

Am27X64

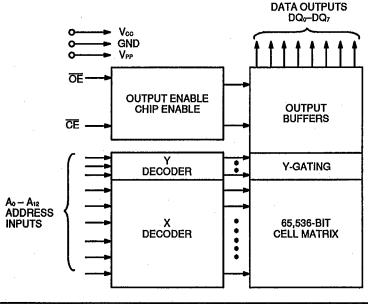
8,192 x 8-Bit CMOS ExpressROM™ Device

Advanced Micro **Devices**

DISTINCTIVE CHARACTERISTICS

- As an OTP EPROM alternative:
 - Factory optimized programming
 - Fully tested and guaranteed
 - Lower cost
- As a Mask ROM alternative:
 - Shorter leadtime
 - Lower volume per code
- Compatible with JEDEC-approved EPROM pinout

- **High noise immunity**
- High performance CMOS technology
 - Fast access time 100 ns
 - Low power dissipation 100 µA maximum standby current
- Available in plastic DIP, plastic leaded chip carrier (PLCC), and in DIE form
- Latch-up protected to 100 mA from -1 V to Vcc+1 V


GENERAL DESCRIPTION

The Am27X64 is a wafer-level programmed EPROM with a standard topside for plastic packaging. It is organized as 8,192 by 8 bits and is available in plastic DIP as well as plastic leaded chip carrier (PLCC) packages. ExpressROM Devices provide a board-ready memory solution for medium to high volume codes with short leadtimes. This offers manufacturers a cost-effective and flexible alternative to OTP EPROMs and mask programmed ROMs.

Access times as fast as 100 ns allow operation with high-performance microprocessors with reduced WAIT states. The Am27X64 offers separate Output Enable (OE) and Chip Enable (CE) controls, thus eliminating bus contention in a multiple bus microprocessor system.

AMD's CMOS process technology provides high speed, low power, and high noise immunity. Typical power consumption is only 100 mW in active mode, and 250 μ W in standby mode.

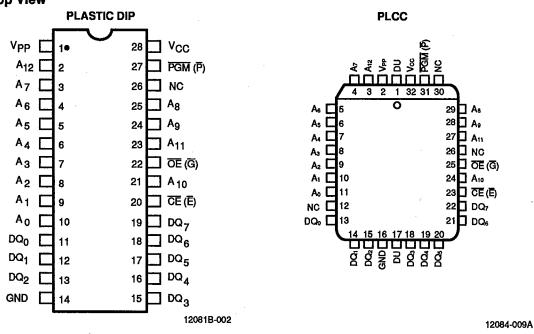
BLOCK DIAGRAM

12081B-001

Amendment/0

Publication # 12084

issue Date: March 1991


PRODUCT SELECTOR GUIDE

T-46-13-25

Family Part No.	Am27X64				
Ordering part No: ±5% VCC Tolerance	-105	-125			
±10% VCC Tolerance	-	-120	-150	-200	-250
Max Access Time (ns)	100	120	150	200	250
CE (E) Access (ns)	100	120	150	200	250
OE (G) Access (ns)	40	50	65	75	100

CONNECTION DIAGRAMS

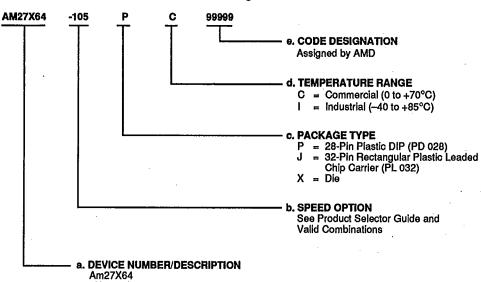
Top View

Note: JEDEC nomenclature is in parentheses.

LOGIC SYMBOL

$DQ_0 - DQ_7$ A0 - A12 CE (E) OE (G) 12081B-004

PIN DESCRIPTION


A0 - A12 Address Inputs CE (E) = Chip Enable Input DQ₀ - DQ₇ = Data Outputs OE (G) = Output Enable Input VPP Vcc Supply Voltage Vcc Vcc Supply Voltage PGM (P) **Enable Input GND** Ground NC = No Internal Connection DU No External Connection (Do Not Use)

ORDERING INFORMATION Standard Products

T-46-13-25

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

- a. Device Number
- b. Speed Option
- c. Package Type d. Temperature Range e. Code Designation

Valid Combinations					
AM27X64-105 AM27X64-120 AM27X64-125 AM27X64-150 AM27X64-200 AM27X64-250	PC, JC, XC, PI, JI				

8K x 8-Bit CMOS ExpressROM Device

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

FUNCTIONAL DESCRIPTION Read Mode

The Am27X64 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tacc) is equal to the delay from CE to output (tce). Data is available at the outputs to after the falling edge of OE, assuming that CE has been LOW and addresses have been stable for at least tacc - toe.

Standby Mode

The Am27X64 has a CMOS standby mode which reduces the maximum Vcc current to 100 µA. It is placed in CMOS-standby when \overline{CE} is at $Vcc \pm 0.3 \text{ V}$. The Am27X64 also has a TTL-standby mode which reduces the maximum Vcc current to 1.0 mA. It is placed in TTLstandby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the OE input.

Output OR-Tieing

To accommodate multiple memory connections, a twoline control function is provided to allow for:

- 1. Low memory power dissipation, and
- 2. Assurance that output bus contention will not occur.

It is recommended that CE be decoded and used as the primary device-selecting function, while OE be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins

are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 µF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on ExpressROM Device arrays, a 4.7 µF bulk electrolytic capacitor should be used between Vcc and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

	Mode Select Table						
Pins							
Mode	CE	ŌĒ	PGM	Vpp	Outputs		
Read	ViL	VIL	х	Х	Dout		
Output Disable	V IL	VIH	X	X	High Z		
Standby (TTL)	ViH	х	х	X	High Z		
Standby (CMOS)	Vcc ± 0.3 V	Х	Х	X	High Z		

Note: X can be either VIL or VIH

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

-65 to +125°C

Ambient Temperature

with Power Applied -55 to +125°C

Voltage with Respect to Ground:

All pins except Vcc

-0.6 to Vcc + 0.6 V

Vcc

-0.6 to +7.0 V

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

During transitions, the input may overshoot GND to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and output may overshoot to Vcc +2.0 V for periods of up to 20 ns.

OPERATING RANGES

Commercial (C) Devices

Case Temperature (Tc)

0 to +70°C

Industrial (I) Devices

Case Temperature (Tc)

-40 to +85°C

Supply Read Voltages:

Vcc for Am27X64-XX5 Vcc for Am27X64-XX0

+4.75 to +5.25 V +4.50 to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified (Notes 1, 4, 5 & 8)

T-46-13-25

Parameter Symbol	Parameter Description Test Conditions		Min.	Max.	Unit	
TTL and N	MOS					
Vон	Output HIGH Voltage	loн = 400 μA	2.4		٧	
Vol	Output LOW Voltage	loL = 2.1 mA		0.45	V	
ViH	Input HIGH Voltage		2.0	Vcc + 0.5	V	
VIL	Input LOW Voltage		-0.5	+0.8	V	
tu .	Input Load Current	Vin = 0 V to +Vcc		1.0	μА	
llo	Output Leakage Current	Vout = 0 V to +Vcc		5	μΑ	
lcc1	Vcc Active Current (Note 5)	CE = V _{IL} , f = 5 MHz, lout = 0 mA (Open Outputs)		30	mA	
lcc2	Vcc Standby Current	CE = VIH		1	mA	
Ірр	Vcc Supply Current (Note 6)	CE = OE = VIL, VPP = VCC		100	μА	
CMOS						
Vон	Output HIGH Voltage	Іон = 400 µA	2.4		V	
Vol.	Output LOW Voltage	lo _L = 2.1 mA		0.45	V	
ViH	Input HIGH Voltage		Vcc - 0.3	Vcc+ 0.3	٧	
VIL	Input LOW Voltage		- 0.5	+0.8	٧	
lu	Input Load Current	Vin = 0 V to +Vcc		1.0	μΑ	
lıo	Output Leakage Current	Vout = 0 V to +Vcc		5	μА	
lcc ₁	Vcc Active Current (Note 5)	CE ≈ V _{IL} , f = 5 MHz, lout = 0 mA (Open Outputs)		25	mA	
lcc2	Vcc Standby Current	CE = Vcc ± 0.3 V		100	μА	
Ipp	Vcc Supply Current (Note 6)	CE = OE = VIL, VPP = VCC		100	μА	

CAPACITANCE (Notes 2, 3 & 7)

T-46-13-25

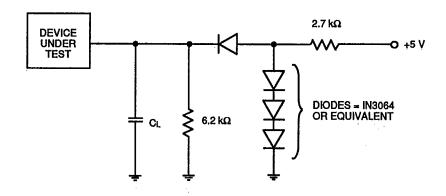
Parameter Symbol	Parameter Description	Test Conditions	Тур.	Max.	Unit
CIN1	Address Input Capacitance	VIN = 0 V	8	12	pF
CIN2	OE Input Capacitance	Vin = 0 V	8	12	рF
CIN3	CE Input Capacitance	Vin = 0 V	9	12	pF
Соит	Output Capacitance	Vour = 0 V	. 8	12	pF

Notes:

- 1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.
- 2. Typical values are for nominal supply voltages.
- 3. This parameter is only sampled and not 100% tested.
- 4. Caution: The Am27X64 must not be removed from, or inserted into, a socket or board when Vcc is applied.
- Icc1 is tested with $\overline{OE} = V_{IH}$ to simulate open outputs.
- 6. Maximum active power usage is the sum of Icc and Ipp.
- 7. $T_A = 25^{\circ}C$, f = 1 MHz.
- 8. During transitions, the input may overshoot GND to -2.0 V for periods of up to 20 ns. Maximum DC voltage on input and output may overshoot to Vcc + 2.0 V for periods of up to 20 ns.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (Notes 1, 3 & 4)

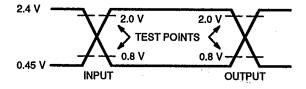
Parame JEDEC	ter Symbol	Parameter	Test		405	-125	450	000	050	11-11
JEDEC	Standard	Description	Conditions		-105	-120	-150	-200	-250	Unit
tavov	tacc	Address to	CE = OE = VIL	Min.						ns
•		Output Delay		Max.	100	120	150	200	250	
telav	tce	Chip Enable to	OE = VIL	Min.						ns
		Output Delay		Max.	100	120	150	200	250	
tgLQV	toe	Output Enable to	CE = VIL	Min.						ns
<u> </u>		Output Delay		Max.	40	50	65	75	100	
tehoz	tor	Chip Enable HIGH		Min.						ns
tвноz	(Note 2)	or Output Enable HIGH, whichever comes first, to Out- put Float		Max.	30	30	30	30	30	110
taxqx	toн	Output Hold		Min.	0	0	. 0	0	0	ns
		from Addresses, CE, or OE, whichever occurred first		Max.				·		


Notes:

- 1. Vcc must be applied simultaneously or before Vpp, and removed simultaneously or after Vpp.
- 2. This parameter is only sampled and not 100% tested.
- 3. Caution: The Am27X64 must not be removed from, or inserted into, a socket or board when Vcc is applied.
- 4. Output Load: 1 TTL gate and CL = 100 pF Input Rise and Fall Times: 20 ns

Input Pulse Levels: 0.45 to 2.4 V

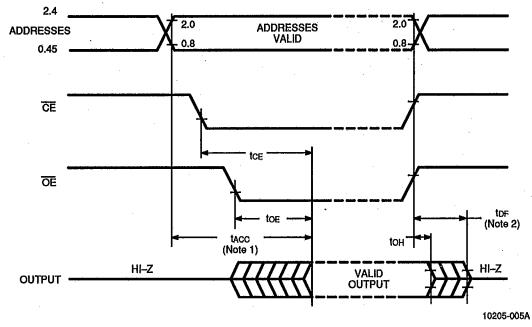
Timing Measurement Reference Level — Inputs: 0.8 V and 2 V


Outputs: 0.8 V and 2 V

10205-004A

C_L = 100 pF including jig capacitance

SWITCHING TEST WAVEFORM


10205-009A

AC Testing: Inputs are driven at 2.4 V for a Logic "1" and 0.45 V for a Logic "0". Input pulse rise and fall times are ≤ 20ns.

WAVEFORM	INPUTS	OUTPUTS
	Must be Steady	Will be Steady
	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
	Don't Care, Any Change Permitted	Changing, State Unknown
>>> -€€	Does Not Apply	Center Line is High- Impedance "Off" State

KS000010

SWITCHING WAVEFORMS

Note:

- 1. OE may be delayed up to tacc-toe after the falling edge of CE without impact on tacc.
- 2. top is specified from $\overline{\text{OE}}$ or $\overline{\text{CE}}$, whichever occurs first.