HA1329

2.5W AUDIO POWER AMPLIFIER WITH OUTPUT TRANS.

■ MAXIMUM POWER DISSIPATION CURVE

Notes:

- 1. θ_f : Thermal Resistance of Heat Sink
- θ_{1-c}=13.5° C/W
 Maximum Power Dissipation is 1.6W at V_{CC}=6V, 2.5W at 7.5V and 3.6W at 9V. (when R_L=8Ω, f=1kHz sine
- 4. Use within a solid line.

■ CIRCUIT SCHEMATIC & TYPICAL EXTERNAL PARTS

■ ABSOLUTE MAXIMUM RATINGS (7a=25°C, $R_L=8\Omega$)

ltem	Symbol	Rating	Unit	Note 1	
Supply Voltage	Vcc	9	٧		
Peak Output Current	lo (peak)	1.4	Α	2	
Power Dissipation	P _T	2.5	W	3	
Junction Temperature	T,	125	°C		
Operating Temperature	Topr	-20 to +70	°C	4	
Storage Temperature	Tstg	-55 to +125	°C		

Notes: 1. Standard operating voltage is 6V.

- 2. Max. collector current of power transistor when usual operating condition. 3. Value at $T_c=70^{\circ}\text{C}$ (IC Tab Temperature) 4. Value when attached to heat sink plate ($\theta_f=21^{\circ}\text{C/W}$) at $P_r=1.6\text{W}$

■ ELECTRICAL CHARACTERISTICS ($V_{cc}=6V$, f=1kHz, $R_g=600\Omega$, $R_L=8\Omega$, $T\sigma=25^{\circ}C$)

ltem	Symbol	Test Condition	min	typ	max	Unit
Quiescent Current	la		_	27.5	55	mΑ
Voltage Gain	Gv		-	49	_	dB
Output Power	Pout	T.H.D=10%	1.8	2.5		w
Total Harmonic Distortion	T.H.D	P _{out} =0.1W	-	0.5	2.0	%
Output Noise Voltage	V _n	$R_g = O\Omega$	_	0.38	1.5	mV
Input Resistance	Rin			10		kΩ
Hum Rejection*	HR	$f = 100$ Hz, $R_g = 0\Omega$		50		dB

^{*}Connect to AC voltage (f=100 Hz, v=-10 dBm, $R_o \le 27 \Omega$) in series the V_{cc}

■ TEST CIRCUIT

■ NOTES ON EXTERNAL PARTS

Resistors

 R_{101} and R_{102} are resistors used to determine voltage gain. It is possible to select an arbitrary voltage gain by varying the ratio of R_{102}/R_{101} . However, when this ratio is made greater than the recommended value, it produces degrading effects on the distortion factor, hum rejection ratio, and signal-to-noise ratio; and when this ratio is made smaller than the recommended value, there is a risk of oscillation due to excessive feedback; thus, variation of this ratio may exert an ill effect to a large extent. Also, when R_{101} is made greater with the ratio of R_{102}/R_{101} left unchanged, feedback occurs inside the IC to decrease release voltage gain, thus producing impairing effects on characteristics.

 R_{103} is a current limiter resistor for a power transistor. Exercise care never to make R_{103} less than 0.47 Ω .

Capacitor

 C_{101} is a capacitor used to remove supply ripple voltage. A withstand voltage of 6.3V is sufficient, since terminal voltage on pin 7 will not exceed 6V.

C₁₀₂ is used for input coupling.

 $C_{1\,0\,3}$ is a capacitor for AC feedback. When this capacitance is made smaller than the rated value, it produces impairing effects on distortion in the low-frequency area; if this capacitance is made greater, a louder "popping" noise is produced when the power is turned ON.

 $C_{1\,0\,4}$ is used as an AC filter of a DC feedback amplifier. To increase this capacitance results in extension of the period of time from turning ON the power to arrival at a steady bias. To decrease this capacitance causes feedback to occur in the low frequency ares, decreasing the gain; thus, impairing effects are produced on the distortion factor and so on.

 $C_{1\,0\,5}$ through $C_{1\,0\,7}$ are phase compensator capacitors.

Transformers

Recommended specifications for output transformer are as follows:

 \circ Impedance : Primary 17 Ω , secondary 8 Ω at 1

kHz and 1V.

 \circ Max. DC resistance : Primary 1.5 Ω , secondary 0.75 Ω

O Winding balance : 35dB or above

O Core form : E1-28

■ PRECAUTIONS ON OPERATION

- Maximum ratings: Maximum ratings must not be exceeded.
 Operating at the above rating will result in an extreme increase of breakdown and IC failure rate.
- 2) Breakdown due to short circuit across pins: When the power is turned ON with pins on the IC remaining short-circuited, there is a possibility of breakdown or degradation of the IC. Regarding this IC, exercise the utmost care to prevent the high-potential, low-impedance terminal pins 2, 6, and 12 from being short-circuited to pins 3, 5 and 11.
- 3) Breakdown due to load short circuit: When the state of load short circuit continues for an extended period, breakdown of the IC will result. Also, a repetition of load short circuit will cause degradation to the IC. Exercise care!
- 4) Grounding: The GND pin 4 and the TAB printed circuit board should be securely grounded. Incomplete grounding will cause abnormal operation. Exercise care that the resistance measured across pin 4 and TAB is held to within $10m\Omega$.

- 5) IC arrangement: When an IC is used a radio power amplifier, there is a possibility that harmonic radiation will cause abnormal operation of the set. Exercise care to use an IC at a place as far as way from the antenna as possible.
- 6) Print pattern: The print pattern should conform to the recommended pattern. An inadquate print pattern may result in abnormal operation such as oscillation.
- 7) External parts: Use standard external parts as a rule.
- 8) Upper limit of load impedance: Excessive increase of load impedance may result in oscillation. Exercise care that load impedance is held to within 100 Ω .
- 9) Popping noise: When an increase in signal source resistance causes an irritating "popping" noise to be produced, insert a capacitance of $47\mu\text{F}$ (6.3V) between the pin 5 and the ground to suppress the noise.

■ PRINTED CIRCUIT BOARD (Bottom View)

Note: The notch of ground line prevents the distortion from growing worse at flowed full-wave rectification current from the R₁₀₃.

TOTAL HARMONIC DISTORTION VS. OUTPUT POWER

OUTPUT POWER VS. SUPPLY VOLTAGE

POWER DISSIPATION VS. OUTPUT POWER

VOLTAGE GAIN VS. FREQUENCY

OUTPUT POWER VS. FREQUENCY

TOTAL HARMONIC DISTORTION VS. FREQUENCY

