

STL60N32N3LL

Dual N-channel 30 V, 0.006 Ω, 15 A PowerFLAT™5x6 asymmetrical double island, STripFET™ Power MOSFET

Target specification

Features

Туре		v_{DSS}	R _{DS(on)}	I _D
STL60N32N3LL	Q ₁	30 V	< 0.012 Ω	12 A
OTEOONOZNOLL	Q ₂	30 V	< 0.008 Ω	15 A

- R_{DS(on)} * Q_g industry benchmark
- Extremely low on-resistance R_{DS(on)}
- Very low switching gate charge
- High avalanche ruggedness
- Low gate drive power losses

Application

Switching applications

Description

This product utilizes latest generations of design rules of ST's proprietary STripFETTM V and STripFETTM VI DeepGATE technology. The lowest available $R_{DS(on)}^*Q_g$, in this chip scale package, makes this device suitable for the most demanding DC-DC converter applications, where high power density is to be achieved.

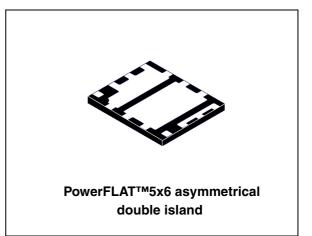
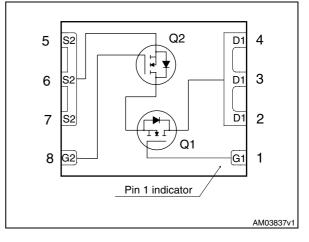



Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Order code Marking		Packaging	
STL60N32N3LL	60N32N3LL	PowerFLAT™5x6 asymmetrical double island	Tape and reel	

This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.

www.st.com

STL60N32N3LL

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
3	Test circuits	6
4	Package mechanical data	7
5	Revision history	9

1

Electrical ratings

Table 2. Absolute maximum ratings					
Symbol	Parameter	Туре	Value	Unit	
V _{DS}	Drain-source voltage (v _{GS} = 0)	Q ₁	30	V	
V DS	Drain-source voltage ($v_{GS} = 0$)	Q ₂	30	V	
V _{GS}	Gate- source voltage	Q ₁	± 22	V	
v GS	Gale- source voltage	Q ₂	± 20	V	
ا _D ⁽¹⁾	Drain current (continuous) at T _C = 25°C	Q ₁	32	A	
U		Q ₂	60	A	
I _D ⁽¹⁾	Drain current (continuous) at	Q ₁	20	A	
U	$T_{\rm C} = 100^{\circ}{\rm C}$	Q ₂	37	A	
I _D ⁽²⁾	Drain current (continuous) at T _C = 25°C	Q ₁	12	A	
U		Q ₂	15	A	
I _D (2)	Drain current (continuous) at	Q ₁	7.5	A	
Ū	$T_{\rm C} = 100^{\circ}{\rm C}$	Q ₂	9	A	
I _{DM} ⁽³⁾	Drain current (pulsed)	Q ₁	48	Α	
'DM		Q ₂	60	A	
Р _{тот} ⁽¹⁾	Total dissipation at $T_{C} = 25^{\circ}C$	Q ₁	23	W	
101		Q ₂	50	W	
P _{TOT} ⁽²⁾	Total dissipation at $T_{C} = 25^{\circ}C$	Q ₁	3.12	W	
• 101		Q ₂	3.12	W	
$E_{AS}^{(4)}$	Single pulse avalanche energy		TBD	mJ	

Table 2. Absolute maximum ratings

1. This value is accordingly R_{thj-c}

2. This value is accordingly $R_{thj-pcb}$

3. Pulse width limited by safe operating area

4. Starting $T_J = 25 \ ^{\circ}C$, $I_D = 7.5 \ A$

Table 3. Thermal data

Symbol	Parameter	Туре	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-ambient max		40	°C/W
R _{thj-c}	Thermal resistance junction-case	Q ₁ Q ₂	5.5 2.5	°C/W
Тj	Thermal operating junction-ambient		150	°C
T _{stg}	Storage temperature		-55 to 150	°C

1. When mounted on FR-4 board of 1inch², 2oz Cu, t < 10 sec

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	Q ₁ Q ₂	30 30			V V
I _{DSS}	Zero gate voltage Drain current (V _{GS} = 0)	V _{DS} = Max rating	Q ₁ Q ₂			1 1	μΑ μΑ
I _{DSS}	Zero gate voltage Drain current (V _{GS} = 0)	V _{DS} =Max rating @125°C	Q ₁ Q ₂			10 10	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 22 V	Q ₁ Q ₂			±100 ±100	nA nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS},$ $I_D = 250 \ \mu A$	Q ₁ Q ₂	1 1			V V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 6 \text{ A}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7.5 \text{ A}$	Q ₁ Q ₂		0.01 0.006	0.12 0.008	Ω Ω
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 4.5 \text{ V}, I_D = 6 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 7.5 \text{ A}$	Q ₁ Q ₂		0.0115 0.009	0.014 0.011	Ω Ω

Table 4.	On/off states

Table 5.	Dynamic
----------	---------

Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		Q ₁ Q ₂	-	1020 1690	-	pF pF
C _{oss}	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0	Q ₁ Q ₂	-	200 291	-	pF pF
C _{rss}	Reverse transfer capacitance		Q ₁ Q ₂	-	26 176	-	pF pF
Qg	Total gate charge		Q ₁ Q ₂	-	7 17	-	nC nC
Q _{gs}	Gate-source charge	$V_{DD} = 15 \text{ V}, I_D = 15 \text{ A},$ $V_{GS} = 4.5 \text{ V}$ (see Figure 3)	Q ₁ Q ₂	-	TBD TBD	-	nC nC
Q _{gd}	Gate-drain charge	()	Q ₁ Q ₂	-	TBD TBD	-	nC nC

Electrical characteristics

	e milening annee						
Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} =15 V, I _D =7.5 A, R _G =4.7 Ω, V _{GS} = 4.5 V	Q ₁ Q ₂		TRO		ns ns
t _r	Rise time	V _{GS} = 4.5 V (see Figure 7)	Q ₁ Q ₂	-	TBD	-	ns ns
t _{d(off)}		V _{DD} =15 V, I _D =7.5 A,	Q ₁				ns
t _f	Turn-off delay time Fall time	V_{DD} =15 V, I _D =7.5 A, R _G =4.7 Ω, V _{GS} = 4.5 V (see Figure 7)	Q ₂ Q ₁ Q ₂	-	TBD	-	ns ns ns
		(see rigule /)	\mathbf{Q}_2				115

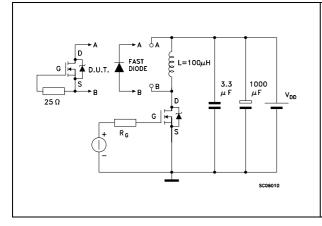
Table 6. Switching times

Table 7.Source drain diode

Symbol	Parameter	Test conditions	Туре	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current	V _{DD} =15 V, I _D =7.5 A R _G =4.7 Ω, V _{GS} =4.5 V	Q ₁ Q ₂	-		12 15	A A
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)	V _{DD} =15 V, I _D = 7.5 A R _G =4.7 Ω, V _{GS} =4.5 V	Q ₁ Q ₂	-		48 60	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 15 A, V _{GS} = 0	Q ₁ Q ₂	-		1.1 1.1	V V
t _{rr}	Reverse recovery time	I _{SD} = 15 A,	Q ₁		TBD		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 15 V di/dt = 100 A/µs,	Q ₂ Q ₁ Q ₂	-	TBD TBD TBD		ns nC nC
I _{RRM}	Reverse recovery current	T _j = 150°C <i>(see Figure 7)</i>	Q ₂ Q ₁ Q ₂		TBD TBD TBD		A A

1. Pulse width limited by safe operating area.

2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%



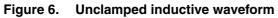

3 Test circuits

Figure 2. Switching times test circuit for resistive load

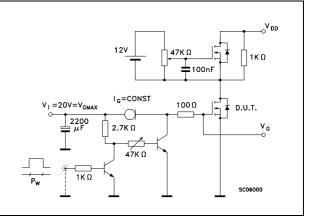
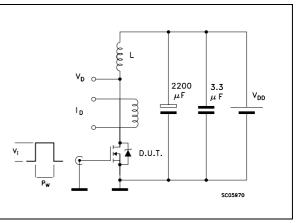


Figure 4. Test circuit for inductive load switching and diode recovery times


6/10

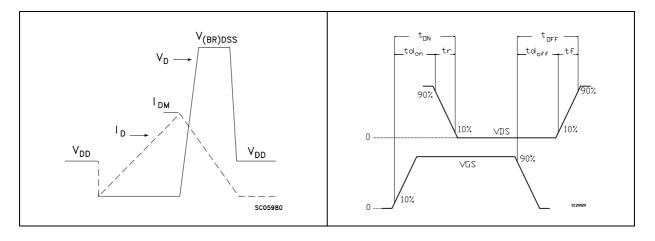
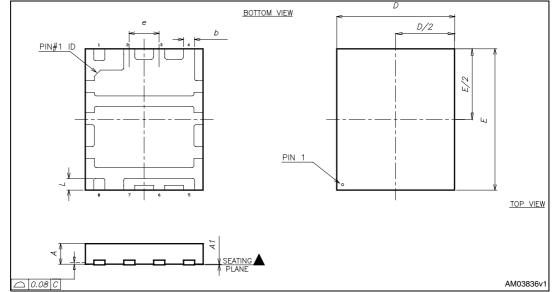

Gate charge test circuit

Figure 3.

Figure 5. Unclamped inductive load test circuit

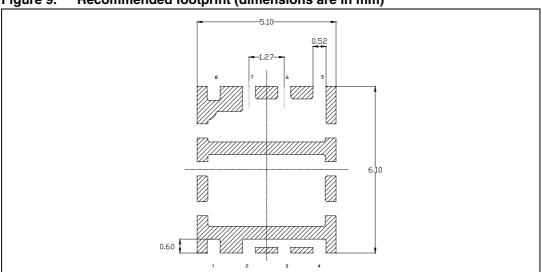
Doc ID 17266 Rev 1

57


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Dim.		mm	
	Min.	Тур.	Max.
А	0.77		0.97
A1			0.03
b	0.42		0.52
D	4.90	5.00'	5.10
D2	2.40		2.60
Е	5.90	6.00	6.10
E2	2.90		3.10
е		1.27	
L	0.40		0.60


 Table 8.
 PowerFLAT™ 5x6 asymmetrical double island dimentions

57

STL60N32N3LL

Figure 9. Recommended footprint (dimensions are in mm)

5 Revision history

Table 9.Document revision history

Date	Revision	Changes
15-Mar-2010	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17266 Rev 1

