pin-Compatible Upgrade from 32Kx9 Synchronous SRAM
- Built-in Burst Address Generator for i486 Burst Sequence
- Internal Write Pulse Generator
- Supports i486 Processor at 66MHz

- 5V ±10% Power Supply
- **■** CMOS for Optimum Speed/Power
- **TTL Compatible Inputs and Outputs**
- Outputs Drive up to 85pF loads
- 44-pin PLCC Package

DESCRIPTION

The P4C231 is a 589,824-bit high-speed CMOS SRAM organized as 64x9 bits, with built-in input registers for fully synchronous operation. The built-in i486 Burst Sequence Address Generator and Self-Timed Write Operation make the P4C231 ideally suited for i486 secondary cache applications.

Clock-to-Output access times as fast as 11ns enable i486 processor operation at 66MHz with no wait states. Outputs drive up to 85pF loads without external buffering.

The P4C231 is pin-compatible with other 32Kx9 synchronous burst-mode SRAMs, permitting upgrade to 256KByte secondary cache with only four devices and no board space penalty. When deselected (C\$\overline{5}\$ is HIGH) power dissipation is less than 200mW.

The P4C219 is manufactured using PACE III Technology and is available in a 44-pin PLCC surface-mount package providing excellent board-level density.

*

BLOCK DIAGRAM

PIN CONFIGURATION

Means Quality, Service and Speed

i486 BURST SEQUENCE

	Case 1		Case 2		Case 3		Case 4		
	A ₁	Ao	A ₁	A ₀	A ₁	A ₀	A ₁	Ao	
initial Cycle	0	0	0	1	1	0	1_	1	From i486 processor
1st Burst Cycle	0	1	0	0	1	1	1	0	Internally generated
2nd Burst Cycle	1	0	1	1	0	0	0	1	Internally generated
3rd Burst Cycle	1	1	1	0	0	1	0	0	Internally generated

Note: The I486 burst sequence varies according to the initial address

BURST CONTROL

Address A_n - A_{LS} and Chip Select \overline{CS} are clocked into registers only when \overline{ADSP} =L (processor initiated) or \overline{ADSC} =L (cache controller initiated) or both. To initiate transfer, \overline{CS} must be clocked LOW. \overline{ADSP} =L initiates only a read cycle,

independent of WE. WE = H is a read cycle, L is a write cycle. To enter burst mode, both ADSP and ADSC must be HIGH: ADV = L advances internal burst address, H suspends burst.

APPLICATION DIAGRAM: 256KByte Secondary Cache for i486

