

PSoC® Mixed-Signal Array

Features

- Low Power CapSense Block
 - □ Configurable Capacitive Sensing Elements
 - □ Supports Combination of CapSense Buttons, Sliders, Touchpads, and Proximity Sensors
- Powerful Harvard Architecture Processor
 - □ M8C Processor Speeds Running up to 12 MHz
 - □ Low Power at High Speed
 - □ 2.4V to 5.25V Operating Voltage
 - □ Industrial Temperature Range: -40°C to +85°C
- Flexible On-Chip Memory
 - □ 8K Flash Program Storage 50,000 Erase/Write Cycles
 - □ 512 Bytes SRAM Data Storage
 - □ Partial Flash Updates
 - □ Flexible Protection Modes
 - □ Interrupt Controller
 - □ In-System Serial Programming (ISSP)
- Complete Development Tools
 - □ Free Development Tool (PSoC Designer™)
 - □ Full Featured, In-Circuit Emulator, and Programmer
 - □ Full Speed Emulation
 - □ Complex Breakpoint Structure
 - 128K Trace Memory

- Precision, Programmable Clocking
 - □ Internal ±5.0% 6/12 MHz Main Oscillator
 - □ Internal Low Speed Oscillator at 32 kHz for Watchdog and Sleep
- Programmable Pin Configurations
 - ☐ Pull Up, High Z, Open Drain, and CMOS Drive Modes on All GPIO
 - ☐ Up to 28 Analog Inputs on GPIO
 - □ Configurable Inputs on All GPIO
 - □ Selectable, Regulated Digital IO on Port 1
 - 3.0V, 20 mA Total Port 1 Source Current
 - 5 mA Strong Drive Mode on Port 1 Versatile Analog Mux
 - □ Common Internal Analog Bus
 - □ Simultaneous Connection of IO Combinations
 - □ Comparator Noise Immunity
 - Low Dropout Voltage Regulator for the Analog Array
- Additional System Resources
 - □ Configurable Communication Speeds
 - I²C: Selectable to 50 kHz, 100 kHz, or 400 kHz
 - SPI: Configurable between 46.9 kHz and 3 MHz
 - □ I²C[™] Slave
 - □ SPI Master and SPI Slave
 - □ Watchdog and Sleep Timers
 - □ Internal Voltage Reference
 - □ Integrated Supervisory Circuit

Cypress Semiconductor Corporation
Document Number: 001-05356 Rev. *D

PSoC Functional Overview

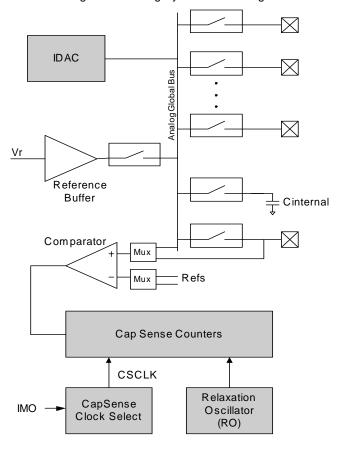
The PSoC® family consists of many Mixed Signal Arrays with On-Chip Controller devices. These devices are designed to replace multiple traditional MCU based system components with one low cost single chip programmable component. A PSoC device includes configurable analog and digital blocks and programmable interconnect. This architecture enables the user to create customized peripheral configurations to match the requirements of each individual application. Additionally, a fast CPU, Flash program memory, SRAM data memory, and configurable IO are included in a range of convenient pinouts.

The PSoC architecture for this device family, as shown in Figure 1, is comprised of three main areas: the Core, the System Resources, and the CapSense Analog System. A common versatile bus enables connection between IO and the analog system. Each CY8C20x34 PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 28 general purpose IO (GPIO) are also included. The GPIO provide access to the MCU and analog mux.

The PSoC Core

The PSoC Core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, IMO (Internal Main Oscillator), and ILO (Internal Low speed Oscillator). The CPU core, called the M8C, is a powerful processor with speeds up to 12 MHz. The M8C is a two MIPS, 8-bit Harvard architecture microprocessor.

System Resources provide additional capability such as a configurable I²C slave or SPI master-slave communication interface and various system resets supported by the M8C.


The Analog System is composed of the CapSense PSoC block and an internal 1.8V analog reference. Together they support capacitive sensing of up to 28 inputs.

The CapSense Analog System

Document Number: 001-05356 Rev. *D

The Analog System contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins is completed quickly and easily across multiple ports.

Figure 1. Analog System Block Diagram

The Analog Multiplexer System

The Analog Mux Bus connects to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces such as sliders and touch pads
- Chip-wide mux that enables analog input from any IO pin
- Crosspoint connection between any IO pin combinations

When designing capacitive sensing applications, refer to the latest signal-to-noise signal level requirements Application Notes, found under http://www.cypress.com >> DESIGN RESOURCES >> Application Notes. In general, unless otherwise noted in the relevant Application Notes, the minimum signal-to-noise ratio (SNR) requirement for CapSense applications is 5:1.

Additional System Resources

System Resources provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. Brief statements describing the merits of each system resource are presented below.

- The I²C slave or SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires run at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- Low Voltage Detection (LVD) interrupts signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.8V reference provides an absolute reference for capacitive sensing.
- The 5V maximum input, 3V fixed output, low dropout regulator (LDO) provides regulation for IOs. A register controlled bypass mode enables the user to disable the LDO.

Getting Started

To understand the PSoC silicon read this datasheet and use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in depth information, along with detailed programming information, refer to the PSoC Mixed Signal Array Technical Reference Manual on the web at http://www.cypress.com/psoc.

For up to date Ordering, Packaging, and Electrical Specification information, refer to the latest PSoC device datasheets on the web at http://www.cypress.com.

Development Kits

Document Number: 001-05356 Rev. *D

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development kits, C compilers, and all accessories for PSoC development. Go to the Cypress Online Store web site at http://www.cypress.com, click the Online Store shopping cart icon at the bottom of the web page and click *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Technical Training Modules

Free PSoC technical training modules are available for new users to PSoC. Training modules cover designing, debugging, advanced analog, and CapSense. Go to http://www.cypress.com/techtrain.

Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to http://www.cypress.com, click on Design Support located on the left side of the web page and select CYPros Consultants.

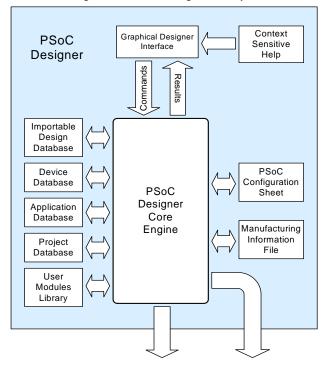
Technical Support

PSoC application engineers take pride in fast and accurate response. They are available with a four hour guaranteed response at http://www.cypress.com/support/login.cfm.

Application Notes

A long list of application notes assist you in every aspect of your design effort. To view the PSoC application notes, go to the http://www.cypress.com and select Application Notes under the Design Resources list located in the center of the web page. Application notes are sorted by date by default.

Development Tools


PSoC Designer is a Microsoft® Windows based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows NT 4.0, Windows 2000, Windows Millennium (Me), or Windows XP. For more information, see Figure 2 on page 4.

PSoC Designer helps the customer to select an operating configuration for the PSoC, write application code that uses the PSoC, and debug the application. This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and the CYASM macro assembler for the CPUs.

PSoC Designer also supports a high level C language compiler developed specifically for the devices in the family.

Figure 2. PSoC Designer Subsystems

PSoC Designer Software Subsystems

Device Editor

The device editor subsystem enables the user to select different on board analog and digital components called user modules using the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters.

The device editor also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration enables changing configurations at run time.

PSoC Designer sets up power on initialization tables for selected PSoC block configurations and creates source code for an application framework. The framework contains software to operate the selected components. If the project uses more than one operating configuration, then it contains routines to switch between different sets of PSoC block configurations at run time. PSoC Designer prints out a configuration sheet for a given project configuration for use during application programming in conjunction with the device datasheet. Once the framework is generated, the user adds application specific code to flesh out the framework. It is also possible to change the selected components and regenerate the framework.

Application Editor

Application Editor edits C language and Assembly language source code. It also assembles, compiles, links, and builds.

Document Number: 001-05356 Rev. *D

Assembler

The macro assembler enables the assembly code for seamless merging with C code. The link libraries automatically use absolute addressing or are compiled in relative mode and linked with other software modules to get absolute addressing.

C Language Compiler

C language compiler supports the PSoC family of devices. It quickly enables you to create complete C programs for the PSoC family devices.

The embedded optimizing C compiler provides all the features of C language tailored to the PSoC architecture. It comes complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

The PSoC Designer Debugger subsystem provides hardware in-circuit emulation, enabling the designer to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands enable the designer to read the program, read and write data memory, read and write IO registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also enables the designer to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online and context sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer to get started.

Hardware Tools

In-Circuit Emulator

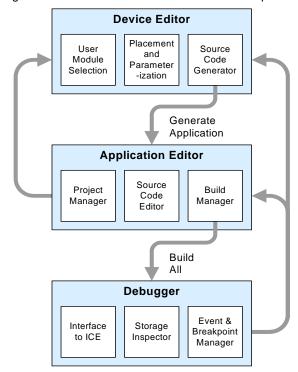
A low cost, high functionality ICE (In-Circuit Emulator) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

Designing with User Modules

The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility. It pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources are called PSoC Blocks. They implement a wide variety of user selectable functions. Each block has several registers to determine their function and connectivity to other blocks, multiplexers, buses, and to the IO pins. Iterative development cycles permit you to adapt the hardware and the software. This substantially lowers the risk of selecting a different part to meet the final design requirements.

To speed the development process, the PSoC Designer Integrated Development Environment (IDE) provides a library of pre-built and pre-tested hardware peripheral functions called as User Modules. User modules make selecting and implementing peripheral devices simple. They come in analog, digital, and mixed signal varieties.


Each user module establishes the basic register settings to implement the selected function. It also provides parameters to tailor its precise configuration to a particular application. For example, a Pulse Width Modulator user module configures one or more digital PSoC blocks, one for each 8-bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. User modules also provide tested software to cut the development time. The user module application programming interface (API) provides high level functions to control and respond to hardware events at run time. The API also provides optional interrupt service routines to adapt as needed.

The API functions are documented in user module datasheets that are viewed directly in the PSoC Designer IDE. These datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter and documents the setting of each register controlled by the user module

The development process starts when you open a new project and bring up the Device Editor, a graphical user interface (GUI) for configuring the hardware. Select the user modules you need for your project and map them on to the PSoC blocks with point-and-click simplicity. Then, build signal chains by interconnecting the user modules to each other and the IO pins. At this stage, configure the clock source connections and enter parameter values directly or by selecting values from the drop down menus. When the hardware configuration is ready for testing or moves on to developing code for the project, perform the "Generate Application" step. The PSoC Designer generates the source code that automatically configures the device to your specification and provides the high level user module API functions.

Document Number: 001-05356 Rev. *D

Figure 3. User Module and Source Code Development Flows

Now write the main program and any sub-routines using PSoC Designer's Application Editor subsystem. The Application Editor includes a Project Manager that enables to open the project source code files (including all generated code files) from a hierarchal view. The source code editor provides syntax coloring and advanced edit features for both C and assembly language. File search capabilities include simple string searches and recursive "grep-style" patterns. A single mouse click invokes the Build Manager. It employs a professional strength "makefile" system to automatically analyze all file dependencies and run the compiler and assembler as necessary. Project level options control optimization strategies used by the compiler and linker. Syntax errors are displayed in a console window. Double click the error message to show the offending line of source code. When all is correct, the linker builds a HEX file image suitable for programming.

The last step in the development process takes place inside the PSoC Designer's Debugger subsystem. The Debugger downloads the HEX image to the In-Circuit Emulator (ICE) where it runs at full speed. Debugger capabilities rival those of systems costing many times more. In addition to traditional single step, run-to-breakpoint, and watch variable features, the Debugger provides a large trace buffer. This enables to define complex breakpoint events such as monitoring address and data bus values, memory locations, and external signals.

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description
AC	alternating current
API	application programming interface
CPU	central processing unit
DC	direct current
GPIO	general purpose IO
GUI	graphical user interface
ICE	in-circuit emulator
ILO	internal low speed oscillator
IMO	internal main oscillator
Ю	input or output
LSb	least significant bit
LVD	low voltage detect
MSb	most significant bit
POR	power on reset
PPOR	precision power on reset
PSoC®	Programmable System-on-Chip™
SLIMO	slow IMO
SRAM	static random access memory

Document Number: 001-05356 Rev. *D

Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 6 on page 13 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers are also represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (For example, 01010100b or 01000011b). Numbers not indicated by an 'h', 'b', or 0x are decimals.

Pinouts

This section describes, lists, and illustrates the CY8C20234, CY8C20334, CY8C20434, and CY8C20534 PSoC device pins and pinout configurations.

The CY8C20x34 PSoC device is available in a variety of packages that are listed and shown in the following tables. Every port pin (labeled with a "P") is capable of Digital IO and connection to the common analog bus. However, Vss, Vdd, and XRES are not capable of Digital IO.

16-Pin Part Pinout

Figure 4. CY8C20234 16-Pin PSoC Device

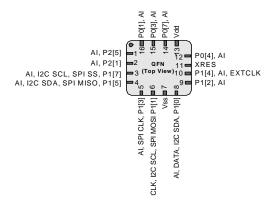


Table 1. 16-Pin Part Pinout (QFN^[2])

Document Number: 001-05356 Rev. *D

Pin No.	Ty	/ре	Name	Description			
FIII NO.	Digital	Analog	Name	Description			
1	Ю	I	P2[5]				
2	Ю	I	P2[1]				
3	IOH	I	P1[7]	I ² C SCL, SPI SS.			
4	IOH	I	P1[5]	I ² C SDA, SPI MISO.			
5	IOH	I	P1[3]	SPI CLK.			
6	IOH	I	P1[1]	CLK ^[1] , I ² C SCL, SPI MOSI.			
7	Power		Vss	Ground connection.			
8	IOH	I	P1[0]	DATA ^[1] , I ² C SDA.			
9	IOH	I	P1[2]				
10	IOH	I	P1[4]	Optional external clock input (EXTCLK).			
11	Input		XRES	Active high external reset with internal pull down.			
12	Ю	I	P0[4]				
13	Power		Vdd	Supply voltage.			
14	Ю	I	P0[7]				
15	Ю	I	P0[3]	Integrating input.			
16	Ю	I	P0[1]				
A = Analo	g, I = Input,	O = Output,	OH = 5 m/	A High Output Drive			

Notes

- These are the ISSP pins, that are not High Z at POR (Power On Reset). See the *PSoC Mixed Signal Array Technical Reference Manual* for details. The center pad on the QFN package is connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.

www.DataSheet4U.com

24-Pin Part Pinout

Figure 5. CY8C20334 24-Pin PSoC Device

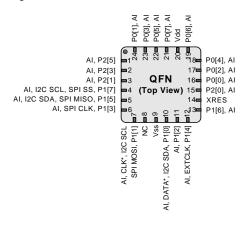


Table 2. 24-Pin Part Pinout (QFN [2])

Din No	Pin No.		Name	Description				
Pin No.	Digital	Analog	Name	Description				
1	Ю	I	P2[5]					
2	Ю	I	P2[3]					
3	Ю	I	P2[1]					
4	IOH	I	P1[7]	I ² C SCL, SPI SS.				
5	IOH	I	P1[5]	I ² C SDA, SPI MISO.				
6	IOH	I	P1[3]	SPI CLK.				
7	IOH	I	P1[1]	CLK ^[1] , I ² C SCL, SPI MOSI.				
8			NC	No connection.				
9	Power		Vss	Ground connection.				
10	IOH	I	P1[0]	DATA ^[1] , I ² C SDA.				
11	IOH	I	P1[2]					
12	IOH	I	P1[4]	Optional external clock input (EXTCLK).				
13	IOH	I	P1[6]					
14	Input		XRES	Active high external reset with internal pull down.				
15	Ю	I	P2[0]					
16	Ю	I	P0[0]					
17	Ю	I	P0[2]					
18	Ю	I	P0[4]					
19	Ю	I	P0[6]	Analog bypass.				
20	Power		Vdd	Supply voltage.				
21	Ю	I	P0[7]					
22	Ю	I	P0[5]					
23	Ю	I	P0[3]	Integrating input.				
24	IO	I	P0[1]					
СР	Power	•	Vss	Center pad is connected to ground.				

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive

28-Pin Part Pinout

Figure 6. CY8C20534 28-Pin PSoC Device

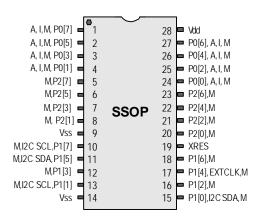


Table 3. 28-Pin Part Pinout (SSOP)

Pin No.		Name	Description					
Pin No.	Digital	Analog	Name	Description				
1	Ю	I, M	P0[7]	Analog column mux input.				
2	Ю	I, M	P0[5]	Analog column mux input and column output.				
3	Ю	I, M	P0[3]	Analog column mux input and column output, integrating input.				
4	Ю	I, M	P0[1]	Analog column mux input, integrating input.				
5	Ю	М	P2[7]					
6	Ю	М	P2[5]					
7	Ю	I, M	P2[3]	Direct switched capacitor block input.				
8	Ю	I, M	P2[1]	Direct switched capacitor block input.				
9	Power		Vss	Ground connection.				
10	Ю	M	P1[7]	I2C Serial Clock (SCL).				
11	Ю	М	P1[5]	I2C Serial Data (SDA).				
12	Ю	M	P1[3]					
13	Ю	M	P1[1]	I2C Serial Clock (SCL), ISSP-SCLK ^[1] .				
14	Power		Vss	Ground connection.				
15	0	M	P1[0]	I2C Serial Data (SDA), ISSP-SDATA ^[1] .				
16	Ю	М	P1[2]					
17	Ю	М	P1[4]	Optional External Clock Input (EXTCLK).				
18	0	M	P1[6]					
19	Input		XRES	Active high external reset with internal pull down.				
20	Ю	I, M	P2[0]	Direct switched capacitor block input.				
21	Ю	I, M	P2[2]	Direct switched capacitor block input.				
22	Ю	М	P2[4]					
23	Ю	М	P2[6]					
24	Ю	I, M	P0[0]	Analog column mux input.				
25	Ю	I, M	P0[2]	Analog column mux input.				
26	Ю	I, M	P0[4]	Analog column mux input				
27	Ю	I, M	P0[6]	Analog column mux input.				
28	Power		Vdd	Supply voltage.				

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive.

32-Pin Part Pinout

Figure 7. CY8C20434 32-Pin PSoC Device

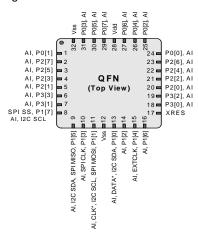


Table 4. 32-Pin Part Pinout (QFN [2])

Pin No.		/ре	Nome	Description					
Pin No.	Digital	Analog	Name	Description					
1	Ю	I	P0[1]						
2	Ю	I	P2[7]						
3	Ю	I	P2[5]						
4	Ю	I	P2[3]						
5	Ю	I	P2[1]						
6	Ю	I	P3[3]						
7	Ю	I	P3[1]						
8	IOH	I	P1[7]	I ² C SCL, SPI SS.					
9	IOH	I	P1[5]	I ² C SDA, SPI MISO.					
10	IOH	I	P1[3]	SPI CLK.					
11	IOH	I	P1[1]	CLK ^[1] , I ² C SCL, SPI MOSI.					
12	Power		Vss	Ground connection.					
13	IOH	I	P1[0]	DATA ^[1] , I ² C SDA.					
14	IOH	I	P1[2]						
15	IOH	I	P1[4]	Optional external clock input (EXTCLK).					
16	IOH	I	P1[6]						
17	Input		XRES	Active high external reset with internal pull down.					
18	Ю	I	P3[0]						
19	Ю	I	P3[2]						
20	Ю	I	P2[0]						
21	Ю	I	P2[2]						
22	Ю	I	P2[4]						
23	Ю	I	P2[6]						
24	Ю	I	P0[0]						
25	Ю	I	P0[2]						
26	Ю	I	P0[4]						
27	Ю	I	P0[6]	Analog bypass.					

Table 4. 32-Pin Part Pinout (QFN [2]) (continued)

28	Power Vdd		Vdd	Supply voltage.
29	IO I P0[7]		P0[7]	
30	IO I P0[5]		P0[5]	
31	IO I P0[3]		P0[3]	Integrating input.
32	Power Vss		Vss	Ground connection.
CP	Power Vss		Vss	Center pad is connected to ground.

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive.

48-Pin OCD Part Pinout

The 48-Pin QFN part table and pin diagram is for the CY8C20000 On-Chip Debug (OCD) PSoC device. This part is only used for in-circuit debugging. It is NOT available for production.

Figure 8. CY8C20000 OCD PSoC Device

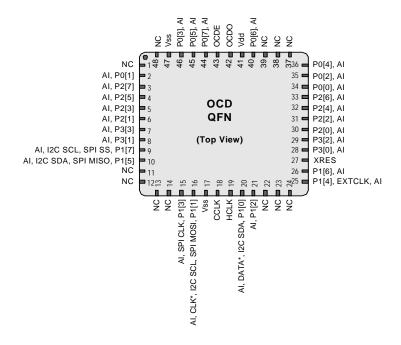
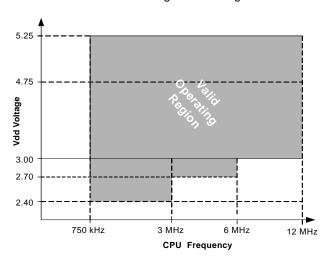


Table 5. 48-Pin OCD Part Pinout (QFN [2])

Pin No.	Digital	Analog	Name	Description
1			NC	No connection.
2	Ю	I	P0[1]	
3	Ю	I	P2[7]	
4	Ю	I	P2[5]	
5	Ю	I	P2[3]	
6	Ю	I	P2[1]	
7	Ю	I	P3[3]	
8	Ю	I	P3[1]	
9	IOH	I	P1[7]	I ² C SCL, SPI SS.
10	IOH	I	P1[5]	I ² C SDA, SPI MISO.

Table 5. 48-Pin OCD Part Pinout (QFN [2]) (continued)

Pin No.	Digital	Analog	Name	Description			
11	IO	I	P0[1]				
12			NC	No connection.			
13			NC	No connection.			
14			NC	No connection.			
15			NC	No connection.			
16	IOH	I	P1[3]	SPI CLK.			
17	IOH	I	P1[1]	CLK ^[1] , I ² C SCL, SPI MOSI.			
18	Power		Vss	Ground connection.			
19			CCLK	OCD CPU clock output.			
20			HCLK	OCD high speed clock output.			
21	IOH	I	P1[0]	DATA ^[1] , I ² C SDA.			
22	IOH	I	P1[2]				
23			NC	No connection.			
24			NC	No connection.			
25			NC	No connection.			
26	IOH	I	P1[4]	Optional external clock input (EXTCLK).			
27	IOH	I	P1[6]				
28	Input		XRES	Active high external reset with internal pull down.			
29	IO	I	P3[0]				
30	IO	I	P3[2]				
31	IO	I	P2[0]				
32	IO	I	P2[2]				
33	IO	I	P2[4]				
34	IO	I	P2[6]				
35	IO	I	P0[0]				
36	IO	I	P0[2]				
37			NC	No connection.			
38			NC	No connection.			
39			NC	No connection.			
40	IO	I	P0[6]	Analog bypass.			
41	Power	•	Vdd	Supply voltage.			
42			OCDO	OCD odd data output.			
43			OCDE	OCD even data IO.			
44	IO	I	P0[7]				
45	Ю	1	P0[5]				
46	Ю	1	P0[3]	Integrating input.			
47	Power	•	Vss	Ground connection.			
48			NC	No connection.			
СР	Power		Vss	Center pad is connected to ground.			
A = Analog,	I = Input, O =	Output, NC = No	Connection H =	5 mA High Output Drive.			


Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20234, CY8C20334, CY8C20434, and CY8C20534 PSoC devices. For the latest electrical specifications, check the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Specifications are valid for -40°C \leq T_A \leq 85°C and T_J \leq 100°C as specified, except where mentioned.

Refer to Table 16 on page 19 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.

Figure 9. Voltage versus CPU Frequency and IMO Frequency Trim Options

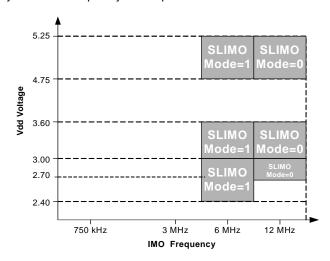


Table 6 lists the units of measure that are used in this section.

Table 6. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure		
°C	degree Celsius	μW	microwatts		
dB	decibels	mA	milliampere		
fF	femto farad	ms	millisecond		
Hz	hertz	mV	millivolts		
KB	1024 bytes	nA	nanoampere		
Kbit	1024 bits	ns	nanosecond		
kHz	kilohertz	nV	nanovolts		
kΩ	kilohm	W	ohm		
MHz	megahertz	pА	picoampere		
MΩ	megaohm	pF	picofarad		
μА	microampere	рр	peak-to-peak		
μF	microfarad	ppm	parts per million		
μΗ	microhenry	ps	picosecond		
μS	microsecond	sps	samples per second		
μV	microvolts	S	sigma: one standard deviation		
μVrms	microvolts root-mean-square	V	volts		

Absolute Maximum Ratings

Table 7. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage Temperature	-55	25	+100	°C	Higher storage temperatures reduces data retention time. Recommended storage temperature is +25°C ±25°C. Extended duration storage temperatures above 65°C degrades reliability.
T _A	Ambient Temperature with Power Applied	-40	_	+85	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	_	+6.0	V	
V _{IO}	DC Input Voltage	Vss - 0.5	_	Vdd + 0.5	V	
V _{IOZ}	DC Voltage Applied to Tri-state	Vss - 0.5	_	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Port Pin	-25	_	+50	mA	
ESD	Electro Static Discharge Voltage	2000	_	_	V	Human Body Model ESD.
LU	Latch up Current	_	_	200	mA	

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient Temperature	-40	_	+85	°C	
T _J	Junction Temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See Table 14 on page 17. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip Level Specifications

Table 9 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 2.4V to 3.0V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at $25^{\circ}C$. These are for design guidance only.

Table 9. DC Chip Level Specifications

Sym- bol	Description	Min	Тур	Max	Units	Notes
Vdd	Supply Voltage	2.40	_	5.25	V	See Table 14 on page 17.
I _{DD12}	Supply Current, IMO = 12 MHz	_	1.5	2.5	mA	Conditions are Vdd = $3.0V$, $T_A = 25^{\circ}C$, $CPU = 12$ MHz.
I _{DD6}	Supply Current, IMO = 6 MHz	_	1	1.5	mA	Conditions are Vdd = $3.0V$, $T_A = 25^{\circ}C$, $CPU = 6$ MHz.
I _{SB27}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and Internal Slow Oscillator Active. Mid Temperature Range.	_	2.6	4.	μА	Vdd = 2.55V, 0^{o} C \leq T _A \leq 40^{o} C.
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and Internal Slow Oscillator Active.	_	2.8	5	μА	$Vdd = 3.3V, -40^{o}C \le T_{A} \le 85^{o}C.$

DC General Purpose IO Specifications

Unless otherwise noted, the Table 10 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le TA \le 85^{\circ}C$, 3.0V to 3.6V and $-40^{\circ}C \le TA \le 85^{\circ}C$, or 2.4V to 3.0V and $-40^{\circ}C \le TA \le 85^{\circ}C$, respectively. Typical parameters apply to 5V, 3.3V, and 2.7V at $25^{\circ}C$. These are for design guidance only.

Table 10. 5V and 3.3V DC GPIO Specifications

Document Number: 001-05356 Rev. *D

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull Up Resistor	4	5.6	8	kΩ	
V _{OH1}	High Output Voltage Port 0, 2, or 3 Pins	Vdd - 0.2	_	_	V	IOH \leq 10 μ A, Vdd \geq 3.0V, maximum of 20 mA source current in all IOs.
V _{OH2}	High Output Voltage Port 0, 2, or 3 Pins	Vdd - 0.9	_	_	V	IOH = 1 mA, Vdd ≥ 3.0V, maximum of 20 mA source current in all IOs.
V _{OH3}	High Output Voltage Port 1 Pins with LDO Regulator Disabled	Vdd - 0.2	_	_	V	IOH < 10 μ A, Vdd \geq 3.0V, maximum of 10 mA source current in all IOs.
V _{OH4}	High Output Voltage Port 1 Pins with LDO Regulator Disabled	Vdd - 0.9	_	_	V	IOH = 5 mA, Vdd ≥ 3.0V, maximum of 20 mA source current in all IOs.
V _{OH5}	High Output Voltage Port 1 Pins with 3.0V LDO Regulator Enabled	2.75	3.0	3.2	V	IOH < 10 μ A, Vdd \geq 3.1V, maximum of 4 IOs all sourcing 5 mA.
V _{OH6}	High Output Voltage Port 1 Pins with 3.0V LDO Regulator Enabled	2.2	_	_	V	IOH = 5 mA, Vdd ≥ 3.1V, maximum of 20 mA source current in all IOs.
V _{OH7}	High Output Voltage Port 1 Pins with 2.4V LDO Regulator Enabled	2.1	2.4	2.5	V	IOH < 10 μA, Vdd ≥ 3.0V, maximum of 20 mA source current in all IOs.
V _{OH8}	High Output Voltage Port 1 Pins with 2.4V LDO Regulator Enabled	2.0	_	_	V	IOH < 200 μ A, Vdd \geq 3.0V, maximum of 20 mA source current in all IOs.
V _{OH9}	High Output Voltage Port 1 Pins with 1.8V LDO Regulator Enabled	1.6	1.8	1.95	V	IOH < 10 μA. $3.0V \le Vdd \le 3.6V.$ $0^{\circ}C \le TA \le 85^{\circ}C.$ Maximum of 20 mA source current in all IOs.

www.DataSheet4U.com

Table 10. 5V and 3.3V DC GPIO Specifications (continued)

V _{OH10}	High Output Voltage Port 1 Pins with 1.8V LDO Regulator Enabled	1.5	_	_	V	$\begin{split} & \text{IOH} < 100~\mu\text{A}. \\ & 3.0\text{V} \leq \text{Vdd} \leq 3.6\text{V}. \\ & 0^{\text{O}}\text{C} \leq \text{TA} \leq 85^{\text{O}}\text{C}. \\ & \text{Maximum of 20 mA source current in all IOs.} \end{split}$
V _{OL}	Low Output Voltage	_	_	0.75	V	IOL = 20 mA, Vdd > 3.0V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5]).
V_{IL}	Input Low Voltage	_	_	8.0	V	$3.6V \le Vdd \le 5.25V$.
V _{IH}	Input High Voltage	2.0	_		V	3.6V ≤ Vdd ≤ 5.25V.
V _H	Input Hysteresis Voltage	_	140	_	mV	
I _{IL}	Input Leakage (Absolute Value)	_	1	_	nA	Gross tested to 1 μA.
C _{IN}	Capacitive Load on Pins as Input	0.5	1.7	5	pF	Package and pin dependent Temperature = 25°C.
C _{OUT}	Capacitive Load on Pins as Output	0.5	1.7	5	pF	Package and pin dependent Temperature = 25°C.

Table 11. 2.7V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull Up Resistor	4	5.6	8	kΩ	
V _{OH1}	High Output Voltage Port 1 Pins with LDO Regulator Disabled	Vdd - 0.2	_	-	V	IOH < 10 μA, maximum of 10 mA source current in all IOs.
V _{OH2}	High Output Voltage Port 1 Pins with LDO Regulator Disabled	Vdd - 0.5	_	-	V	IOH = 2 mA, maximum of 10 mA source current in all IOs.
V _{OL}	Low Output Voltage	-	-	0.75	V	IOL = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5]).
V _{OLP1}	Low Output Voltage Port 1 Pins	-	_	0.4	V	IOL=5 mA Maximum of 50 mA sink current on even port pins (for example, P0[2] and P3[4]) and 50 mA sink current on odd port pins (for example, P0[3] and P2[5]). 2.4V ≤ Vdd < 3.6V.
V _{IL}	Input Low Voltage	_	_	0.75	V	2.4V ≤ Vdd < 3.6V.
V _{IH1}	Input High Voltage	1.4	_	-	V	2.4V ≤ Vdd < 2.7V.
V _{IH2}	Input High Voltage	1.6	_	_	V	$2.7V \le Vdd < 3.6V.$
V _H	Input Hysteresis Voltage	_	60	_	mV	
I _{IL}	Input Leakage (Absolute Value)	_	1	_	nA	Gross tested to 1 μA.
C _{IN}	Capacitive Load on Pins as Input	0.5	1.7	5	pF	Package and pin dependent Temperature = 25°C.
C _{OUT}	Capacitive Load on Pins as Output	0.5	1.7	5	pF	Package and pin dependent Temperature = 25°C.

DC Analog Mux Bus Specifications

Table 12 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.

Table 12. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch Resistance to Common Analog Bus	_	-	400 800		$Vdd \ge 2.7V$ $2.4V \le Vdd \le 2.7V$

DC Low Power Comparator Specifications

Table 13 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V at 25°C. These are for design guidance only.

Table 13. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
INEL EI O	Low power comparator (LPC) reference voltage range	0.2	_	Vdd – 1	V	
I _{SLPC}	LPC supply current	_	10	40	μΑ	
V _{OSLPC}	LPC voltage offset	_	2.5	30	mV	

DC POR and LVD Specifications

Table 14 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.

Table 14. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} V _{PPOR1}	Vdd Value for PPOR Trip PORLEV[1:0] = 00b		2.60	2.40 2.65	V	Vdd is greater than or equal to 2.5V during startup, reset from the XRES
V _{PPOR2}	PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_		2.95	V	pin, or reset from Watchdog.
V_{LVD0}	Vdd Value for LVD Trip	2.39		2.51 ^[3]	V	
V_{LVD1}	VM[2:0] = 000b	2.54	2.71	2.78 ^[4]	V	
V_{LVD2}	VM[2:0] = 001b	2.75		2.99 ^[5]	V	
V_{LVD3}	VM[2:0] = 010b	2.85		3.09	V	
V_{LVD4}	VM[2:0] = 011b	2.96	3.13	3.20	V	
V_{LVD5}	VM[2:0] = 100b	_	_	_	V	
V_{LVD6}	VM[2:0] = 101b	_	_	_	V	
V _{LVD7}	VM[2:0] = 110b	4.52	4.73	4.83	V	
	VM[2:0] = 111b					

Notes

- Always greater than 50 mV above V_{PPOR} (PORLEV = 00) for falling supply.
 Always greater than 50 mV above V_{PPOR} (PORLEV = 01) for falling supply.
 Always greater than 50 mV above V_{PPOR} (PORLEV = 10) for falling supply.

DC Programming Specifications

Table 15 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.

Table 15. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vdd _{IWRITE}	Supply Voltage for Flash Write Operations	2.70	_	_	V	
I _{DDP}	Supply Current During Programming or Verify	_	5	25	mA	
V _{ILP}	Input Low Voltage During Programming or Verify	_	_	0.8	V	
V _{IHP}	Input High Voltage During Programming or Verify	2.2	_	-	V	
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	_	_	0.2	mA	Driving internal pull down resistor.
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	_	_	1.5	mA	Driving internal pull down resistor.
V _{OLV}	Output Low Voltage During Programming or Verify	_	_	Vss + 0.75	V	
V _{OHV}	Output High Voltage During Programming or Verify	Vdd -1.0	_	Vdd	V	
Flash _{ENPB}	Flash Endurance (per block)	50,000	-	_	_	Erase/write cycles per block.
Flash _{ENT}	Flash Endurance (total) ^[6]	1,800,0 00	_	-	-	Erase/write cycles.
Flash _{DR}	Flash Data Retention	10	_	_	Years	

^{6.} A maximum of 36 x 50,000 block endurance cycles is allowed. This is balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles).

AC Electrical Characteristics

AC Chip Level Specifications

Table 16, Table 17, and Table 18 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 2.4V to 3.0V and $-40^{\circ}C \le T_A \le 85^{\circ}C$ respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at $25^{\circ}C$. These are for design guidance only.

Table 16. 5V and 3.3V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{CPU1}	CPU Frequency (3.3V Nominal)	0.75	_	12.6	MHz	12 MHz only for SLIMO Mode = 0.
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	64	kHz	
F _{IMO12}	Internal Main Oscillator Stability for 12 MHz (Commercial Temperature) ^[7]	11.4	12	12.6	MHz	Trimmed for 3.3V operation using factory trim values. See Figure 2-1b, SLIMO Mode = 0.
F _{IMO6}	Internal Main Oscillator Stability for 6 MHz (Commercial Temperature)	5.70	6.0	6.30	MHz	Trimmed for 3.3V operation using factory trim values. See Figure 2-1b, SLIMO Mode = 1.
DC _{IMO}	Duty Cycle of IMO	40	50	60	%	
T _{RAMP}	Supply Ramp Time	0	_	_	μS	
T _{XRST}	External Reset Pulse Width	10	_	_	μS	

Table 17. 2.7V AC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{CPU1}	CPU Frequency (2.7V Nominal)	0.75	Ī-	3.25	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	8	32	96	kHz	
F _{IMO12}	Internal Main Oscillator Stability for 12 MHz (Commercial Temperature) ^[7]	11.0	12	12.9	MHz	Trimmed for 2.7V operation using factory trim values. See Figure 2-1b, SLIMO Mode = 0.
F _{IMO6}	Internal Main Oscillator Stability for 6 MHz (Commercial Temperature)	5.60	6.0	6.40	MHz	Trimmed for 2.7V operation using factory trim values. See Figure 2-1b, SLIMO Mode = 1.
DC _{IMO}	Duty Cycle of IMO	40	50	60	%	
T _{RAMP}	Supply Ramp Time	0	_	_	μS	
T _{XRST}	External Reset Pulse Width	10	_	_	μS	

Table 18. 2.7V AC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{CPU1}	CPU Frequency (2.7V Minimum)	0.75	_	6.3	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	8	32	96	kHz	
	Internal Main Oscillator Stability for 12 MHz (Commercial Temperature) ^[7]	11.0	12	12.9		Trimmed for 2.7V operation using factory trim values. See Figure 2-1b, SLIMO Mode = 0.

Note

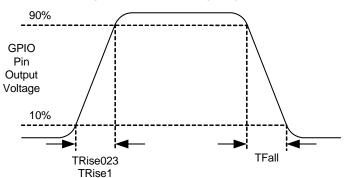
7. 0 to 70 °C ambient, Vdd = 3.3 V.

Table 18. 2.7V AC Chip Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO6}	Internal Main Oscillator Stability for 6 MHz (Commercial Temperature)	5.60	6.0	6.40	MHz	Trimmed for 2.7V operation using factory trim values. See Figure 2-1b, SLIMO Mode = 1.
DC _{IMO}	Duty Cycle of IMO	40	50	60	%	
T _{RAMP}	Supply Ramp Time	0	_	_	μS	
T _{XRST}	External Reset Pulse Width	10	_	_	μS	

AC General Purpose IO Specifications

Table 19 and Table 20 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.


Table 19. 5V and 3.3V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO Operating Frequency	0	_	6	MHz	Normal Strong Mode, Port 1.
TRise023	Rise Time, Strong Mode, Cload = 50 pF Ports 0, 2, 3	15	_	80	ns	Vdd = 3.0 to 3.6V and 4.75V to 5.25V, 10% - 90%
TRise1	Rise Time, Strong Mode, Cload = 50 pF Port 1	10	_	50	ns	Vdd = 3.0 to 3.6V, 10% - 90%
TFall	Fall Time, Strong Mode, Cload = 50 pF All Ports	10	_	50	ns	Vdd = 3.0 to 3.6V and 4.75V to 5.25V, 10% - 90%

Table 20. 2.7V AC GPIO Specifications

	•					
Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO Operating Frequency	0	_	1.5	MHz	Normal Strong Mode, Port 1.
TRise023	Rise Time, Strong Mode, Cload = 50 pF Ports 0, 2, 3	15	_	100	ns	Vdd = 2.4 to 3.0V, 10% - 90%
TRise1	Rise Time, Strong Mode, Cload = 50 pF Port 1	10	_	70	ns	Vdd = 2.4 to 3.0V, 10% - 90%
TFall	Fall Time, Strong Mode, Cload = 50 pF All Ports	10	_	70	ns	Vdd = 2.4 to 3.0V, 10% - 90%

Figure 10. GPIO Timing Diagram

AC Comparator Amplifier Specifications

Table 21 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$, 3.0V to 3.6V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$, or 2.4V to 3.0V and $-40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}$, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C . These are for design guidance only.

Table 21. AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{COMP}	Comparator Response Time, 50 mV Overdrive			100	ns	Vdd ≥ 3.0V.
				200	ns	2.4V < Vcc < 3.0V.

AC Analog Mux Bus Specifications

Table 22 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 2.4V to 3.0V and $-40^{\circ}C \le T_A \le 85^{\circ}C$ respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at $25^{\circ}C$. These are for design guidance only.

Table 22. AC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{SW}	Switch Rate	_	-	3.17	MHz	

AC Low Power Comparator Specifications

Table 23 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 2.4V to 3.0V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V at $25^{\circ}C$. These are for design guidance only.

Table 23. AC Low Power Comparator Specifications

Notes
mV overdrive comparator erence set within V _{REFLPC} .
-

AC External Clock Specifications

Table 24, Table 25, Table 26, and Table 27 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, or 2.4V to 3.0V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.

Table 24. 5V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.750	_	12.6	MHz	
-	High Period	38	_	5300	ns	
_	Low Period	38	_	_	ns	
_	Power Up IMO to Switch	150	_	_	μS	

Table 25. 3.3V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU Clock divide by 1	0.750	-	12.6	MHz	Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
_	High Period with CPU Clock divide by 1	41.7	_	5300	ns	
_	Low Period with CPU Clock divide by 1	41.7	_	_	ns	
_	Power Up IMO to Switch	150	_	_	μS	

Table 26. 2.7V (Nominal) AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU Clock divide by 1	0.750	-	3.08	MHz	Maximum CPU frequency is 3 MHz at 2.7V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
F _{OSCEXT}	Frequency with CPU Clock divide by 2 or greater	0.15	-	6.35	MHz	If the frequency of the external clock is greater than 3 MHz, the CPU clock divider is set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
_	High Period with CPU Clock divide by 1	160	_	5300	ns	
_	Low Period with CPU Clock divide by 1	160	_	_	ns	
_	Power Up IMO to Switch	150	_	_	μS	

Table 27. 2.7V (Minimum) AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU Clock divide by 1	0.750	-	6.3	MHz	Maximum CPU frequency is 6 MHz at 2.7V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
F _{OSCEXT}	Frequency with CPU Clock divide by 2 or greater	0.15	-	12.6	MHz	If the frequency of the external clock is greater than 6 MHz, the CPU clock divider is set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
_	High Period with CPU Clock divide by 1	160	_	5300	ns	
_	Low Period with CPU Clock divide by 1	160	_	_	ns	
_	Power Up IMO to Switch	150	_	_	μS	

AC Programming Specifications

Table 28 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 2.4V to 3.0V and $-40^{\circ}C \le T_A \le 85^{\circ}C$ respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at $25^{\circ}C$. These are for design guidance only.

Table 28. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	_	20	ns	
T _{FSCLK}	Fall Time of SCLK	1	_	20	ns	
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	_	_	ns	
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	_	_	ns	
F _{SCLK}	Frequency of SCLK	0	_	8	MHz	
T _{ERASEB}	Flash Erase Time (Block)	_	15	_	ms	
T _{WRITE}	Flash Block Write Time	_	30	_	ms	
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	_	_	45	ns	3.6 < Vdd
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	_	_	50	ns	$3.0 \le Vdd \le 3.6$
T _{DSCLK2}	Data Out Delay from Falling Edge of SCLK	_	_	70	ns	$2.4 \leq Vdd \leq 3.0$

AC SPI Specifications

Table 29 and Table 30 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_{A} \le 85^{\circ}C$, 3.0V to 3.6V and $-40^{\circ}C \le T_{A} \le 85^{\circ}C$, or 2.4V to 3.0V and $-40^{\circ}C \le T_{A} \le 85^{\circ}C$, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at $25^{\circ}C$. These are for design guidance only.

Table 29. 5V and 3.3V AC SPI Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{SPIM}	Maximum Input Clock Frequency Selection, Master	_	_	6.3	MHz	Output clock frequency is half of input clock rate
F _{SPIS}	Maximum Input Clock Frequency Selection, Slave	_	_	2.05	MHz	
T _{SS}	Width of SS_ Negated Between Transmissions	50	_	_	ns	

Table 30. 2.7V AC SPI Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{SPIM}	Maximum Input Clock Frequency Selection, Master	_	_	3.15	MHz	Output clock frequency is half of input clock rate
F _{SPIS}	Maximum Input Clock Frequency Selection, Slave	_	_	1.025	MHz	
T _{SS}	Width of SS_ Negated Between Transmissions	50	_	_	ns	

AC I²C Specifications

Table 31 and Table 32 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}\text{C} \le \text{T}_{A} \le 85^{\circ}\text{C}$, 3.0V to 3.6V and $-40^{\circ}\text{C} \le \text{T}_{A} \le 85^{\circ}\text{C}$, or 2.4V to 3.0V and $-40^{\circ}\text{C} \le \text{T}_{A} \le 85^{\circ}\text{C}$ respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.

Table 31. AC Characteristics of the I^2C SDA and SCL Pins for Vdd $\geq 3.0V$

Symbol	Description	Standa	rd Mode	Fast	Mode	Units	Notes
Symbol	Description	Min	Max	Min	Max	Ullits	Notes
F _{SCL} I ² C	SCL Clock Frequency	0	100	0	400	kHz	
T _{HDSTA} I ² C	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated	4.0	_	0.6	_	μS	
T _{LOW} I ² C	LOW Period of the SCL Clock	4.7	_	1.3	_	μS	
T _{HIGH} I ² C	HIGH Period of the SCL Clock	4.0	_	0.6	_	μS	
T _{SUSTA} I ² C	Setup Time for a Repeated START Condition	4.7	_	0.6	_	μS	
T _{HDDAT} I ² C	Data Hold Time	0	_	0	_	μS	
T _{SUDAT} I ² C	Data Setup Time	250	_	100 ^[8]	_	ns	
T _{SUSTO} I ² C	Setup Time for STOP Condition	4.0	_	0.6	_	μS	
T _{BUF} I ² C	Bus Free Time Between a STOP and START Condition	4.7	_	1.3	_	μS	
T _{SP} I ² C	Pulse Width of spikes are suppressed by the input filter	_	_	0	50	ns	

Note

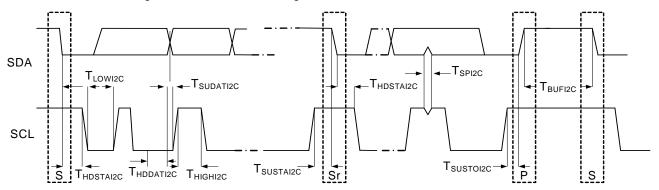
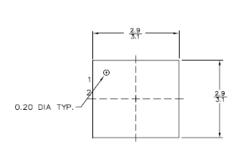

8. A Fast Mode I²C bus device is used in a Standard Mode I²C bus system but the requirement tSU; DAT Š 250 ns is met. This automatically is the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line trmax + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard Mode I²C bus specification) before the SCL line is released.

Table 32. 2.7V AC Characteristics of the I²C SDA and SCL Pins (Fast Mode not Supported)

Symbol	Description	Standard Mode		Fast Mode		Units	Notes
	Description	Min	Max	Min	Max	Units	Notes
F _{SCL} I ² C	SCL Clock Frequency.	0	100	_	_	kHz	
T _{HDSTA} I ² C	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.		_	_	_	μS	
T _{LOW} I ² C	LOW Period of the SCL Clock.		_	_	_	μS	
T _{HIGH} I ² C	HIGH Period of the SCL Clock	4.0	_	_	_	μS	
T _{SUSTA} I ² C	Setup Time for a Repeated START Condition.	4.7	_	_	_	μS	
T _{HDDAT} I ² C	Data Hold Time.	0	_	_	_	μS	
T _{SUDAT} I ² C	Data Setup Time.	250	_	_	_	ns	
T _{SUSTO} I ² C	Setup Time for STOP Condition.	4.0	_	_	_	μS	
T _{BUF} I ² C	Bus Free Time Between a STOP and START Condition.	4.7	_	_	_	μS	
T _{SP} I ² C	Pulse Width of spikes are suppressed by the input filter.	_	_	_	_	ns	

Figure 11. Definition for Timing for Fast/Standard Mode on the I2C Bus


Packaging Dimensions

This section illustrates the packaging specifications for the CY8C20234, CY8C20334, CY8C20434, and CY8C20534 PSoC devices along with the thermal impedances for each package.

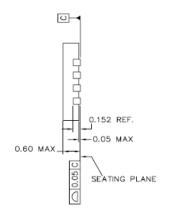
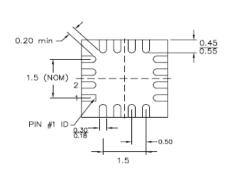
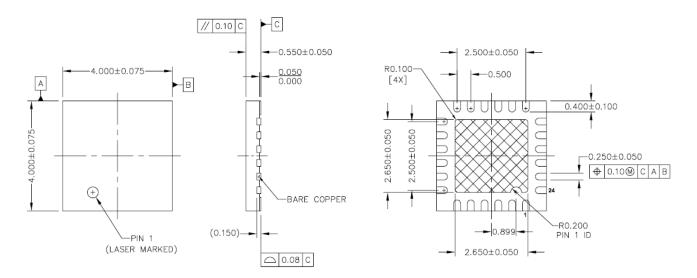

It is important to note that emulation tools require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

Figure 12. 16-Pin (3x3 mm x 0.6 MAX) QFN


DIMENSIONS IN mm MIN.

SIDE VIEW

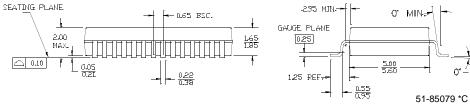
BOTTOM VIEW


PART NO.	DESCRIPTION
LG16A	LEAD-FREE
LD16A	STANDARD

JEDEC # MO-220 Package Weight: 0.014g

001-09116 *C

Figure 13. 24-Pin (4x4 x 0.6 mm) QFN

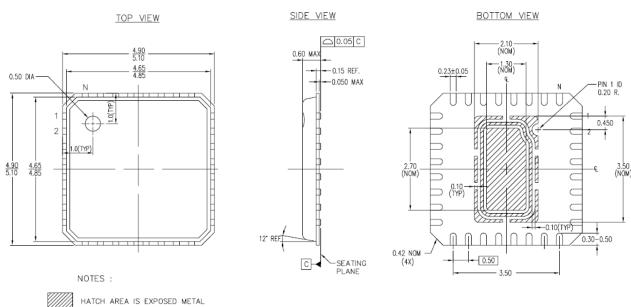

NOTES:

- 1. HATCH IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC # MO-220
- 3. UNIT PACKAGE WEIGHT: 0.024 grams
- 4. ALL DIMENSIONS ARE IN MM [MAX/MIN]
- 5. PACKAGE CODE

PART NO.	DESCRIPTION
LQ24A	LEAD- FREE
LR24A	STANDARD

Figure 14. 28-Lead (210-Mil) SSOP

14 PIN 1 in.
PIN 1 in


www.DataSheet4U.com

001-13937 *A

001-06392 *A

Figure 15. 32-Pin (5x5 mm 0.60 MAX) QFN

Document Number: 001-05356 Rev. *D

JEDEC # MO-220 DIMENSIONS IN mm MIN. MAX.

UNIT PACKAGE WEIGHT: 0.0354 Grams

-PACKAGE CODE

PART NO.	DESCRIPTION
LJ32B	STANDARD
LK32B	PB-FREE

www.DataSheet4U.com

SIDE VIEW TOP VIEW **BOTTOM VIEW** □ 0.08 C 1.00 MAX. 6.90 7.10 -0.05 MAX. 5.1 O.80 MAX. -6.70 -0.20 REF. -0.23±0.05 2 <u>0.</u>45 0.80 DIA-<u>6.90</u> 7.10 SOLDERABLE 6.70 6.80 **EXPOSED** 0.30-0.45 - 0.50 0.42±0.18 (4X) <u>5.45</u> 5.55 C SEATING PLANE

Figure 16. 48-Pin (7x7 mm) QFN

NOTES:

- 1. M HATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: 0.13g

Document Number: 001-05356 Rev. *D

- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART#	DESCRIPTION
LF48A	STANDARD
LY48A	LEAD FREE

For information on the preferred dimensions for mounting the QFN packages, see the following Application Note at $\frac{\text{http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.} }{\text{http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.} }$

It is important to note that pinned vias for thermal conduction are not required for the low power 24-, 32-, and 48-pin QFN PSoC devices.

www.DataSheet4U.com

001-12919 *A

Thermal Impedances

Table 33. Thermal Impedances Per Package

Package	Typical θ _{JA} ^[9]
16 QFN	46 °C/W
24 QFN ^[10]	25 °C/W
28 SSOP ^[10]	96 °C/W
32 QFN ^[10]	27 °C/W
48 QFN ^[10]	28 °C/W

Solder Reflow Peak Temperature

Table 34 illustrates the minimum solder reflow peak temperature to achieve good solderability.

Table 34. Solder Reflow Peak Temperature

Package	Minimum Peak Temperature ^[11]	Maximum Peak Temperature
16 QFN	240°C	260°C
24 QFN	240°C	260°C
28 SSOP	240°C	260°C
32 QFN	240°C	260°C
48 QFN	240°C	260°C

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer. This is used by thousands of PSoC developers. This robust software is facilitating PSoC designs for half a decade. available free of **PSoC** Designer is charge http://www.cypress.com under DESIGN RESOURCES >> Software and Drivers.

PSoC Express™

As the latest addition to the PSoC development software suite, PSoC Express is the first visual embedded system design tool that enables a user to create an entire PSoC project and generate a schematic, BOM, and datasheet without writing a single line of code. Users work directly with application objects such as LEDs, switches, sensors, and fans. PSoC Express is available free of charge at http://www.cypress.com/psocexpress.

PSoC Programmer

PSoC Programmer is flexible enough and is used on the bench in development and also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer or PSoC Express, PSoC Programmer software is compatible with both PSoC ICE Cube In-Circuit Emulator and PSoC MiniProg. PSoC available free charge programmer is of http://www.cypress.com/psocprogrammer.

CY3202-C iMAGEcraft C Compiler

CY3202 is the optional upgrade to PSoC Designer that enables the iMAGEcraft C compiler. It is available at the Cypress Online Store. At http://www.cypress.com, click the Online Store shopping cart icon at the bottom of the web page and click PSoC (Programmable System-on-Chip) to view a current list of available items.

Development Kits

All development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66 Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- iMAGEcraft C Compiler (Registration Required)
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

Notes

Document Number: 001-05356 Rev. *D

T_J = T_A + Power x θ_{JA}.
 To achieve the thermal impedance specified for the ** package, the center thermal pad is soldered to the PCB ground plane.

11. Higher temperatures is required based on the solder melting point. Typical temperatures for solder are 220 ± 5oC with Sn-Pb or 245 ± 5oC with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

CY3210-ExpressDK PSoC Express Development Kit

The CY3210-ExpressDK is for advanced prototyping and development with PSoC Express (used with ICE-Cube In-Circuit Emulator). It provides access to I²C buses, voltage reference, switches, upgradeable modules, and more. The kit includes:

- PSoC Express Software CD
- Express Development Board
- Four Fan Modules
- Two Proto Modules
- MiniProg In-System Serial Programmer
- MiniEval PCB Evaluation Board
- Jumper Wire Kit
- USB 2.0 Cable
- Serial Cable (DB9)
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- 2 CY8C24423A-24PXI 28-PDIP Chip Samples
- 2 CY8C27443-24PXI 28-PDIP Chip Samples
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD

Document Number: 001-05356 Rev. *D

- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. Special features of the board include both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of bread boarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB Board
- LCD Module
- MIniProg Programming Unit
- Mini USB Cable
- PSoC Designer and Example Projects CD
- Getting Started Guide
- Wire Pack

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- 3 Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Accessories (Emulation and Programming)

Table 35. Emulation and Programming Accessories

Part Number	Pin Package	Flex-Pod Kit [12]	Foot Kit [13]	Prototyping Module	Adapter [14]	
CY8C20234-12LKXI	16 SOIC	-	CY3250-16QFN-FK	CY3210-0X34	-	
CY8C20334-12LQXI	24 QFN	CY3250-20334QFN	CY3250-24QFN-FK	CY3210-0X34	AS-24-28-01ML-6	
CY8C20534-12PVXI	28 SSOP	-	CY3250-28SSOP-FK	CY3210-0X34	-	
CY8C20434-12LKXI	32 QFN	CY3250-20434QFN	CY3250-32QFN-FK	CY3210-0X34	AS-32-28-03ML-6	

Third Party Tools

Several tools are specially designed by the following third party vendors to accompany PSoC devices during development and production. Specific details of each of these tools are found at http://www.cypress.com under DESIGN RESOURCES >> Evaluation Boards.

Build a PSoC Emulator into Your Board

For details on emulating the circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, see Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/design/AN2323.

Notes

- 12. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.
- 13. Foot kit includes surface mount feet that is soldered to the target PCB.
- 14. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters is found at http://www.emulation.com.

www.DataSheet4U.com

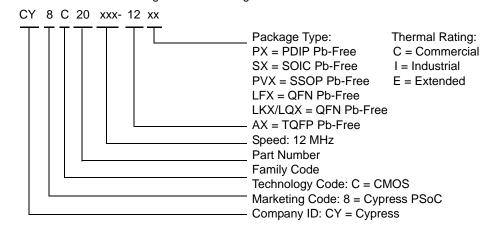

Ordering Information

Table 36 lists the CY8C20234, CY8C20334, CY8C20434, and CY8C20534 PSoC device's key package features and ordering codes.

Table 36. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Digital Blocks	CapSense Blocks	Digital IO Pins	Analog Inputs [15]	Analog Outputs	XRES Pin
16-Pin (3x3 mm 0.60 MAX) QFN	CY8C20234-12LKXI	8K	512	0	1	13	13 ^[15]	0	Yes
16-Pin (3x3 mm 0.60 MAX) QFN (Tape and Reel)	CY8C20234-12LKXIT	8K	512	0	1	13	13 ^[15]	0	Yes
24-Pin (4x4 mm 0.60 MAX) QFN	CY8C20334-12LQXI	8K	512	0	1	20	20 ^[15]	0	Yes
24-Pin (4x4 mm 0.60 MAX) QFN (Tape and Reel)	CY8C20334-12LQXIT	8K	512	0	1	20	20 ^[15]	0	Yes
28-Pin (210-Mil) SSOP	CY8C20534-PVXI	8K	512	0	1	24	24	0	Yes
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C20534-PVXIT	8K	512	0	1	24	24	0	Yes
32-Pin (5x5 mm 0.60 MAX) QFN	CY8C20434-12LKXI	8K	512	0	1	28	28 ^[15]	0	Yes
32-Pin (5x5 mm 0.60 MAX) QFN (Tape and Reel)	CY8C20434-12LKXIT	8K	512	0	1	28	28 ^[15]	0	Yes
48-Pin OCD QFN ^[16]	CY8C20000-12LFXI	8K	512	0	1	28	28 ^[15]	0	Yes

Figure 17. Ordering Code Definitions

Notes

^{15.} Dual function Digital IO Pins also connect to the common analog mux.

^{16.} This part may be used for in-circuit debugging. It is NOT available for production.