Precision Micropower Shunt Voltage Reference

Features

- Fixed 2.500 V and 3.300 V
- Tolerances to $\pm 0.1 \%\left(25^{\circ} \mathrm{C}\right)$
- Low output noise
- Low temperature coefficient, $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$
- Small package: SSOT-23
- Extended operating current range

Applications

- Portable equipment
- Disk drives
- Instrumentation
- Audio equipment
- Data acquisition systems

Description

The FAN4050 series of precision shunt references are ideal for space- and cost-sensitive applications. They are available in two output voltages $(2.500 \mathrm{~V}$ and 3.300 V$)$ and with a variety of output voltage tolerances $(0.1 \%, 0.2 \%$, and $0.5 \%)$. They also have excellent temperature coefficients, $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The FAN4050 series is available in the SOT-23 package.

Connection Diagram

*This pin must be left floating or connected to pin 2.

Top View

Absolute Maximum Ratings ${ }^{1}$

Ratings are over full operating free-air temperature range unless otherwise noted.

Parameter	Min.	Max.	Unit
Continuous cathode current, I_{K}	-10	20	mA
Power dissipation ${ }^{2}$		280	mW
Storage Temperature Range	-65	150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)		300	${ }^{\circ} \mathrm{C}$

Notes:

1. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.
2. It is recommended to connect pin 3 to pin 2 in the SSOT23 package to ensure optimal thermal performance.

Recommended Operating Conditions

Parameter	Min.	Max.	Unit
Continuous cathode current, I_{K}	0.1	15	mA
Operating temperature range in free air, T_{A}	-40	85	${ }^{\circ} \mathrm{C}$

Equivalent Schematic

Guaranteed Electrical Characteristics, FAN4050-2.5

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified, in free air)
The • denotes specifications which apply over the full operating temperature range.

Symbol	Parameter	Conditions		Limits			Units
				A	B	C	
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}$		2.500	2.500	2.500	V*
$\mathrm{TCV}_{\mathrm{R}}$	Reverse Breakdown Voltage Tolerance	$\mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}$	-	$\begin{aligned} & \pm 2.5 \\ & \pm 11 \end{aligned}$	$\begin{aligned} & \pm 5.0 \\ & \pm 14 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 21 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{I}_{\text {RMIN }}$	Minimum Operating Current		\bullet	65	65	65	$\mu \mathrm{A}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{T}$	Reverse Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}$	\bullet	± 50	± 50	± 50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\mathrm{R}}\left(\Delta \mathrm{l}_{\mathrm{K}}\right)$	Reverse Breakdown Voltage Change with Operating Current	$\begin{aligned} & \mathrm{I}_{\text {RMIN }} \leq \mathrm{I}_{\mathrm{K}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{K}} \leq 15 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{K}} \leq 25 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 1.2 \\ & 8.0 \\ & 12 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 8.0 \\ & 12 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 8.0 \\ & 12 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mathrm{mV}^{*} \end{gathered}$
$Z_{K A}$	Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{K}}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{AC}}=0.1 \mathrm{I}_{\mathrm{K}}$		0.3	0.3	0.3	Ω^{*}
e_{N}	Wideband Noise	$\begin{aligned} & \mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}, \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$		35	35	35	$\mu \mathrm{V}_{\text {RMS }}{ }^{*}$
$\Delta \mathrm{V}_{\mathrm{R}}$	Reverse Breakdown Voltage Long-term Stability	$\mathrm{t}=1000 \mathrm{hrs}, \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}$		120	120	120	ppm*

*Typical.

Guaranteed Electrical Characteristics, FAN4050-3.3

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified, in free air)
The • denotes specifications which apply over the full operating temperature range.

Symbol	Parameter	Conditions		Limits			Units
				A	B	C	
V_{R}	Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}$		3.300	3.300	3.300	V^{*}
$\mathrm{TCV}_{\mathrm{R}}$	Reverse Breakdown Voltage Tolerance	$\mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}$		$\begin{gathered} \pm 3.3 \\ \pm 25 \end{gathered}$	$\begin{aligned} & \pm 6.6 \\ & \pm 28 \end{aligned}$	$\begin{aligned} & \pm 17 \\ & \pm 38 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{I}_{\text {RMIN }}$	Minimum Operating Current			70	70	70	$\mu \mathrm{A}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{T}$	Reverse Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}$	-	± 50	± 50	± 50	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\mathrm{R}}\left(\Delta \mathrm{I}_{\mathrm{K}}\right)$	Reverse Breakdown Voltage Change with Operating Current	$\begin{aligned} & \mathrm{I}_{\mathrm{RMIN}} \leq \mathrm{I}_{\mathrm{K}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{K}} \leq 15 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{K}} \leq 25 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 1.2 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{Z}_{\text {KA }}$	Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{K}}=1 \mathrm{~mA}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{I}_{\mathrm{AC}}=0.1 \mathrm{I}_{\mathrm{K}}$		0.5	0.5	0.5	Ω^{*}
e_{N}	Wideband Noise	$\mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		70	70	70	$\mu \mathrm{V}_{\text {RMS }}{ }^{*}$
$\Delta \mathrm{V}_{\mathrm{R}}$	Reverse Breakdown Voltage Long-term Stability	$\mathrm{t}=1000 \mathrm{hrs}, \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{K}}=100 \mu \mathrm{~A}$		120	120	120	ppm*

*Typical.

Mechanical Dimensions

SOT-23 Package

Symbol	Inches		Millimeters		Notes
	Min.	Max.	Min.	Max.	
A	.035	.044	.89	1.12	
A1	.0004	.004	.01	.10	
B	.012	.020	.30	.50	
c	.003	.008	.08	.20	
D	.110	.120	2.80	3.04	
E	.047	.055	1.20	1.40	
e	.037 BSC		.95 BSC		
e1	.075 BSC	1.90 BSC			
H	.083	.104	2.10		2.64
L	.021 REF		.54 REF		
S	.016 Nom	395 Nom			

Notes:

1. Dimensions are inclusive of plating.
2. Dimensions are exclusive of mold flash \& metal burr.
3. Comply to JEDEC TO-236
4. This drawing is for matrix leadframe only.

Ordering Information

Example: FAN4050AIS3-2.5

FAN4050

SOT-23 Package Marking Information

Only 3 fields of marking are possible on an SOT-23. This table gives the meaning of these fields.
Example: F2A
F

$2.5 \mathrm{~V}=2$
Grade
$3.3 \mathrm{~V}=3$
$0.1 \%=\mathrm{A}$
$\quad 0.2 \%=B$
$0.5 \%=C$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
