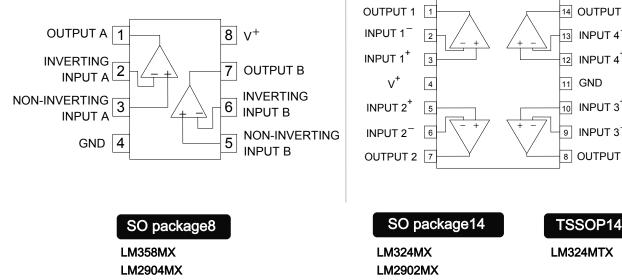

General-purpose Operational Amplifiers / Comparators

NOW SERIES Operational Amplifiers

LM358MX,LM2904MX,LM324MX,LM324MTX,LM2902MX

Description


The Universal Standard family LM358 / 324, LM2904 / 2902 monolithic ICs integrate two independent op-amps and phase compensation capacitors on a single chip and feature high-gain, low power consumption, and an operating voltage range of 3[V] to 32[V] (single power supply.)

Features

- 1) Operating temperature range **Commercial Grade** Extended Industrial Grade
 - LM358 / 324 family
- : $0[^{\circ}C]$ to + $70[^{\circ}C]$ LM2904 / 2902 family : -40[°C] to +85[°C]
- 2) Wide operating supply voltage +3[V] to +32[V] (single supply) $\pm 1.5[V]$ to $\pm 16[V]$ (dual supply)
- 3) Low supply current
- Common-mode input voltage range including ground 4)
- Differential input voltage range equal to maximum rated 5)
- 5) Supply voltage
- 6) High large signal voltage gain
- 7) Wide output voltage range

Pin Assignment

14 OUTPUT 4

13 INPUT 4

12 INPUT 4

10 INPUT 3⁺

9 INPUT 3

8 OUTPUT 3

11 GND

No.11094ECT01

RoHS

Absolute Maximum Ratings (Ta=25[°C])

Parameter	Symbol	Ratings							
Falameter	Symbol	LM358 family	LM324 family	LM2904 family	LM2902 family	- Unit			
Supply Voltage	V ⁺	+;	32	+26					
Operating Temperature Range	Topr	0 to	0 to +70		-40 to +85				
Storage Temperature Range	Tstg	-65 to +150			°C				
Storage Temperature Range	VICM	-0.3 to +32 -0.3 to +26		-0.3 to +32 -0.3 to +26		o +26	V		
Maximum junction Temperature	Tjmax	+150			°C				

•Electric Characteristics

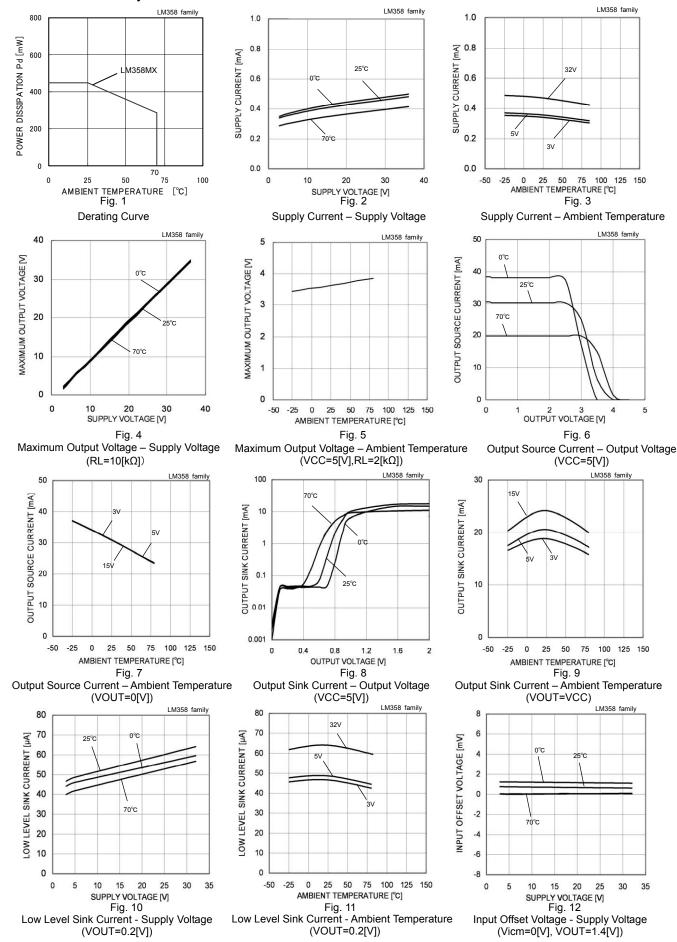
OLM358,LM324 family (Unless otherwise specified, V⁺=+5[V])

					Lin	nits					
Parameter	Symbol	Temperature range	LN	/1358 fan	nily	LN	//324 fan	nily	Unit	Conditions	Fig. No
		. 3.	Min.	Тур.	Max.	Min.	Тур.	Max.			
Input Offeet Voltage (*1)	VIO	25°C	_	2	7	-	2	7	mV	RS=0[Ω] VO=1.4[V]	98
Input Offset Voltage (*1)	VIO	Full range	_	_	9		_	9	mv	V ⁺ =5[V] to 30[V]	90
Input Offset Voltage Drift	αVIO	-	-	7	_	-	7	_	µV/°C	RS=0[Ω]	_
Innut Ding Quarter (*4)	IID	25°C	_	45	250	-	45	250	- 1	VO=1.4[V]	00
Input Bias Current (*1)	IIB	Full range	-	40	500	I	40	500	nA	IIN (+)orIIN(-) VCM=0[V]	98
Input Offset Current (*1)	IIO	25°C	_	5	50		5	50	nA	IIN (+)-IIN (-),VCM=0[V]	- 98
input Oliset Current (1)	110	Full range	_	_	150		_	150	ΠA	IIN (+)-IIN (-)	90
Input Offset Current Drift	αllO	_	_	10	_	_	10	_	pA/°C	RS=0[Ω]	_
Input Common mode Veltage Bange	VICR	25°C	_	_	V ⁺ -1.5	-	_	V ⁺ -1.5	V	V ⁺ =30[V] (*8)	98
Input Common-mode Voltage Range	VICK	Full range	-	_	V*-2.0	Ι	_	V ⁺ -2.0	v		90
Supply Current	ICC	Full range	-	0.5	1.2	-	0.7	1.2	mA	V ⁺ =5[V] RL=∞ All Op Amps	- 99
		·	-	1	2	—	1.5	3		V ⁺ =30[V] RL=∞ All Op Amps	
Output Voltage Swing	VOH	Eull range	27	28	-	27	28	-	V	V ⁺ =30[V],RL=10[kΩ]	- 99
Output voltage Swillg	VOL	Full range	-	5	20	I	5	20	mV	RL=10[kΩ], V⁺=5[V]	99
Large Signal Voltage Gain	AV	25°C	25	100		25	100	_	V/mV	$V^+=15[V]$ VO=1[V] to 11[V] RL≧2[kΩ]	98
Common-mode Rejection ratio	CMRR	25°C	65	85	-	65	85	-	dB	VCM=0[V] to V ⁺ -1.5[V]	98
Power Supply Rejection Ratio	PSRR	25°C	65	100	Ι	65	100	-	dB	V ⁺ =5[V] to 30[V]	98
Amplifier-to-Amplifier Coupling	V01/V02	25°C	_	120	_	I	120	_	dB	f=1[kHz] to 20[kHz] input referred	101
		25°C	20	40	_	20	40	_		V ⁺ =15[V],VO=2[V]	
	Source	Full range	10	20	_	10	20	_	mA	VIN+=1[V],VIN-=0[V]	
Output Current (*2)		25°C	10	20	_	10	20	_	m (99
	Sink	Full range	2	8	_	2	8	_	mA	V [*] =15[V],VO=2[V] VIN+=0[V],VIN-=1[V]	
		Full range	12	50	_	12	40	_	μA		

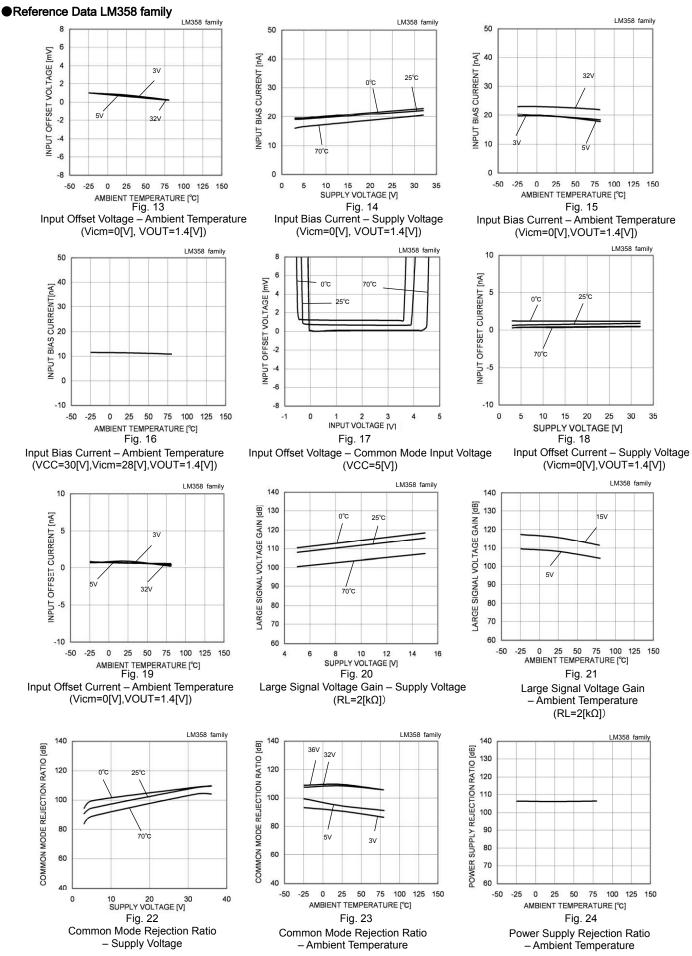
(*1) Absolute value

(*2) Under high temperatures, please consider the power dissipation when selecting the output current.
When output terminal is continuously shorted the output current reduces the internal temperature by flushing.

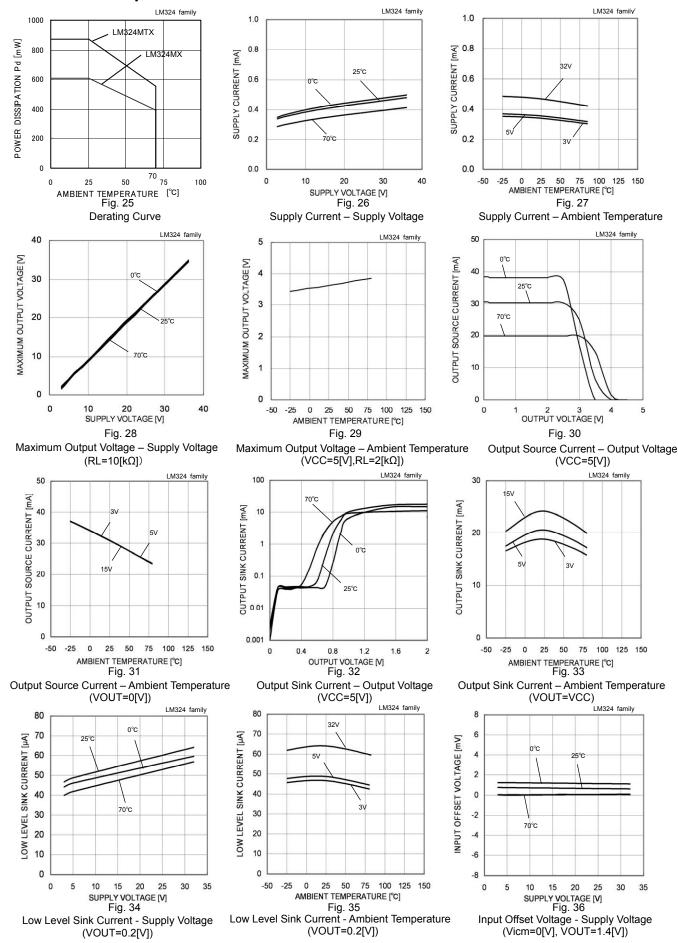
OLM2904,LM2902 family (Unless otherwise specified, V⁺=+5[V])

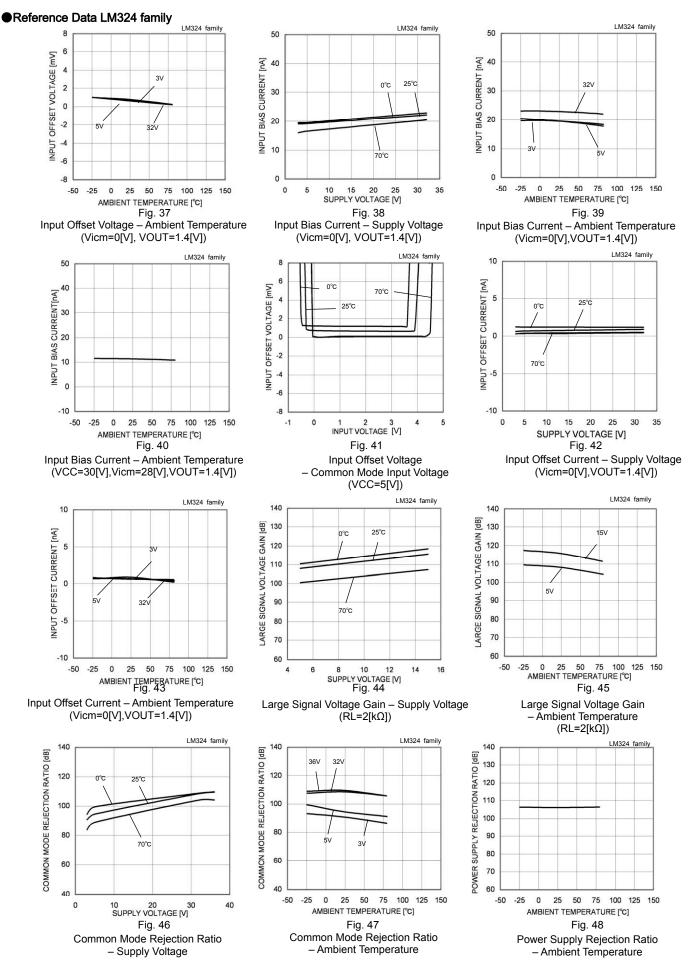

					Lin	nits					
Parameter	Unit	Temperature range	LN	12904 far	nily	LN	/12902 far	nily	Unit	Conditions	Fig.No
		. 3.	Min.	Тур.	Max.	Min.	Тур.	Max.			
Input Offset Voltage (*3)	VIO	25°C	_	2	7	-	2	7	mV	RS=0[Ω] VO=1.4[V]	98
input Onset Voltage (3)	VIO	Full range	—	-	10	I	_	10	IIIV	V ⁺ =5[V] to 26[V]	90
Input Offset Voltage Drift	αVIO	_	_	7	_	_	7	_	µV/℃	RS=0[Ω]	-
Input Bias Current (*3)	IIB	25°C	_	45	250	I	45	250	nA	VO=1.4[V] IIN(+)orIIN(-)	98
input bias Current (3)	ПВ	Full range	_	40	500	I	_	500	IIA	VCM=0[V]	90
Input Offset Current (*3)	IIO	25°C	_	5	50	-	5	50	nA	IIN(+)-IIN(-),VCM=0[V]	- 98
		Full range	-	45	200	-	45	200	10.0	IIN(+)-IIN(-)	00
Input Offset Current Drift	αllO	-	_	10	_	_	10	_	pA/°C	RS=0[Ω]	-
Input Common-mode Voltage Range	VICR	25°C	_	-	V ⁺ -1.5	1	_	V ⁺ -1.5	v	V [*] =26[V] (*8)	98
Input Common-mode voltage Range	VICR	Full range	_	-	V ⁺ -2.0		_	V ⁺ -2.0	v		90
Supply Current	ICC	Full range	_	0.5	1.2		0.7	1.2	mA	V ⁺ =5[V] RL=∞ All Op Amps	- 99
Supply Current		i uli range	_	1	2	_	1.5	3	IIIA	V ⁺ =26[V], RL=∞ All Op Amps	55
Output Voltage Swing	VOH	Eull range	23	24	_	23	24	-	V	V ⁺ =26[V], RL=10[kΩ]	- 99
	VOL	Full range	_	5	100	I	5	100	mV	RL=10[kΩ], V ⁺ =5[V]	99
Large Signal Voltage Gain	AV	25°C	25	100	_	25	100	_	V/mV	V ⁺ =15[V] VO=1[V] to 11[V] RL≧2[kΩ]	98
Common-mode Rejection Ratio	CMRR	25°C	50	70	_	50	70	_	dB	VCM=0[V]to V ⁺ =-1.5[V]	98
Power Supply Rejection Ratio	PSRR	25°C	50	100	_	50	100	_	dB	V ⁺ =5[V] to 26[V]	98
Amplifier-to-Amplifier Coupling	V01/V02	25°C	_	120	_	_	120	_	dB	f=1[kHz] to 20[kHz] Input referred	101
		25°C	20	40	_	20	40	_		V ⁺ =15[V], VO=2[V]	
	Source	Full range	10	20	_	10	20	_	mA	VIN+=1[V], VIN-=0[V]	
Output Current (*4)		25°C	10	20	-	10	20	_	m۸		99
	Sink	Full range	2	8	_	2	8	_	mA	V ⁺ =15[V], VO=2[V] VIN+=0[V], VIN-=1[V]	
		Full range	12	50	_	12	50	-	μA		

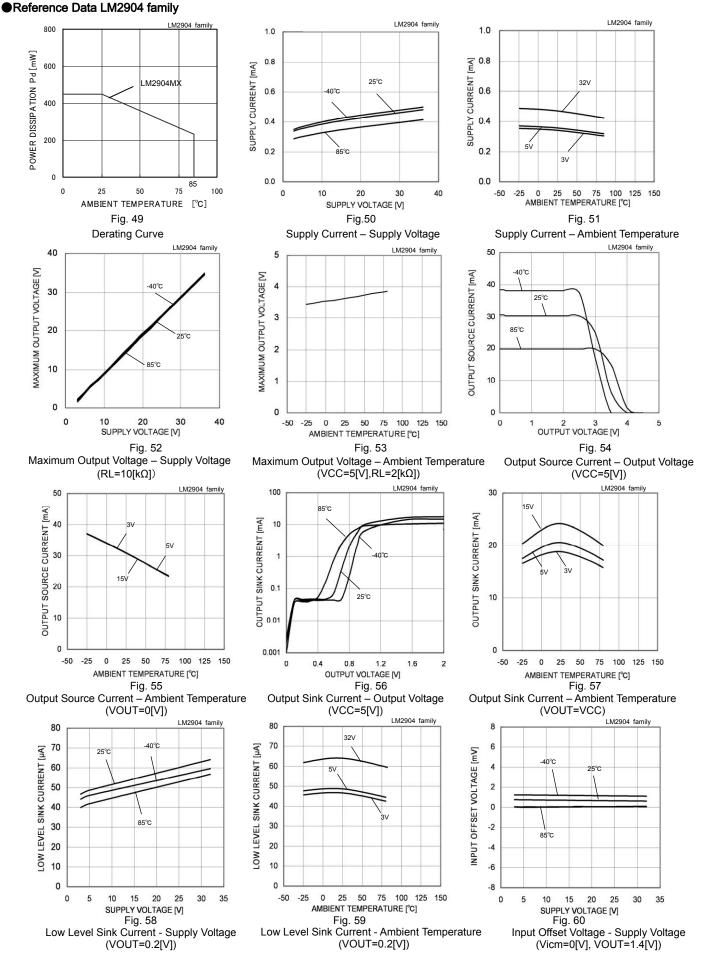
(*3) Absolute value

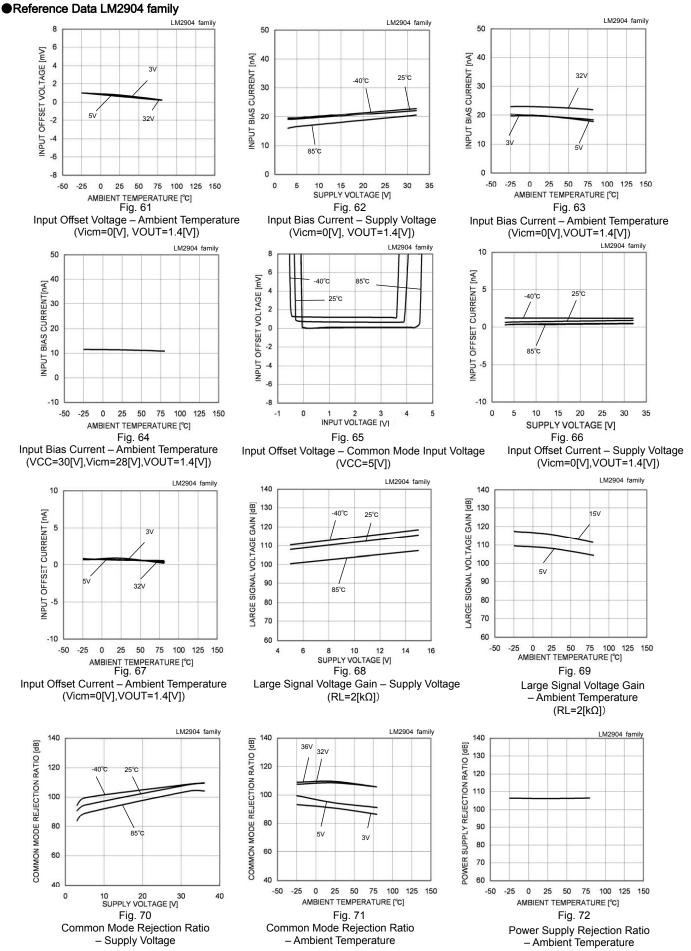

(*4) Under high temperatures, please consider the power dissipation when selecting the output current.

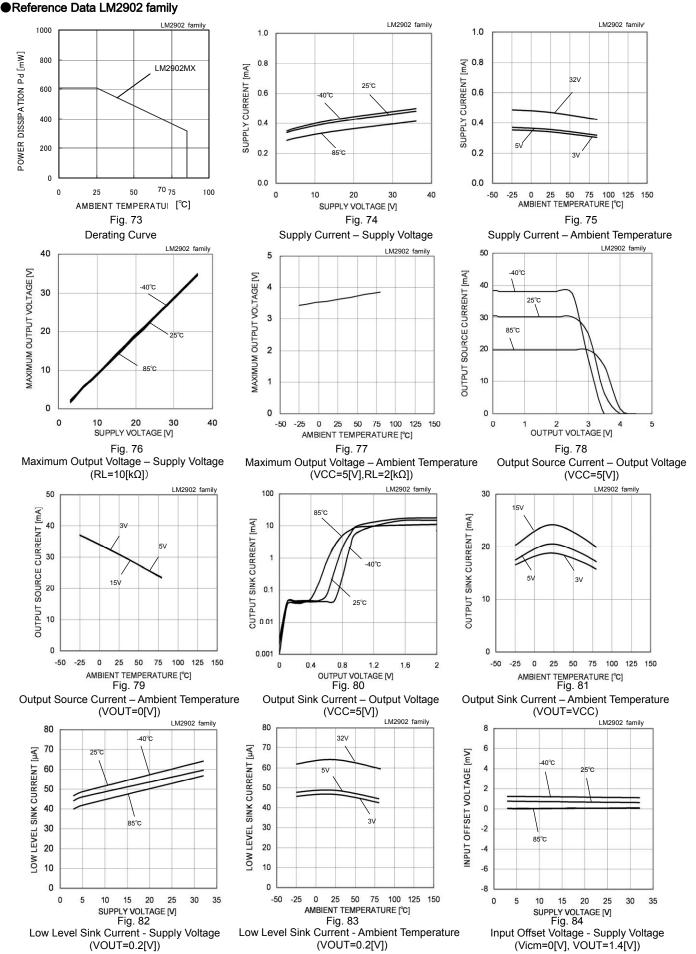
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.

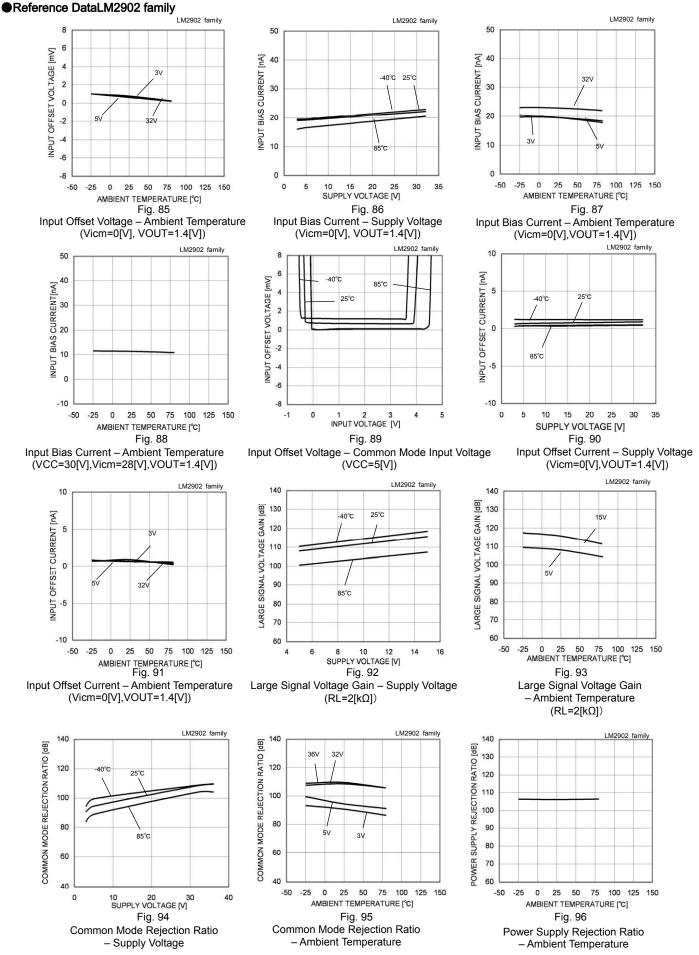





www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved.




Reference Data LM324 family



Circuit Diagram

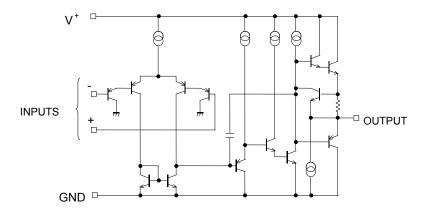
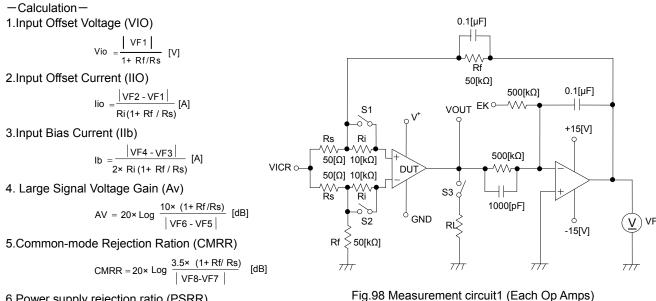



Fig.97 Circuit Diagram (each Op-Amp)

Measurement Circuit 1 NULL Method measurement Condition

				Jonar						V⁺, GN	ND, EK	, VICR	Unit : [V]
Parameter	VF	S1	S2	S3 -	LM358/LM324 family					904/LM	amily	-Calculation	
i arameter	VI	51	52	55	V+	GND	ΕK	VICR	V+	GND	EK	VICR	Calculation
Input Offset Voltage	VF1	ON	ON	OFF	5 to 30	0	-1.4	0	5 to 30	0	-1.4	0	1
Input Offset Current	VF2	OFF	OFF	OFF	5	0	-1.4	0	5	0	-1.4	0	2
Input Pige Current	VF3	OFF	ON	OFF	5	0	-1.4	0	5	0	-1.4	0	3
Input Bias Current	VF4	ON	OFF	OFF	5	0	-1.4	0	5	0	-1.4	0	3
Large Signal Veltage Gain	VF5	ON	ON	ON	15	0	-1.4	0	15	0	-1.4	0	1
Large Signal Voltage Gain	VF6	ON	ON	ON	15	0	-11.4	0	15	0	-11.4	0	4
Common mode Rejection Ratio	VF7	ON		ON OFF	5	0	-1.4	0	5	0	-1.4	0	_
Common-mode Rejection Ratio	VF8	ON	ON		5	0	-1.4	3.5	5	0	-1.4	3.5	5
Power supply Poinction Patio	VF9	ON	ON	OFF	5	0	-1.4	0	5	0	-1.4	0	6
Power supply Rejection Ratio	VF10	UN	UN	OFF	30	0	-1.4	0	30	0	-1.4	0	6

6. Power supply rejection ratio (PSRR)

 $PSRR = 20 \times Log \frac{\triangle V^+ \times (1 + Rf/Rs)}{VF10 - VF9}$ - [dB]

∆V+=25V

Measurement Circuit2 Switch Condition

SW No.	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	SW 7	SW 8	SW 9	SW 10	SW 11	SW 12	SW 13	SW 14	SW 15
Supply Current	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
High Level Output Voltage	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF
Low Level Output Voltage	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
Output Source Current	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON
Output Sink Current	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON
Slew Rate	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	OFF	OFF	OFF
Gain Bandwidth Product	OFF	ON	OFF	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF
Equivalent Input Noise Voltage	ON	OFF	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF

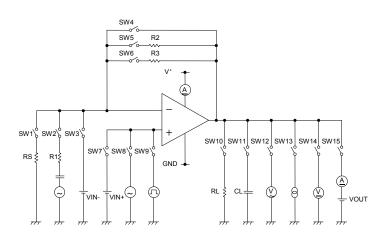


Fig.99 Measurement Circuit2 (each Op-Amp)

Measurement Circuit3 Amplifier To Amplifier Coupling

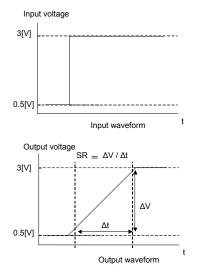
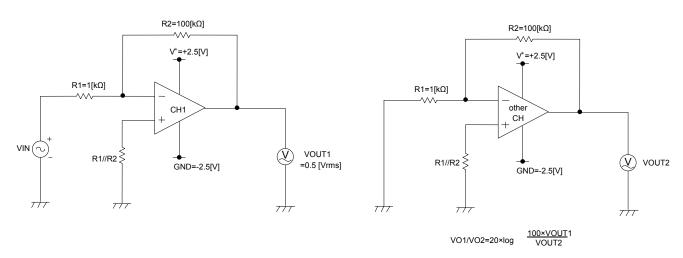



Fig.100 Slew Rate Input Waveform

NOW SERIES LM2904/2902/358/324 family

Description of Electrical Characteristics

Described below are descriptions of the relevant electrical terms Please note that item names, symbols and their meanings may differ from those on another manufacturer's documents.

1.Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components.

1.1 Power supply voltage (V⁺/GND) Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry.

1.2 Differential input voltage (VID)

Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.

1.3 Input common-mode voltage range (VICR)

Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.

1.4 Operating and storage temperature ranges (Topr, Tstg)

The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics

1.5 Power dissipation (Pd)

Indicates the power that can be consumed by a particular mounted board at ambient temperature (25°C). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance

2. Electrical characteristics

2.1 Input offset voltage (VIO)

Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0 V.

- 2.2 Input offset voltage drift (△VIO/△T) Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.
- 2.3 Input offset current (IIO)

Indicates the difference of input bias current between the non-inverting and inverting terminals.

2.4 Input offset current drift ($\Delta IIO/\Delta T$)

Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.

2.5 Input bias current (IIB)

Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal.

2.6 Circuit current (ICC)

Indicates the current of the IC itself that flows under specified conditions and during no-load steady state.

2.7 High level output voltage/low level output voltage (VOH/VOL)

Signifying the voltage range that can be output under specified load conditions, it is in general divided into high level output voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit.

2.8 Large signal voltage gain (AV)

The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.

AV = (output voltage fluctuation) / (input offset fluctuation)

2.9 Input common-mode voltage range (VICR)

Indicates the input voltage range under which the IC operates normally.

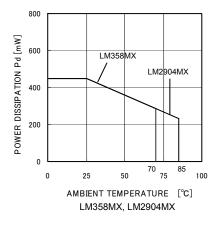
- 2.10 Common-mode rejection ratio (CMRR) Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation)
- 2.11 Power supply rejection ratio (PSRR) Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation). SVR = (change in power supply voltage) / (input offset fluctuation)
- 2.12 Output source current/ output sink current (IOH/IOL) The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source current indicates the current flowing out of the IC, and the output sink current the current flowing into the IC.
- 2.13 Channel separation (CS)

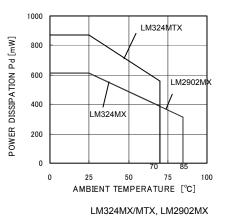
Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel.

2.14 Slew rate (SR)

Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.

2.15 Gain bandwidth product (GBW)


The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of the op-amp is 1 (maximum frequency, and unity gain frequency).


LM358MX,LM2904MX,LM324MX,LM324MTX,LM2902MX

Technical Note

NOW SERIES LM2904/2902/358/324 family

Derating curves

Power Dissipation		
Package	Pd[W]	<i>θ</i> ja [°C/W]
SO package8 (*8)	450	3.6

Power Dissipation		
Package	Pd[W]	<i>θ</i> ja [°C/W]
SO package14	610	4.9
TSSOP14	870	7.0

Fig.102 Derating Curves

_ .

Precautions

- 1) Unused circuits
 - When there are unused circuits, it is recommended that they be connected as in Fig.103, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR).
- 2) Input terminal voltage

Applying GND + 32V to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However, this does not ensure normal circuit operation.

Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics.

3) Power supply (single / dual)

The op-amp operates when the voltage supplied is between V⁺ and GND Therefore, the single supply op-mp can be used as a dual supply op-amp as well.

4) Power dissipation (Pd)

Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information.

5) Short-circuit between pins and erroneous mounting

Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output and GND may result in IC destruction.

6) Operation in a strong electromagnetic field

Operation in a strong electromagnetic field may cause malfunctions.

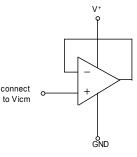
7) Radiation

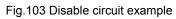
This IC is not designed to withstand radiation.

8) IC handing

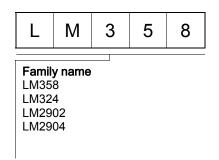
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo) effects.

9) IC operation


The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of V⁺ and GND, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output terminal and GND, and increasing the bias current for Class A operation will suppress crossover distortion.

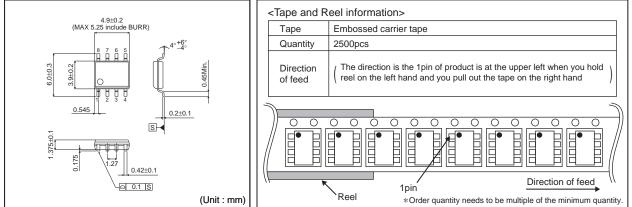

10) Board inspection

Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage.

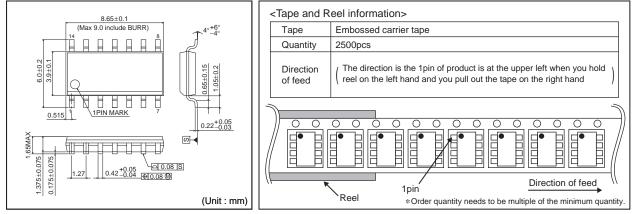

11) Output capacitor

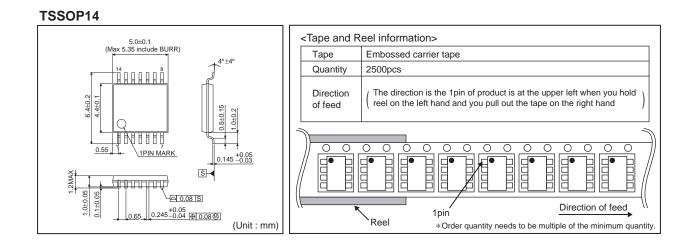
Discharge of the external output capacitor to V⁺ is possible via internal parasitic elements when V⁺ is shorted to GND, causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1μ F.

Ordering part number



Package type M : S.O package MT : TSSOP


Μ


Packaging and forming specification X: Embossed tape and reel

S.O package8

S.O package14

	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conter	nt specified herein is subject to change for improvement without notice.
"Products	nt specified herein is for the purpose of introducing ROHM's products (hereinafte '). If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein the standard usage and operations of the Products. The peripheral conditions mus to account when designing circuits for mass production.
However,	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such n, ROHM shall bear no responsibility for such damage.
examples implicitly, a other parti	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o any license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the h technical information.
equipment	cts specified in this document are intended to be used with general-use electroni- c or devices (such as audio visual equipment, office-automation equipment, commu evices, electronic appliances and amusement devices).
The Produ	cts specified in this document are not designed to be radiation tolerant.
	HM always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of a shall bear	sure to implement in your equipment using the Products safety measures to guard e possibility of physical injury, fire or any other damage caused in the event of the ny Product, such as derating, redundancy, fire control and fail-safe designs. ROHM no responsibility whatsoever for your use of any Product outside of the prescribed ot in accordance with the instruction manual.
system wh may result instrument controller of the Pro	icts are not designed or manufactured to be used with any equipment, device of hich requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica c, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- or other safety device). ROHM shall bear no responsibility in any way for use of an ducts for the above special purposes. If a Product is intended to be used for an ial purpose, please contact a ROHM sales representative before purchasing.
be control	nd to export or ship overseas any Product or technology specified herein that ma led under the Foreign Exchange and the Foreign Trade Law, you will be required to cense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/