1S73

®

STR720

ARM720T" 16/32-BIT MCU WITH 16K RAM, USB, CAN,
3 TIMERS, ADC, 6 COMMUNICATIONS INTERFACES

= ARM720T MCU
— 32-bit RISC MCU with 3-stage pipeline.
— Max. CPU frequency 70 MHz
— Fully instructions compatible with the
ARM7 family of processors
— 8 KByte Instruction + Data cache, 4-way
set-associative
— Write buffer de-coupling CPU from system
memory during write operations
— MMU for virtual to physical address
mapping and memory protection
= Memories
— 16 KBytes Program RAM Memory
— External SDRAM Interface for up to 128
Mbytes SDRAM
— External Memory Interface (EMI) for up to 8
Mbytes SRAM, Flash, ROM.
— ATAPI interface supporting PIO4 mode
m Nested interrupt controller
— Fast interrupt handling with multiple vectors
— 32 vectors with 16 IRQ priority levels
— 2 maskable FIQ sources
m Clock, Reset and Supply Management
— Internal system clocks generated by fully
internal PLL
— Power management providing different
operating modes: RUN, SLOW, STOP,
STANDBY.
m 34 1/0 ports
— 34 multifunctional bidirectional 1/O lines
— 5 ports with interrupt capability
m 3 Timers
— Two 16-bit programmable Timer modules
with prescaler (fapg divided by 1 to 256)

Table 1. Device Summary

PRELIMINARY DATA

PQFP208
28 x 28 x 3.4mm

driven from internal selectable clock
(oscillator or CPU clock), output compare
and input capture functions.

— 16-bit Watchdog Timer with 8-bit prescaler

m 6 Communications Interfaces

— USB v 2.0 Full Speed (12Mbit/s) Device
Function with Suspend and Resume
support

— CAN module compliant with the CAN
specification V2.0 part B (active).

— Two High-Speed Universal Asynchronous
Receiver Transmitter (UART) for full-duplex
asynchronous communication.

— Two Buffered Serial Peripheral Interfaces
(BSPI) for full-duplex, synchronous,
communications with external devices,
master or slave operation.

= A/D Converter
— Sigma Delta Analog/Digital Converter with
11.5-bit ENOB resolution supporting 4
multiplexed inputs at up to 950 Hz sampling
rate.

m Development Tools Support
— 5-pin JTAG port (IEEE 1149.1 Standard)

Features STR720RBQ6 [STR720RXH6
Boot ROM - bytes 4K
Program RAM - bytes 16K
Operating Voltage 3.0 to 3.6V for I/Os and A/D, 1.8V for core and backup block
Operating Temperature -40 to +85°C
Package PQFP208 28x28x3.4 BGA (contact marketing for details)
Rev. 4.0
December 2004 1/401

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

Table of Contents

TINTRODUCTION ...ttt it i e e eeaaaaaeeaaaaannannnnnnnnns 10
2 ACRONYMS i i ittt sssssnnnnnnnnnnnnnnnns 11
3SYSTEMBLOCKDIAGRAM.i ittt iiinnnrnnnnnnns 13
T o | N I 14
41 Power Supply pinsciiiiiii i it e 14
42 GlobalPinsttt et e a e 14
43 JTAGPINS ..o iiiiiii it tinssae et nnnann s ssannanssssnnnnnnnsss 15
44 Port 1 PinNS ...ttt e 15
45 POrt 2 pinsScoiiiiiiitrrrrr s 16
46 Port3pPinSt it e 17
47 POt pinsScviiiiiitrrrrrr s 18
48 MainClockinputpinsc.iiiiiiiiiiinnnnna e nnnnnnnsns 19
49 POt B PIiNSoviiiiiriiiii it 19
410 Port 7 PiNS ..o v ittt i e e e 21
4.11 PQFP208 Package Pin Configurationciiiiinann. 23

5 ARCHITECTUREOVERVIEWttt iiinnnnnnns 27
5.1 Enhanced Interrupt Controller (EIC)cciiiiiiiii s, 27
5.1.1 IRQInterruptVectorTable 28

5.1.2 FlQInterrupt Vector Table 32

5.1.3 IRQInterruptVectoring 33

5.2 Wake-up/Interrupt managementUnit(WIU) 34
53 DMAController (DMAC)ciciiiii it iita s tnaennanennnnns 35
5.4 DRAMcontroller (DRAMC)c.ciiiiiiiiinaiirrnnnnnnarrnnns 36
5.5 External Memorylinterface i 37
56 ATAPIIDEinterfaceiiiiiiiiiiiiiine i arnnnnnnnnsnns 37
5.7 Resetand Clock Control Unit (RCCU)cciiiiiiinrnnnnn. 38
5.7.1 Clockmanagement 38

5.7.2 RESET management 39

58 Real TimeClock (RTC)cciiiiiiii ittt et nnnnnnsnnns 40
5.9 AHB-APBobridgescooiiiiiiiini it iiiiae et 41
5.10 Clock Gating Control (CGC)cciiiiiiiniiiinnnnnanarennns 41
5.11 Universal Asynchronous Receiver/Transmitter (UART) 42
5.12 Buffered Serial Peripheral Interface (BSPI) 42
5.13 Controller Area Network Interface (CAN) 42
5.14 Universal Serial Bus Interface (USB)cciiiiinnn. 42
5.15 WatchDoG timer (WDG)cciiiit it iie i inia s tnnarnnnanens 43
5.16 Extended Function Timer (EFT)o iinnn. 43
5.17 S-D Analog to Digital Converter (ADC)ciiiiiiinrnnnnnnn 44
5.18 General Purpose l/OPOrtscciiiiiiiiiiinininrnrnnnnnnnnnns 44
5,19 Dedicated Pinsot it e e 45

2/401 ﬁ

Table of Contents

5.20 Miscellanea Registersottt iiniinnnrrnnnennns 46

6 MEMORY ORGANIZATIONciiiiiiiiiiiinnnnnnnnnnnnnns 47
6.1 Programmemoryc.c.iiiunnnneerrnnnnnnsessnnnnnnsssnnns 47
6.2 MemoOrymapc.uiuuuiunneerrnnnnnnesrsnnnnnnerrnnnnnnssssns 48
6.3 APBBridgesMappingottt 48
6.3.1 Asynchronous APB sub-system (A-APB) 48

6.3.2 Synchronous APB sub-system (S-APB) 50

7 ENHANCED INTERRUPT CONTROLLER(EIC) 51
7.1 Introductiont i i 51
72 MainFeaturesottt iinnaan e rnnnnnnnnns 51
7.3 Functional Descriptioncciiiiiiiiiirrrrrrrrrrrrnnnnns 52
7.3.1 Priority Level Arbitration 53

7.4 Register Descriptiont it 56
741 Registermap 66

7.5 Programming considerations i i i 67
7.6 Applicationnoteot i e 67
7.6.1 Avoiding LR_sys and r5 registers contentloss 68

7.6.2 Hints about subroutines used inside ISRs 69

7.7 Interruptlatencycciiiiiiiii ittt ittt nnns 69

8 WAKE-UP INTERRUPTUNIT(WIU)ot i i i s e e nnnnnns 70
8.1 Introductioncciiiiiiiiii ittt 70
82 MainFeaturescoiiiiiiiiiii it it et 70
8.3 Functional Descriptioncoiiiiiiiiiii ittt 71
8.3.1 Interrupt Mode Selection. 72

8.3.2 Wake-up Mode Selection 72

8.3.3 STOP Mode Entering Conditions 73

8.4 Registerdescription i i 74
85 Registermapc.oiiiiiiiiii i i i 78
8.6 Programmingconsiderations i i i i 79
8.6.1 Procedure for Entering/Exiting STOPmode 79

8.6.2 Simultaneous Setting of PendingBits 80

8.6.3 Dealing with level-active signals as interruptlines 80

9 DMA CONTROLLER(DMAC) ...ttt ittt e et nanannnns 81
9.1 Introductionttt it 81
9.2 MainFeaturesottt it et 81
9.3 Functional Descriptionciiiiiiiiiiii it 82
9.8.1 Circular mode operations 84

9.4 Registerdescription i i 86
9.4.1 Registermap oo e 99

10 DRAM CONTROLLER(DRAMC)ttt i iininnnnrenns 101

174 3/401

Table of Contents

101 Introductiont i i i i e 101
10.2 MainFeaturesttt ettt nnnnnn e ennns 101
10.3 Functional Descriptionttt i 101
10.3.1 AHBInterface 101
10.3.2 APBInterface 103
10.3.3 Refresh Timer e 103
10.4 Registerdescriptioncciiiiiiiiiiiiniinnnrnnnrnnns 104
10.4.1 Registermap 113
10.5 Programming considerationscoiiiiiiiiiiiinianan 114
11 EXTERNAL MEMORY INTERFACE(EMI)t 115
111 Introduction i i 115
11.2 MainFeaturest ittt nnna e e 115
11.3 Functional Description i i 116
11.3.1 EMI Programmable Timings 116
11.3.2 Write Access Examples 118
11.3.3 Read Access Examples i 118
11.4 Registerdescriptiont i 120
11.4.1 Registermap 124
11.5 Programming considerationsc i 125
12 ATAPIFIDE INTERFACE i ittt ieiinnnnnnns 126
121 Introduction e 126
122 MainFeaturesottt ittt iaan e nnns 126
12.3 Functional Description iiiiiiiiiiiniinnnnnnnns 127
12.4 Programming Considerationsciiiiiiiiiinnnerrnnnn 128
12.4.1 Initialization 128
12.4.2 BasicRead Transfer 128
125 Registermapccciiiiiiiiii ittt n e 129
12.5.1 IDE Command Block RegisterSet 129
12.5.2 IDE Configuration RegisterSet 130
126 TiMING ... oo it it e e et s n s an s sannnanarrnnns 136
12.6.1 IDE PIO Read/Write Cycles 136

13 RESET AND CLOCK CONTROLUNIT(RCCU)cccu.t 138
131 Introduction i i e 138
13.2 MainFeaturesot ittt ninan e nnns 138
13.3 Functional Descriptionttt e 139
13.3.1 Reset Management 139
13.3.2 PLLManagement 140
13.3.3 Mode of Operation 141
13.4 Registerdescriptionciiiiiiiiiiiiiiiiiaiiaaaas 143
13.4.1 Registermap 149

4/401 ﬁ

Table of Contents

14REALTIMECLOCK (RTC) ...ttt i i i i i i it eeeenennnnns 150
141 Introductiont ettt 150
142 MainFeaturesttt ittt nnnnan e ennns 150
14.3 Functional Descriptionttt e eranns 150

14.3.1 OVEIVIBW . . oo e e 150
14.3.2 Resetprocedure 152
14.3.3 Free-runningmode 152
14.3.4 Configurationmode 152
14.4 Registerdescription i 152
1441 Registermap 158
14.5 Programming considerationsoiiiiiiiiiiiinnnn 158

15 ASYNCHRONOUS AHB-APB BRIDGE (A3BRG) 160
151 Introductiont i i e 160
15.2 MainFeaturesttt st iaan e nnns 160
15.3 Functional Descriptionttt i 160

15.3.1 Peripheralsclockgating 162
15.3.2 Peripheralsresetcontrol 162
15.4 Registerdescription i i 162
15.4.1 Registermap 168

TOUARTt ittt ittt s e e s n 169
16.1 Introduction i 169
16.2 MainFeaturesttt ittt nnnan e anns 169
16.3 Functional Descriptiont i i 169

16.3.1 Dataframes 169
16.3.2 TransmisSSiONottt e 171
16.3.3 Reception 172
16.3.4 Timeoutmechanism 173
16.3.5 Baudrate generation 174
16.3.6 Interruptcontrol 175
16.3.7 Using the ASC interrupts when fifos are disabled 176
16.3.8 Using the ASC interrupts when fifos are enabled 176
16.4 Registerdescriptiont it 177
16.4.1 Registermap 185

17BUFFERED SPI(BSPI) ...ttt e i e ennnns 186
171 Introduction i e 186
172 MainFeaturescciiiiiiiiii it ettt nnnnanarnnns 186
17.3 Functional Descriptionttt i e 186

17.3.1 BSPIPin Description 187
17.3.2 BSPIOperation 188
17.3.3 Transmit FIFO e 191

4

5/401

Table of Contents

17.3.4 Receive FIFO 191
17.3.5 Start-up Status 192
17.3.6 Clocking problems and clearing of the shift-register 192
17.3.7 Interruptcontrol 192
17.3.8 DMA Interface 193
17.4 Registerdescriptiont i 194
17.4.1 Registermap 201

18 Controller Area Network (CAN)o i i e eeanns 202
181 Introductiont 202
18.2 MainFeaturesttt ittt nnna e anns 202
18.3 BlockDiagramiiiiiiiiiiiiiaa ettt nnnana s 203
18.4 Functional Descriptiono iiiiiiiiiiiinnnnnnnnnns 204
18.4.1 Software Initialization 204
18.4.2 CAN Message Transfer i 204
18.4.3 Disabled Automatic Re-TransmissionMode 205
18.4.4 TestMode 205
18.4.5 SilentMode 206
18.4.6 LoopBackMode 206
18.4.7 Loop Back Combined with SilentMode 207
18.4.8 BasicMode 208
18.4.9 Software Control of CAN_TXPin 208
18.5 Register Descriptionottt e 209
18.5.1 CAN Interface ResetState 210
18.5.2 CAN Protocol Related Registers 210
18.5.3 Message Interface Register Sets 219
18.5.4 Message Handler Registers 232
18.6 Register Mapottt e et et nnnnanneanns 237
18.7 CANCommunicationscciiiiiiiiiiii it arnnaeanns 240
18.7.1 Managing Message Objects 240
18.7.2 Message Handler State Machine 240
18.7.3 Configuringa TransmitObject 244
18.7.4 Updatinga TransmitObject 244
18.7.5 Configuring a Receive Object 245
18.7.6 Handling Received Messages 245
18.7.7 Configuringa FIFOBuffer 246
18.7.8 Receiving Messages with FIFO Buffers 246
18.7.9 Handling Interrupts 248
18.7.10Configuringthe Bit Timing 249
18.7.11Register Map 261

19 USB Slave Interface (USB) ittty 263

6/401

Table of Contents

19.1 Introductiont i e 263
19.2 MainFeaturesttt ittt inan e nnns 263
19.3 Block Diagramiiiiiiiiiiii ittt 263
19.4 Functional Descriptiont i e 265
19.4.1 Descriptionof USBBlocks 266
19.5 Programming Considerationsiiiiiiiiiinnann. 267
19.5.1 Generic USB Device Programming 267
19.5.2 System and Power-OnReset 267
19.5.3 Double-Buffered Endpoints i 273
19.5.4 Isochronous Transfers 276
19.5.5 Suspend/Resume Events 277
19.6 Register Descriptionttt i e 279
19.6.1 Common Registers 280
19.6.2 Endpoint-Specific Registers i 291
19.6.3 Buffer Descriptor Table 297
19.6.4 RegisterMap 302

20 WATCHDOG TIMER (WDG)ccciiiiirrinannnnnnrnnnnnnns 303
20.1 Introductionciiiiiiiiii i i i 303
20.2 MainFeatureso iitinnnnna it tnnnnnnnsrnnnnnnnsns 303
20.3 Functional Descriptionciiiiiiiiirrrrrrrrnrrnnnnnns 303
20.3.1 Free-running Timermode 303
20.3.2 Watchdogmode e 304
20.4 Registerdescription i i e 305
20.4.1 RegisterMapo 308

21 EXTENDED FUNCTION TIMER (EFT)ciiiiiiiiiinnnnnnn 309
211 Introductioniiiii i i i e 309
212 MainFeaturesoiiiiiiiininn et innnnan e rnnnnnnnens 309
21.3 Functional Descriptionttt 310
21.83.1 CoUuNter ..o 310
21.3.2 External Clocko 312
21.33 InputCapture e 313
21.3.4 Output Compare e 315
21.3.5 Forced Compare Mode 318
21.3.6 OnePulseMode 318
21.3.7 Pulse Width ModulationMode 320
21.3.8 Pulse Width Modulation Input 324
21.4 Register Descriptioniiiiiiiiiiiiiii ittt 325
2141 RegisterMap 331

22 S-D ANALOG/DIGITAL CONVERTER(ADC)ccvunnn. 332
221 Introduction i e 332

ﬁ 7/401

Table of Contents

222 MainFeaturesoiiiiiiinnnnnnn e nnnnnnnsrnnnnnnnsss 332
22.3 Functional Descriptionottt 332
22.3.1 Normal (Round-Robin) Operation of ADC 333
22.3.2 Single-Channel Operation 333
22.3.3 Low-rate operatingmode 333
22.3.4 Interruptand DMA Requests 333
22.35 Clock TIMING . . . oo e 334
22.3.6 S-DModulator 334
22.3.7 The Sinc3 Decimation Filter 335
22.3.8 Bandgap Reference 337
22.3.9 ADC Input Equivalent Circuit 338
22.3.10ADC Output Codingo vt 338
22.3.11Power Saving Features 339

22.4 Registerdescriptioniiiiiiiii i i i 339
2241 Registermapo 342

23 GENERAL PURPOSEI/OPORTSciiiiiiiiiinnnnnnnnnns 343
23.1 Introductioniiiiiii i i e 343
23.2 MainFeaturesiiiiitinnninn et innnnan e rnnnnnnnsns 343
23.3 Functional Descriptionottt 343
23.3.1 Input Configuration 345
23.3.2 Bidirectional Configuration 345
23.3.3 Output Configuration 347
23.3.4 Alternate Function Configuration 347

23.4 Registerdescriptionciiiiiiii i i 348
23.4.1 Registermapo 350

24 MISCELLANEA REGISTERS (GCR-CGC-AHB_ERR) 351
241 Introductionttt e a e 351
24.2 A-GCRBlockdescriptionottt innnnnnnens 351
24.3 S-GCR Blockdescriptionciiiiiiiiinnirrrnnnnnnnsns 352
24.4 CGCBlockdescriptionoiiiiiiiiiiiiii it iininnnnens 354
24.5 AHB Error detection block description 360
2451 Registermap 363

25 POWER REDUCTIONMODESttt ieeannnnns 364
25,1 RUNMoOdEottt ittt e e st nn s ann e nnnnnnnens 364
25.2 IDLEMOdEottt ittt ettt i 367
253 SLOWMoOdEciiiiiiii ittt et ie e nn e snnnannnnrnnnns 367
254 STOPMoOdeE ... ciiii ittt ittt it s e et nnnnn s nnnnnnnsns 368
25,5 STANDBYModeciiii ittt et na e aancnnnns 369
26 SYSTEMRBRESETiiiii ittt it teeannnnrasannnnnns 370
26.1 RESETINpUt Pint ittt e e e e ennnnnnnns 370

8/401 IS74

Table of Contents

26.2 RTCRSTINpUt Pinttt it iiiaa e nnnnannnns 370
26.3 JTRSTINpUtPIiN e et e et aa e annns 371
26.4 Power-on/off and Stand-by entry/exit..................t 371
27 PACKAGE MECHANICAL DATA ... i it eeeannns 373
28 ELECTRICAL CHARACTERISTICS i i i i eeen e s 374
28.1 ParameterConditionscciiiiiiiiiii ittt 374
28.1.1 Minimum and Maximumvalues 374
28.1.2 Typicalvalues 374
28.1.3 Typical CUIVES e 374
28.1.4 Loadingcapacitor 374
28.1.5 Pininputvoltage 375
28.2 Absolute maximumratingso e 375
28.3 Electrical sensitivity ... e 376
28.3.1 Electro-Static Discharge (ESD) 376
28.3.2 StaticLatch-Up (LU) e 377
28.4 Operatingconditions iiiiiiiinnni it irnnnnnnenns 377
28.5 Thermalcharacteristicscciiiiiiiii ittt ittt i i e nnnn 378
28.6 Supply Current Characteristicscciiiiiiiiiiiiiinnnn 379
28.7 Clock and Timing Characteristics, 380
28.7.1 Internal clock characteristics 380
28.7.2 CLK pad characteristics (External Clock Source) 381
28.7.3 PLL Characteristics i e e 382
28.7.4 32 kHz Real-Time Clock Oscillator 383
28.8 ACandDCcharacteristicscciiiiiiiiiii i it inraannnns 385
28.9 Asynchronous Reset Input Characteristics 386
28.10USB - UniversalBus Interfacecciiiiiiniinnnnnnnnnnns 387
28.11S-D ADC characteristicscoiiiiiiiiininniriinnnnnnnsss 389
28.11.1ADC analog input pins e 389
28.11.2ADC performancet e e 392
28.12External Memory Bus Timingc.ciiiiiiiiinnnnnnnnennn 393
28.13SDRAMInterface Timingciuiiiitinie it it anrnnnns 396
29 REVISIONHISTORY it ittt e e eeteneenannnns 400

4

9/401

STR720 - INTRODUCTION

1 INTRODUCTION

STR720 is an STMicroelectronics new generation super-integrated single-chip device.

It combines the high performance of ARM720T™ CPU microprocessor (revision 3) with high
peripheral functionalities and enhanced I/O capabilities. It also provides on-chip high-speed
RAM, clock generation via PLL and several embedded custom digital logics. STR720 is
software compatible with the ARM processor family.

It is built using 0.18 um HCMOSS8 process, with 1.8 V internal logic voltage and 3.3 V capable
I/O lines.

The ARM720T™ is a member of the Advanced RISC Machines (ARM) family of general pur-
pose 32-bit microprocessors combining in a single chip an 8 KByte cache, an enlarged write
buffer, and a Memory Management Unit (MMU).

The ARM720T™ belongs to the ARM7 family, making it software-compatible with all the ARM
processors.

The ARM architecture is based on Reduced Instruction Set Computer (RISC) principles: its
instruction set and related decode mechanism are much simpler than those of
micro-programmed Complex Instruction Set Computers (CISC). This simplicity results in a
high instruction throughput and impressive real-time interrupt response from a small and
cost-effective chip.

The on-chip mixed data and instruction cache, together with the write buffer, substantially rise
the average execution speed and reduce the average amount of memory bandwidth required
by the processor. This allows the external memory to support Direct Memory Access (DMA)
channels with minimal performance loss.

The MMU supports a conventional two-level, page-table structure and a number of extensions
that make it ideal for embedded control, UNIX, and object-oriented systems. The allocation of
virtual addresses with different task IDs improve performance in task switching operations
with the cache enabled. These relocated virtual addresses are monitored by the
Embedded-ICE block.

The memory interface is designed to allow the performance potential to be realized without
incurring high costs in the memory system. Speed-critical control signals are pipelined to
allow system control functions to be implemented in standard low-power logic, and these
control signals facilitate the exploitation of the fast local access modes offered by
industry-standard DRAMSs.

For more information on the ARM720T core please refer to the ARM720T Rev 3 Technical
Reference Manual.

4

10/401

STR720 - ACRONYMS

Related Documents:

Available from www.arm.com:

ARM720T (Rev 3) Technical Reference Manual

2 ACRONYMS

ADC
AHB
APB
CPU
DMA
EIC
EFT
EMI
GCR
ICE
IRQ
JTAG
PLL
RAM
ROM
RCCU
RISC
SPI
BSPI
UART
WDG
WIU

4

Analog to Digital Converter
Advanced High-performance Bus
Advanced Peripheral Bus

Central Processing Unit

Direct Memory Access

Enhanced Interrupt Controller
Extended Function Timer

External Memory Interface

Global Configuration Register
In-Circuit Emulator

Interrupt ReQuest

Joint Test Access Group (IEEE 1149.1 Standard)
Phase-Locked Loop

Random Access Memory
Read-Only Memory

Reset and Clock Control Unit
Reduced Instruction Set Computing
Serial Peripheral Interface

Buffered SPI

Universal Asynchronous Receiver Transmitter
Watch-Dog Unit

Wake-up/Interrupt Unit

o)
L
oc
L
=
(=)
a
|

11/401

STR720 - ACRONYMS

Please refer to Figure 1 for an overview of the device interfaces.
Figure 1. STR720 PQFP Package Logic Symbol

VDD3 VDD VDD3P VDD3D VDDPLLVDDRTC

Port 1
6 bit

Port 2
16 bit

Port 3
13 bit

Port 4 STR720

5 bit

Port 6
59 bit

Port 7
46 bit

Ju uguy

VSS VSSP VSSD VSSPLL

OSCIN
OScouT

RSTIN
RTCRST

JTCK
JTRST
JTMS
JTDI
JTDO

AVDD
GND

12/401

4

STR720 - SYSTEM BLOCK DIAGRAM

3 SYSTEM BLOCK DIAGRAM

The Figure 2: STR720 Block Diagram on page 13 gives an overview of the complete STR720
microcontroller, showing how ARM720T processor and their peripherals are interfaced.

Figure 2. STR720 Block Diagram

0SCOUT OSCIN

Vpprrc dedicated supply

EXT_BOOT
STOP_REQ
EINTO
EINT1
EINT2
EINT3
EINT4

!

ECS1n
Eready

Voo Voosr Vopsp VooeL |, v Aypp
Vops Vssp Vssp VsspuL 'PPRTC TSS Agnp
| POWER SUPPLY
DI
DO
oK
TRST M & Vg0 31
e, e,
I =1 DRAMC S RAS
<>l o
Test/Emu Port g m:[% N
I = Edata[0..15)/DD[0..15]
ad I 2]
< s | e
$,1:] EMI S Exdn/Diom
o o EwrOn/Diown
ARM720 Core < Ecan
= ICsOn
<:7 > 2 IC%ln
lordy
e ATAPI i
s
o
i
A g] ™
b ey YA e (ls| woa
APB <::
DATA Brid i ROM Bridge [H
RAM ridge | ¢ (1kx32) o <—__>§ GPIO
(8k x 32) e < £
AFB r 0]
Master I/F| CAN RAM
oo ol || [Vl can oo i
<:> APB ()
Bridge M N
3 le—> £ [e—> ekt
A (::(} g|EFT1..2 £
HAPING .
= RxD[2..1]
: <:> g UART1..2[¢ | TXD[2..1]
| < MISO[1..2]
Zfeey | Ec ([g|psprr-2feny s
APB IIF APB I/F ﬁ [¢——— UsBCK
USB RAM —
ol use
[SAPB "
L AN1
g U (| Aoe o e i
3
APB IIF APB IF APB IF APB IF — o (P1.3-0)
1 1 8
| RTC \ |GPIO| WIU GPIO
1 1
1 1
| 1
Yl ' Port3 [Port4] | Portl
2lle] |osc |
1
1 E 1
1 1
|

Drawing not in scale

4

13/401

STR720 - PIN DATA

4 PIN DATA

In the following tables, pin information are reported, including alternate function mapping and
reference to package pin out.

4.1 Power Supply pins

Table 2. Power Supply Pins

Symbol Pin /10 Function
VbDp3 Note1 - 3.3V Digital Supply Voltage for the 1/O pads.
Vpp Note2 - 1.8V Digital Supply Voltage for core circuitry.
Vppsp 22 - 3.3V Supply Voltage.

Vssp 23 - |Ground Voltage.
ég - Reserved, must be tied to GND.
g? - Reserved, must be tied to GND.
VpppLL 121 - 1.8 V Supply Voltage for internal PLL.
VsspLL 120 - Ground Voltage for internal PLL.
VppRTC 159 - 1.8V Digital Supply Voltage for RTC logic.
Vss Note3 - Digital Ground.
AvDD 32 - Reference voltage for the on-chip A/D Converter (+3.0V/+3.6V).
AGND 37 - Reference ground for the on-chip A/D Converter.
28 - Reserved, must be tied to GND.
26 - Reserved, must be left floating.

Note1: 16 Pins (1,10,46,55,66,75,84,93,103,113,129,143,163,180,196) are Vpps (3.3 supply).
Note2: 3 Pins (8,59,140) are Vpp (1.8 supply).
Note3: 19 Pins (2,9,11,47,56,60,67,76,85,94,104,114,130,141,142,162,181,197) are Vgg (ground).

4.2 Global Pins

In Table 3 clock, reset and configuration pins of the device are reported.
Table 3. Global Pins

Symbol Pin | I/O Function
Input of the 32 kHz oscillator amplifier and input of the internal clock generator for RTC
OSCIN 160 I
and WDG alternate clocks.
OoSscouT 161 O | Output of the 32 kHz oscillator amplifier circuit.
System RESET Input with Schmitt-Trigger characteristics.
=a=i(Note 1) 157 | A low level at this pin resets asynchronously the STR720 device, except the RTC logic.
RSTIN This has to be driven low by an external pull-down resistor when Vppgrc is connected
and the rest of the device is not powered.

14/401

(574

STR720 - PIN DATA

Table 3. Global Pins

Symbol Pin | I/O Function

RTC RESET Input with Schmitt-Trigger characteristics.

BRTCRaT(Note 1)
RTCRST 158 l A low level at this pin asynchronously resets the RTC registers.

Note1: The signal applied to this pin is internally filtered by an on-chip RC filter whose width can range from 50 ns to
500 ns.

4.3 JTAG pins

In Table 4 the pins related to the JTAG interface are listed.
Table 4. JTAG/Emu Pins

Symbol Pin | 1/O Function

JTDO 42 O |ARM720 JTAG Test Data Out. JTDO is a test data serial output signal used for
test instructions and data.

JTCK 39 | ARM720 JTAG Test Clock. JTCK is a test input used to synchronize the JTAG test
logic.

JTMS 40 | ARM720 JTAG Test Mode Select. JTMS is an input signal used to sequence the
test controller’s state machine. JTMS is sampled on the rising edge of JTCK.

JTDI 41 | ARM720 JTAG Test Data In. JTDI is test data serial input used for test instructions
and data. JTDI is sampled on the rising edge of JTCK.

JTRST (Note 1) 38 I |ARM720 JTAG Test Circuit Reset. JTRST is an active low Schmitt-trigger input
signal used to asynchronously initialize the test controller.

Note1: The signal applied to this pin is internally filtered by an on-chip RC filter whose width can range from 50 ns to
500 ns.

4.4 Port 1 pins

Port 1 is an analog port connected to the 4 analog input channels of the on-chip A/D converter
are available.

Table 5. Port 1 Pins

Symbol Pin | 1/O Function
P1.0 33 I A/D. Analog Input Channel 0 (ANAO).
P1.1 34 I A/D. Analog Input Channel 1 (ANATY).
P1.2 35 | A/D. Analog Input Channel 2 (ANA2).
P1.3 36 | A/D. Analog Input Channel 3 (ANA3).
P1.4 27 O |Reserved.
P1.5 25 O |Reserved.

4

15/401

STR720 - PIN DATA

4.5 Port 2 pins

Port 2 consists of 16 bidirectional general purpose I/O pins. They are under ARM720 control
through a configuration register, a data register and a direction register. These registers are
read/write registers. Port lines can be individually configured as general purpose inputs,
general purpose outputs or dedicated peripheral lines. The port can be read at any time: input
lines return the pin level; output lines return the level of the output driver input. When written,
the port stores the data in an internal register: it drives the pins only if they are configured as
general purpose outputs. Port 2 outputs can be configured as push/pull or open drain drivers.

Table 6. Port 2 Pins

Symbol Pin | I/O Function
P2.0 122 /O |Port 2 General Purpose Input/Output data line 0.
I UART1. Receive Data Input (RxD1).
P2.1 123 /O | Port 2 General Purpose Input/Output data line 1.
O | UART1. Transmit Data Output (TxD7).
pP2.2 124 /0 | Port 2 General Purpose Input/Output data line 2.
I UART2. Receive Data Input (RxD2).
P2.3 125 1/0 | Port 2 General Purpose Input/Output data line 3.
O [UART2. Transmit Data Output (TxD2).
P2.4 126 /0 | Port 2 General Purpose Input/Output data line 4.
I BSPI1. Master Mode. Master Input/Slave Output line (MISOT).
O [BSPI1. Slave Mode. Master Input/Slave Output line (MISOT).
P2.5 127 /O | Port 2 General Purpose Input/Output data line 5.
O [BSPI1. Master Mode. Master Output/Slave Input line (MOSI1).
I BSPI1. Slave Mode. Master Output/Slave Input line (MOSI1).
P2.6 128 1/O | Port 2 General Purpose Input/Output data line 6.
O | BSPH. Master Mode. Output serial clock (SCK1).
I BSPI1. Slave Mode. Input serial clock (SCK1).
P2.7 131 I1/O |Port 2 General Purpose Input/Output data line 7.
I BSPI2. Master Mode. Master Input/Slave Output line (MISO2).
O [BSPI2. Slave Mode. Master Input/Slave Output line (MISO2).
P2.8 132 1/0 | Port 2 General Purpose Input/Output data line 8.
O [BSPI2. Master Mode. Master Output/Slave Input line (MOSI/2).
I BSPI2. Slave Mode. Master Output/Slave Input line (MOSI/2).
P2.9 133 1/O | Port 2 General Purpose Input/Output data line 9.
O [BSPR2. Master Mode. Output serial clock (SCK2).
I BSPI2. Slave Mode. Input serial clock (SCK2).
16/401 ﬁ

STR720 - PIN DATA

Table 6. Port 2 Pins (Continued)

Symbol Pin | I/O Function
P2.10 134 I1/0 | Port 2 General Purpose Input/Output data line 10.
I USB. USB interface 48 MHz clock input (USBCK).
P2.11 135 1/O | Port 2 General Purpose Input/Output data line 11.
I CAN. CAN module receive pin (CANRX).
P2.12 136 /0 | Port 2 General Purpose Input/Output data line 12.
O [CAN. CAN module transmit pin (CANTX).
P2.13 137 1/0 | Port 2 General Purpose Input/Output data line 13.
I EFT1. Timer 1 External Clock Input line (ECLKT).
P2.14 138 /O | Port 2 General Purpose Input/Output data line 14.
1/0 | USB. USB interface D- signal (USBDM). The usage of this alternate function require a
special programming of GPIO registers.
P2.15 139 /0 | Port 2 General Purpose Input/Output data line 15.
1/0 | USB. USB interface D+ signal (USBDP). The usage of this alternate function require a
special programming of GPIO registers.

4.6 Port 3 pins

Port 3 consists of 13 bidirectional general purpose /O pins. They are controlled through a
configuration register, a data register and a direction register. These registers are read/write
registers. Port lines can be individually configured as general purpose inputs, general
purpose outputs or dedicated peripheral lines. The port can be read at any time: input lines
return the pin level; output lines return the level of the output driver input. When written, the
port stores the data in an internal register: it drives the pins only if they are configured as
general purpose outputs. Port 3 outputs can be configured as push/pull or open drain drivers.

Table 7. Port 3 Pins

Symbol Pin | 1/O Function
P3.0 144 I/O |Port 3 General Purpose Input/Output line 0.
P3.1 145 I/O |Port 3 General Purpose Input/Output line 1.
P3.2 146 I/O | Port 3 General Purpose Input/QOutput line 2.
P3.3 147 I/O |Port 3 General Purpose Input/Output data line 3.
P3.4 148 I/O |Port 3 General Purpose Input/Output data line 4.
P3.5 149 I/O | Port 3 General Purpose Input/Output data line 5.
P3.6 150 I/O | Port 3 General Purpose Input/Output data line 6.
| SYS EXT_BOOT. External boot mode selection. The state of this pin is sampled at
reset.
P3.7 151 I/O | Port 3 General Purpose Input/Output data line 7.
O | WIU. Stop mode request, active low (STOP_REQ).

17/401

4

STR720 - PIN DATA

Table 7. Port 3 Pins (Continued)

Symbol Pin /0 Function
P3.8 152 I/O |Port 3 General Purpose Input/Output data line 8.
| External Interrupt 0 (EINTO).
P3.9 153 I/O |Port 3 General Purpose Input/Output data line 9.
| External Interrupt 1(EINTT).
| BSPI1. Slave Mode. Slave select line (SS7).
P3.10 154 I/O | Port 3 General Purpose Input/Output data line 10.
| External Interrupt 2 (EINT2).
| BSPI2. Slave Mode. Slave select line (SS2).
P3.11 155 I/O | Port 3 General Purpose Input/Output data line 11.
| External Interrupt 3 (EINTS3).
O |RCCU. PLL lock status (PLL_LOCK).
P3.12 156 I/O | Port 3 General Purpose Input/Output data line 12.
| External Interrupt 4 (EINT4).
| EFT2 Timer 2 Input Capture line B (ICAPB2).

4.7 Port 4 pins

Port 4 consists of 5 bidirectional general purpose, /0O pins. They are under ARM720 control
through a configuration register, a data register and a direction register. These registers are
read/write registers. Port lines can be individually configured as general purpose inputs,
general purpose outputs or dedicated peripheral lines. The port can be read at any time: input
lines return the pin level; output lines return the level of the output driver input. When written,
the port stores the data in an internal register: it drives the pins only if they are configured as
general purpose outputs. Port 4 outputs can be configured as push/pull or open drain drivers.

Table 8. Port 4 Pins

Symbol Pin | /O |Function
P4.0 16 I/O |Port 4 General Purpose Input/Output data line 0.
| EMI External Ready signal (Eready).
P4.1 15 I/O | Port 4 General Purpose Input/Output data line 1.
P4.2 14 I/O |Port 4 General Purpose Input/Output data line 2.
P4.3 13 I/O |Port 4 General Purpose Input/Output data line 3.
P4.4 12 I/O |Port 4 General Purpose Input/Output data line 4.
O | EMI active low Chip Select - bank 1 (Ecs1n).
18/401 ﬁ

STR720 - PIN DATA

4.8 Main Clock input pins
Table 9. Main Clock Input Pins

Symbol | Pin) | /O |Function

CLK 17 I-P | This pin is used as main system clock source.
18 I-P | Reserved, must be tied to GND.
20 |-P |Reserved, must be tied to GND.

21 |-P |Reserved, must be tied to GND.

VREF 19 | CLK input reference voltage

4.9 Port 6 pins

Port 6 is a configurable 8/16/32-bit interface port used by the Synchronous DRAM memory
interface. DRAMC is under STR720 control through configuration registers. Port lines are
permanently assigned to the relevant pins and they are listed in the following table.

Table 10. Port 6 Pins

Symbol Pin | I/O Function
P6.0 108 | 1/0 |SDRAM Data line 0 (Mid[0)).
P6.1 107 | /0 |SDRAM Data line 1 (Mid[1]).
P6.2 106 | 1/0 |SDRAM Data line 2 (Mid[2)).
P6.3 105 | /0 |SDRAM Data line 3 (Mid[3)).
P6.4 102 | /0 |SDRAM Data line 4 (Mid[4)).
P6.5 101 | 1/O |SDRAM Data line 5 (Mid[5)).
P6.6 100 I/O | SDRAM Data line 6 (Mid[6]).
P6.7 99 I/0 | SDRAM Data line 7 (Mid[7)).
P6.8 118 I/O | SDRAM Data line 8 (Mid[8]).
P6.9 117 I/O | SDRAM Data line 9 (Mid[9]).
P6.10 116 I/O | SDRAM Data line 10 (Mid[10)).
P6.11 115 I/O | SDRAM Data line 11 (Mid[11]).
P6.12 112 | 1/0 |SDRAM Data line 12 (Mid[12)).
P6.13 111 I/O | SDRAM Data line 13 (Mid[13]).
P6.14 110 I/O | SDRAM Data line 14 (Mid[14]).
P6.15 109 I/O | SDRAM Data line 15 (Mid[15]).
P6.16 53 /O | SDRAM Data line 16 (Mid[16)).
P6.17 52 I/0 | SDRAM Data line 17 (Mid[17]).
P6.18 51 /O | SDRAM Data line 18 (Mia[18)).
P6.19 50 1/0 | SDRAM Data line 19 (Mid[19)).
P6.20 49 /O | SDRAM Data line 20 (Mid[20)).

ﬁ 19/401

STR720 - PIN DATA

Table 10. Port 6 Pins (Continued)

Symbol Pin | I/O Function

P6.21 48 I/O | SDRAM Data line 21 (Mid[21])).

P6.22 45 I/lO | SDRAM Data line 22 (Mid[22]).

P6.23 44 I/O | SDRAM Data line 23 (Mid[23)).

P6.24 65 I/O | SDRAM Data line 24 (Mid[24]).

P6.25 64 I/lO | SDRAM Data line 25 (Mid[25]).

P6.26 63 I/O | SDRAM Data line 26 (Mid[26]).

P6.27 62 I/O | SDRAM Data line 27 (Mid[27]).

P6.28 61 I/lO | SDRAM Data line 28 (Mid[28)).

P6.29 58 I/lO | SDRAM Data line 29 (Mid[29)).

P6.30 57 I/O | SDRAM Data line 30 (Mid[30)).

P6.31 54 I/lO | SDRAM Data line 31 (Mid[31])).

P6.32 83 O | SDRAM Address line 0 (Mia[0]).

P6.33 82 O |[SDRAM Address line 1 (Mia[1)).

P6.34 81 O |SDRAM Address line 2 (Mia[2]).

P6.35 80 O [SDRAM Address line 3 (Mia[3)).

P6.36 79 O [SDRAM Address line 4 (Mia[4)).

P6.37 78 O | SDRAM Address line 5 (Mia[5]).

P6.38 77 O [SDRAM Address line 6 (Mia[6]).

P6.39 74 O | SDRAM Address line 7 (Mia[7)]).

P6.40 73 O |SDRAM Address line 8 (Mia[8]).

P6.41 72 O | SDRAM Address line 9 (Mia[9)).

P6.42 86 O | SDRAM Address line 10 (Mia[10]).

P6.43 71 O |[SDRAM Address line 11 (Mia[11]).

P6.44 87 O | SDRAM Address line 12 (Mia[12]).

P6.45 88 O |SDRAM Address line 13 (Mia[13]).

P6.46 N/A N/A | Not implemented pin.

P6.47 69 O | SDRAM Memory clock signal (MiCIK).

P6.48 70 O [SDRAM Memory clock enable signal (MiCIkEn).
P6.49 89 O | SDRAM active low Chip Select - bank 0 (MiCsN[0)).
P6.50 95 O [SDRAM active low Chip Select - bank 1 (MiCsN[1]).
P6.51 97 O | SDRAM active low Chip Select - bank 2 (MiCsN[2)).
P6.52 98 O | SDRAM active low Chip Select - bank 3 (MiCsN[3]).
P6.53 90 O | SDRAM active low Setup Active signal (RAS).
P6.54 91 O [SDRAM active low Access Active signal (CAS).
P6.55 92 O [SDRAM active low Write Enable signal (MiWeN).
20/401 ﬁ

STR720 - PIN DATA

Table 10. Port 6 Pins (Continued)

Symbol Pin | I/O Function
P6.56 96 O [|SDRAM active low Byte Lane 0 Strobe signal (MiBIs[0]).
P6.57 119 O | SDRAM active low Byte Lane 1 Strobe signal (MiBIs[1)).
P6.58 43 O [SDRAM active low Byte Lane 2 Strobe signal (MiBIs[2]).
P6.59 68 O |SDRAM active low Byte Lane 3 Strobe signal (MiBIs[3]).

4.10 Port 7 pins

Port 7 is a configurable 8/16-bit data port shared between the External Memory Interface for
the connection of memory components - such as ROM, FLASH or SRAM devices - and the
IDE interface. Both EMI and IDE are under ARM720 control through configuration registers.
Shared port lines can be selected by software using the related GCR register bit.

Table 11. Port 7 Pins

Symbol Pin | I/O Function
P7.0 194 I/O | EMI Data line 0 (Edata[0]).
I/O | IDE Data line 0 (/DDJ0)).
P7.1 198 I/O | EMIData line 1 (Edata[1])).
I/0 |IDE Data line 1 (IDD[1}).
P7.2 200 I/O | EMI Data line 2 (Edata[2]):
/0 |IDE Data line 2 (IDD[2)).
P7.3 202 | /O |EMIData line 3 (Edata[3]).
I/0 | IDE Data line 3 (IDD[3)).
P7.4 204 | 1/O |EMIData line 4 (Edata[4)).
/0 |IDE Data line 4 (IDDJ4)).
P7.5 206 I/O | EMI Data line 5 (Edata[5])).
I/O |IDE Data line 5 (IDDJ5)).
P7.6 208 I/O | EMI Data line 6 (Edata[6)).
I/O | IDE Data line 6 (IDD[6)).
P7.7 4 /0 | EMI Data line 7 (Edata[7]).
I/O |IDE Data line 7 (IDDJ[7}).
P7.8 195 I/O | EMI Data line 8 (Edata/8)).
I/O | IDE Data line 8 (IDD[8]).
P7.9 199 I/O | EMI Data line 9 (Edata[9]).
I/O |IDE Data line 9 (/DD[D)).
P7.10 201 I/O | EMI Data line 10 (Edata[10)).

I/0

IDE Data line 10 (IDD[10}).

4

21/401

STR720 - PIN DATA

Table 11. Port 7 Pins (Continued)

Symbol Pin | I/O Function
P7.11 203 I/lO | EMI Data line 11 (Edata[11)).
/0 |IDE Data line 11 (/DD[11)).
P7.12 205 I/O | EMI Data line 12 (Edata[12)).
I/O | IDE Data line 12 (/IDD[12)).
P7.13 207 I/O | EMI Data line 13 (Edata[13)).
I/O | IDE Data line 13 (/IDD[13)).
P7.14 3 I/O | EMI Data line 14 (Edata[14])).
I/O | IDE Data line 14 (IDD[14)).
P7.15 5 I/O | EMI Data line 15 (Edata[15])).
I/O | IDE Data line 15 (/IDD[15)).
P7.16 168 O | EMI Address line 0 (Eadd[0]).
O | IDE Address line 0 (IDA[0)).
P7.17 169 O | EMI Address line 1 (Eadd[1)).
O |IDE Address line 1 (IDA[1)).
P7.18 170 O | EMI Address line 2 (Eadd[2]).
O | IDE Address line 2 (IDA[2)).
P7.19 191 O | EMI Address line 3-(Eadd[3]).
P7.20 190 O | EMI Address line 4 (Eadd[4]).
P7.21 189 O | EMI Address line 5 (Eadd[5]).
P7.22 188 O | EMI Address line 6 (Eadd[6]).
P7.23 187 O | EMI Address line 7 (Eadd[7]).
P7.24 178 O | EMI Address line 8 (Eadd[8)).
P7.25 177 O | EMI Address line 9 (Eadd[9]).
P7.26 176 O |EMI Address line 10 (Eadd[10)).
P7.27 175 O |EMI Address line 11 (Eadd[11)).
P7.28 174 O |EMI Address line 12 (Eadd[12)).
P7.29 173 O |EMI Address line 13 (Eadd[13)).
P7.30 172 O | EMI Address line 14 (Eadd[14).
P7.31 171 O |EMI Address line 15 (Eadd[15)).
P7.32 7 O |EMI Address line 16 (Eadd[16])).
P7.33 186 O |EMI Address line 17 (Eadad[17]).
P7.34 185 O |EMI Address line 18 (Eadd[18)).
P7.35 179 O |EMI Address line 19 (Eadd[19)).
P7.36 182 O | EMI Address line 20 (Eadd[20)).
P7.37 184 O | EMI Address line 21 (Eadd[21]).
vww.DataSheet4U.com
22/401 ﬁ

STR720 - PIN DATA

Table 11. Port 7 Pins (Continued)

Symbol Pin | I/O Function

P7.38 193 O | EMI active low External Read Strobe. (Erdn).
O |IDE active low Read strobe (/Diorn).

P7.39 183 O | EMI active low External Write Strobe, bits 7:0 of external memory (Ewr0On).
O | IDE active low Write strobe (IDiown).

P7.40 6 O | EMI active low External Write Strobe, bits 15:8 of external memory (Ewr1n).

P7.41 192 O | EMI active low Chip Select - bank 0 (EcsOn).

P7.42 166 O | IDE active low Chip select 0 (ICs0On).

P7.43 167 O | IDE active low Chip select 1 (ICs1n).

P7.44 164 | IDE Ready (lordy).

P7.45 165 | IDE Interrupt (Irq).

4.11 PQFP208 Package Pin Configuration

The package used for STR720 device is a Plastic Quad-Flat Package supporting 208 pin. For
a complete description of this package mechanical characteristics See “PACKAGE

23/401

4

STR720 - PIN DATA

MECHANICAL DATA” on page 373. In the following drawing and table the device pin mapping
is reported

Figure 3. STR720 PQFP208 pin configuration (top view)

[nsom

<
13 . .

I H H &z
g ARl HIE
: £lsl|¢ HI
Iy Sl Chy C k1"

P31z

(=] P31

= 3 EE—
— P31

[EMI/IDE D14 210

EIEE EEN—

[EVITE D75 EE—
A
150 fmeeason
R
R
[o5E 10 CEEN—

R
iz EEE—
I

[Byie (°7.0)

[EMI AL6

piz

[FGCoATA

it

a0 Eready

I3 140

Reserved

[REF

20 Cr—

Reeres R

oo a1

R P —

Feeen]

R A—

Reserved 130 o

esee joos]

[Reserved P2t

= 30 =

o]

oo P —

o I—

o E
]

=

— 120

—

[JTCK S

s 40 2

JTDI 10

JTDO L

T oo |

575 oos]

D22 oL

|VDD3 DL

= 110

R
R
= 5 1]
1]
CEN—

<|l=[LElfs]]<]] e HIRIRIBIAIR £l
HIBIEEIBIBL IEIHIHIBIBIE H
I EENE B L [EEE &

0
0
100

s)

o
=

)= £l ol [<[]=f]<||E

HIEIE <IENE] <) |« NIBIE HIEIEIEIH

e = 5| LS L& L) [« HMIEEIE [l HE]

a

[Fr s
[eras

[
=
[vona
e

vww.DataSheet4U.com

24/401 172

STR720 - PIN DATA

Table 12. STR720 PQFP208 pin map

Pin Symbol Pin Symbol Pin Symbol Pin Symbol
1 VDD3 53 MID[16] 105 MID[3] 157 RSTIN_N
2 VSS 54 MID[31] 106 MID[2] 158 RTCRST_N
3 EDATA[14] 55 VDD3 107 MID[1] 159 VDDRTC
IDD[14]
4 EDATA[7] 56 VSS 108 MIDI[O] 160 OSCIN
IDD[7]
5 EDATA[15] 57 MID[30] 109 MID[15] 161 OSCOUT
IDD[15]
6 EWR1_N 58 MID[29] 110 MID[14] 162 VSS
7 EADD[16] 59 VDD 111 MID[13] 163 VDD3
8 VDD 60 VSS 112 MID[12] 164 IORDY
9 VSS 61 MID[28] 113 VDD3 165 IRQ
10 vVDD3 62 MID[27] 114 VSS 166 ICSO_N
11 VSS 63 MID[26] 115 MID[11] 167 ICS1_N
12 P4[4] 64 MID[25] 116 MID[10] 168 EADD|0]
IDA[0]
13 P4[3] 65 MID[24] 117 MID[9] 169 EADD[1]
IDA[1]
14 P4[2] 66 VDD3 118 MID[8] 170 EADD[2]
IDA[2]
15 P4[1] 67 VSS 119 MIBLS_N[1] 171 EADD[15]
16 P4[0] 68 MIBLS_NI[3] 120 VSSPLL 172 EADD[14]
17 CLK 69 MICLK 121 VDDPLL 173 EADD[13]
18 Reserved (GND) ||70 MICLKEN 122 P2[0] 174 EADD[12]
19 VREF 71 MIA[11] 123 P2[1] 175 EADD[11]
20 Reserved (GND) |[72 MIA[9] 124 P2[2] 176 EADD[10]
21 Reserved (GND) ||73 MIA[8] 125 P2[3] 177 EADD[9]
22 VDD3P 74 MIA[7] 126 P2[4] 178 EADD[8]
23 VSSP 75 VvDD3 127 P2[5] 179 EADDI[19]
24 Reserved (GND) ||76 VSS 128 P2[6] 180 VDD3
25 Reserved 77 MIA[6] 129 VDD3 181 VSS
26 Reserved (float) |(78 MIA[5] 130 VSS 182 EADDI[20]
27 Reserved 79 MIA[4] 131 P2[7] 183 EWRO_N
28 Reserved (GND) |(80 MIA[3] 132 P2[8] 184 EADD[21]
29 Reserved (GND) |(81 MIA[2] 133 P2[9] 185 EADD[18]
30 Reserved (GND) |(82 MIA[1] 134 P2[10] 186 EADD[17]
31 Reserved (GND) |(83 MIA[O] 135 P2[11] 187 EADD[7]

25/401

4

STR720 - PIN DATA

Table 12. STR720 PQFP208 pin map

Pin Symbol Pin Symbol Pin Symbol Pin Symbol
32 AVDD 84 VDD3 136 P2[12] 188 EADDI[6]
33 ANO 85 VSS 137 P2[13] 189 EADDI[5]
34 AN1 86 MIA[10] 138 P2[14] 190 EADD[4]
35 AN2 87 MIA[12] 139 P2[15] 191 EADDI3]
36 AN3 88 MIA[13] 140 VDD 192 ECSO_N
37 AGND 89 MCS_N[0] 141 VSS 193 ERD_N
38 JTRST_N 90 MISA_N 142 VSS 194 EDATAJ[O]

IDD[0]
39 JTCK 91 MIAA_N 143 VDD3 195 EDATA[8]
IDD[8]
40 JTMS 92 MIWE_N 144 P3[0] 196 VDD3
41 JTDI 93 VDD3 145 P3[1] 197 VSS
42 JTDO 94 VSS 146 P3[2] 198 EDATA[1]
IDD[1]
43 MIBLS_N[2] 95 MCS_N[1] 147 P3[3] 199 EDATA[9]
IDD[9]
44 MID[23] 96 MIBLS_NJ[O0] 148 P3[4] 200 EDATA[2]
IDD[2]
45 MID[22] 97 MCS_N[2] 149 P3[5] 201 EDATA[10]
IDD[10]
46 VDD3 98 MCS_N[3] 150 P3[6] 202 EDATA[3]
IDD[3]
47 VSS 99 MID[7] 151 P3[7] 203 EDATA[11]
IDD[11]
48 MID[21] 100 MID[6] 152 P3[8] 204 EDATA[4]
IDD[4]
49 MID[20] 101 MID[5] 153 P3[9] 205 EDATA[12]
IDD[12]
50 MID[19] 102 MID[4] 154 P3[10] 206 EDATA[5]
IDD[5]
51 MIDI[18] 103 VDD3 155 P3[11] 207 EDATA[13]
IDD[13]
52 MID[17] 104 VSS 156 P3[12] 208 EDATA[6]
IDD[6]
26/401 IYI

STR720 - ARCHITECTURE OVERVIEW

5 ARCHITECTURE OVERVIEW

This chapter is meant to give an overview of the peripherals available inside STR720, with the
dedicated STR720 customizations. STR720 peripherals can be divided in the following
groups:

AHB peripheral set. This set is composed of all peripherals requiring fast access and high
transfer throughput and it contains program RAM memory, boot-ROM memory, DMA
processor capable of transferring data between peripherals and memory, ATAPI interface
for IDE device connection, DRAMC controller allowing the usage of commercial SDRAM
banks as system memory, and EMI which enables a direct connection of external FLASH
memories for system boot or other external memory mapped devices. Two different
AHB-APB bridges enable access to the rest of STR720 peripheral set.

S-APB peripheral set. This set contains those system peripherals which require to run
synchronously with ARM720T core, due to performance requirements or ease of integration.
It is composed of an Enhanced Interrupt Controller (EIC) and a specific Wake-Up Interrupt
Unit (WIU) to extend ARM720T interrupt capabilities, a Reset-Clock Control Unit (RCCU) to
select between different system clock source options and implement all the power saving
modes, a Real Time Clock to keep timing during powerdown mode, a Real-Time clock
generator, and configurable 1/0 ports giving access to a large number of configurable pins.

A-APB peripheral set. This set contains most of system peripherals and it is designed to
run at a lower frequency independent from the ARM720T one, thus reducing the overall
power consumption. It is composed of a set of serial channels to implement different kind of
user interfaces (BSPI and UART), protocol specific serial interfaces as CAN and USB, a
4-channel A/D converter suitable for control-voltage monitoring, 2 independent Enhanced
Function Timers (EFT) which can be used as system scheduler, Watch DoG for system
reliability (WDG), and configurable 1/0 port.

In the following sections a brief overview of the STR720 system is given. For a more detailed
description of each peripheral, please refer to the related chapters.

5.1 Enhanced Interrupt Controller (EIC)

The ARM720T CPU provides two levels of interrupt:

F1Q (Fast Interrupt Request) for fast, low latency interrupt handling.
IRQ (Interrupt Request) for more general interrupts.

The Enhanced Interrupt Controller (EIC) implements the handling of multiple interrupt
channels, interrupt priority and automatic vectorization. It provides:

32 maskable interrupt channels, mapped on ARM720T interrupt request pin IRQ
32 interrupt vectors
3 maskable interrupt channels, mapped on ARM720T fast interrupt request pin FIQ.

ﬁ 27/401

STR720 - ARCHITECTURE OVERVIEW

m 16 programmable priority levels for each interrupt channel mapped on IRQ

m hardware support for interrupt nesting (up to 16 interrupt requests can be nested), with
internal HW nesting stack

m atregister offset 0x18h, the start address of the ISR of the highest priority interrupt or directly
the jump instruction to it (defined by the application).

The EIC performs the following operations without software intervention:

m reject/accept an interrupt request according to the related channel mask bit,

s compare all IRQ requests with the current priority level interrupt. The IRQ is asserted if the
priority of the current interrupt request is higher than the stored current priority,

» load the address vector of the highest priority IRQ to the Interrupt Vector Register (offset
0x18h)

m save the previous interrupt priority in the HW priority stack whenever a new IRQ is accepted

m update the Current Interrupt Priority Register with the new priority whenever a new interrupt
is accepted

5.1.1 IRQ Interrupt Vector Table

Up to 32 interrupt channels are mapped on low priority ARM720T interrupt request pin (IRQ).
Hereafter the mapping of the different interrupt sources on the vector tables is described. The
highest-priority interrupt request will be issued'on /ARM720T IRQ pin. In case of multiple
interrupt requests mapped on the same interrupt vector, a polling on interrupt flags contained
inside peripherals must be performed by the application code in order to establish the exact
source of interrupt (see Interrupt Flags column in Table 13 on page 32).

There are 16 priority levels for IRQ mapped interrupt. The internal daisy-chain will define the
priority relationship for different interrupt vectors having the same priority level: the higher is
the interrupt vector number the higher is the priority in the daisy chain.

Interrupt Vector 0

* External interrupt requests.
Four different interrupt requests are OR-ed together to generate a single interrupt request:

e External interrupt 0 (EINTO)
e External interrupt 1 (EINT1)
e External interrupt 2 (EINT2)
e External interrupt 3 (EINT3)

Interrupt Vector 1

e External interrupt request 4 (EINT4).

4

28/401

STR720 - ARCHITECTURE OVERVIEW

Interrupt Vector 2

e Wake-up Controller interrupt request
From 0 to 11 (the number of wake-up input alternate function pins) different interrupt
requests are OR-ed together to generate a single interrupt request. Refer to Wake-up
Controller specifications for further details on interrupt request generation.

Interrupt Vector 3

* Extended Function Timer 1 interrupt request.
Five different interrupt requests are OR-ed together to generate a single interrupt request:

* Input Capture A
e Output Compare A
e Timer Overflow
* |Input Capture B
e Output Compare B

Interrupt Vector 4

e Extended Function Timer 2 interrupt request.
Three different interrupt requests are OR-ed together to generate a single interrupt
request:
e Input Capture A
e Timer Overflow
e |Input Capture B

Interrupt Vector 5

e UART1 interrupt request
Nine different interrupt requests are OR-ed together to generate a single interrupt
request:

* Receive buffer full

e Transmit buffer empty

e Transmit buffer half empty
* Parity error

* Frame error

e Qverrun error

e Timeout not empty

e Timeout idle

* Receive buffer half full

4

29/401

STR720 - ARCHITECTURE OVERVIEW

Interrupt Vector 6

e UART2 interrupt request (see Interrupt Vector 5).

Interrupt Vector 7
e DMA controller interrupt request.
Four different interrupt requests are OR-ed together to generate a single interrupt request:

e Data stream 2 and 3 completed transfer interrupts
e Data stream 2 to 3 transfer error interrupts

Interrupt Vector 8

e Reserved.

Interrupt Vector 9

¢ Reserved.

Interrupt Vector 10
* USB interface high priority events interrupt request.

All isochronous and double-buffer endpoint correct transfer interrupt requests are OR-ed
together to generate a single interrupt request. The number of isochronous/
double-buffered endpoints is programmable by software, so the actual number of events
raising this interrupt line can vary from 0 to 7.

Interrupt Vector 11
e USB interface low priority and generic events interrupt request.

All endpoint correct transfer interrupt requests, except isochronous and double-buffered
(see Interrupt Vector 10) are OR-ed together with the generic USB events to generate a
single interrupt request.

The USB events not related to endpoint activity are:
e Data overrun/underrun

e USB Error

e USB Wake-up

e USB Suspend

e USB Reset

e Start of frame

* Missing start of frame

The number of isochronous/double-buffered endpoints is programmable by software, so
the actual number of events raising this interrupt line can vary from 7 to 15.

4

30/401

STR720 - ARCHITECTURE OVERVIEW

Interrupt Vector 12

e CAN Interface interrupt request.

Thirty-two different interrupt requests are OR-ed together to generate a single interrupt

request:

e Status interrupt

* Message object 1 to 32 reception/transmission interrupts
Interrupt Vector 13
e Buffered SPI 1 interrupt request.

Five different interrupt requests are OR-ed together to generate a single interrupt request:

* Receive interrupt

* Receive overflow

e Transmit interrupt

e Transmit underflow

* Bus error
Interrupt Vector 14

e Buffered SPI 2 interrupt request (see Interrupt Vector 13).

Interrupt Vectors 15

e Primary IDE interface interrupt request.

Interrupt Vectors 16

* Real-Time Clock periodic interrupt request.

Interrupt Vector 23

* Analog to Digital Converter sample ready interrupt request.

Interrupt Vector 29

e Extended Function Timer 2 output compare A interrupt request.

Interrupt Vector 30

e Extended Function Timer 2 output compare B interrupt request.

Interrupt Vector 31

e Watchdog Timer interrupt request.

4

31/401

STR720 - ARCHITECTURE OVERVIEW

Table 13. IRQ Interrupt Vector Summary

Vector Peripheral Peripheral Interrupt Flags
IRQO IRQO3IT: External Interrupts EINTO-EINT3 4
IRQ1 IRQ4IT: External Interrupt EINT4 1
IRQ2 WIUIT: WIU wake-up event interrupt 11
IRQ3 EFT1IT: EFT1 global interrupt 5
IRQ4 EFT2IT: EFT2 global interrupt 3
IRQ5 UART1IT: UART 1 global interrupt 9
IRQ6 UART2IT: UART 2 global interrupt 9
IRQ7 DMAIT: DMA event global interrupt 4
IRQ8 Reserved.

IRQ9 Reserved.

IRQ10 USBHPIT: USB high priority event interrupt 0-7
IRQ11 USBLPIT: USB low priority event interrupt 7-15
IRQ12 CANIT: CAN module general interrupt 32
IRQ13 BSPIIT: BSPI 1 global interrupt 5
IRQ14 BSPI2IT: BSPI 2 global interrupt 5
IRQ15 IDEPIRQ: IDE Primary channel interrupt 1
IRQ16 RTCPERIT: RTC Periodic interrupt 1
IRQ17 Reserved.

IRQ18 Reserved.

IRQ19 Reserved.

IRQ20 Reserved.

IRQ21 Reserved.

IRQ22 Reserved.

IRQ23 ADCIT: ADC sample ready interrupt 1
IRQ24 Reserved.

IRQ25 Reserved.

IRQ26 Reserved.

IRQ27 Reserved.

IRQ28 Reserved.

IRQ29 EFT20CA: EFT2 Output Compare A Interrupt 1
IRQ30 EFT20CB: EFT2 Output Compare B Interrupt 1
IRQ31 WDGIT: WDG timer interrupt 1

5.1.2 FIQ Interrupt Vector Table

Three maskable interrupt sources are mapped on FIQ vectors:

e FIQO: External interrupt channel 0

e FIQ1: Extended Function Timer 2 output compare B interrupt request

e FIQ2: AHB Error detection interrupt request

32/401

4

STR720 - ARCHITECTURE OVERVIEW

Having only one FIQ vector shared by the three interrupt sources, a polling on FIQ interrupt
pending bits contained inside EIC must be performed by the application code in order to
establish the exact source of interrupt, in case more than one FIQ source is enabled. Besides,
having no priority mechanism, in case of contemporaneous FIQ events, the software shall
manage the priority simply by polling the pending bits and managing the concurrence.

Table 14. FIQ Interrupt Vector Table

Vector Interrupt Source
FIQO External Interrupt IRQO
FlQ1 EFT2 Output Compare B Interrupt
FlQ2 AHB Error detection Interrupt

5.1.3 IRQ Interrupt Vectoring

The EIC (Enhanced Interrupt Controller) implements an interrupt structure pointing the
processor at the first instruction location of the channel-specific Interrupt (IRQ) Service
Routine.

IVR (Interrupt Vector Register) is the EIC’s 32-bit register at address OxFFFF_FC18 acting as
pointer. It is composed by two main fields: the upper half word (16 bit) is directly
programmable, while the lower half word is the mirrored entry of a register table (nhamed SIR)
indexed by the interrupt channel (see Chapter 7. ENHANCED INTERRUPT CONTROLLER
(EIC) on page 51).

The absolute address 0x0000_0018 is where the ARM720T CPU jumps as consequence of
an interrupt request on its IRQ pin.

The STR720 implementation is such that the ARM’s 0x0000_0018 location and the EIC’s IVR
location are considered as distinct addresses. The EIC IVR register can contain, for example,
the absolute address of the interrupt service routine or an index to a jump table; at location
0x0000_0018 the interrupt handling routine starts, using IVR as index or pointer to the actual
response routine. To implement this behaviour the absolute 0x0000_0018 location must
contain an instruction which allows to perform a jump to the location pointed to by the IVR
register.

For instance, the absolute location 0x0000_0018 should contain the following instruction:
LDR PC, [PC, offset]

where “offset” is what to add to the PC to obtain the EIC IVR address. The instruction above
allows the CPU to load the Program Counter register with the address kept in EIC IVR and so
to jump to the location pointed to by the IVR register.

The user has to consider that when the absolute address 0x0000_0018 is being fetched, the
PC is equal to 0x0000_0020 (18h + 8h). So, the offset is equal to:

offset = VR address — 0x0000_0020 = OxFFFF_FC18 — 0x0000_0020 = OxFFFF_FBF8

‘ﬁ 33/401

STR720 - ARCHITECTURE OVERVIEW

Figure 4. IRQ Interrupt Vectorization

EIC IVR stores the absolute address of the
Interrupt Service Routine

First instruction of the ISR is located A UETEE rers | IVR = 040001 8000
at address 0x0001 8000

PC = OxFFFF FC18

PC = 0x0001 8000
PC <= [PC, offset] INTERRUPT
SERVICE
offset = 0xFFFF FC18 - 0x20 ROUTINE
= OXFFFF FBF8
0x0001 8000 <+
AJ\(o)
@ Interrupt request USER
CODE
Jump at address 0x0000 0018h:
@ execution of the instruction which loads PC with
EIC IVR address OxFFFF FC18h

IVR used by previous instruction as base address
for the particular interrupt service routine

'— 0x0000 0018 JLDR PC, [PC, offset] 4— PC = 0x0000 0020

@ Starting of execution of interrupt service routine

This mechanism allows a jump to virtually any location of the 4GB memory space. However,
since the channel dependent portion of IVR are the lower 16 bits, once the base address (in
the upper part) has been fixed the interrupt handler routines can only be within a 64Kbyte
range from that base address.

5.2 Wake-up/Interrupt management Unit (WIU)

The Wake-up/Interrupt Management Unit can be seen as an extension of the number of
external interrupt lines but it can also manage up to 16 wake-up lines capable of exiting STOP
mode:

m 4 external wake-up lines all connected to the IRQO channel of the interrupt controller. These
wake-up lines have dedicated input ports.

m 1 external wake-up line directly mapped to a dedicated channel of the interrupt controller
(IRQ1). This wake-up line has a dedicated input port.

m 10 internal wake-up lines connected to the IRQ2 channel of the interrupt controller module.
The ‘internal” lines are mapped on some significant STR720 signals.

The external wake-up pins (available as alternate function of general purpose I/O lines) can
be programmed as plain external interrupt lines or as wake-up lines to exit STOP mode. When
the external lines are defined as wake-up pins a programmable signal edge will
asynchronously trigger the wake-up event, changing the status of the alternate output function
STOP_REQ, associated to P3.7 and allowing the external power control to restore system
main clock source. In this way STOP mode can be exited without resetting the whole system,
provided that STOP_REQ is enabled.

34/401 ﬁ

STR720 - ARCHITECTURE OVERVIEW

In STR720 implementation, the 10 internal wake-up lines are associated with the input of
serial communication modules and also with other relevant internal events, as defined in
Table 15. In this way, if properly programmed, the system can be woken up by the detection of
activity on any serial bus or when the external CLK restarts. For example, wake-up line 15
can be used to restore STR720 system when only the Real Time Clock is left running.

Table 15. Wake-up line sources

Wake-up line # Wake-up line source
6 RCCU: Change of PLL Lock condition (see note below).
7 CLK clock line
8 Port2.0: UART1 Receive Data Input (RxD1)
9 Port2.2: UART2 Receive Data Input (RxD2)
10 Port2.6: BSPI1. Slave Mode. Input serial clock (SCK1).
11 Port2.9: BSPI2. Slave Mode. Input serial clock (SCK2).
12 Port2.11: CAN module receive pin (CANRX).
13 Reserved.
14 USB wake-up event: generated while exiting from suspend mode.
15 RTC related event: Alarm Interrupt.

Note Wake-up line 6 is associated to any change of PLL lock condition detected by RCCU
unit but, unlike all others, this wake-up line cannot be used to restore system from
STOP mode. It can be used as an interrupt extension line only.

Note Wake-up line 7, associated to CLK clock, will be always set its corresponding
pending bit as long as the external clock is present.

5.3 DMA Controller (DMAC)

The DMA controller provides access to 2 data streams inside STR720 system. Since
peripherals are memory mapped, data transfers from/to peripherals are managed like
memory/memory data transfers.

Each data stream can be associated to one particular peripheral, which triggers a DMA
request starting the data transfer between the corresponding buffers defined in the stream
descriptor. Data stream 3 of DMA controller can alternatively be used as a memory/memory
data transfer triggered by a software DMA request, independently from any peripheral activity.
In case data stream 3 is also associated to a peripheral request, the two modes can be
selected by software.

The DMA controller supports circular buffer management avoiding the generation of interrupts
when the controller reach the end of the source buffer. When a stream is configured in circular
buffer mode and the end of buffer is reached, DMA controller reloads the start address and
continues the transfer until software notifies the end of operations.

The priority between different DMA triggering sources is defined by hardware, source 0 being
the highest priority request and source 3 being the lowest one. The mapping of DMA requests

‘ﬁ 35/401

STR720 - ARCHITECTURE OVERVIEW

implemented in STR720 system is detailed in Table 16. Where multiple sources are available
Table 16. DMA request mapping

Stream DMA triggering source
0 Reserved.
1 Reserved.
2 BSPI1 Receive data request
3 Memory-to-memory / BSPI1 Transmit data request / ADC

for a stream triggering event, the selection is performed by specific configuration bits located
in SGCR3 register. Note that ATAPI can be programmed so to transfer its data to/from
memory using the memory-to-memory transfer mode, so there is no need to generate a
specific request to the DMA controller.

The DMA controller treats bytes in memory as being in Little Endian format: the lowest
numbered byte in a word is considered the word least significant byte and the highest
numbered byte the most significant.

5.4 DRAM controller (DRAMC)

The STR720 device provides an SDRAM which supports four external banks containing
SDRAM memories, all banks being of the same DRAM type. Each bank can be enabled/
disabled through configuration registers and its size can vary between 64 KBytes and
32 MBytes. This allows the controller to-address from 64 KBytes (1 bank of 64 KBytes) up to
128 MBytes (four banks of 32 MBytes). Due to pad number limitation, the maximum
addressable range of 128 MBytes (32 MBytes each bank) can be reached only when 32 bit
wide memories are used and column address is at least 9 bit long.

Accesses to the SDRAM memory are done using an AHB interface, while a dedicated APB
interface enables the CPU to configure various parameters of SDRAMC accesses to the
external memory as word and column size, data latency, setup time, idle time, bank enabling,
refresh period.

When ARM720 cache is enabled, all accesses to SDRAM memory are performed as bursts of
4 transfers on AHB bus and in order to achieve the highest performance level, SDRAM
interface must be aware of this peculiar access mode. Unfortunately a limitation in ARM720
core and SDRAM interface requires this specific configuration to be enforced explicitly by
software. This configuration selection is performed by using CACHE_CONFIG bit of SGCR1
register, which can configure STR720 to work in “burst-access” mode and it should be used
whenever cache is enabled, so to have optimal performance from the system. See Section
10.5: Programming considerations on page 114 about SDRAM configuration, and Section
24.3: S-GCR Block description on page 352 for further details and limitations about the
usage of SDRAM “burst-access” mode.

4

36/401

STR720 - ARCHITECTURE OVERVIEW

5.5 External Memory Interface

The External Memory Interface (EMI) controls the data flow from AHB bus to an external
memory components - both ROM, SRAM and PCMCIA Interface and it can access up to
8 Mbytes of memory space, possibly partitioned in 4 different memory banks.

The AHB interface manages 32 bit data that can be then packed/unpacked before being send
through a 16 bit data bus. The EMI will automatically unpack the data and reformat it to the
right part of the bus for write access. For read access, it will buffer the access to build the
complete 32-bit data to be send to the AHB.

The length of time required to properly transfer data to external memory components is
controllable by programming of internal registers dedicated to each external memory space.
In case the response time of the external device is not constant, a specific alternate function
is provided on P4.0 used as an external ready signal, whose transition flags the end of current
access. This external ready functionality can be enabled by programming the internal EMI
registers which also contain flag bits to inform the controller if a particular memory space is
accessible or not. These internal registers are accessed via an APB interface to the EMI
block.

The External Memory Interface shares a 46-bit port (port 7) with the IDE interface pins so that
the two interfaces cannot be used at the same time. The address bus starts from bit 0 (P7.16)
and ends on bit 21 (P7.37) always representing the 16-bit word location accessed by the EMI
block. The selection between EMI and IDE pins can be done by setting the corresponding bit
in SGCR1 register. Beside this limitation, also the number of accessible memory banks is
limited to 2: bank 0 will be always accessible while bank 1 can be used only through a specific
I/O programming since its chip select line is shared with another GPIO pad (P4.4 = CS1).
Memory banks CS2 and CS3 are never accessible.

5.6 ATAPI IDE interface

ATA 4 Industry Standard EIDE controller. The controller allows interfacing to devices such as
Hard disk drives or CD ROM to the STR720 system being capable of transferring data either
under CPU control or using the DMA controller “memory-to-memory” transfer mode, thus
being able to spare CPU time even if PIO modes are configured. The IDE controller supports
the following features:

m Primary-only channel, supporting up to two IDE devices.

m Support for CD-ROM and tape peripherals.

= Independently programmable timing for each device.

m Programmable posted writes and read-prefetch.

m Software selectable endianness for data read from CDROM / tape peripheral.

m Support for I/O Channel Ready.

m Support for PIO modes 0, 2, 3 and 4.

ﬁ 37/401

STR720 - ARCHITECTURE OVERVIEW

5.7 Reset and Clock Control Unit (RCCU)

Reset and Clock Control Unit (RCCU) is responsible of the control and distribution of the reset
and the clocks signals of STR720.

5.7.1 Clock management

All possible operating modes (including low power ones) are managed by this peripheral by
selecting the system clock source and prescaling it so to adapt its frequency to actual system
requirements. A conceptual block diagram of RCCU clock management structure is reported
in Figure 5 on page 38

Figure 5. RCCU Simplified Block Diagram

> 1/32 1/2,1/3 —>
g IDLE ATAPI clock
STAP cloc
sToP (ATAPI_CLK)
CLK 1/2 PLL >
»| Clock Multiplier AHB / S-APB clock
/Divider Unit (AHB_CLK)
CLK2
PLL_BYP SLOW
OSCIN Div2 -
(32 kHz)
1/2, 1/4
CLKAF 118,116 [
A-APB clock
(APB_CLK)

As the diagram reports, different clock frequencies can be used for the main system
composed by the AHB and the S-APB subsystems. As an example, when CLK clock is driven
by a 16 MHz signal, the following values are possible, for main system clock:

s CLK: 16 MHz

s CLK divided by 2

s CLK divided by 32 or by 64

s CLK multiplied by PLL (see RUN mode section)

m CLK_AF source: 32 kHz oscillator output.

A programmable prescaler derives A-APB subsystem clock from main clock signal, while
independent and dedicated prescalers are implemented in order to generate the ATAPI clock.
All serial interfaces (CAN, BSPI, UART) have configurable internal prescalers in order to
generate the correct baud rates. Each peripheral inside STR720 system can be

38/401 ﬁ

STR720 - ARCHITECTURE OVERVIEW

independently stopped, freezing its clock input signal, by proper configuration registers
located in the A-APB bridge, in GCR registers and in a specific Clock Gating Control block.

If application software requires it, RCCU block can issue an interrupt, through the WIU block,
upon any change of PLL lock condition, so to take proper action when system clock frequency
is different from what is set in RCCU configuration.

For a detailed description of STR720 operating modes, see Chapter25: POWER
REDUCTION MODES on page 364.

Note The AHB and S-APB blocks are driven by the same clock signal (AHB_CLK) .

5.7.2 RESET management
The Reset Manager resets the MCU when one of the following events occurs:

— A Hardware reset, initiated by a low level on the Reset pin;
— A Software reset, forced setting a control bit inside the RCCU
— A Watchdog end of count condition (when enabled)

The event causing the last Reset is flagged in the CLKFLAG register: the corresponding bit is
set. A hardware initiated reset will leave all these bits reset.

The hardware reset overrides all other conditions and forces the system to the reset state.
During the Reset phase, the internal registers are set to their reset values, where these are
defined, and the 1/O pins configuration is restored to the condition reported in Section 5.18:
General Purpose I/O Ports on page 44 and Section 5.19: Dedicated Pins on page 45.

Reset from pad is asynchronous: when it is driven low for a duration longer than the on-chip
RC filter width (between 50 ns and 500 ns), a Reset cycle is initiated (see Chapter 26:
SYSTEM RESET on page 370). The on-chip Watchdog Timer generates a reset condition if
the Watchdog mode is enabled and if the programmed period elapses without the specific
code written to the appropriate register (see Chapter 20: WATCHDOG TIMER (WDG) on
page 303).

When the Reset pin goes high again, the on-chip RC filter width plus 768 CLK plus 8
AHB_CLK cycles are counted before exiting the Reset state (plus possibly up to four
additional CLK period, depending on the delay between the rising edge of the Reset pin and
the first rising edge of CLK). As an example it corresponds to an interval between 48.25 us
and 48.5 us with a 16 MHz input clock.

At the end of the Reset phase, the Program Counter will be set to the location specified in the
Reset Vector located in the 0000 0000h location of memory.

4

39/401

STR720 - ARCHITECTURE OVERVIEW

Figure 6. Reset General Timing

> 50 ns
<500 ns 768 cycles 8 cycles

e > >,

RSTIN [: é E é

external pin

RSTF - i :
(after filter) :
internal signal , '

AHB_CLK ' : :

PERIPH. CK

CPU + PERIPH :
Reset ! CPURUN

When a reset is asserted, RCCU registers will'be preset in the following state:

m Reference Clock (CLK clock), with no sub-division, will be used as System Clock and fed in
input to the PLL,;

m PLL will be switched off and bypassed with its multiplication factor preset to 1;

m Most of peripheral clocks will be stopped (see Table 83: Peripheral clock and reset gating on
page 366)

It is up to the STR720 boot code to properly program the RCCU registers so as to use the
PLL, to set different division factors for APB_CLK, to enable or disable the peripheral clocks
according to application requirements.

5.8 Real Time Clock (RTC)

The real time clock is a 48 bits counter with a resolution of one period of the 32768 Hz input
clock. The counter is fed by the output clock of a 32768 Hz crystal oscillator. The RTC and the
oscillator are supplied by a dedicated 1.8 V stand-by power supply allowing the possibility to
switch off all the device keeping the counter running.

The counter is reset by a dedicated in pin which is supplied by 1.8 V too. The system reset
does not have any effect on the RTC.

4

40/401

STR720 - ARCHITECTURE OVERVIEW

The RTC generates a configurable periodic tick (see Table 13, “IRQ Interrupt Vector
Summary,” on page 32 and Table 15, “Wake-up line sources,” on page 35) and a
programmable alarm.

Readable/Writable registers contain the time elapsed since clock start, measured as 30.52 ps
ticks on a 48 bit counter.

The counter overflow is not handled being higher than 200 years.

5.9 AHB-APB bridges

In order to reduce the power consumption of the overall core, AHB and A-APB are clocked
with different frequencies: AHB with an high frequency to have high transfer performance,
A-APB with a scaled down frequency in order to reduce power consumption. The AHB-APB
asynchronous bridge provides a resynchronization mechanism in order to enable master of
the AHB bus to access the APB peripherals. For information on the APB bridges mapping,
please refer to Section 6.3: APB Bridges Mapping on page 48.

Since the ratio between AHB and A-APB could be also 1/16, more than 32 AHB-cycles could
be necessary to access a peripheral.

Moreover, the AHB-APB asynchronous bridge also controls the clock and reset signals of the
peripherals connected to A-APB subsystem. The Peripheral Clock Gating (PCG) registers
allow to clock off independently any of the peripherals connected to the bridge.

For peripherals that do have both an AHB and APB interface but that do not support two
independent clock domains, as External Memory Interface (EMI) and DMA Controller
(DMAC), a synchronous APB bridge is also implemented (S-APB). This bridge is also used to
connect those APB peripherals having specific bandwidth requirements, in order to avoid the
synchronization overhead present in the Asynchronous APB bridge.

5.10 Clock Gating Control (CGC)

The Clock Gating Control block (CGC) is a bank of registers which can be used to activate
clock and reset signals for most AHB and S-APB peripheral. In this way only the peripherals
actually required by the application need to be clocked, while all the other ones can be kept
frozen or under reset so to reduce system power consumption. This block acts as a
complement to the similar feature implemented by the A-APB bridge on its peripherals.

For most of the peripherals connected to AHB or S-APB subsystems there are three bits
inside CGC block: reset on/off control, normal clock on/off control and debug clock on/off; an
identical situation exists for A-APB peripherals which use a similar structure found in A-APB
bridge. The list of controlled peripherals can be found in Table 83: Peripheral clock and reset
gating on page 366 where also their reset status can be found.

4

41/401

STR720 - ARCHITECTURE OVERVIEW

5.11 Universal Asynchronous Receiver/Transmitter (UART)

STR720 provides 2 Universal Asynchronous Receiver Transmitter peripherals (UART) to
interface to other microcontrollers, microprocessors or external peripherals through serial
communication. Both UARTSs support full duplex asynchronous communication with external
peripherals.

Data frames can be either 8-bit long (8 data bits or 7 data bits plus an automatically generated
parity bit) or 9-bit long (9 data bits or 8 data bits plus an automatically generated parity bit or
8 data bits plus a wake up bit, useful for communication in multiprocessor systems). Parity,
framing, and overrun error detection can be automatically added to increase the reliability of
data transfers. An internal 16-bit baud rate generator is available: the clock for both transmit
a?gl receive channels can be obtained dividing the input clock by any divisor value from 1 to
2'°-1.

In order to reduce the number of interrupt to the ARM7, two internal FIFO’s (16 words of 9 bits
each) can be enabled via software, one for transmitted data and one for received data.

5.12 Buffered Serial Peripheral Interface (BSPI)

STR720 provides two Buffered Serial Peripheral Interfaces (BSPI). The BSPI implements an
industry standard serial synchronous full duplex 4-pin interface, fully compliant with Motorola
SPI protocol. The BSPI can be used to communicate with peripheral devices or it can be used
for inter-processor communications in a multiple-master environment.

The buffered SPI can be configured to operate either in slave or in master mode, even if slave
mode is subject to some limitations since Slave Select lines are shared with external interrupt
1 and 2 lines on P3.9 and P3.10 pads. Two internal FIFO’s (16 words of 16 bits each) are
available, one on the receive channel and one on the transmit channel. The BSPI can be
programmed to operate with words 8 and 16 bit long. The BSPI serial clock frequency can be
programmed dividing the input clock by an even value in the range starting from 6 to 254.

5.13 Controller Area Network Interface (CAN)

Two independent CAN interfaces are implemented on STR720. The Controller Area Network
serial bus is compliant to the CAN Protocol Version 2.0 Part A (messages with 11 bit
identifiers) and B (messages with 29 bit identifiers).

5.14 Universal Serial Bus Interface (USB)

STR720 provides a full speed USB slave interface, compliant with revision 1.1 of the USB
standard, giving a peak transfer rate of 12 Mbits/s. This interface shares its data lines with
pins P2.14 and P2.15, while its clock source is taken from an external clock line, shared with
P2.10, which must be set to 48 MHz (50% duty cycle) when the USB is required. STR720
system features built-in USB transceivers which requires two series resistors of 27 Q + 5%,
one for each data line, to adapt the output impedance according to USB standard
specifications.

42/401 ﬁ

STR720 - ARCHITECTURE OVERVIEW

Eight Endpoints are available; each may be software-configured to be Control/Interrupt/Bulk/
Isochronous. Double-buffering is supported for Bulk and Isochronous transfers.

CRC generation/checking, NRZI encoding/decoding, bit-stuffing and packet filtering are
handled by hardware; interrupt is generated at the end of each packet correctly sent/received,
or on transmission errors. Packets are stored in an internal buffer memory implemented as a
single port 512 x 16 bit RAM.

USB suspend/resume are fully supported, allowing to stop the system clocks while keeping
the wake-up capability and be compliant with USB current consumption specifications for bus
powered devices.

5.15 WatchDoG timer (WDG)

The watchdog timer represents one of the fail-safe mechanisms which have been
implemented to prevent the controller from malfunctioning. It is able to generate a system
reset upon expiration of a programmed period of time.

The watchdog timer can be enabled by software. When RSTIN pin is released, the Watchdog
Timer is not enabled, and it must be activated by software: once enabled, it can no longer be
disabled by software. A prescaler allows to widely program the WDG overflow period whose
length depends upon the selected WDG clock using EE bit of WDTCR register: if APB clock is
selected, writing EE to ‘0’, the period can range between 66 ns and 0.5 s (with APB clock at
30 MHz), otherwise if low frequency clock (4 kHz derived from the 32 kHz RTC clock) is
selected, writing EE to ‘1’, the period can be extended between 500 us to about 4200's
independently from system clock frequency.

To prevent a system Reset the application code shall write, with a particular sequence, the
Watchdog Timer Control Register at regular intervals. At the end of a successful write
operation the Watchdog Timer restarts to count from the preset value. In order to prevent a
system reset, the user has to write the sequence A55A, 5AA5 in the WDTKR register of WDG
peripheral.

The Watch DoG timer can also be used as a free-running timer, providing an interruption
request when counting down counter reaches 0.

5.16 Extended Function Timer (EFT)

The STR720 system includes 2 Extended Function Timers (EFT). Each EFT consists of a
16-bit counter driven by a programmable prescaler.

They may be used for a variety of purposes, including pulse length measurement of up to two
input signals (input capture) or generation of up to two output waveforms (output compare and
PWM). Pulse lengths and waveform periods can be modulated from a very wide range using
the timer prescaler.

Not all their alternate function 1/O features are available: only module EFT1 external clock
input function and one EFT2 output compare I/O line can be used. Regardless of the number

‘ﬁ 43/401

STR720 - ARCHITECTURE OVERVIEW

of available alternate function 1/Os, the number of interrupt events each EFT block can
generate is the same and it is indicated in Section 5.1.1: IRQ Interrupt Vector Table on
page 28.

EFT1 external clock source can be selected by software (in place of system clock) to obtain
time bases independent from the system clock frequency (usually dependent on the selected
system configuration mode) or to count external events.

5.17 Z-A Analog to Digital Converter (ADC)

For analog signal measurement, a 11.5-bit ENOB resolution A/D converter (ADC) with 4
multiplexed input channels. It returns the conversion result on 16 bits with a frequency of up to
950 Hz each channel. It is a second-order quad-channel Sigma-Delta converter specifically
suited for low conversion rate application (512 times oversampling rate). The typical SINAD is
71 dB.

The ADC supports two different conversion modes. In the standard Auto Scan Continuous
mode, the analog levels on each channel are sequentially and repeatedly sampled and
converted. Alternatively, the Single Channel conversion mode, can be used where the analog
level on a specified channel is repeatedly sampled and converted into a digital result without
software intervention.

Each channel has its own result data register where the value obtained from the last
completed conversion is stored. In both modes it is possible to associate a DMA transfer to
the end of conversion interrupt without interrupting the ARM720T for the data transfer.

Only one interrupt source is implemented, called ‘End of conversion’ which is activated each
time a conversion sweep is completed and the result is written on the data result registers.

5.18 General Purpose I/O Ports

The General Purpose 10 (GPIO) Ports are programmable by software in several conditions:
Input, Output, Alternate Function, Open Drain, Push-Pull, Bidirectional Weak and high
impedance.

Three General Purpose I/O Ports are available on STR720 system: P2, composed of 16 bits,
P3, composed of 13 bits, and P4, composed of 5 bits only. Although all their registers are
described as 16-bit wide, the actual number of available pins corresponds to what is stated
above and in Chapter 4: PIN DATA on page 14.

During and just after the reset no alternate function is active: in particular each Port bit is
configured in Input mode (PC0=1, PC1=0, PC2=0). The output driver is in high impedance
while the input section is active (see Chapter 23: GENERAL PURPOSE I/O PORTS on
page 343).

Being each GPIO pin configured in Input during Reset phase, the 10 pins are released to High
Impedance condition. To avoid power consumption the user has to drive the 10s to stable

44/401 [S74

STR720 - ARCHITECTURE OVERVIEW

levels. After the reset phase each pin can be reconfigured by software according to the
application requirements.

The input section of P2.13 is implementing a TTL Schmitt Trigger device, while all other ports
are plain input buffer without hysteresis.

Table 17. GPIOs Reset configuration

0 1 2 3 4 5 6 7 8 9 [10[11 [12]13 [14] 15
Port2 [-T [T [T [T [T [T [T [T [T [T [T [T [T [T [T | T
Port3 [T [T [T [T [T [T [T [T [T [T [T [T | 1T [NNA | NA | NA
Portd | I-T [I-T [IT [T [I-T [NAA|NA[NA|[NA|[NA|NA]TNA|NA|NA|NA|NA

I-T Input-Tristate TTL
B-WD Bidirectional Weak Pull-Down

Summarizing, hereinafter the reset values of all Port Configuration and Data registers are
reported.

Table 18. Port registers: Reset configuration

0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

PC02 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Port2| PC12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PC22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PC03 1 1 1 1 1 1 1 1 1 1 1 1 1 N/A | N/A | N/A

Port3| PC13 0 0 0 0 0 0 0 0 0 0 0 0 0 | NA | N/A | N/A
PC23 0 0 0 0 0 0 0 0 0 0 0 0 0 [N/A | NA|NA
PCo04 1 1 1 1 1 N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A

Port4| PC14 0 0 0 0 0 [N/A|[N/A|NA|NA|NA]|NA]|NA/|NA]|[NA]|NA]|NA
PC24 0 0 0 0 0 | NA | N/A [N/A | N/A | N/A | N/A | N/A | N/A'| N/A | N/A | N/A

5.19 Dedicated Pins

The status under and after reset of the dedicated ports and pins is hereafter reported.

Table 19. Dedicated Pins Reset status

Pin (Note 1) Status under Reset Value under Reset
OSCIN Input -
OSCOUT Output not OSCIN
RSTIN Input Z
RTCRST Input VA
TCLK Input Z
TRST Input Z
T™MS Input Z

[S74 45/401

STR720 - ARCHITECTURE OVERVIEW

Table 19. Dedicated Pins Reset status

Pin (Note 1) Status under Reset Value under Reset
TDI Input Z
TDO Output Tristate Z
Port1[0:3] Analog Input -
Port1[6:7] High impedance Z
Port6[0:31] Input VA
Port6[32:45] Output 0
Port6[47] Output 0
Port6[48] Output 1
Port6[49:59] Output 1
Port6[53:59] OQutput 1
Port7[0:15] Input Z
Port7[16:37] Output 0
Port7[38:43] Output 1
Port7[44:45] Input Z

Note1: to avoid power consumption the user has to drive the input pins to stable values.

JTAG input pins require special attention since they do not implement any internal resistor:
external devices should be connected to guarantee proper levels and to avoid possible
spurious consumption of the input logic and/or undesired malfunctioning of the JTAG module.

When the system is put into STOP: mode, all the pins maintains the status previously
programmed while entering in STANDBY mode all pins are restored to their reset state.

5.20 Miscellanea Registers

The Miscellanea Registers module gathers all the registers that describe the current
configuration of STR720 system. They can be accessed through the APB interface and allow
a software configuration of some of the main features of the device. The complete list of
configurable features can be found in Chapter 24: MISCELLANEA REGISTERS (GCR - CGC
- AHB_ERR) on page 351. The most relevant features which can be configured are given
below.

m Boot re-mapping (BRM) specifies where to find the boot program code. By default, it maps
the boot-ROM or EMI area to address 0x0000_0000 after reset.

s DMA Stream selection bit (ST3_SEL) configure which peripherals will have access to DMA
request line 3.

m Port7 Access Selection (P7AS) which enables to specify if Port7 is used for EMI or
ATAPI-IDE interface.

s Address of last AHB transaction which resulted in a ERROR response (useful during
application debug).

4

46/401

STR720 - MEMORY ORGANIZATION

6 MEMORY ORGANIZATION

The memory space of the STR720 device is configured in a Von Neumann architecture. Code
memory, data memory, registers and I/O ports are organized within the same linear address
space of 4 GBytes.

The entire memory space is sub-divided in 8 main blocks (512 MBytes each), selected by the
most significant bits of the AHB address bus.

There are three external blocks in the STR720 memory map: the SDRAM area, the
ATAPI-IDE area and the EMI area, all using little endian format.

In the following sub-sections the relevant memory areas are briefly described.

6.1 Program memory

STR720 implements a 16 KBytes program RAM block, located in the address range from
0x6000_0000 to 0x6000_3FFF and organized as a 4K of 32-bit wide memory.

Immediately after system reset, program memory is accessible only at the above mentioned
address range within Block 3, allowing its initialization during the boot procedure when the
code is fetched from EMI area (external-boot mode). At the end of boot sequence a specific
GCR register is written to modify the memory map (“Boot re-map” operation). After the “Boot
re-map” operation, Program Memory will be available also from address 0x0000_0000 (Block
0) to allow application code execution.

Program Memory can be used for both code (instructions) and data (constants, tables, etc.)
storage. Code fetches are always made on even byte addresses. Word data accesses can be
made to even or odd byte addresses.

4

47/401

STR720 - MEMORY ORGANIZATION

6.2 Memory map

Reset Memory Map

Remapped Memory Map

S-APB S-APB
Block7 f — — — — — — A - 0xF000_0000 Block7 F — — — — — — — 0xFO00_0000
A-APB A-APB
0xE000_0000 0xE000_0000
Block 6 ATAPI-IDE Block 6 ATAPI-IDE
0xC000_0000 0xC000_0000
Block 5 SDRAM Block 5 SDRAM
0XA000_0000 0XA000_0000
Block 4 Reserved Block 4 Reserved
0x8000_0000 REMAP 0x8000_0000
Block 3 |:> Block 3
PROG RAM_| g\cc0 oot PROG RAM | :c0c0 oooo
Block 2 EMI Block 2 EMI
0x4000_0000 0x4000_0000
Block 1 A0X2000_OFFF Block 1 A0X2000_OFFF
ROM 0x2000_0000 ROM 0x2000_0000
Block 0 EMI Block 0
0X0000_0000 PROG RAM %iggggizzg
4 GBytes 4 GBytes

D Non-implemented memory areas

6.3 APB Bridges Mapping

APB bridges allow the connection between the high performance AHB bus, where ARM720,
DMA, memory block and memory interfaces are located, to the peripherals residing on the
APB bus. Two separated APB subsystems have been implemented on STR720 device:
Asynchronous APB subsystem and Synchronous APB subsystem. They are briefly described
in the following sections, along with the related peripheral address mapping.

6.3.1 Asynchronous APB sub-system (A-APB)

In order to reduce the power consumption of the overall device, the Asynchronous APB
sub-system, in short A-APB, can be clocked at a frequency different from the one used for
ARM720T core. A specific asynchronous AHB-APB bridge provides a re-synchronization
mechanism in order to enable the master of AHB bus to access the APB peripherals although
residing on a different clock domain.

48/401

4

STR720 - MEMORY ORGANIZATION

The A-APB memory space decoding is provided by the A-APB bridge which assigns a 4
KBytes memory area to each peripheral. Table 20 reports the A-APB memory mapping.

Table 20. A-APB sub-system memory map

Peripheral Name Start Address End Address g?zt: R:;:‘;Ft,:fﬁallp
Asynchronous AHB-APB Bridge (A3BRG) | 0xE000_0000 OXEO000_OFFF 32 Section 15.4.1
A-APB Global Control Register (A-GCR) | 0xE000_1000 0xE000_1FFF 16 Section 24.5.1
General Purpose I/0 2 (GP102) 0xE000_2000 OXEO00_2FFF 16 Section 23.4.1
Buffered Serial Port Interface 1 (BSPI1) | 0XE000_3000 0xE000_3FFF 16 Section 17.4.1
Buffered Serial Port Interface 2 (BSPI2) | 0XE000_4000 0xE000_4FFF 16 Section 17.4.1
tJU“Ai\"Ffﬁa;' Async. Receiver/Transm. 1 0XE000_5000 0XE000_5FFF 16 Section 16.4.1
(UU“A":;SS' Async. Receiver/Transm. 2 0xE000_6000 0XE000_6FFF 16 Section 16.4.1
Extended Function Timer 1 (EFT1) 0xE000_7000 0xE000_7FFF 16 Section 21.4.1
Extended Function Timer 2 (EFT2) 0xE000_8000 OxE000_8FFF 16 Section 21.4.1
Analog Digital Converter (ADC) 0xE000_9000 OXE000_9FFF 16 Section 22.4.1
Controller Area Network Interface (CAN) | 0xE000_A000 O0xE000_AFFF 16 Section 18.7.11
Universal Serial Bus Interface (USB) 0xE000.-B000 0xE000_BFFF 16 Section 19.6.4
Watch-DoG (WDG) 0xE000_C000 OxE000_CFFF 16 Section 20.4.1

4

vwww.DataSheetdU.com

49/401

STR720 - MEMORY ORGANIZATION

6.3.2 Synchronous APB sub-system (S-APB)

Some peripherals require to be tightly coupled with ARM720 core for performance reasons
and some others have both AHB and APB ports, typically separating data from and control
information. In both cases it is required to have an APB sub-system which runs synchronously
with the AHB clock frequency. A plain AHB-APB bridge is used to connect these synchronous
APB peripherals to the system. The S-APB memory space decoding is provided by the S-APB
bridge which assigns a 1 KByte memory area to each peripheral. Table 21 reports the S-APB

memory mapping:

Table 21. S-APB sub-system memory map

Peripheral name Start Address | End Address 2?:: Rz;:;‘t):fl';lla;p
DRAM controller (DRAMC) 0xF000_0000 0xFO00_O03FF 16 Section 10.4.1
External Memory Interface (EMI) 0xF000_0400 0xFO00_O7FF 16 Section 11.4.1
Direct Memory Access Controller (DMAC) 0xF000_0800 0xFO00_OBFF 16 Section 9.4.1
S-APB Gilobal Control Register (S-GCR) 0xF000_0C00 0xFO00_OFFF 16 Section 24.5.1
Reset and Clock Control Unit (RCCU) 0xF000_1000 0xFO00_13FF 16 Section 13.4.1
General Purpose 1/0 3 (GPIO3) 0xF000_1400 0xF000_17FF 16 Section 23.4.1
General Purpose 1/0 4 (GPIO4) 0xF000_1800 0xF000_1BFF 16 Section 23.4.1
Reserved 0xF000_1C00 0xFO0O0_1FFF 32
Reserved 0xF000-2000 0xFO00_23FF 32
Wake-up/Interrupt Unit (WIU) 0xF000_2400 0xF000_27FF 16 Section 8.5
Real Time Clock (RTC) 0xF000_2800 0xFO00_2BFF 16 Section 14.4.1
Clock gating control block (CGC) 0xF000_2C00 0xFO00_2FFF 16 Section 24.5.1
AHB Error decoder (AERR) 0xF000_3000 0xFO00_33FF 32 Section 24.5.1
Reserved 0xF000_3400 0xF000_37FF
Reserved 0xF000_3800 0xFO00_3BFF
Enhanced Interrupt Controller (EIC) 0xF000_3C00 0xFO00_3FFF 32 Section 7.4.1

In order to provide an effective usage of EIC vectorized interrupt features, S-APB sub-system
is mapped on multiple address ranges: the first one starts from 0xFO00_0000 and ends to
O0xFOO00_3FFF then the first replica begins, using the addresses from O0xF000_4000 to
OxFOOO_7FFF and so on up to the last address range duplicate which extends from
OxFFFF_CO000 to OxFFFF_FFFF. Within this last S-APB address range image the EIC
registers appears starting from OxFFFF_FCO0O0, allowing to reach IVR register at absolute
address OxFFFF_FC18, inside the range supported by the indirect jump instruction stored at
IRQ vector location (0x0000_0018).

4

50/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

7 ENHANCED INTERRUPT CONTROLLER (EIC)

7.1 Introduction

The ARM720T CPU provides two levels of interrupt, FIQ (Fast Interrupt Request) for fast, low
latency interrupt handling and IRQ (Interrupt Request) for more general interrupts.

Hardware handling of multiple interrupt channels, interrupt priority and automatic vectorization
require therefore a separate Enhanced Interrupt Controller (EIC).

Figure 7. EIC block diagram

IERO-IER1 IPRO-IPR1
RO e e iro g
IRQ1 v N T SIR . Interrupt from line IRQx IRQX
(32 ENTRY) . VECTOR
. , ' \
- ' > [IvR@31:16) |sIRn(31:16)| IVR |
! ! Highest Priority Interrupt
1 1
1 1
! ! \
! ' STACK CTL (PUSH/POP) | PRIORITY CIPR
! ! - STACK l—>
! ! (16 ENTRY)
: ' IRQ
IRQ31 €31 |l P31 control logic IRQ to
IRQ request _ : ARM720T
o FIR FIR icr [Fia_EN[IRQ_EN FIQ to
1 __IriEor | FiP0] - ARM720T
FIQ1 FIQ FIQ request
™ FIE[] || FIP[1] i> control logle >
—=» FIE[2] || FIP[2]

7.2 Main Features

m 32 maskable interrupt channels, mapped on ARM’s interrupt request pin IRQ
m 16 programmable priority levels for each interrupt channels mapped on IRQ
m hardware support for interrupt nesting (16 levels)

3 maskable interrupt channels, mapped on ARM’s interrupt request pin FIQ, with neither
priority nor vectorization

4

51/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

7.3 Functional Description

The EIC (Enhanced Interrupt Controller) implements an interrupt structure pointing the
processor at the first instruction location of the channel-specific Interrupt (IRQ) Service
Routine.

IVR (Interrupt Vector Register) is the EIC’s 32-bit register at address offset + 18h acting as
pointer. It is composed by two main fields: the upper half word (16 bit) is directly
programmable, while the lower half word is the mirrored entry of a register table (named SIR)
indexed by the interrupt channel. The upper part is generally meant to contain jump opcode or
base jump address depending on the application. The lower part supplies different jump
offsets as a function of the interrupt channel.

The FIQ interrupt channels have not been provided with any vectoring nand/nor priority
mechanism.

The EIC supports a fully programmable interrupt priority structure. Sixteen priority levels are
available to define the channel priority relationships. Each channel has a 4-bit field, that
defines its priority level in the range O - 15.

The on-chip peripheral channels and the external interrupt sources can be programmed
within these 16 priority levels, level 15 indicates the highest priority, whereas level 0 the
lowest.

If several units are located at the same priority level, an internal daisy chain, fixed for each
device and depending on which interrupt input line the device is connected to, defines the
priority relationship within that level. The higher is the input line index, the higher is the priority
in the daisy chain. The user should keep this in mind avoiding that an interrupt, with a lower
rank in the internal daisy chain, is never executed because it is at the same priority level of
another interrupt channel with higher occurrence rate.

Example:
Supposing the following hardware configuration is implemented:

Module A: Interrupt channel 2
Module B: Interrupt channel 6

If both the priority levels have been set to 5, and both modules generate simultaneously an
interrupt request to the EIC, the request from Module B is served first.

4

52/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

7.3.1 Priority Level Arbitration

The SIPL (Source Interrupt Priority Level) field in the SIRs (Source Interrupt Register)
provides the priority level of each of the 32 interrupt sources.

Every clock cycle all the pending interrupts (stored in the IPR register) and their priorities are
evaluated, and a winner channel (if any) is elected.

An interrupt requesting channel, to be the winner, must:

m be enabled (IER - Interrupt Enable Register)

m have the highest priority level related to the current interrupt requests, and higher than the
current one (CIPR - Current Interrupt Priority Register)

» have the highest position in the chain of the pending interrupts with the same SIPL value

The CIPR provides the priority of the interrupt (IRQ type) currently serviced. CIPR is setto 0
(lowest priority) upon reset and can be modified during program execution, updating the
register with a value that MUST be greater than, or equal to, the initial priority of the IRQ
currently serviced (if it isn’t, the write operation has no effect).

For safe operations it's better to disable the IRQ, before attempting to modify the CIPR
register, to avoid dangerous race conditions.

The interrupt arbitration is stopped as soon as an interrupt is accepted by the processor (i.e.
the IVR - Interrupt Vector Register is read and the interrupt service routine starts), and the
CIPR and CICR registers are updated (see Figure 8: INTx represents a generic interrupt
request of priority x).

One clock later, after the priority stack update, the arbitration starts once again.

Before exiting the interrupt service, the CPU has to clear the related interrupt pending bit in
the EIC, to communicate the end of interrupt; this is possible by writing a ‘1’ to the proper IPR
bit.

4

53/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Figure 8. Nested interrupt request sequence example

INTERRUPT 0 HAS PRIORITY LEVEL 0
INTERRUPT 1 HAS PRIORITY LEVEL 1
INTERRUPT 2 HAS PRIORITY LEVEL 2
A PRIORITY LEVEL INTERRUPT 3 HAS PRIORITY LEVEL 3
INTERRUPT 4 HAS PRIORITY LEVEL 4
INTERRUPT 5 HAS PRIORITY LEVEL 5
INTERRUPT 6 HAS PRIORITY LEVEL 6
T INT. 7 INTERRUPT 7 HAS PRIORITY LEVEL 7
re-enable interrupt
6
S INT.5 |- - - - - - INTL5)- - - - - = = - - - INT. 5
CPL=5 CPL=5 CPL=5
L e INT. 4 [wrs
INT. 5 CPL=4
INT. 3 re-enable interrupt
34 - - - -] kil ST CHRCHRCTRSI— | R F INT3 |- - - - - - INT.3)
CPL=3 CPL=3
re-enable interrupt
24 - - - NT.2 |- - = = == = = = = = H |- - Mo
CPL=2 \ re-enable interrupt re-enable interrupt
LI O O
re-enable interrupt
O L (WMAINPROGRAM |- = = = = = = = = = = = = & = = = = & = = oo meomm oo ool MAIN PROGRAM)
CPL setto 0 CPL=0

The IPR is a read/clear register, so writing a ‘0’ has no effect, while writing a ‘1’ reset the
related bit. Therefore refrain from using read-modify instructions to avoid corruption of the IPR
status.

Dynamic priority level modification: the main program and routines can be specifically
prioritized. Since CIPR is a read/write register, it is possible to modify dynamically the current
priority value during program execution. This means that a critical section can have a higher
priority with respect to other interrupt requests. A subsequent lowering of the priority is
allowed only down to the initial level of interrupt routine. Such initial priority level has been, of
course, conveniently stored inside the EIC hardware stack.

Note that it is likewise possible to even manipulate the Main Program execution priority.

Maximum depth of nesting: no more than 15 routines can be nested (one for each priority
level, from 1 to 15). If an interrupt routine at level N is being serviced, no other Interrupts
located at level N can interrupt it. This implies a maximum number of 16 nested levels
including the main program priority level.

Priority level 0: Interrupt requests at level 0, even if enabled, cannot be acknowledged, as
their priority cannot be strictly higher than the CIPR value. The pending bit in the IPR
(Interrupt Pending Register) is anyway set. Such a feature comes useful in a totally interrupt
polled environment.

The whole interrupting process is constituted by the following subsequent major steps:

4

54/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Every clock cycle the IPR (Interrupt Pending Register) is updated and the pending interrupts
are arbitrated to finally activate the IRQ/FIQ request to the CPU.

Once the interrupt request has been accepted by the CPU, the program execution jumps at
the first instruction of the related interrupt channel software routine (see Section 7.5 for more
details).

The enhanced interrupt controller will automatically:

Reject/accept an interrupt request according to the channel enable bit (IER - Interrupt
Enable Register).

Compare all interrupt requests (pending or new) with the current priority interrupt level. If the
priority of the interrupt requests is higher than the current priority, an interrupt IRQ is
asserted.

The register 0x18 is loaded with the corresponding address vector.

When an interrupt request is accepted, the previous interrupt priority and channel 1D
(content of CIPR and CICR registers) are saved by the EIC in the EIC’s hardware stack.
The current priority register (CIPR) and the current channel register (CICR) are
automatically updated with the accepted interrupt priority and channel ID.

When the pending bit in the IPR is cleared, the end of interrupt condition is detected, and the
EIC restores in the CIPR and the CICR the previous interrupt priority and channel ID saved
in the hardware stack.

The EIC allows to mask all the interrupt sources by resetting the enable bits in the ICR (Inter-
rupt Control Register).

4

55/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

7.4 Register Description

Reading from the “Reserved” field in any register will return ‘0’ as result. Attempt to write in the
same field has no effect.

Interrupt Control Register (ICR)
Address Offset: 00h

Reset value: 0000 0000h
3 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved FIQ_EN|IRQ_EN
rw rw

Bit 31:2 = Reserved.

Bit 1= FIQ_EN: Global FIQ output ENable bit

This bit enables FIQ output request to the CPU.

1: Enhanced Interrupt Controller FIQ output request to CPU is enabled

0: Enhanced Interrupt Controller FIQ output request to CPU is disabled, even if the EIC logic
has detected valid and enabled fast interrupt requests at its inputs

Bit 0 = IRQ_EN: Global IRQ output ENable bit

This bit enables IRQ output request to the CPU.

1: Enhanced Interrupt Controller IRQ output request to CPU is enabled

0: Enhanced Interrupt Controller IRQ output request to CPU is disabled, even if the EIC logic
has detected valid and enabled interrupt requests at its inputs

The ICR register is an enable register at the EIC IRQ/FIQ outputs level: it has no influence on
the EIC internal logic behaviour.

4

56/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Current Interrupt Channel Register (CICR)
Address Offset: 04h

Reset value: 0000 0000h
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved CIC[4:0]

r

The CIC Register reports the number of the interrupt channel currently serviced. There are 32
possible channel IDs (0 to 31), so the significant register bits are only five (4 down to 0).

After reset, the CIC value is set to ‘0’ and is updated by the EIC logic only after the processor
has started servicing a valid IRQ interrupt request.

To make this happen, some EIC registers must be set as in the following:

e ICRIRQ_EN =1
* |ER not all 0 (at least one interrupt channel must be enabled)

* among the interrupt channels enabled by the IER registers, at least one must have the
SIPL field, of the related SIR register, not set to 0, because the EIC generates a processor
interrupt request (asserting the nIRQ line) ONLY IF it detects an enabled interrupt request
whose priority value is bigger than the CIPR (Current Interrupt Priority Register)
value.

When the nIRQ line is set, the processor will read the EIC IVR (Interrupt Vector Register), and
this read operation will advise the EIC logic that the ISR (Interrupt Service Routine) has been
initiated and the CICR register can be properly updated.

The CICR value can’t be modified by the CPU (read only register).
Bit 31:5 = Reserved.

Bit 4:0 = CIC[4:0]: Current Interrupt Channel.
Number of the interrupt whose service routine is currently in execution phase.

4

57/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Current Interrupt Priority Register (CIPR)
Address Offset: 08h

Reset value: 0000 0000h
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved CIP[3:0]

rw

The CIP Register reports the priority value of the interrupt currently serviced. There are 16
possible priority values (0 to 15), so the significant register bits are only four (3 down to 0).
After reset, the CIP value is set to ‘0’ and is updated by the EIC logic only after the processor
has started servicing a valid IRQ interrupt request.

To make this happen, some EIC registers must be set as in the following:

* ICRIRQ_EN =1 (to have the nIRQ signal set)
* |IER not all 0 (at least one interrupt channel must be enabled)

* among the interrupt channels enabled by the IER register, at least one must have the
SIPL field, of the related SIR register, not set to 0, because the EIC generates a processor
interrupt request (asserting the IRQ line) ONLY IF it detects an enabled interrupt request
whose priority value is bigger than the CIPR (Current Interrupt Priority Register)
value.

When the IRQ line is set, the processor will read the EIC IVR (Interrupt Vector Register), and
this read operation will advise the EIC logic that the ISR (Interrupt Service Routine) has been
initiated and the CIPR register can be properly updated.

The CIPR value can be modified by the processor, to promote a running ISR to a higher level:
the EIC logic will allow a write to the CIP field of any value bigger, or equal, than the priority
value associated to the interrupt channel currently serviced.

E.g.: suppose the IRQ signal is set because of an enabled interrupt request on channel #4,
whose priority value is 7 (i.e. SIPL of SIR7 is 7); after the processor read of IVR register, the
EIC will load the CIP field with 7. Until the interrupt service procedure will be completed,
writes of values 7 up to 15 will be allowed, while attempts to modify the CIP content with
priority lower than 7 will have no effect.

Bit 31:4 = Reserved.

Bit 3:0 = CIP[3:0]: Current Interrupt Priority.
Priority value of the interrupt whose service routine is currently in execution phase.

4

58/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Interrupt Vector Register (IVR)
Address Offset: 18h

Reset value: 0000 0000h
31 30 29 28 27 26 25 24 23 22 29 20 19 18 17 16

IVR[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVR[15:0]

r

The IVR is the EIC register the processor has to read after detecting the nIRQ signal
assertion.

The IVR read operation tells the EIC logic that the interrupt service routine (ISR), related to
the pending request, has been initiated.

This means that:

» the IRQ signal can be de-asserted
e the CIPR and CICR can be updated

* no interrupt requests, whose priority is lower, or equal, than the current one can be
processed

Bit 31:16 = IVR(31:16): Interrupt Vector (High portion).

its content does not depend on the interrupt to be serviced, but has to be programmed by the
user (see Note) at initialization time and it's common to all the interrupt channels. It is Read/
Write.

Bit 15:0 = IV(15:0): Interrupt Vector (Low portion).

its content depends on the interrupt to be serviced (i.e. the one, in the enabled bunch, with the
highest priority), and it's a copy of the SIV (Source Interrupt Vector) value of the SIR (Source
Interrupt Register) related to the channel to be serviced. It is Read only.

Note The EIC logic does not care about the IVR content: from the controller point of view
it's a simple concatenation of two 16-bit fields

« IVR = IVR(31:16) & SIRn(31:16)

What has to be written both in the IVR(31:16) and in all the SIRn(31:16) is mostly
implementation dependent, but two main settings can be recognized:

* IVR(31:0) contains a 32 bit address

‘ﬁ 59/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

* |IVR(31:0) contains an instruction

In the first case (address), IVR(31:16) will have to be loaded with the higher part of the
address pointing to the memory location where the interrupt service routines begin; the single
SIRNn(31:16) will have to contain the lower 16 bits (offset) of the memory address related to the
channel specific ISR.

If required and supported by the system/processor configuration, it can also be convenient to
initialize IVR(31:16) and SIRn(31:16) to provide an instruction opcode (typically a jump) on
IVR register read.

In this situation, IVR(31:16) has to contain the higher part of the instruction to be passed,
while SIRn(31:16) will be loaded with the channel depending parameters (usually jump
offset).

4

60/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Fast Interrupt Register (FIR)
Address Offset: 1Ch

Reset value: 0000 0000h
31 30 29 28 27 26 25 24 23 22 29 20 19 18 17 16

reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved FIP[2:0] FIE[2:0]

rw rw

In order for the controller to react to the 3 fast-interrupt (FIQ) channels the enable bits from 2
down to 0 must be set to 1. The field 5 down to 3 keeps the information on the interrupt
request of the specific channel.

Bit 31:6 = Reserved.

Bit 5 = FIP[2]: Channel 2 Fast Interrupt Pending Bit
Bit 4 = FIP[1]: Channel 1 Fast Interrupt Pending Bit
Bit 3 = FIP[0]: Channel O Fast Interrupt Pending Bit

These bits are set by hardware by a Fast interrupt request on the corresponding channel.
These bits are cleared only by software, i.e. writing a ‘0’ has no effect, whereas writing a ‘1’
clears the bit (forces it to ‘0’).

1: Fast Interrupt pending

0: No Fast interrupt pending

Bit 2 = FIE[2]: FIQ Channel 2 Interrupt Enable bit
Bit 1 = FIE[1]: FIQ Channel 1 Interrupt Enable bit
Bit 0 = FIE[0]: FIQ Channel 0 Interrupt Enable bit

In order to have the controller responding to a request on a specific channel, the
corresponding bit in the FIR register must be set to 1.

1: Fast Interrupt request issued on the specific channel is enabled

0: Fast Interrupt request issued on the specific channel is disabled

4

61/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Interrupt Enable Register 0 (IERO0)
Address Offset: 20h

Reset value: 0000 0000h
31 30 29 28 27 26 25 24 23 22 29 20 19 18 17

16

IER[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

IER[15:0]

rw

Bit 31 = IER[31]: Channel 31 Interrupt Enable bit
Bit 30 = IER[30]: Channel 30 Interrupt Enable bit

Bit 1 = IER[1]: Channel 1 Interrupt Enable bit
Bit 0 = IER[0]: Channel 0 Interrupt Enable bit

The IERO is a 32 bit register: it provides an enable bit for each of the 32 EIC interrupt input

channels.

In order to enable the interrupt response to a specific interrupt input channel the

corresponding bit in the IERO register must be set to ‘1’.

A ‘0’ value makes the EIC mask the related interrupt channel and the interrupt pending bit, in

the IPR register, is never set.

1: Input channel enabled
0: Input channel disabled

62/401

4

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Interrupt Pending Register 0 (IPRO0)
Address Offset: 40h

Reset value: 0000 0000h
31 30 29 28 27 26 25 24 23 22 29 20 19 18 17 16

IPR[31:16]

rc

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IPR[15:0]

rc

Bit 31= IPR[31]: Channel 31 Interrupt Pending bit
Bit 30 = IPR[30]: Channel 30 Interrupt Pending bit

Bit 1 = IPR[1]: Channel 1 Interrupt Pending bit
Bit 0 = IPR[0]: Channel O Interrupt Pending bit

The IPRO is a 32 bit register: it provides a pending bit for each of the 32 EIC interrupt input
channels.

This is where actually the information about the channel interrupt status is kept: if the
corresponding bit in the enable register IERO has been set, the IPRO bit set high (active)
means that the related channel has asserted an interrupt request that has not been serviced
yet.

The bits are Read/Clear, i.e. writing a ‘0’ has no effect, whereas writing a ‘1’ clears the bit
(forces it to ‘0’).

1: Interrupt pending
0: No interrupt pending

Note Before exiting the ISR (Interrupt Service Routine), the software must be sure to have
cleared the EIC IPRO bit related to the executed routine: this bit clear will be read by
the EIC logic as End of Interrupt (EOI) sequence, and will allow the interrupt stack
pop and new interrupts processing .

4

63/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Remark:

The Interrupt Pending bits must be handled with care because the EIC State Machine, and its
internal priority hardware stack, could be forced to a not recoverable condition if unexpected
pending bit clear operations are performed.

Example:

1.

suppose that one or more interrupt channels are enabled, with a priority higher than zero;
as soon as an interrupt request arises, the EIC FSM processes the new input and asserts
the nIRQ signal. If, before reading the IVR (0x18) register, for any reason, the processor
clears the pending bits, the nIRQ signal will remain asserted the same, even if no more
interrupts are pending.

The only way to reset the nIRQ line logic is to read the IVR (0x18) register.

2.

suppose that one or more interrupt channels are enabled, with a priority higher than zero;
as soon as an interrupt request arises, the EIC FSM processes the new input and asserts
the nIRQ signal. If, after reading the IVR (0x18) register, for any reason, the processor
clears the pending bit related to the serviced channel, before completing the Interrupt Ser-
vice Routine, the EIC logic will detect an End Of Interrupt command, will send a pop
request to the priority stack and a new interrupt, even of lower priority, will be processed.

To close an interrupt handling section End Of Interrupt (EOI), the interrupt pending clear

operation must be performed, at the end of the related Interrupt Service Routine, on the
pending bit related to the serviced channel; on the other hand, as soon as the pending bit of

the serviced channel is cleared (even by mistake) by the software, the EOI sequence is

entered by the EIC logic.

64/401

4

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Source Interrupt Registers - Channel n (SIRn)
Address Offset: 60h to DCh

Reset value: 0000 0000h
31 30 29 28 27 26 25 24 23 22 29 20 19 18 17 16

SIV[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SIPL[3:0]

rw

There are 32 different SIRn registers, as many as the input interrupt channels are.

Bit 31:16 = SIV[31:16]: Source Interrupt Vector for interrupt channel n (n = 0... 31).
This field contains the interrupt channel depending part of the interrupt vector, that will be
provided to the processor when the Interrupt Vector Register (Address 0x18h) is read.

Depending on what the processor expects (32 bit address or instruction, see IVR description),
the SIV will have to be loaded with the interrupt channel ISR address offset or with the lower
part (including the jump offset) of the first ISR instruction.

Bit 15:4: Reserved.

Bit 3:0 = SIPL[3:0]: Source Interrupt Priority Level for interrupt channel n (n = 0... 31).
These 4 bits allow to associate the interrupt channel to a priority value between 0 and 15. The
reset value is 0.

Note To be processed by the EIC priority logic, an interrupt channel must have a priority
level higher than the current interrupt priority (CIP); the lowest value CIP can have is
0, so all the interrupt sources that have a priority level equal to 0 will never generate
an IRQ request, even if properly enabled.

4

65/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

7.4.1 Register map

Refer to Table 21 on page 50 for the base address.
Table 22. EIC register map

gf(::;t Fl:lgi:‘t:r 31(30(29|28|27(26|25|24|23(22(21|20|19(18(17|16|15(14(13|12|11|10(9 |8 |7 |6 (5|4 |3 |2 (1|0
FI | IR
0 ICR reserved Q_|Q_
EN|EN
4 CICR reserved ‘ CIC[4:0]
8 CIPR reserved | CIP[3:0]
0| e e e e
1C FIR reserved [Z!g] ['1:!5]
20 IERO IER[31:0]
40 IPRO IPR[31:0]
60 SIRO SIV0[31:16] reserved SIPLO[3:0]
64 SIR1 SIV1[31:16] reserved SIPL1[3:0]
68 SIR2 SIV2[31:16] reserved SIPL2[3:0]
6C SIR3 SIV3[31:16] reserved SIPL3[3:0]
70 SIR4 SIV4[31:16] reserved SIPL4[3:0]
74 SIR5 SIV5[31:16] reserved SIPL5[3:0]
78 SIR6 SIV6[31:16] reserved SIPL6[3:0]
7C SIR7 SIV7[31:16] reserved SIPL7[3:0]
80 SIR8 SIV8[31:16] reserved SIPL8[3:0]
84 SIR9 SIV9[31:16] reserved SIPL9[3:0]
88 SIR10 SIV10[31:16] reserved SIPL10[3:0]
8C SIR11 SIV11[31:16] reserved SIPL11[3:0]
90 SIR12 SIV12[31:16] reserved SIPL12[3:0]
94 SIR13 SIV13[31:16] reserved SIPL13[3:0]
98 SIR14 SIV14[31:16] reserved SIPL14[3:0]
9C SIR15 SIV15[31:16] reserved SIPL15[3:0]
A0 SIR16 SIV16[31:16] reserved SIPL16[3:0]
A4 SIR17 SIV17[31:16] reserved SIPL17[3:0]
A8 SIR18 SIV18[31:16] reserved SIPL18[3:0]
AC SIR19 SIV19[31:16] reserved SIPL19[3:0]
BO SIR20 SIV20[31:16] reserved SIPL20[3:0]
B4 SIR21 SIV21[31:16] reserved SIPL21[3:0]
B8 SIR22 SIV22[31:16] reserved SIPL22[3:0]
BC SIR23 SIV23[31:16] reserved SIPL23[3:0]
Co SIR24 SIV24[31:16] reserved SIPL24[3:0]
C4 SIR25 SIV25[31:16] reserved SIPL25[3:0]
C8 SIR26 SIV26[31:16] reserved SIPL26[3:0]
CC | SIR27 SIV27[31:16] reserved SIPL27[3:0]
DO SIR28 SIV28[31:16] reserved SIPL28[3:0]
D4 SIR29 SIV29[31:16] reserved SIPL29[3:0]
D8 SIR30 SIV30[31:16] reserved SIPL30[3:0]
DC SIR31 SIV31[31:16] reserved SIPL31[3:0]

vww.DataSheet4U.com

66/401 172

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

7.5 Programming considerations

Here are a few guideline steps on how to program the EIC’s registers in order to get the
controller up and running quickly. In the following, it is assumed to deal with standard
interrupts and that the user wants, for example, to detect an interrupt on channel #22, in which
the priority has been assigned to be 5.

First of all, it is necessary to assign the priority and the jump address data related to the
interrupt channel #22. Therefore:

» setin field SIPL of SIR22 the binary “0101”, i.e. priority of 5 (it must be not 0 to have an IRQ
to be generated).

Two registers are involved to supply the channel interrupt vector data to the EIC controller
(IVR[31:16] and SIR22[31:16]:

n write in SIR22[31:16], i.e. in the upper part of the SIR register related to channel #22, the
memory address offset (or the jump offset) where the Interrupt Service Routine, related to
interrupt channel #7, starts.

m insert the base jump address (or the jump opcode) in the most significant half of the IVR
register, i.e. IVR[31:16].

Finally, response to the interrupt must be enabled both at the global level and at the single
interrupt channel level. To do so these steps shall be followed:

s set the IRQ_EN bit of ICR to 1
m set bit # 22 of IERO to 1

As far as the FIQ interrupts are concerned, since those interrupts do not have any
vectorization nor priority, only the first two steps above are involved. Supposing the user wants
to enable FIQ channel #1:

= set the FIQ_EN bit of ICR to 1.
m set bit #1 of FIE in FIR register to 1.

7.6 Application note
Every Interrupt Service Routine (ISR) should be composed by the following blocks of code.

s A Header routine to enter ISR. It must be:

1) STMFD sp!,{xr5,1r} The workspace r5 plus the current return address lr irq
is pushed into the system stack.

2) MRS r5,spsr Save the spsr into r5

3) STMFD sp!,{xr5} Save r5

4) MSR cpsr_c,#0x1lF Reenable IRQ, go into system mode
5) STMFD sp!, {1lr} Save lr_sys for the system mode

4

67/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

Note r5is a generic register among those available, namely r0 up to r12. Since there is no
way to save SPSR directly into the ARM’s stack, the operation is executed in two
steps using r5 as transition help register.

= The ISR Body routines.

= A Footer routine to exit ISR. It must be:

1) LDMFD sp!, {1lr} Restore lr_sys for the system mode

2) MSR cpsr_c,#0xD2 Disable IRQ, move to IRQ mode

3) Clear pending bit in EIC (using the proper IPRx)

4) LDMFD sp!,{r5} Restore x5

5) MSR spsr,r5 Restore Status register spsr

6) LDMFD sp!, {r5,1r} Restore status lr_irqg and workspace

7) SUBS pc,lr,#4 Return from IRQ and interrupt reenabled

In the following two paragraphs some comments on the code lines introduced above and
some hints useful when realizing subroutines to be invoked by an ISR are reported.

7.6.1 Avoiding LR_sys and r5 registers content loss

A first example refers to a LR_sys content loss problem: it is assumed that an ISR without
instruction 5) in the header routine (and consequently without instruction 1) in the footer
routine) has just started; the following happens:

e Instruction 4) is executed (so system mode is entered)

*. A subroutine is called with a BL instruction and LR_sys now contains the return address
A: the first subroutine instruction should store register LR_sys into the stack (the address
of this instruction is called B)

* A higher priority interrupt starts before previous operation could be executed
* New ISR stores address B into LR_irg and enters system mode

* A new subroutine is called with a BL instruction: LR_sys is loaded with the new return
address C (this overwrites the previous value A!) which is now stored into the stack.

* The highest priority ISR ends and address B is restored: now LR_sys value can be put
into the stack but its value has changed to address C (instead of A).

The work-around to avoid such a dangerous situation is to insert line 5) at the end of header
routine and consequently line 1) at the beginning of footer routine.

Similar reasons could lead register r5 to be corrupted. To fix this problem, lines 3) in header
and 4) in footer should be added.

4

68/401

STR720 - ENHANCED INTERRUPT CONTROLLER (EIC)

7.6.2 Hints about subroutines used inside ISRs
A case in which a subroutine is called by an ISR is hereafter considered.
Supposing that such a kind of procedure starts with an instruction like:

STMFD SP!, { ... , LR }

probably it will end with:

LDMFD SP!, { ... , LR }
MOV PC, LR

If a higher priority IRQ occurs between the last two instructions, and the new ISR calls in turn
another subroutine, LR content will be lost: so, when the last IRQ ends, the previously
interrupted subroutine will not return to the correct address.

To avoid this, the previous two instructions shall be replaced with the unique instruction:

LDMFD SP!, { ... , PC }

which automatically moves stored link register directly into the program counter, making the
subroutine correctly return.

7.7 Interrupt latency

As soon as an interrupt request is generated (either from external interrupt source or from an
on-chip peripheral), the request itself ‘must go through three different stages before the
interrupt handler routine can start. The interrupt latency can be seen as the sum of three
different contributions:

m Latency due to the synchronisation of the input stage. This logic can be present (e.g.
synchronization stage on external interrupts input lines) or not (e.g. on-chip interrupt
request), depending on the interrupt source. Either zero or two clock cycles delay are related
to this stage.

m Latency due to the EIC itself. Two clock cycles are related to this stage.

m Latency due to the ARM720T Release 3 interrupt handling logic (refer to the documentation
available on www.arm.com).

Table 23. Interrupt latency (in clock cycles)
SYNCH. STAGE
min max

EIC STAGE

FlQ
IRQ

0 2 2

4

69/401

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

8 WAKE-UP INTERRUPT UNIT (WIU)

8.1 Introduction

The Wake-up/Interrupt Management Unit supports up of 16 external wake-up/interrupt lines.
These 16 Wake-up pins (usually alternate function of general purpose I/O lines) can be
programmed as external interrupt lines or as wake-up lines, capable of restoring the normal
operations from those low power modes where system clocks is stopped.

In STR720 implementation, the 16 interrupt lines are associated to the different IRQ channels
in the following way:

m 4 external wake-up lines all connected to the IRQO channel of the interrupt controller. These
wake-up lines have dedicated input ports.

m 1 external wake-up line directly mapped to a dedicated channel of the interrupt controller
(IRQ1). This wake-up line has a dedicated input port.

m 10 internal wake-up lines also connected to the IRQ2 channel of the interrupt controller
module. The ‘internal” lines are mapped on some significant STR720 signals.

The mapping of wake-up/interrupt events on available WIU lines can be found in Section 5.2:
Wake-up/Interrupt management Unit (WIU) on page 34, where also possible limitation of
usage can be found.

For each wake-up/interrupt line a pending bit is available, so a 16-bit register contains the
interrupt pending bits of the 16 external lines (WUPR).

Interrupt pending bits are set by hardware or software on occurrence of the trigger event and
are reset by software.

A 16-bit register (WUMR) is used to mask the interrupt or wake-up requests coming from the
16 wake-up/interrupt lines: resetting the bits of this mask register prevents the interrupt or
wake-up requests, generated on the corresponding lines.

In order to give more flexibility to the user for the application, a 16-bit register (WUTR) allows
to program the triggering on rising or falling edge of the external wake-up pins.

8.2 Main Features

* Supports 16 external wake-up or interrupt lines.

e Wake-Up lines can be used to wake-up the system from stopped clock conditions.
* Programmable selection of wake-up or interrupt.

* Programmable wake-up/interrupt trigger edge polarity.

¢ All Wake-Up Lines maskable.

4

70/401

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

8.3 Functional Description
Figure 9. Wake-Up/Interrupt Lines Management Unit Block Diagram

WKUP[15:0]
: TRIGGERING LEVEL
worr | [[[T [[[T [T T T [[[1| Recster
: PENDING REQUEST
WorR[T T [[T T T T T T T T T T 11 Reeaee
woMr[[| [[[[[[[[[[[[[] MASKREGISTER
::> EXT_INT[15:0]
TO INTERRUPT
[] CONTROLLER
SW SETTING A
i NOTE: RESET SIGNAL ON STOP BIT
%) | IS STRONGER THAN THE SET SIGNAL.
WUCTRL A o=
o ! 2
5Ed
nw £ 5
X
=
WUI_INT
TO INTERRUPT
CONTROLLER
TO RCCU -
Stop Mode Control

4

71/401

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

8.3.1 Interrupt Mode Selection.

To configure the 16 lines as interrupt sources, use the following procedure:

Configure the mask bits of the 16 wake-up lines (WUMR);
Configure the triggering edge register of the wake-up lines (WUTR);

Set properly the enable and mask bits corresponding to the line of interrupt controller tied
to Wake-up Unit: so an interrupt coming from one of the 16 lines can be correctly
acknowledged;

Reset the WKUP-INT bit in the WUCTRL register to disable Wake-up Mode (default value
is 0);

Set the INT_EN bit in the WUCTRL register to enable the 16 wake-up lines as external
interrupt source lines.

8.3.2 Wake-up Mode Selection

To configure the 16 lines as wake-up sources, use the following procedure:

Set the mask bits of the 16 wake-up lines (WUMR).
Configure the triggering edge register of the wake-up lines (WUTR).

Set the enable and the mask bits corresponding to the line of Interrupt Controller tied to
Wake-up Unit (as for Interrupt Mode selection), only if an interrupt routine is to be
executed after a wake-up event. Otherwise, if the wake-up event only restarts the
execution of the code from where it was stopped, the interrupt channel shall be masked.

Set the WKUP-INT bit in the WUCTRL register to select Wake-up Mode.

Set the INT_EN bit in the WUCTRL register to enable the 16 wake-up lines as external
interrupt source lines. This is not mandatory if the wake-up event does not require an
interrupt response.

Write the sequence 1,0,1 to the STOP bit of WUCTRL. This is the STOP bit setting
sequence. Pay attention that the three write operations are effective even though not
executed in a strict sequence (intermediate instructions are allowed, except for write
instructions to the registers of Wake-Up). If the sequence is not completed within 64 clock
periods (system clock), a TIMEOUT expires and reset the sequence. In this case the
software shall re-enter the sequence (1, 0, 1). To reset the sequence it is sufficient to write
twice a logic ‘0’ to the STOP bit of WUCTRL register (corresponding anyway to a bad
sequence).

To detect if STOP Mode was entered or not, immediately after the last STOP bit setting of the
sequence, poll the STOP bit itself (WUCTRL register).

72/401

4

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

8.3.3 STOP Mode Entering Conditions

Assuming the device is in Run mode, during the STOP bit setting sequence the following case
may occur:

Case 1: A wake-up event on the external wake-up lines occurs during the STOP bit
setting sequence

There are two possible cases:

1 Interrupt requests to the CPU are disabled: in this case the device will not enter STOP
mode, no interrupt service routine will be executed and the program execution continues
from the instruction following the STOP bit setting sequence. The status of STOP bit will
be again:

STOP =0
The application can determine why the device did not enter STOP mode by polling the
pending bits of the external lines (at least one must be at 1).

2 Interrupt requests to CPU are enabled: in this case the device will not enter STOP mode
and the interrupt service routine will be executed. The status of STOP bit will be again:
STOP =0
The interrupt service routine can determine why the device did not enter STOP mode by
polling the pending bits of external lines (at least one must be at 1).

Case 2: wrong STOP bit setting sequence

This can happen if an Interrupt request is acknowledged during the STOP bit setting
sequence. In this case polling on STOP bit (WUCTRL register) will give:
STOP =0

This means that device did not enter STOP mode due to a bad STOP bit setting sequence:
the user shall retry the entire sequence.

Case 3: correct STOP bit setting sequence
In this case the device enters STOP mode.

The WKUP-INT bit can be used by an interrupt routine to detect and to distinguish events
coming from Interrupt Mode or from Wake-up Mode, allowing the code to execute different
procedures.

To exit STOP mode, it is sufficient that one of the 16 wake-up lines (not masked) generates an
event: the clock restarts after the delay needed for the oscillator to restart.

Note: After exiting from STOP Mode, the software can successfully reset the pending bits
(edge sensitive), even though the corresponding wake-up line is still active (high or low,
depending on the Trigger Event register programming); the user must poll the external pin
status to detect and distinguish a short event from a long one (for example a different key
pushing time).

ﬁ 73/401

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

8.4 Register description
Wake-up Control Register (WUCTRL)

Address Offset: 00h

Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
INT_ [WKUP
Reserved STOP EN INT
rw rw rw

Bit 15:3 = Reserved. These bits must be always written to O.

Bit 2 = STOP: Stop bit.

To enter STOP Mode, write the sequence 1,0,1 to this bit with three write operations. When a
correct sequence is recognized, the STOP bit is set and RCCU puts the device in STOP Mode
(see Section 13: RESET AND CLOCK CONTROL UNIT (RCCU) on page 138). If the setting
sequence isn’t recognized within 64 clock periods, a TIMEOUT counter expires and reset the
sequence state machine, so the device doesn’t enter in STOP Mode and the STOP bit is reset
by hardware. The software sequence succeeds only if the following conditions are true:

e the WKUP-INT bit is 1,
* all unmasked pending bits are reset,
* atleast one mask bit is equal to 1 (at least one external wake-up line is not masked).

Otherwise the device cannot enter STOP mode, and the program continues the execution of
the code: the STOP bit remains cleared.

The bit is reset by hardware if, during STOP mode, a wake-up interrupt comes from any of the
unmasked wake-up lines. Otherwise the STOP bit is at 1 in the following cases (See
“Wake-up Mode Selection” on page 72. for details):

* After the first write instruction of the sequence (a 1 is written to the STOP bit)

* At the end of a successful sequence (i.e. after the third write instruction of the
sequence)

WARNING: If Interrupt requests are acknowledged during the sequence, the system will not
enter STOP mode (since the sequence is not completed): at the end of the interrupt service
routine, it is suggested to reset the sequence state machine. To reset the sequence it is
necessary to write twice a logic ‘0’ to the STOP bit of WUCTRL register (corresponding
anyway to a bad sequence); on the contrary the incomplete sequence is waiting for the
completion and only the TIMEOUT counter will reset the state machine. The user must
re-enter the sequence to set the STOP bit.

WARNING: Whenever a STOP request is issued to the system, a few clock cycles are needed
to enter STOP mode. Hence the execution of the instruction following the STOP bit setting

74/401 172

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

sequence might start before entering STOP mode (consider the ARM7 three-stage pipeline).
In order to avoid to execute any valid instruction after a correct STOP bit setting sequence and
before entering the STOP mode, it is mandatory to execute a dummy set of few instructions
after the STOP bit setting sequence. In particular at least six dummy instructions (e.g.
MOV R1, R1) shall be added after the third valid writing operation in STOP bit. Again, if exiting
from STOP mode an interrupt routine shall be serviced, another set of dummy instructions
shall be added, to take into account of the latency period: this is evaluated in at least other
three dummy instructions. This to consider that when STOP mode entered, the pipeline
content is frozen as well, and when the system restarts the first executed instruction was
fetched and decoded before entering the STOP mode itself.

Bit 1 = INT_EN: Interrupt Channel Enable.

This bit is set and cleared by software.

0: Global mask for the 16 interrupt lines

1: The 16 external wake-up lines enabled as interrupt sources

WARNING: In order to avoid spurious interrupt requests on the Wake-up unit associated
channel in the interrupt controller, due to change of interrupt source, it is suggested to reset
the mask bit inside the interrupt controller before programming INT_EN bit as needed.

bit 0 = WKUP-INT: Wake-up Interrupt.

This bit is set and cleared by software.

0: The 16 external wake-up lines can be used to generate interrupt requests

1: The 16 external wake-up lines to work as wakeup sources for exiting from STOP mode

4

75/401

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

Wake-up Mask Register (WUMR)
Address Offset: 04h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUM15|WUM14|WUM13(WUM12|WUM11|WUM10| WUM9 | WUM8 | WUM7 | WUM6 | WUM5 [WUM4 | WUM3 | WUM2 | WUM1 | WUMO

rw rw rw w rw rw rw rw rw w rw rw w rw rw rw

Bit 15:0 = WUM[15:0]: Wake-Up Mask bits
If WUMX is set, an interrupt and/or a wake-up event (depending on INT_EN and WKUP-INT
bits) are generated if the corresponding WUPXx pending bit is set. More precisely, if WUMx=1
and WUPx=1 then:
e [fINT_EN=1 and WKUP-INT=1 then an interrupt and a wake-up event are generated.
e If INT_EN=1 and WKUP-INT=0 only an interrupt is generated.
e If INT_EN=0 and WKUP-INT=1 only a wake-up event is generated.
e |f INT_EN=0 and WKUP-INT=0 neither interrupts nor wake-up events are generated.

If WUMX is reset, no wake-up events can be generated.

4

76/401

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

Wake-up Trigger Register (WUTR)
Address Offset: 08h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUT15 [WUT14 (WUT13 | WUT12 | WUT11 | WUT10 | WUT9 | WUT8 | WUT7 | WUT6 | WUT5 | WUT4 | WUT3 | WUT2 | WUT1 | WUTO

rw rw rw w rw rw rw rw rw w rw rw w rw rw rw

Bit 15:0 = WUT[15:0]: Wake-Up Trigger Polarity bits

The WUTX bits can be set and cleared by software to select the triggering edge.

0: The corresponding WUPx pending bit will be set upon the falling edge of the input wake-up
line.

1: The corresponding WUPXx pending bit will be set upon the rising edge of the input wake-up
line.

WARNING

1 As the external wake-up lines are edge triggered, no glitches must be generated on these
lines.

2 If either a rising or a falling edge on external wake-up lines occurs during writing of WUTR
register, the pending bit will not be set.

4

77/401

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

Wake-up Pending Register (WUPR)
Address Offset: 0Ch

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUP15(WUP14|WUP13(WUP12|WUP11|WUP10| WUP9 | WUP8 | WUP7 [WUP6 | WUP5 | WUP4 | WUP3 | WUP2 | WUP1 | WUPO

rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc rc

Bit 15:0 = WUP[15:0]: Wake-Up Pending bits

The WUPXx bits are Read/Clear, they are set by hardware on occurrence of the trigger event.
They can be reset by software writing a ‘1’; writing a ‘0’ is ignored.

0: No Wake-Up trigger event occurred

1: Wake-Up Trigger event occurred

8.5 Register map
Table 24. WIU Register Map

Addr. | Register
Offset Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 | WUCTRL Reserved STOP 'g; V_IIIEL%P
4 WUMR WUMR[15:0]
8 WUTR WUTR[15:0]
c WUPR WUPRI[15:0]

Refer to Table 21 on page 50 for the base address.

4

78/401

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

8.6 Programming considerations

The following paragraphs give some guidelines for the design of the application program.

8.6.1 Procedure for Entering/Exiting STOP mode

1 Program the polarity of the trigger event of external wake-up lines by writing register
WUTR.

2 Check that at least one mask bit (register WUMR) is equal to 1 (at least one external
wake-up line is not masked).

3 Reset at least the unmasked pending bits: this allows to generate a rising edge on the
Interrupt channel WUI_INT when the trigger event occurs (an interrupt is recognized
when a rising edge occurs).

4 Select the interrupt source of the channel (see description of INT_EN bit in the WUCTRL
register) and set the WKUP-INT bit.

Note If clock line is chosen as wake-up event, it should be considered that as long as
clock source is active the corresponding pending bit will be seen at ‘1.

Note The change of PLL lock condition cannot be used as wake-up event. Selecting this
input as the only wake-up source will stuck the system so as only a reset event can
restore normal operations.

5' To generate an interrupt on the associated channel, set the related enable, mask and
priority bits in the interrupt controller.

6 Reset the STOP bit in register WUCTRL.

7 To enter STOP mode, write the sequence 1, 0, 1 on the STOP bit in the WUCTRL register
with three write operations. To reset the sequence it is sufficient to write twice a logic ‘0’ to
the STOP bit of WUCTRL register (corresponding anyway to a bad sequence). If the
sequence is not completed within 64 clock periods (system clock), a TIMEOUT expires
and reset the sequence. In this case the software shall re-enter the sequence (1, 0,1).

8 The code to be executed just after the STOP sequence must check the STOP bit status to
determine if the device entered STOP mode or not (See “Wake-up Mode Selection” on
page 72. for details). If the device did not enter in STOP mode it is necessary to re-loop
the procedure from the beginning, otherwise the procedure continues from next point (see
also section 25.4 on page 368).

9 Poll the wake-up pending bits to determine which wake-up line caused the exit from STOP
mode.

10 Clear the wake-up pending bit that was set.

4

79/401

STR720 - WAKE-UP INTERRUPT UNIT (WIU)

8.6.2 Simultaneous Setting of Pending Bits

It is possible that several simultaneous wake-up event set different pending bits. In order to
accept subsequent events on external wake-up/interrupt lines, once the first interrupt routine
has been executed, it is necessary to clear at least one pending bit (the corresponding
pending bit in WUPRX register): this operation allows to generate a rising edge on the internal
line (if there is at least one more pending bit set and not masked) and so to set the interrupt
controller pending bit again. A further interrupt on the same channel of the interrupt controller
will be serviced depending on the status of its mask bit. Two possible situations may arise:

1 The user chooses to reset all pending bits: no further interrupt requests will be generated
on channel. In this case the user has to:

* Reset the interrupt controller mask bit (to avoid generating a spurious interrupt request
during the next reset operation on the WUPR register)

* Reset WUPR register.

2 The user chooses to keep at least one pending bit active: at least one additional interrupt
request will be generated on the same interrupt controller channel. In this case the user
has to reset the desired pending bits. This operation will generate a rising edge on the
interrupt controller channel and the corresponding pending bit will be set again. An
interrupt on this channel will be serviced depending on the status of corresponding mask
bit.

8.6.3 Dealing with level-active signals as interrupt lines

It must be noticed that using signals generated for level sensitive interrupt lines through the
WIU which supports edge-sensitive inputs only, has the consequence of requiring a special
handling during the interrupt response routine in order to avoid missing some events. Actually
it is better to clear the WIU pending bit as first action, so to be able to detect any subsequent
edge of the level-sensitive line which could be otherwise skipped if another event occurs while
still processing a previously issued one, leaving the WIU line insensitive to any further event
occurring on that line. This situation can happen with external interrupt lines, for example, and
it is peculiar of lock/unlock events detection. As an example the safest sequence to be
followed in the case of a lock/unlock event is reported below:

1 Clear WIU pending bit corresponding to the used line (WUPR bit 6).
2 Clear EIC pending bit corresponding to WIU (IPRO bit 2, if used).

3 Clear both RCCU pending bits, once the nature of the interrupting event has been
detected and taken proper care of (LOCK_I/ULOCK_| bits of CLKFLAG).

4

80/401

STR720 - DMA CONTROLLER (DMAC)

9 DMA CONTROLLER (DMAC)

9.1 Introduction

The DMA controller provides access to 2 data streams inside STR720 system. Since
peripherals are memory mapped, data transfers from/to peripherals are managed like
memory/memory data transfers.

Each data stream can be associated to one particular peripheral, which triggers a DMA
request starting the data transfer between the corresponding buffers defined in the stream
descriptor. Data stream 3 of DMA controller can alternatively be used as a memory/memory
data transfer triggered by a software DMA request, independently from any peripheral activity.
In case data stream 3 is also associated to a peripheral request, the two modes can be
selected by software.

The DMA controller supports circular buffer management avoiding the generation of interrupts
when the controller reach the end of the source buffer. When a stream is configured in circular
buffer mode and the end of buffer is reached, DMA controller reloads the start address and
continues the transfer until software notifies the end of operations.

The priority between different DMA triggering sources is defined by hardware, source 2 being
the highest priority request and source 3 being the lowest one.

9.2 Main Features

m 2 independently configurable streams.

= Independent source and destination word size, supporting packing and unpacking.
= 16 word deep FIFO.

Support programmable burst size (1, 4, 8, 16 words).

Support circular buffer management.

4

81/401

STR720 - DMA CONTROLLER (DMAC)

9.3 Functional Description

The DMA Controller is a single channel DMA Controller capable of servicing up to 2 data
streams. To reduce the gate count only one FIFO has been implemented which is shared
among the 2 data streams via the use of priority selection logic as outlined in Table 25 on
page 82.

Table 25. DMA Request Priority

DMA Request Priority
External2 3
External3 - Internal0/1 4 (Lowest)

DMA Request3 is multiplexed with 2 internal request lines which are selected when a memory
to memory transfer is required. The DMAC block diagram is shown in Figure 10

The DMA Controller can be used for a memory to memory transfer, a peripheral to memory
transfer or a memory to peripheral transfer.

A DMA data transfer consists of a sequence of DMA data burst transfers. There are two types
of burst transfers, the first one is from the source address to the DMA Controller and the
second one is from the DMA Controller to the destination address. Each data burst transfer is
characterized by the burst length (1, 4, 8, or 16 words) and by the word width (1 byte, 2 bytes
or 4 bytes). The DMA data transfer is complete when the programmed total number of bytes
has been transferred from the source address to the destination address (Terminal Count
register going to zero).

The Control Logic is used to arbiter between the data streams. It selects the request from the
highest priority active data stream, passing the data from the chosen stream to and from the
FIFO as required. Each stream has a set of data stream registers which are used by the
Control Logic to determine source and destination addresses and the amount and format of
data to be transferred. They also provide various other control and status information.

The DMA data stream registers are all 16 bit wide and are accessed via the APB Bus. The
control logic can read all of these registers and can write some of them.

There is a single dedicated interrupt line from the DMA Controller to the EIC. It is driven by 4
internal interrupt flags (two per data stream) which are ored together. They work as follows:

Once a transfer for a specific stream is complete (this condition being detected by its Terminal
Count register going to zero) the interrupt flag for the data stream is set. The interrupt logic
then generates an interrupt to the EIC telling it that a request for one of the data streams has
been completed. At the same time this data stream is disabled (i.e. the DMA Controller clears
the enable bit of its control register). The status register must be read to determine which data
stream caused the interrupt to be raised. The DMA Controller can now safely reconfigure this
data stream (if required) for future transfers. A data stream can be re-enabled via a write to the
enable bit of the corresponding Control Register.

4

82/401

STR720 - DMA CONTROLLER (DMAC)

Figure 10. DMA Controller block diagram

)

AHB Master Interface

!

— | Interrupt
FIFO nterr_upt_} Request
Logic to EIC
DMA Requests
2 ——p Control
Logic &
3 —»
|_p»-| Data Stream 2
Registers
p| Data Stream 3

Registers

APB Slave Interface

R —

The DMA FIFO block consists of a 16 32-bit words deep FIFO plus Data Pack and Data
Unpack units. The purpose of the FIFO block is to accommodate bus latency and burst length,
and to perform any packing or unpacking operations on the data that may be necessary to
accommodate different data-out/data-in width ratios.

DMA Request 3 is multiplexed with 2 internal request signals which can be used for a memory
to memory data transfer. To allow their use, the ‘Mem2Mem’ bit in the control register must be

‘ﬁ 83/401

STR720 - DMA CONTROLLER (DMAC)

set. This tells the DMA Controller that data stream 3 is now configured for an internal, rather
than an external, transfer request. An internal data transfer consists of two phases: phase 0
(where internal request 0 is asserted) is used for the memory to FIFO data transfer and phase
1 (where internal request 1 is asserted) is used for the FIFO to memory data transfer. An
internal transfer will begin once the ‘Mem2Mem’ bit in the control register is set and data
stream 3 is enabled, provided there are no pending requests for any of the other data streams,
which all have higher priority. If there are pending requests, then these will be serviced first.
When no other requests are pending, phase 0 will start as soon as the channel FIFO can
accept the next data burst from the source address. The data packet size is defined in the
data stream configuration registers. Phase 1 is asserted if the channel FIFO contains enough
data for a next data burst to be sent to the destination address.

Phase 1 will be also started in order to flush the FIFO contents if any of the following
conditions occur:

e |f the terminal count reaches zero this indicates that the FIFO has received the total
number of bytes to be transferred to the destination address. Since this number may
be not a integer multiple of the selected burst size, bytes remaining in the FIFO after
terminal count reaches zero must be flushed to the destination address.

* If stream 3 is disabled (via a write to the enable bit of the control register for this data
stream).

9.3.1 Circular mode operations

In circular buffer mode, the DMA controller reloads the start address when the word counter
(Terminal Count register) reaches the end of count and continues the transfer until application
software sets the LAST bit, writing into DMALUBUff register the buffer location where the last
data to be transferred is located. The stream configured in circular mode is controlled by a
CIRCULAR flag in DMACtrl register (‘O'=normal mode, ‘1’=circular mode), a LAST flag in
DMALast register (‘O’=infinite mode, ‘1’=last buffer sweep), and a register DMALUBuff (read
and write).

Regarding the usage of circular buffer mode when circular buffer is the source of transfer,
application software should operate in the following way:

1. Set DMA stream configuration registers writing CIRCULAR bit to’1’ and LAST bit to ‘0’.

2. Procéeed feeding the circular buffer using an index to keep trace of last buffer location
used.

3. When the end of transfer condition occurs, write DMALUBUff with the value of the index
and set LAST bit to ‘1°.

4. The DMA interrupt line will be activated as soon as DMALUBUuff location has been cor-
rectly transferred.

In case circular buffer is the destination of transfer, application should proceed in a similar
way:

4

84/401

STR720 - DMA CONTROLLER (DMAC)

3.
4.

. Set DMA stream configuration registers writing CIRCULAR bit to’1’ and LAST bit to ‘0’.
2.

Progeed fetching the circular buffer using an index to keep trace of last buffer location
used.

When the end of transfer condition occurs, stop DMA operation writing DMA_EN to ‘0’
The last buffer location to be used will be indicated by DESTCurrent register pair.

Circular buffer mode has the following limitations:

4

* When buffer size is not a multiple of the configured burst size. This is due to the fact
that FIFO is always flushed when the end of buffer is reached, and the resulting runt
burst would not be followed by a transfer moving the remaining locations, located at
the beginning of circular buffer, to complete the programmed burst size.

 DMALUBUff value, when used, must always be aligned to a buffer location which is a
multiple of the configured burst size and its distance from the current value of TC
(buffer location currently under use) must always be greater than a full burst. This is to
prevent setting of last used buffer location to a place where DMA is already passed or
it is about to pass during the current transfer completion, since DMA controller keeps
operating in parallel to CPU program execution.

* When memory to memory data transfer is configured on stream 3.

85/401

STR720 - DMA CONTROLLER (DMAC)

9.4 Register description

The DMA registers are accessed via the APB bus and the register data path is 16 bit wide.
Source base address low X (DMASourcelLoX) (X=2,3)

Address Offset: 80h - COh

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMASourceLoX

rw

DMASourceLoX contains the low base address for stream X source DMA buffer.
Bit 15:0 = DMASourceLoX[15:0]

Source base address high X (DMASourceHiX) (X=2,3)

Address Offset: 84h - C4h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMASourceHiX

rw

DMASourceHiX contains the high base address for stream X source DMA transfer.
Bit 15:0 = DMASourceHiX[15:0]

Destination base address low X (DMADestLoX) (X=2,3)

Address Offset: 88h - C8h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMADestLoX

'w

DMADestLoX contains the low base address for stream X destination DMA buffer.

Bit 15:0 = DMADestLoX[15:0]

86/401

4

STR720 - DMA CONTROLLER (DMAC)

Destination base address high X (DMADestHiX) (X=2,3)
Address Offset: 8Ch - CCh

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMADestHiX

rw

DMADestHiX contains the high base address for stream X destination DMA buffer.
Bit 15:0 = DMADestHiX[15:0]

Maximum count register X (DMAMaxX) (X=2,3)

Address Offset: 90h - DOh

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAMaxX

rw

This register is programmed with stream X maximum data unit count, defining the buffer size.
The data unit is equal to the DMA data with (byte, half-word or word) configured for the source
side, if Dir bit of DMACtrIX register is 0, or for the destination side, if Dir bit of DMACtrIX
register is 1. Upon enabling DMA Controller, the content of the Maximum Count Register is
loaded in the Terminal Count Register.

Bit 15:0 = DMAMax0[15:0]

4

87/401

STR720 - DMA CONTROLLER (DMAC)

Control register 2 (DMACtrl2)
Address Offset: 94h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved Dir reserved Circular DeSize SoBurst SoSize Delnc | Solnc | Enable
rw - rw rw rw rw rw rw rw

DMACIHrI2 register is used to configure stream 2 operations.

Bit 0 = Enable: DMA enable
0: DMA disable
1: DMA enable

Bit 1 = Solnc: Increment Current Source Register

This bit is used to enable the Current Source Register after each source to DMA data transfer.
0: Current Source Register unchanged

1: Current Source Register incremented

Bit 2 = Delnc: Increment Current Destination Register

This bit is used to enable the Current Destination Register after each DMA to destination data
transfer.

0: Current Destination Register unchanged

1: Current Destination Register incremented

Bit 4:3 = SoSize: Source to DMA data width

These bits are used to select the data width for source to DMA data transfer.
00: 1 byte

01: 1 half-word

10: 1 word

11: reserved

Bit 6:5 = SoBurst: DMA peripheral burst size

These bits are used to define the number of words in the peripheral burst. When the
peripheral is the source (Dir = 0), SoSize words are read in to the FIFO before writing FIFO
contents to destination. When the peripheral is the destination (Dir = 1), the DMA interface will
automatically read the correct number of source words to compile an SoBurst of the DeSize
data.

00: Single

01: 4 incrementing

10: 8 incrementing

11: 16 incrementing

4

88/401

STR720 - DMA CONTROLLER (DMAC)

Bit 8:7 = DeSize: DMA to destination data width

These bits are used to select the data width for DMA to destination data transfer.
00: 1 byte

01: 1 half-word

10: 1 word

11: reserved

Bit 9 = Circular: Circular mode

This bit is used to enable DMA to operates in the circular buffer mode.
0: normal buffer mode

1: circular buffer mode

Bit 12:10 = Reserved. They must be always written to ‘0’.

Bit 13 = Dir: Direction transfer

This bit defines which field between DeSize and SoSize is used to compute burst and terminal
count word unit; since the side of DMA transfer requiring a burst is usually the peripheral one
this bit can be considered indicating the direction of the transfer, specifying if the peripheral is
acting as source or destination.

0: SoSize defines the word unit for burst and terminal count (peripheral is the source).

1: DeSize defines the word unit for burst and terminal count (peripheral is the destination).

Bit 15:14 = Reserved. They must be always written to ‘0’.

4

89/401

STR720 - DMA CONTROLLER (DMAC)

Control register 3 (DMACtri3)
Address Offset: D4h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved Dir [reserved|Mem2Mem| Res. |Circular DeSize SoBurst SoSize Delnc | Solnc | Enable
rw - rw - rw rw rw rw rw rw rw

DMACIHrI3 register is used to configure stream 3 operations.

Bit 0 = Enable: DMA enable
0: DMA disable
1: DMA enable

Bit 1 = Solnc: Increment Current Source Register

This bit is used to enable the Current Source Register after each source to DMA data transfer.
0: Current Source Register unchanged

1: Current Source Register incremented

Bit 2 = Delnc: Increment Current Destination Register

This bit is used to enable the Current Destination Register after each DMA to destination data
transfer.

0: Current Destination Register unchanged

1: Current Destination Register incremented

Bit 4:3 = SoSize: Source to DMA data width

These bits are used to select the data width for source to DMA data transfer.
00: 1 byte

01: 1 half-word

10: 1 word

11: reserved

Bit 6:5 = SoBurst: DMA peripheral burst size

These bits are used to define the number of words in the peripheral burst. When the
peripheral is the source (Dir = 0), SoSize words are read in to the FIFO before writing FIFO
contents to destination. When the peripheral is the destination (Dir = 1), the DMA interface will
automatically read the correct number of source words to compile an SoBurst of the DeSize
data.

00: Single

01: 4 incrementing

10: 8 incrementing

11: 16 incrementing

4

90/401

STR720 - DMA CONTROLLER (DMAC)

Bit 8:7 = DeSize: DMA to destination data width

These bits are used to select the data width for DMA to destination data transfer.
00: 1 byte

01: 1 half-word

10: 1 word

11: reserved

Bit 9 = Circular: Circular mode

This bit is used to enable DMA to operates in the circular buffer mode.
0: normal buffer mode

1: circular buffer mode

Bit 10 = Reserved. It must be always written to ‘0.

Bit 11 = Mem2Mem: Selects memory to memory transfer

This configure stream 3 to operate a memory to memory transfer. When Mem2Mem is set, the
DMA will disregard the DMA request connected to stream 3, and transfer data from source to
destination as fast as possible until MaxCnt expires.

0: Stream3 not configured for mem to mem transfer

1: Stream3 configured for mem to mem transfer

When the stream 3 is configured as a memory-memory transfer, SoBurst relates to the source
side burst length, regardless of the value written in Dir bit (see below).

Bit 12 = Reserved. It must be always written to ‘0.

Bit 13 = Dir: Direction transfer

This bit defines which field between DeSize and SoSize is used to compute burst and terminal
count word unit; since the side of DMA transfer requiring a burst is usually the peripheral one
this bit can be considered indicating the direction of the transfer, specifying if the peripheral is
acting as source or destination. The value written in this bit is ignored when the channel is
configured to perform a memory-to-memory transfer (Mem2Mem bit written to ‘1°).

0: SoSize defines the word unit for burst and terminal count (peripheral is the source).

1: DeSize defines the word unit for burst and terminal count (peripheral is the destination).

Bit 15:14 = Reserved. They must be always written to ‘0.

4

91/401

STR720 - DMA CONTROLLER (DMAC)

Current Source address high X (DMASoCurrHiX) (X=2,3)
Address Offset: 98h - D8h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMASoCurrHiX

r

DMASoCurrHiX holds the current value of the high source address pointer related to stream
X. This register is read only.

Bit 15:0 = DMASoCurrHiX[15:0]
Current Source address low X (DMASoCurrLoX) (X=2,3)
Address Offset: 9Ch - DCh

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMASoCurrLoX

r

DMASoCurrLoX register holds the current value of the low source address pointer related to
stream X. This register is read only.

Bit 15:0 = DMASoCurrLoX[15:0]

The value in the registers (DMASoCurrLo and DMASoCurrHi) is used as an AHB address in a
source to DMA data transfer over the AHB bus. If the Solnc bit in the Control Register is set to
‘1’, the value in the Current Source Registers will be incremented as data are transferred from
a source to the DMA. The value will be incremented at the end of the address phase of the
AHB bus transfer by the transferred size value. If Solnc bit is ‘0’, the Current Source Register
will hold a same value during the whole DMA data transfer.

4

92/401

STR720 - DMA CONTROLLER (DMAC)

Current Destination address high X (DMADeCurrHiX) (X=2,3)
Address Offset: AOh - EOh

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMADeCurrHiX

r

DMADeCurrHiX holds the current value of the high destination address pointer related to
stream X. This register is read only.

Bit 15:0 = DMADeCurrHiX[15:0]
Current Destination address low X (DMADeCurrLoX) (X=2,3)
Address Offset: 24h - 64h - A4h - E4h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMADeCurrLoX

r

DMADeCurrLoX holds the current value of the low destination address pointer related to
stream X. This register is read only.

Bit 15:0 = DMADeCurrLoX[15:0]

The value in the registers (DMADeCurrLo and DMADeCurrHi) is used as an AHB address in
a DMA to destination data transfer over the AHB bus. If the Delnc bit in the Control Register is
set to ‘1’, the value in the Current Destination Registers will be incremented as data are
transferred from DMA to destination. The value will be incremented at the end of the address
phase of the AHB bus transfer by the transferred size value. If Delnc bit is ‘0’, the Current
Destination Register will hold a same value during the whole DMA data transfer.

4

93/401

STR720 - DMA CONTROLLER (DMAC)

Terminal Counter Register X (DMATCntX) (X=2,3)
Address Offset: A8h - E8h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMATCntX

r

DMATCntX contains the number of data units remaining in the current DMA transfer. The data
unit is equal to the DMA data with (byte, half-word or word) configured for the source side, if
Dir bit of DMACHrIX register is 0, or for the destination side, if Dir bit of DMACHtrIX register is 1.
The register value is decremented every time data is transferred to the DMA FIFO. When the
Terminal Count reaches zero, the FIFO content is transferred to the Destination and the DMA
transfer is finished. This is a read only register.

Bit 15:0 = DMATCnNtX[15:0]

Note DMATCntX register can be used also in Circular buffer mode, with the exception of
the last buffer sweep. Once LAST flag is set, the value of DMATCntX register
becomes not meaningful and should be ignored.

Last Used Buffer location X (DMALUBUuffX) (X=2,3)
Address Offset: ACh - ECh

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMALUBuUff

rw

DMALUBUffX is used in circular buffer mode during last buffer sweep, and it contains the
circular buffer position where the last data to be used by stream X is located. The first buffer
location is indicated writing 0x0000 into this register, the second with 0x0001 and so on, up to
the last location which is indicated setting this register with (DMAMaxX - 1). For a description
of this register usage, see also Circular mode operations on page 84

Bit 15:0 = DMALUBuffX[15:0]

4

94/401

STR720 - DMA CONTROLLER (DMAC)

Interrupt Mask Register (DMAMask)
Address Offset: FOh
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved SEM3 | SEM2 | res. res. SIM3 | SIM2 res. res.
rw rw rw rw rw rw rw rw

The DMA Mask Register is user to select the status flag that can generate an interrupt.
Bits 1:0 = Reserved. They must always be written to 0.

Bit 2 = SIM2: Stream 2 Interrupt Mask

This bit controls the generation of DMA interrupts triggered by stream 2 transfer end events.
1: Stream 2 transfer end interrupt is enabled

0: Stream 2 transfer end interrupt is masked

Bit 3 = SIM3: Stream 3 Interrupt Mask

This bit controls the generation of DMA interrupts triggered by stream 3 transfer end events.
1: Stream 3 transfer end interrupt is enabled

0: Stream 3 transfer end interrupt is masked

Bits 5:4 = Reserved. They must always be writtento 0.

Bit 6 = SEM2: Stream 2 Error Mask

This bit controls the generation of DMA interrupts triggered by stream 2 transfer errors events.
1: Stream 2 transfer error interrupt is enabled

0: Stream 2 transfer error interrupt is masked

Bit 7 = SEM3: Stream 3 Error Mask

This bit controls the generation of DMA interrupts triggered by stream 3 transfer errors events.
1: Stream 3 transfer error interrupt is enabled

0: Stream 3 transfer error interrupt is masked

Bit 15:8 = Reserved. They must be always written to ‘0’

4

95/401

STR720 - DMA CONTROLLER (DMAC)

Interrupt Clear Register (DMACIr)
Address Offset: F4h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved SEC3 | SEC2 res. res. SIC3 | SsIC2 rese. res.
w w w w w w w w

The DMA Clear Register is used to clear the status flags. This is a write-only register and it will
return 0000h every time it is read.

Bits 1:0 = Reserved. They must always be written to 0.

Bit 2 = SIC2: Stream 2 Interrupt Clear

This bit allows clearing the pending interrupt flag corresponding to stream 2 transfer end
event.

1: Clear INT2 flag in DMAStatus register

0: No effect

Bit 3 = SIC3: Stream 3 Interrupt Clear

This bit allows clearing the pending interrupt flag corresponding to stream 3 transfer end
event.

1: Clear INT3 flag in DMAStatus register

0: No effect

Bits 5:4 = Reserved. They must always be written to 0.

Bit 6 = SEC2: Stream 2 Error Clear

This bit allows clearing the pending interrupt flag corresponding to stream 2 transfer error
event.

1: Clear ERR2 flag in DMAStatus register

0: No effect

Bit 7 = SEC3: Stream 3 Error Clear

This bit allows clearing the pending interrupt flag corresponding to stream 3 transfer error
event.

1: Clear ERRS3 flag in DMAStatus register

0: No effect

Bit 15:8 = Reserved. They must be always written to ‘0’

4

96/401

STR720 - DMA CONTROLLER (DMAC)

Interrupt Status Register (DMAStatus)
Address Offset: F8h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ACT3 | ACT2 res. res.d | ERR3 | ERR2 res. res. INT3 INT2 res. res.

DMAStatus provides status information regarding the DMA Controller. This is a read-only
register.

Bits 1:0 = Reserved. They must always be written to 0.

Bit 2 = INT2: Data stream 2 interrupt flag

When a transfer end event occurs on stream 2, this bit will be set to ‘1’ and if SIM2 bit of
DMAMask has also set to ‘1’ by software then a DMA interrupt request will be generated. This
flag is cleared by writing ‘1’ in SIC2 bit of DMACIear register.

Bit 3 = INT3: Data stream 3 interrupt flag

When a transfer end event occurs on stream 3, this bit will be set to ‘1’ and if SIM3 bit of
DMAMask has also set to ‘1’ by software then a DMA interrupt request will be generated. This
flag is cleared by writing ‘1’ in SIC3 bit of DMACIear register.

Bits 5:4 = Reserved. They must always be written to 0.

Bit 6 = ERR2: Data stream 2 error flag

When a transfer error event occurs on stream 2, this bit will be set to ‘1’ and if SEM2 bit of
DMAMask has also set to ‘1’ by software then a DMA interrupt request will be generated. This
flag is cleared by writing ‘1’ in SEC2 bit of DMACIear register.

Bit 7 = ERR3: Data stream 3 error flag

When a transfer error event occurs on stream 3, this bit will be set to ‘1’ and if SEM3 bit of
DMAMask has also set to ‘1’ by software then a DMA interrupt request will be generated. This
flag is cleared by writing ‘1’ in SECS3 bit of DMACIear register.

Bits 9:8 = Reserved. They must always be written to 0.

Bit 10 = ACT2: Data stream 2 status
1: Data stream 2 is active.
0: Data stream 2 is not active

Bit 11 = ACT3: Data stream 3 status
1: Data stream 3 is active.
0: Data stream 3 is not active

Bit 15:12 = Reserved. They must be always written to ‘0’

ﬁ 97/401

STR720 - DMA CONTROLLER (DMAC)

Last Flag Register (DMALast)
Address Offset: FCh
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved LAST3 | LAST2 | Res. Res.
rw rw rw rw

DMALast controls the activation of last buffer sweep mode for the streams configured in
circular buffer mode. See also Circular mode operations on page 84.

Bits 1:0 = Reserved. They must always be written to 0.

Bit 2 = LAST2: LAST buffer sweep stream 2

This bit is used to notify DMA that last circular buffer sweep started. If this bit is set while
stream 2 is configured in circular mode, the corresponding data stream interrupt flag will be
set when DMA uses the circular buffer location contained in DMALUBUff2 register.

0: Continuous circular buffer mode

1: Last circular buffer sweep started.

Bit 3 = LAST3: LAST buffer sweep stream 3

This bit is used to notify DMA that last circular buffer sweep started. If this bit is set while
stream 3 is configured in circular mode, the corresponding data stream interrupt flag will be
set when DMA uses the circular buffer location contained in DMALUBUff3 register.

0: Continuous circular buffer mode

1: Last circular buffer sweep started.

Bit 15:4 = Reserved. They must be always written to ‘0’

4

98/401

STR720 - DMA CONTROLLER (DMAC)

9.4.1 Register map

The following table summarizes the registers implemented in the DMA macrocell
Table 26. DMA Register Map

Addr. | Register
Offset| Name 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
DMA
8 SourcelLo2 DMASoLo2
DMA '
84 SourceHi2 DMASoHi2
DMA
88 DestLo2 DMADeLo2
DMA i
8C DestHi2 DMADeHiI2
90 | DMAMax2 DMAMax2
94 | DMACtrI2 reserved ‘ Dir ‘ reserved ‘Circular‘ DeSize SoBurst SoSize ‘ Delnc ’ Solnc ‘ Enable
DMA]
98 | socurrHi2 DMASoCurrHi2
DMA
9C SoCurrLo2 DMASoCurrLo2
DMA .
A0 | pecurrHi2 DMADeCurrHi2
DMA
A4 | becurrLo2 DMADeCurrLo2
A8 | DMATCnt2 DMATCnt2
DMA
AC LUBuff2 DMALUBUff2
B0 i Reserved
DMA
co SourcelLo3 DMASoLo3
DMA '
c4 SourceHi3 DMASOoHi3
DMA
c8 DestLo3 DMADelLo3
DMA i
ce DestHi3 DMADeHi3
DO | DMAMax3 DMAMax3
. Mem2 . .)
D4 | DMACtri3 reserved Dir res. Mem res |Circular DeSize SoBurst SoSize Delnc | Solnc | Enable
DMA .
D8 | socurrHia DMASoCurrHi3
DMA
BC | socurrLo3 DMASoCurrLo3

vww.DataSheet4U.com

4

99/401

STR720 - DMA CONTROLLER (DMAC)

Table 26. DMA Register Map

Addr. | Register
Offset| Name 15 114 | 13 112 | N 10 9 8 7 6 5 4 3 2 1 0
DMA "
EO | pecurrHi3 DMADeCurrHi3
DMA
E4 | becurrLo3 DMADeCurrLo3
E8 |DMATCnt3 DMATCnt3
DMA
EC | | uBufi3 DMALUBU(f3
FO | DMAMask reserved SEM3 | SEM2 | res. res. SIM3 | SIM2 res. res.
F4 DMACIr reserved SEC3 | SEC2 res. res. SIC3 | SIC2 res. res.
F8 DMA reserved Act3 Act2 res. res. Er3 Err2 res. res. Int3 Int2 res. res.
Status
DMA
FC | Last reserved LAST3 | LAST2 | res. | res.

Refer to Table 21 on page 50 for the base address.

vww.DataSheet4U.com

100/401 172

STR720 - DRAM CONTROLLER (DRAMC)

10 DRAM CONTROLLER (DRAMC)

10.1 Introduction

The DRAM Controller block is an AHB slave used to provide an interface between the system
bus and external memory devices. The memory clock frequency is the same as the system
bus clock frequency.

The controller supports four external banks, containing either SDRAM or EDO memories; all
banks must be of the same memory type. Each bank can be independently configured and
enabled/disabled by means of internal configuration registers.

All the internal registers are accessed via an Advanced Peripheral Bus interface (APB) to the
DRAM Controller.

A refresh timer is provided to issue refresh commands to the memory; such refresh counter
uses the CLK input signal prescaled by 16 in order to trigger the refresh events.

10.2 Main Features

m 8, 16 or 32 bits for the memory data bus width.

m 4 external memory banks.

m It is possible to use less than four banks, but banks must be contiguous.

s Each bank can span from 64 kBytes up to 32 MBytes in 64 kBytes increments.

s 128 MBytes of total addressable external memory space, when all banks have the maximum
size.

m Little endian operations supported.

10.3 Functional Description

10.3.1 AHB Interface

The DRAM Controller is a configurable peripheral devoted to manage an external memory
component. The AHB Interface decomposes the system bus transfers into memory accesses
supported by the selected memory bank and performs the data transfers to/from the external
chip. At the end of each access it will execute DRAM precharge, i.e. the SDRAM banks are
not kept open.

It supports up to 4 memory banks, where a bank is one single memory chip or more chips that
share the same addresses and chip select. If a disabled memory bank is accessed, the
Controller will return the ERROR response, otherwise it will return the OKAY response.

External memory transfers are configurable to be 8,16 or 32-bit wide.

4

101/401

STR720 - DRAM CONTROLLER (DRAMC)

Memory Address remapping

The AHB Interface remaps AHB address into DRAM row and column addresses; the 8, 9 and
10 bits wide column addresses are supported.

Table 27 shows how AHB address bits are mapped to MIA bits as row or column address.
Note that in the “Column” line bit 10 is always zero, while ba means: the same bit value used
in “Row” line. (This because bits [15:10] are never considered when used as column address).

Table 27. DRAM Address bits versus AHB address bits

Memory Column Memory Interface Address bits
Data | Address | Address
Width Width 15|14|13(12(11|(10{9 |8 (7 |6 |5 |4 |3 |2 (|1 |0
8 bits Column balbalbalba/ba|0|9 (8|7 |6|5|4[3|2|1]0
Row 9 24 12322 |21|20(19|18 17|16 |15[14|13|12|11|10
10 x |24 |23 |22 |21 |20(19|18|17|16|15[14|13|12[11]10
16 bits Column ba| ba|/baj|ba/ba|0|10| 9 |8 |7 |6 |5 |4 |3 |21
Row 8 24 123 |22 |21|20(19|18 17|16 |15[14|13|12|11|10| 9
9 x |24|23|22|21(20(19|18|17|16|15[14|13|12[11]10
10 X | x |24 |23 |22|21(20|19|18[17|16|15|14 |13 |12 11
32 bits Column ba | ba|ba|ba|/ba| 0 |11(10| 9 |8 |7 |6 |5 |4 |3 |2
Row 8 x | 24]23122(21|20(19|18|17|16|15[14|13|12[11]10
9 X | x |24 |23 |22|21(20|19|18 (17|16 |15|14 |13 |12 11
10 X | x| x |24|23]|22(21|20|19(18|17|16|15|14[13]|12

The DRAM Controller reads the 27 less significant bits of the AHB address bus; they are
decomposed into:

s Byte lanes MIBLSout[3:0], that are used to select which byte to read/write if the DRAM data
bus is larger than the data to read/write (for instance, when writing one byte into a DRAM
with a 32 bits data bus). They are decoded from HADDR][1:0] taking into account AHB data
width and DRAM data width.

m Column address, as specified in Table 27, line “Column”. 8, 9 or 10 bits are really used by
the memory.
s Row address, the remaining AHB address bits excluded the last two ones, HADDR[26:25].

m Chip selects MICSout[3:0], to select one of four external bank to use. This is determined by
the value of HADDR[26:16] and the size of each external bank.

4

102/401

STR720 - DRAM CONTROLLER (DRAMC)

10.3.2 APB Interface

The APB Interface contains the DRAM Controller registers and is used only to access these
registers.

The length of time required to properly transfer data from/to external memory is controlled by
an internal Bank Configuration Register which is dedicated to each bank. The data fields of
this register determine the number of memory clock cycles used to access that bank; the
access time also depends on the bus width and the latency of the selected device. A flag bit in
the Memory Configuration Register (one register for all banks) informs the controller if a
particular bank is accessible or not.

To allow the STR720 to directly configure the SDRAM devices, the SDRAM Configuration
Registers are provided. When they are written via the system bus, the DRAM Controller will
drive memory bus output signals with the values from the SDRAM Configuration Registers.
This means that the content of the selected register will be outputted on the memory bus and
the corresponding memory bank chip select will be asserted, for one clock period.

10.3.3 Refresh Timer

A refresh timer is provided to issue refresh commands to SDRAM and EDO devices. Refresh
commands are issued to all banks simultaneously.

When a refresh is requested, the DRAMC waits for any active memory transfer to complete
before activating the refresh.

Any system bus memory transfers started while the refresh is in progress are stalled by the
Controller.

The refresh counter uses an enable signal, synchronous with the rising edge of the system
clock, which is generated by prescaling CLK input signal by 16.

This signal is used to ensure that the refresh counter operates at the same frequency
regardless of the current system clock configuration depending on PLL and RCCU settings.

If the PWRSAVE bit in the Memory Configuration Register is set to ‘1’ , the refresh logic will
set external memories in the power save self-refresh mode (as long as the bit remain high).

4

103/401

STR720

- DRAM CONTROLLER (DRAMC)

10.4 Register description

The following paragraphs give detailed descriptions and operations of each of the bits in the

DRAMC

registers.

Bank 1 Configuration Register (MB1Config)
Address Offset: 00h

Reset va

lue: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved DEVWID[1:0] | DATALAT[1:0] SETUPTIME[2:0] IDLETIME[2:0] SDRAMCOL[1:0]

w w rw rw 'w

The Bank 1 Configuration Register (MB1Config) is a 16-bit read/write control register used to
configure specific parameters of external region 1 (Bank 1).

The MB1
Bit 15:12
Bit 11:10

Bit 9:8

Bit 7:5

Note

Bit 4:2

104/401

Config control bits are described below.
reserved (should be written as zero and ignored on read).

DEVWIDI[1:0]: Device Width.

This field defines the data width of the external memory device 0.
= 0b00. Byte (8 bit)

= 0b01. Half Word (16 bit)

= 0b10. Word (32 bit)

= 0b11. Reserved.

DATALATI[1:0]: Data Latency.

This field defines the number of memory clock cycles between the start of a
memory read access and the first valid data. This parameter is usually indicated in
SDRAM datasheets as CAS latency. The DATALAT value is valid between 0 and 3.

SETUPTIME[2:0]: Setup Time.

This field defines the number of memory clock cycles the memory drivers spends
in a wait state before accessing the external memory. This parameter is usually
indicated in SDRAM datasheets as RAS-CAS delay. The SETUPTIME value is
valid between 0 and 7.

SETUPTIME field should be set using the RAS-CAS delay value found on SDRAM
datasheet minus 1. As an example to get a RAS-CAS delay of 2 clock cycles,
SETUPTIME should be configured to 1.

IDLETIME[2:0]: /dle Time.

This field defines the minimum time the memory driver must spend in the IDLE
state following memory accesses (the value defines the number of memory clock
cycles). This parameter is usually indicated in SDRAM datasheets as precharge
delay. The IDLETIME value is valid between 0 and 7.

(574

STR720 - DRAM CONTROLLER (DRAMC)

Bit 1:0 SDRAMCOL[1:0]: SDRAM Column Width
This field specifies the width of the SDRAM column address .
= 0b00. 8 bits
=0b01. 9 bits
=0b10. 10 bits
= 0b11. Reserved.

Bank 2 Configuration Register (MB2Config)
Address Offset: 04h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved DEVWID[1:0] | DATALAT[1:0] SETUPTIME[2:0] IDLETIME[2:0] SDRAMCOL([1:0]
rw rw rw rw rw

The Bank 2 Configuration Register (MB2Config) is a 16-bit read/write control register used to
configure specific parameters of external region 2 (Bank 2).
The MB2Config control bits are the same as MB1Config register.

Bank 3 Configuration Register (MB3Config)
Address Offset: 08h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved DEVWID[1:0] | DATALAT[1:0] SETUPTIME[2:0] IDLETIME[2:0] SDRAMCOL([1:0]
rw rw rw rw rw

The Bank 3 Configuration Register (MB3Config) is a 16-bit read/write control register used to
configure specific parameters of external region 3 (Bank 3).
The MB3Config control bits are the same as MB1Config register.

4

105/401

STR720 - DRAM CONTROLLER (DRAMC)

Bank 4 Configuration Register (MB4Config)
Address Offset: 0Ch
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved DEVWID[1:0] | DATALAT[1:0] SETUPTIME[2:0] IDLETIME[2:0] SDRAMCOL][1:0]
rw rw rw rw rw

The Bank 4 Configuration Register (MB4Config) is a 16-bit read/write control register used to
configure specific parameters of external region 4 (Bank 4).
The MB4Config control bits are the same as MB1Config register.

Bank 1 SDRAM Configuration Register Low (SDRAM1ConfigLo)
Address Offset: 10h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved MIAB

wo

The Bank 1 SDRAM Configuration Register Low (SDRAM1ConfigLo) is a 16-bit write only
control register used to configure the SDRAM device of external region 1 (Bank 1).
The SDRAM1ConfigLo control bits are described below.

Bit 15:14 reserved (should be written as zero).

Bit 13:0 MIAB[13:0]: Memory Interface Address Bus.
This field defines the data to be written in the SDRAM internal configuration
register by directly driving the SDRAM address bus lines. They will be asserted on
the SDRAM address bus with the value written in SDRAM1ConfigLo register for
one clock period.

4

106/401

STR720 - DRAM CONTROLLER (DRAMC)

Bank 1 SDRAM Configuration Register High (SDRAM1ConfigHi)
Address Offset: 14h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved MIWE | MIAA | MISA

wo WO WO

The Bank 1 SDRAM Configuration Register High (SDRAM1ConfigHi) is a 16-bit write only
control register used to configure the SDRAM device of external region 1 (Bank 1). The
SDRAM1ConfigHi control bits are described below.

Bit 15:3 reserved (should be written as zero).

Bit 2 MIWE: Memory Interface Write Enable.
This bit allows to control directly the value on the SDRAM write enable line. When
it is written to ‘1’ the corresponding memory pin will be asserted to ‘O’ for one clock
period. This is a write-ony bit.

Bit 1 MIAA: Memory Interface Access Active (nCAS).
This bit allows to control directly the value on the SDRAM column address strobe
line. When it is written to ‘1’ the corresponding memory pin will be asserted to ‘0’
for one clock period. This is a write-ony bit.

Bit 0 MISA: Memory Interface Setup Active (nRAS).
This bit allows to control directly the value on the SDRAM row address strobe line.
When it is written to ‘1’ the corresponding memory pin will be asserted to ‘0’ for one
clock period. This is a write-ony bit.

Bank 2 SDRAM Configuration Register Low (SDRAM2ConfigLo)
Address Offset: 18h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved MIAB

wo

The Bank 2 SDRAM Configuration Register Low (SDRAM2ConfigLo) is a 16-bit write only
control register used to configure the SDRAM device of external region 2 (Bank 2).
The SDRAM2ConfigLo control bits are the same as SDRAM1ConfigLo register.

4

107/401

STR720 - DRAM CONTROLLER (DRAMC)

Bank 2 SDRAM Configuration Register High (SDRAM2ConfigHi)
Address Offset: 1Ch

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved MIWE | MIAA | MISA

wo WO WO

The Bank 2 SDRAM Configuration Register High (SDRAM2ConfigHi) is a 16-bit write only
control register used to configure the SDRAM device of external region 2 (Bank 2).
The SDRAM2ConfigHi control bits are the same as SDRAM1ConfigHi register.

Bank 3 SDRAM Configuration Register Low (SDRAM3ConfigLo)
Address Offset: 20h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved MIAB

wo

The Bank 3 SDRAM Configuration Register Low (SDRAM3ConfigLo) is a 16-bit write only
control register used to configure the SDRAM device of external region 3 (Bank 3).
The SDRAMS3ConfigLo control bits are the same as SDRAM1ConfigLo register.

Bank 3 SDRAM Configuration Register High (SDRAM3ConfigHi)
Address Offset: 24h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved MIWE | MIAA [MISA

wo WO WO

The Bank 3 SDRAM Configuration Register High (SDRAM3ConfigHi) is a 16-bit write only
control register used to configure the SDRAM device of external region 3 (Bank 3).
The SDRAMB3ConfigHi control bits are the same as SDRAM1ConfigHi register.

4

108/401

STR720 - DRAM CONTROLLER (DRAMC)

Bank 4 SDRAM Configuration Register Low (SDRAM4ConfigLo)
Address Offset: 28h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved MIAB

wo

The Bank 4 SDRAM Configuration Register Low (SDRAM4ConfigLo) is a 16-bit write only
control register used to configure the SDRAM device of external region 4 (Bank 4).
The SDRAM4ConfigLo control bits are the same as SDRAM1ConfigLo register.

Bank 4 SDRAM Configuration Register High (SDRAM4ConfigHi)
Address Offset: 2Ch

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved MIWE | MIAA | MISA

wo WO WO

The Bank 4 SDRAM Configuration Register High (SDRAM4ConfigHi) is a 16-bit write only
control register used to configure the SDRAM device of external region 4 (Bank 4).
The SDRAM4ConfigHi control bits are the same as SDRAM1ConfigHi register.

4

109/401

STR720 - DRAM CONTROLLER (DRAMC)

Memory Configuration Register (MemConfig)
Address Offset: 30h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 0
reserved |[PWRSAVE| TYPE | B4EN | B3EN | B2EN | B1EN REFRI[7:0]
rw rw rw rw rw rw rw

The Memory Configuration Register (MemConfig) is a 16-bit read/write control register used

to configure parameters that are the same for all banks.
The MemConfig control bits are described below.

Bit 15:14 reserved (should be written as zero and ignored on read).

Bit 13 PWRSAVE: Power Save Mode.

This bit selects whether to enter the power save self-refresh mode.

= 1. The next refresh cycle will set the memory devices in the self-refresh mode.

= 0. Next refresh cycle the memories will exit the self-refresh mode.

Bit 12 TYPE: Memory Type.
This bit selects the type of the external memory.
=1. SDRAM.
=0. EDO.

Bit 11 B4EN: Bank 4 Enable.
This bit enables Bank 4 of memory.
= 1. Bank enabled.
= 0. Bank disabled.

Bit 10 B3EN: Bank 3 Enable.
This bit enables Bank 3 of memory.
= 1. Bank enabled.
= 0. Bank disabled.

Bit 9 B2EN: Bank 2 Enable.
This bit enables Bank 2 of memory.
= 1. Bank enabled.
= 0. Bank disabled.

Bit 8 B1EN: Bank 1 Enable.
This bit enables Bank 1 of memory.
= 1. Bank enabled.
= 0. Bank disabled.

Bit 7:0 REFR[7:0]: Refresh Period.

This field is used to determine the refresh period. The refresh period can be set in

110/401

(574

STR720 - DRAM CONTROLLER (DRAMC)

steps of 16 times the CLK period (T¢ k). The REFR value is valid between 0 and
255. For an example of the correspondence between REFR setting and refresh
period see Table 28 Refresh Period..

Table 28. Refresh Period

REFR Refresh Period Reff::eth=pZ;i§ndH‘:"h

00000000 Refresh is disabled Refresh is disabled
00000001 16 * Tolk 333.33 ns
00000010 32 * Tok 666.66 ns
00000011 48 * Tk 1 us
11111111 4080 * Tk 85 s

Size of bank 1 Register (Bank1Size)

Address Offset: 34h

Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SIZE[8:0]

'w

The Size of bank 1 Register (Bank1Size) is a 16-bit read/write control register used to specify
the size of external region 1 (Bank 1).
The Bank1Size control bits are described below.

Bit 15:9 Reserved (should be written as zero and ignored on read).

Bit 8:0 SIZE[8:0]: Bank Size.
This field defines the size of the external memory device 1 in 64 kBytes steps.The
SIZE value is valid between 0 and 511, where (SIZE+1) represents the size of the
bank in 64Kbytes steps. See also Table 29 .

Table 29. Size field and the corresponding actual size

SIZE field Bank actual size
0.0000.0000 1 x 64kBytes = 64kBytes

0.0000.0001 2 x 64kBytes = 128kBytes

0.0000.0010 3 x 64kBytes = 192kBytes

0.0000.1111 16 x 64kBytes = 1MBytes

4

111/401

STR720 - DRAM CONTROLLER (DRAMC)

Table 29. Size field and the corresponding actual size

SIZE field Bank actual size
0.0001.1111 32 x 64kBytes = 2MBytes

o.001.1”.1 111 64 x 64kBytes = 4MBytes

0.0111.1111 128 x 64kBytes = 8MBytes

0.1111.1111 256 x 64kBytes = 16MBytes

1.1111.1111 512 x 64kBytes = 32MBytes

Size of bank 2 Register (Bank2Size)
Address Offset: 38h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SIZE[8:0]

'w

The Size of bank 2 Register (Bank2Size) is a 16-bit read/write control register used to specify
the size of external region 2 (Bank 2).
The Bank2Size control bits are the same as Bank1Size register.

Size of bank 3 Register (Bank3Size)
Address Offset: 3Ch

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SIZE[8:0]

rw

The Size of bank 3 Register (Bank3Size) is a 16-bit read/write control register used to specify
the size of external region 3 (Bank 3).
The Bank3Size control bits are the same as Bank1Size register.

4

112/401

STR720 - DRAM CONTROLLER (DRAMC)

Size of bank 4 Register (Bank4Size)
Address Offset: 40h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved SIZE[8:0]
rw

The Size of bank 4 Register (Bank4Size) is a 16-bit read/write control register used to specify
the size of external region 4 (Bank 4).
The Bank4Size control bits are the same as Bank1Size register.

10.4.1 Register map

In the Table 30 an overview of the DRAMC registers is reported.
Table 30. DRAMC Register Map

Addr.
Offs;t Register Name | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
i SDRAM-
0 MB1Config reserved DEVWID[1:0] | DATALAT[1:0] SETUPTIME[2:0} IDLETIME[2:0] coL1:0]
i 5 . . . SDRAM-
4 MB2Config reserved DEVWID[1:0] | DATALAT[1:0] SETUPTIME[2:0} IDLETIME[2:0] COL[1:0]
)]] !] SDRAM-
8 MB3Config reserved DEVWID[1:0] | DATALAT[1:0] SETUPTIME[2:0} IDLETIME[2:0] COL[1:0]
) .) ! } SDRAM-
C MB4Config reserved DEVWID[1:0] | DATALAT[1:0] SETUPTIME[2:0} IDLETIME[2:0] COL[1:0]
10 |SDRAM1ConfigLo| reserved ‘ MIAB
14 | SDRAM1ConfigHi reserved ‘ MIWE | MIAA | MISA
18 |SDRAM2ConfigLo| reserved ‘ MIAB
1C | SDRAM2ConfigHi reserved ‘ MIWE ‘ MIAA ‘ MISA
20 |SDRAM3ConfigLo| reserved ‘ MIAB
24 | SDRAM3ConfigHi reserved ‘ MIWE ‘ MIAA ‘ MISA
28 |SDRAMC4onfiglo| reserved ‘ MIAB
2C | SDRAM4ConfigHi reserved ‘ MIWE ‘ MIAA ‘ MISA
. PWR-
30 MemConfig reserved SAVE TYPE | B3EN | B2EN | BIEN | BOEN REFR[7:0]
34 Bank1Size reserved SIZE[8:0}
38 Bank2Size reserved SIZE[8:0}
3C Bank3Size reserved SIZE[8:0}
40 Bank4Size reserved SIZE[8:0}

Refer to Table 21 on page 50 for the base address.

vwww.DataSheetdU.com

113/401

4

STR720 - DRAM CONTROLLER (DRAMC)

10.5 Programming considerations

DRAMC programming and usage is accomplished via the internal registers described in
previous paragraphs.

At reset time all the Controller registers will be reset to 0. It is up to the user the correct
programming of the four Bank Size registers and Bank enable bits in the MemConfig register,
in order to properly describe the physical devices connected to the DRAM Controller.

Note that banks are contiguous, even if it is possible to use less than four banks: if an AHB
transfer is accessing a disabled bank, the DRAM Controller will return the error response to
the AHB master (ARM720T CPU or DMA controller).

After power-up the CPU must configure each SDRAM device, i.e. perform the
precharge-refresh-mode register set procedure as specified in the SDRAM device data sheet.
This is accomplished with the correct values in the 8 SDRAMxConfigLo,Hi registers. A write
access to the high registers will start the SDRAM configuration cycle, during which the value
written to the register will be asserted on the memory bus for one clock period.

When ARM720T caches are enabled, all accesses to SDRAM memory are performed as
bursts of 4 transfers and in order to achieve the highest performance level, SDRAM interface
must be aware of this particular access mode. Unfortunately a limitation in ARM720T core
and SDRAM interface requires this specific configuration to be enforced explicitly by software.
This configuration selection is performed by using CACHE_CONFIG bit of SGCR1 register,
which can configure STR720 to work in “burst-access” mode and it should be used whenever
cache is enabled, so to have optimal performance from the system.

In “burst-access” mode all transfers issued by ARM720T core are identified as 16-byte fixed
length burst, possibly early terminated when the actual burst length is shorter than 16, as it
normally happens on cache line refills. In this way any sequence of transfers generated by a
cached ARM720T core fetching its code from a cached region can be legally completed by
SDRAM interface, including multiple register load/store sequences.

When ARM720T is used with its cache disabled or it is fetching its code from a non-cacheable
SDRAM region, this bit should remain cleared, so to avoid incurring in a system hang, when
long sequences of internal instructions generates a sequence of consecutive accesses longer
than a 16-byte burst. In case system hangs for this particular configuration mistake,
application program execution can be restored only with a system reset.

4

114/401

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

11 EXTERNAL MEMORY INTERFACE (EMI)

11.1 Introduction

The External Memory Interface is a configurable interface designed to control the data flow
from an internal Advanced High-performance Bus (AHB) to external memory components as
ROM and SRAM.

The total external memory space of 8 MByte can be subdivided in 2 regions, corresponding to
the 2 available chip select signals (CS0..CS1). External memory transfers are always 16 bit
wide, the width of the transfers from the AHB bus to the EMI peripheral, in accordance with to
the AHB specifications, are controlled by the HSIZE signal (8,16 or 32-bit). Note that the
external address bus always refers to 16-bit location addresses, thus bit position 0 on this bus
corresponds to bit 1 on the internal AHB address bus.

The length of time required to properly transfer data from/to external memory region is
controlled by programming of internal registers dedicated to each external memory space
which determines the number of wait states used to access that region. Read/Write cycle
termination can be also configured to be controlled by the “External Ready” signal (Eready).
Each internal register also contains a flag bit which informs the controller if a particular
memory space is accessible or not.

All the internal configuration registers are accessed via an Advanced Peripheral Bus interface
(APB) to the EMI block.

11.2 Main Features

s 8 MByte of total addressable external memory space.

m Up to 2 external regions/chip selects (Banks).

s Bank 0 can span from 64 kBytes up to 8 MBytes in 64 kBytes increments.

m Bank 1 can span from 64 kBytes up to 8 MBytes in 64 kBytes increments.

m Up to 7 configurable wait states for each external memory region.

s Read/Write cycle termination via “External Ready” (Eready) signal (configurable).

Note Only chip select 0 signal is always available on STR720 device, CS1 being shared
with different alternate functions or general purpose I/Os.

4

115/401

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

11.3 Functional Description

The External Memory Interface is a configurable peripheral aimed to ease the connection of
external memory components. EMI memory map is detailed in Table 31. Each memory
address region (Bank), with the exception of Bank 0, has a configurable base address (with a
granularity of 2k in the 8M total address space) and a configurable size. For bank 1 base
address is selected via a dedicated 16-bit register (BBASE1) that defines the upper 16 bits of
the range over which the relevant chip select will be active.

Table 31. EMI Address Map

Bank Start Address Description Size Bus Width
Ob_0 Bank 0 (CSO0) 64k - 8M 16
Ob_BBASE1[11:0] | 000_0000_0000 Bank 1 (CS1) 64k - 8M 16

For bank 1 the user has the freedom of independently choosing bank start address and bank
size. Since the physical address going to the external memory (EAdd[22:1]) is simply obtained
by dropping bits from 31 to 23 of the AHB address, it may happen that the lowest address of
the bank does not map to the lowest address of the external memory. This does not mean that
the one-to-one correspondence between an address and a physical location in the memory is
lost: it means only that lowest address of the bank (as defined by bbase) will map somewhere
in the middle of the memory and that, after reaching the top of the physical memory, the
address will wrap around to zero.

In the special case in which the bank start address is programmed to be a multiple of the bank
length, the usual result of having the lowest address of the bank mapped to the lowest
address of the external memory is obtained. Therefore, to get this usual mapping, a 64 kbyte
memory should be only mapped at 64k boundaries, a 128 kbyte memory should be only
mapped at 128k boundaries and so on. It is up to the user the consistent programming of the
“pbase” and “length” registers.

11.3.1 EMI Programmable Timings

Each memory bank of the EMI can have a programmable number of wait states (up to 7)
added to any read or write cycle: this is accomplished via the C_LENGTH bitfield of the
BCONX register (x=0,..,1).

This C_SETUP programing will translate in different cycle lengths, depending on the Read or
Write type of operation and depending on the bank on which the operation is performed.

For write cycles which translate in a single external bus operation (e.g. a 16-bit write), the total
length (measured in EMI internal clock units) that a single access will require (equal to the
length over which the Chip Select will be active) will depend on the memory bank the cycle is
executed on. It can be calculated through the formula:

Setup Write Enable Time Hold
CS Length (Write, Bank 0/1) = 0 + (C_LENGTH+1) +1

116/401 ﬁ

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

This means that for memory banks 0 and 1 setup and hold times (measured in EMI internal
clock units) are fixed.

Table 32 resumes the write cycle timing configurations.
Table 32. EMI Write Timings

Parameter Field Bank 0,1
Setup Time n.a. 0
WE Time C_LENGTH “000”:"111”=1:8 AHB_CLK
Hold Time n.a. 1
CS Length 2:9 AHB_CLK

For read cycles which translate in a single external bus operation (e.g. a 16-bit read), the total
length (measured in EMI internal clock units) that a single access will require (equal to the
length over which the Chip Select will be active) will also depend on the memory bank the
cycle is executed on. lts total length can be calculated through the formula:

Setup Read Enable Time Hold
CS Length (Read, Bank 0/1) = 0 + (C_LENGTH+2) +0

This means that for memory banks 0 and 1 Setup and Hold times (measured in EMI internal
clock units) are fixed to zero.

Table 33 resumes the read cycle timing-configurations:
Table 33. EMI Read Timings

Parameter Field Bank 0,1
Setup Time n.a. 0
RE Time C_LENGTH “000”:"1117=2:9 AHB_CLK
Hold Time n.a. 0
CS Length 2:9 AHB_CLK

32-bit read or write cycles are translated in 2 external bus cycles so the total external bus
cycle duration can be obtained through the following formula

Total CS Length (Read/Write Bank x) = (Length of the single cyle)*(2).

However it must be noticed that in case of a 32-bit read cycle, resulting in two external bus
accesses, the sampling points used to read data in are not placed symmetrically in the two
halves of the access, as it is illustrated by the following formulas:

Sampling point from valid address
Low word sampling point (Read, Bank 0/1) = C_LENGTH+2
High word sampling point (Read, Bank 0/1 = C_LENGTH+1

For a timing diagram example see also Section 11.3.3: Read Access Examples on page 118.

ﬁ 117/401

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

11.3.2 Write Access Examples

In the Figure 11 shown below, a 16-bit write is being performed. The external bus width is also
16 bits. As can be seen from the diagram, all 2 external write strobes are asserted for the
duration of the write cycle. This is a one-cycle write and takes 5 AHB_CLK cycles to complete
(C_LENGTH = 3). The 1 LSB of the external address is not modified since it is a 16-bit
external bus.

Figure 11. 16-bit write cycle

AHB?CLKJ
C_Length[2:0] | 03
Erdn | Access Length (3 Wait States)
EcsOn
EwrOn |
Ewrin |
|
Eadd[21:0] X | AHB address[22:1] X
1
Edata[15:0] X Data X
(Output)

11.3.3 Read Access Examples

The diagram in Figure 12 shows a basic READ operation. In the case of a READ only 1
external read strobe is required (ERDN). In this example, a 32-bit read is being performed on
the AHB but since the external bus size is 16 bits, it is necessary for the EMI peripheral to
perform 2 successive read operations. The results from the 1st read operation are latched

4

118/401

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

internally in the EMI block (In this case - “DAAD” - i.e 16 LSBs of EDATA) so that the correct
data (i.e “6FF6DAAD”) is output on the AHB Data Bus (“‘HRDATA”).

Figure 12. 32-bit Read cycle on 16-bit memory bus

AHBfCLKJ IV

| I |
C_Length[2:0] | | | oo |
| | | |

| | |

Erdn | |

S E— |

EcsOn |

|

Ewro | o

wrin B Total Access Length (1 Wait States,) k|
[| -
Ewrin |

Eadd[0]

[
|

X | 0x0 | x 0x1
T

Eadd[21:1] >< AHB adliress[22:2]
| ,
|

X DAADy /K 6FF6y

Edata[15:0]
(Input)

For the 1st read operation, EAdd[1] is assigned “0”, for the second this is changed in “1”.
Since C_LENGTH = 1, total length of access is 6 AHB_CLK cycles, first word is sampled
3 AHB_CLK cycles after chip select activation and second word is sample 2 AHB_CLK cycles
after valid address (see formulas in Section 11.3.1: EMI Programmable Timings on
page 116). In this example the minimum time for a read cycle is 2 AHB_CLK cycles.

Note It must be noted that when a 32-bit access cycle is requested, Ecsxn line remains
active low across the two 16-bit cycles automatically generated by EMI where only bit
0 of Eadd bus changes. As a consequence EMI should be used in this configuration
only with external memory devices that do not latch the address bus on the Ecsxn
falling edge, but instead change their output bus data directly following the address
bus change while Ecsxn is kept low. This capability is often referred to as “Array data
reading” in memory device datasheets.

4

119/401

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

11.4 Register description

The following paragraphs give detailed descriptions and operations of each of the bits in the
EMI registers.

Bank 0 Configuration Register (BCONO)
Address Offset: 00h

Reset value: 7F3Dh
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. B_LENGTH[6:0] EREN | ISYNO BE C_LENGTH[2:0] Res. Res.

'w rw rw 'w w

The Bank 0 Configuration Register (BCONO) is a 16-bit read/write control registers used to
configure the operation of external region 0 (Bank 0). The BCONO control bits are described
below.

Bit 15 Reserved. This bit must be always written to ‘0’

Bit 14:8 B_LENGTH[6:0]: Bank 0 Length.
The B_LENGTH field selects the extension of the address region 0 in 64 Kbyte
increments. The following figures are expressed in bytes.
= 0x00. 64K
=0x01. 128K
= 0x02. 192K
= 0x03. 256K

= Ox7F. 8192K (8M)

Bit 7 EREN: External Ready Enable.
This bit selects whether read/write cycle termination is controlled by the “Eready”
input signal.
= 0. Read/Write cycle termination is not controlled by “Eready” signal.
= 1. Read/Write cycle termination is controlled by “Eready” signal.

Bit 6 ISYNO: Internal Synchronization Bank 0.
This bit selects whether the Eready signals, if used, has to be internally
synchronized or not.
= 0. No internal synchronization. It provides the fastest bus cycles but requires
setup and hold times to be met with respect to the EMI internal clock.
= 1. Internal synchronization. Less restrictive, but requires additional wait states
caused by the internal synchronization.

4

120/401

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

Bit 5 BE: Bank 0 Enable.
BE bit enables Bank 0 of memory.
= 1. Bank enabled.
= 0. Bank disabled.

Bit 4:2 C_LENGTH][2:0]: Cycle Length.
The C_LENGTH field selects the number of wait states that will be inserted in any
read/write cycle performed in memory Bank 0. The total CS length of any read or
write cycle will be equal to C_LENGTH+2 periods of the EMI internal clock.
= 0x0. 0 wait states.
= Ox1. 1 wait state.
= 0x2. 2 wait states.
= 0x3. 3 wait states.

= 0x7. 7 wait states.
Bit 1 Reserved. This bit must be always written to ‘0’
Bit 0 Reserved. This bit must be always written to ‘1°.

Note When asynchronous ready operation is configured (EREN = 1 and ISYNO = 0) the
number of wait states configured in C_LENGTH field must be greater than 4.

4

121/401

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

Bank 1 Configuration Register (BCON1)
Address Offset: 04h
Reset value: 0001h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Res. B_LENGTH[6:0] EREN [ISYN1 | BE C_LENGTH[2:0] Res. | Res.
rw rw rw rw rw

Note According to I/O configuration, memory bank 1 could not be accessible. In that case
this register must be considered reserved and it must be always written to 0001h.

The Bank 1 Configuration Register (BCON1) is a 16-bit read/write control registers used to
configure the operation of external region 1 (Bank 1). The BCON1 control bits are described

below:
Bit 15
Bit 14:8

Bit 7

Bit 6

Bit 5

122/401

Reserved. This bit must be always written to ‘0’.

B_LENGTH[6:0]: Bank 1 Length.

The B_LENGTH field selects the extension of the address region 1 in 64 Kbyte
increments. The following figures are expressed in bytes.

= 0x00. 64k

= 0x01. 128k

= 0x02. 192k

= 0x08. 256k

= Ox7F. 8192k (8M)

EREN: External Ready Enable.

This bit selects whether read/write cycle termination is controlled by the “Eready”
input signal.

= 0. Read/Write cycle termination is not controlled by “Eready” signal.

= 1. Read/Write cycle termination is controlled by “Eready” signal.

ISYN1: Internal Synchronization Bank 1.

This bit selects whether the Eready signals, if used, has to be internally
synchronized or not.

= 0. No internal synchronization. It provides the fastest bus cycles but requires
setup and hold times to be met with respect to the EMI internal clock.

= 1. Internal synchronization. Less restrictive, but requires additional wait states
caused by the internal synchronization.

BE: Bank 1 Enable.
BE bit enables Bank 1 of memory.
= 1. Bank enabled.
= 0. Bank disabled.

4

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

Bit 4:2 C_LENGTHJ[2:0]: Cycle Length.
The C_LENGTH field selects the number of wait states that will be inserted in any
read/write cycle performed in memory Bank 1. The total CS length of any read or
write cycle will be equal to C_LENGTH+2 periods of the EMI internal clock.
= 0x0. 0 wait states.
= 0x1. 1 wait state.
= 0x2. 2 wait states.
= 0x3. 3 wait states.

= 0x7. 7 wait states.
Bit 1 Reserved. This bit must be always written to ‘0’.
Bit 0 Reserved. This bit must be always written to ‘1°.

Note When asynchronous ready operation is configured (EREN = 1 and ISYNO = 0) the
number of wait states configured in C_LENGTH field must be greater than 4.

4

123/401

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

Bank 1 Base Address Register (BBASE1)
Address Offset: 10h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved B_BASE1[11:0]

w

Note According to I/O configuration, memory bank 1 could not be accessible. In that case
this register must be considered reserved and it must be always written to 0000h.

The Bank 1 Base Address Register (BBASE1) is a 16 bit read/write register. It defines the
location of the Bank 1 memory region accordingly to the expression: Start Address =
Ob_BBASE1[11:0] | 000_0000_0000, where bits 22 down to 11 of the address are determined
by the content of the BBASE1 register and remaining bits 10 down to 0 are set to zero. This
allows the configuration of the bank start address with a granularity of 2'! (2k) bytes in the
total EMI addressable space of 223 (8M) bytes.

Bit 15:12 Reserved. These bits must be always written to ‘0’.
Bit 11:0 BBASE1[11:0]. Bank 1 Start Address Register.

The 12 bits of the register are the 12 MSB bits of the region start address.
11.4.1 Register map

In the Table 34 an overview of the EMI registers is reported.
Table 34. EMI Register Map

Sear] Registr | 15 |14 |13 |12 |11 |10 9 | 8 |7 |6 |5 |4 |3 |2]1]0
0 BCONO Res. B_LENGTH]I6:0] EREN | ISYNO BE C_LENGTHI2:0] Res. Rest
4 BCON1 Res. B_LENGTH][6:0] EREN | ISYN1 BE C_LENGTH[2:0] Res. Res1
8 - Reserved (always write 0001h)
C - Reserved (always write 0001h)
10 BBASE1 Reserved ‘ B_BASE1[11:0]

Refer to Table 21 on page 50 for the base address.

4

124/401

STR720 - EXTERNAL MEMORY INTERFACE (EMI)

11.5 Programming considerations

EMI programming and usage is accomplished via the configuration, status and data registers
described in previous paragraphs.

At reset time all the EMI registers will be reset to 0x0001 or 0x0000 with the exception of the
Bank 0 Configuration Register (BCONO) which, out of reset, will be in the following condition:
BCONO[15:8]: Bank Length (B_LENGTHO0) = 0x7F (8M bytes).

BCONQO[7]: External Ready Enable (EREN) = 0. External Ready not used.

BCONOI6]: Internal Synchronization (ISYNQ) = 0. No internal synchronization of Eready.
BCONO[5]: Bank Enable (BE) = 1. Bank 0 is enabled.

s BCONJ[4:2]: Cycle Length (C_LENGTH) = 0x7. Maximum number of wait states (7).

A special care must be taken on bit 0 of each BCONXx register, which must be always written
at ‘1’ to assure a correct functionality of the EMI cell. This is true also for the reserved
locations at the offset 08h and 0Ch respectively.

The EREN (External Ready Enable) bit in BBCON registers should be set only if the device
connected externally does have an access time that is variable. If set, ONLY at the end of the
programmed number of wait states, the status of the Eready signal will be checked: if it is low
a further wait state will be inserted and the process will continue until Eready is sampled high.
If EREN is cleared, the status of Eready will be ignored an the read/write cycles will always be
completed in the programmed number of wait states.

Since the usage of Eready implies the sampling of an external signal, the user has two
options, selected by the status of the ISYN bit. If ISYN=0, this provides the fastest bus cycle
but requires that setup and hold times are met with respect to internal peripheral clock. If
ISYN=1, Eready is internally synchronized by additional logic, but this will cause additional
wait states determined by the internal synchronization process. When ISYN is 0, Eready is not
internally resampled so to be sure that it is correctly detected by EMI logic, the number of
configured wait states cannot be lower than 4.

The start address and extension of both address regions can be configured via configuration
registers. However is up to the user to program them consistently, avoiding overlapping in
areas where more than one chip select could be active. A simple mechanism is anyway
implemented to avoid possible damages to the external components deriving from this
(unwanted) condition: a priority does exist such that no more than one chip select can be
active at any time. The priority scheme is as follows:

m CSO (Highest Priority)
m CS1 (Lowest Priority)

4

125/401

STR720 - ATAPI-IDE INTERFACE

12 ATAPI-IDE INTERFACE

12.1 Introduction

The ATAPI-IDE controller allows the STR720 to interface to up to 2 devices such as Hard Disk
or CD-ROM drives. Communication over the IDE bus is performed in PIO mode only. IDE
communication in DMA or UDMA modes is not supported. The STR720 initiates
communication with the IDE device by writing IDE commands directly in the IDE registers. To
save CPU time, the STR720 DMA controller may be used in “memory-to-memory” transfer
mode to access the IDE registers.

12.2 Main Features
The ATAPI-IDE controller supports the following features:

* Primary-only channel, supporting up to two IDE devices

e Support for CD-ROM and tape peripherals

* Independently programmable timing for each device

* Programmable posted writes and read-prefetch

* Software selectable endianness for data read from CDROM / tape peripheral
e Support for I/0O Channel Ready

e Support for PIO modes 0, 2, 3 and 4

e Variable IDE:AHB clock ratio

4

126/401

STR720 - ATAPI-IDE INTERFACE

12.3 Functional Description

The ATAPI-IDE interface allows the application to communicate with an external ATAPI-IDE
device via PBI. The 82371-type IDE is connected to the AHB bus as a slave. Operation of the
interface is independent of the AHB_CLK:PBI ratio, typical ratios will be 2:1 or 3:1.

Figure 13. ATAPI-IDE Interface overview Block Diagram

STR720
I
IRQ15 to EIC <]
° 82371 ATAPI IDE
Irq
IDDI[0:15]
IDE COMMAND IDA[D:2]
%\'/1:> REGISTER BLOCK IDiorn
< IDiown :1‘ lr: ATAPI IDE
DE ICsOn DEVICE
CONFIGURATION ICs1n
L REGISTER BLOCK 10ray
Peripheral Under Reset Bit
(ASBRG_PURQO register)
Clock Gating Bit —
(ASBRG_PCGO register)
PBI CLK
ATAPICLK
(FROM RCCU)

AHB Wait states are inserted until the ATAPI-IDE interface has responded to the transaction.
The number of wait states will vary depending on the clock ratio and on the stage of the PBI
cycle in which the AHB transaction is initiated. Typical values will be 3 or 4 wait states for a
ratio of 2:1, and 5 or 6 wait states for a divide ratio of 3:1.

The above assumes that the PBI does not insert any wait states. For each cycle the PBI
de-asserts the RDY signal, the AHB will have additional wait states equivalent to the divide
ratio inserted. i.e. 2 for 2:1, 3 for 3:1 etc.

4

127/401

STR720 - ATAPI-IDE INTERFACE

12.4 Programming Considerations

This section gives a brief overview of the interaction between the ATAPI-IDE controller and the
STR720.

12.4.1 Initialization

Due to the fact that this ATAPI-IDE interface is synchronously reset, all its output signals will
remain undefined until a valid clock signal is supplied, regardless of the state of its reset input.
As a consequence, when initializing the system to use the ATAPI-IDE interface, the following
procedure should be followed:

1.
2.
3.

4.
5.
6.

Remove IDE specific reset (controlled by the ABBRG_PURO register).
Enable AHB clock to the ATAPI IDE Interface (using the ASBRG_PCGO register).

Enable IDE related interrupt, if required (IRQ 15). Refer to the Enhanced Interrupt Con-
troller Chapter).

Configure the I/0O Port Registers
Configure Port 7 for IDE via the P7AS bit in the Miscellanea Global configuration Register

Set up IDE controller by progsramming its configuration registers located from offset 100h
to 144h. Refer to Section 12.5.2.1 .

12.4.2 Basic Read Transfer

1.

128/401

When a read access to the external IDE device is required, the related IDE Command
registers should be programmed accordingly, for example ba/ writing the ph¥13|cal address
of the device location to be accessed (sector, cylinder, head) and starting the IDE device
seek operation.

The IDE device flaqs any relevant event on its side by a rising edge on the interrupt line
(P7.45 pin). This will generate an IRQ15 interrupt request to the core if the corresponding
interrupt mask bit is enabled. Refer to the EIC register description.

In the interrupt service routine the application checks the IDE Status Register to deter-
mine which event triggered the interrupt request.

If the access to the requested location IDE reported as successful, the data can be
fetched through the IDE data register.

If DMA is used, the application then requests the DMA controller to perform a “mem-
ory-to-memory” transfer from the IDE data register (offset 010h) to the buffer in system
memory where data is to be stored.

The end of transfer will be flagged b¥1 the DMA interrupt, notifying that the programmed
number of words has been stored in the memory buffer.

4

STR720 - ATAPI-IDE INTERFACE

12.5 Register map

The register map is split into two sections. One for IDE Command registers and the other for
IDE Configuration registers. Bit 8 of the location address is used to decode which bank of
registers is being accessed, as it is indicated by the address offset reported in the following
tables. All addresses specified for the two register blocks are expressed as offsets with
respect to the ATAPI-IDE register base address located at 0xC000_0000.

12.5.1 IDE Command Block Register Set

Addr. .
Offset| Register Name 7 6 5 4 3 2 1 0

000h-
00fh Reserved

Primary IDE Port Command/Data

010h Data DATA (rw)

011h | Error/Features ERROR (r) / FEATURES (w)
012h| Sector Count SECTOR COUNT (rw)

013h |Sector Number SECTOR NUMBER LBA [7:0] (rw)
014h | Cylinder Low CYLINDER LOW LBA [15:8] (rw)
015h | Cylinder High CYLINDER HIGH LBA [23:16] (rw)
016h | Device Head DEVICE / HEAD LBA [27:24] (rw)
o17n| Staws/ STATUS () / COMMAND (w)

018h

- Reserved
025h

Primary IDE Port Control/Status

Alternate Sta-

026h tus/ ALTERNATE STATUS (r) / DEVICE CONTROL (w)
Device Control

12.5.1.1 IDE Command Register Access

Although the IDE Command registers are mapped on byte locations in the STR720 memory map they do
not behave in the same way as other memory locations. Accessing a register causes the IDE interface to
fetch the selected register from the external IDE device.

The IDE Command registers are accessed individually. This means that it is not possible to access more
than one register with a single instruction, even using a 16 or 32- bit instruction.
A word access to Cylinder low, will not access Cylinder high etc.

The IDE data register is different from the other registers in the command register block. Although the data
register is mapped on a single byte location, it can be accessed using 16 or 32-bit instructions. A 32-word
access results in two 16-bit accesses to the IDE device to complete the word on the AHB bus. A half word
access results in one access to the device returning 16 bits of Data.

4

129/401

STR720 - ATAPI-IDE INTERFACE

12.5.2 IDE Configuration Register Set
gf(::;t Register Name 7 6 5 4 3 2 1 0
100h
101h (V;Ir:EdTIPID) Manufacturer’s Identification Number (r)
102h
103h (DeD\:EiZLDID) Device Identification Number (r)
104h Reserved ATAPI Enable
XCMD (w)
105h (Command) Reserved
106h Reserved
XSTS
(Status) Master Target | Receive Target | Signaled Target Devsel Timing Status
107h Reserved Abort Status Abort Abort Status (DEVTS) () Reserved
(MTAS) (rc) (RTA) (rc) (STAS) (rc)
REVID Revision Identification Number
108h (Revision ID) ()
109h Cla(:scgt))de Class Code Programming
Programming ®
10Ah Sub Class 7:0
cccC ()
108h (Class Code) Base Class 15:8
()
10Ch
Reserved
10Dh
10Eh HTYPE Defines format of configuration registers as type 0 and single function
(Header Type) (r)
10Fh
- Reserved
13Eh
] . Drive 1 Enable . Drive 1 Fast . . Drive 0 Enable) Drive 0 Fast
osting elec osting elec
(P::LJaErTy":ﬂDE (TIM1) (rw) (PPEN) () (RDY1EN) (rw) (FTB1) (rw) (TIMO) (rw) (PPOEN) (w) (RDYOEN) (rw) (FTBO) ()
timing) | pE Decode En-| Slave IDE Tim- IOrdy Sample Point A -
141h abled ing Enable (ISPP) (w) Reserved ROTPY
(DCDEN) (w) | (STEN) (w) () (rw)
142h
Reserved
143h
SLIDETIM Primary Drive 1 10rdy Sample | Primary Drive 1 Recovery Time
144h| (Slave IDE Reserved Point (RCTS) (w)
timing) (ISPS) (rw)

Note Access to the IDE Control Registers is not supported. These registers are used to
control access to the Master interface of the on-chip IDE controller, which is not
supported by this interface.

Note The Master Latency Timer, bus Master interface address, Ultra DMA Control and
Ultra DMA Timing Registers in the IDE Configuration block should not be used.
These are omitted from the memory map above, flagging their location as reserved.

130/401 K’I

STR720 - ATAPI-IDE INTERFACE

12.5.2.1 IDE Configuration Register Descriptions

Vendor ID (VENID)
Address Offset: 100h

Reset value: 8086h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Manufacturer’s Identification Number [15:0]

r

Bits 15:0 = Manufacturer’s Identification Number

Device ID (DEVID)

Address Offset: 102h
Reset value: 7111h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Device Identification Number [15:0]

r

Bits 15:0 = Device Identification Number

Command (XCMD)
Address Offset: 104h

Reset value: 00h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ATAPI

Reserved Enable

rw

Bit 0 = ATAPI Enable.
This must remain set to ‘1’

Bits 15:1 = Reserved. Must be kept at reset value.

4

131/401

STR720 - ATAPI-IDE INTERFACE

Status (XSTS)
Address Offset: 106h

Reset value:

15 14 13 12 11 10 9 8 7

Devsel Timing

Reserved MAS RTA | STAS
Status

Reserved

rc rc rc r

Bits 8:0 = Reserved. Must be kept at reset value.

Bits 10:9 = DEVTS: Devsel Timing Status.
01 indicates medium speed timing.

Bit 11 = STAS: Signaled Target Abort Status.

Set when the ATAPI-IDE interface signals a transaction abort (ABORT signal)

Bit 12 = RTA: Receive Target Abort.

Set when the ATAPI-IDE interface receives a target abort (MTABORT signal).

Bit 13 = MTAS: Master Abort Status.

Set when the ATAPI-IDE interface generates a master abort.

Bits 15:14 = Reserved. Must be kept at reset value.

Note Bits 13, 12 and 11 are Read and Clear (rc). The bit may be read, the read having no
effect on the register value. Writing “0” to the bit has no effect; writing “1” will clear the

bit.
Revision ID (REVID)
Address Offset: 108h

Reset value: 01h

7 6 5 4

Revision Identification Number

r

Bits 7:0 = Revision Identification Number

132/401

4

STR720 - ATAPI-IDE INTERFACE

Class Code Programming (CCP)

Address Offset: 109h
Reset value: 80h

7 6 5 4 3 2 1 0

Class Code Programming

r

Bits 7:0 = Class Code Programming

Class Code (CCC)

Address Offset: 10Ah
Reset value: 0101h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Base Class [15:8] Sub Class [7:0]

r r

Bits 7:0 = Class Code: Sub Class.
Bits 15:8 = Class Code: Base Class.

Header Type (HTYPE)
Address Offset: 10Eh

Reset value: Oh

7 6 5 4 3 2 1 0

Configuration Registers Format

r

Bits 7:0 = Configuration Registers Format.
Defines the format of configuration registers as Type 0 and single-function.

4

133/401

STR720 - ATAPI-IDE INTERFACE

Primary IDE Timing (PIDETIM)
Address Offset: 140h

Reset value: 00h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DCDEN| STEN ISPP Reserved RCTP TIM1 | PP1EN |RDY1EN| FTB1 | TIMO |PPOEN RDYOEN| FTBO
rw rw rw - rw rw rw rw rw rw rw rw rw

Bit 0 = FTBO: Drive 0 Fast Timing Bank Select.
0: Use 16-bit compatible timings to the Data Port for Drive O
1: Use timing for Drive 0 defined by bit 3 (TIMO)

Bit 1 =RDYOEN: Drive 0 IOrdy Sampling Enable
0: Disable 10rdy Sampling for Drive 0
1: Enable 10rdy Sampling for Drive 0

Bit 2 = PPOEN: Drive 0 Prefetch and Posting Enable
0: Disable Prefetch and Posting for Drive 0
1: Enable Prefetch and Posting for Drive O

Bit 3 = TIMO: Drive 0 Timing Select
0: PIO transfers use fast timing for Drive 0
1: PIO transfers use Mode 0 compatible timing for Drive O

Bit 4 = FTB1: Drive 1 Fast Timing Bank Select.
0: Use 16-bit compatible timings to the Data Port for Drive 1
1: Use timing for Drive 1 defined by bit 7 (TIM1)

Bit 5 = RDY1EN: Drive 1 I0rdy Sampling Enable
0: Disable 10rdy Sampling for Drive 1
1: Enable 10rdy Sampling for Drive 1

Bit 6 = PP1EN: Drive 1 Prefetch and Posting Enable
0: Disable Prefetch and Posting for Drive 1
1: Enable Prefetch and Posting for Drive 1

Bit 7 = TIM1: Drive 1 Timing Select
0: PIO transfers use fast timing for Drive 1
1: PIO transfers use Mode 0 compatible timing for Drive 1

Bits 9:8 = RCTP: Recovery Time.
Defines the minimum number of clock periods inactive between successive cycles: 00=4,
01=3,10=2, 11=1

Bits 11:10 = Reserved. Must be kept at reset value.

4

134/401

STR720 - ATAPI-IDE INTERFACE

Bits 13:12 = ISPP: /Ordy Sample Point.
Defines how many clock periods before lordry is sampled, 00=5, 01=4, 10=3, 11=2

Bit 14 = STEN: Slave IDE Timing Enable

0: Disable Slave IDE Timing. RCTP and ISPP configurations apply to both Drives 0/1

1: Enable Slave IDE Timing. RCTP and ISPP configurations apply to just Drive 0. To configure
Drive 1 RCTP and ISPP settings, use the SLIDETIM register.

Bit 15 = DCDEN: IDE Decode Enable
0: Disable IDE Decode
1: Enable IDE Decode

Slave IDE Timing (SLIDETIM)
Address Offset: 144h

Reset value: 00h
7 6 5 4 3 2 1 0

Reserved ISPS RCTS

w 'w

Bits 1:0 = RCTS: Primary Drive 1 Recovery Time.

Defines the minimum number of clock periods NIRD/NIWR are inactive between successive
cycles: 00=4, 01=3, 10=2, 11=1. Note that bit 14 (STEN) of PIDETIM must be set to 1 for
these settings to take effect.

Bits 3:2 = ISPS: Primary Drive 1 I0rdy Sample Point.

Defines how many clock periods after NIRD/NIWR is asserted on the IDE before |Ordy is
sampled: 00=5, 01=4, 10=3, 11=2. Note that bit 14 (STEN) of PIDETIM must be set to 1 for
these settings to take effect.

Bits 7:4 = Reserved. Must be kept at reset value.

4

135/401

STR720 - ATAPI-IDE INTERFACE

12.6.1

12.6 Timing

IDE PIO Read/Write Cycles
Figure 14. PIO Read Cycle

ATAPI_CLK

IDA[2:0]
ICsOn, ICs1n

IDD

IDi0Orn

|Ordy

Tdsr

Tdhr

Tah

A 4
A

Y

A

Figure 15. PIO Write Cycle

ATAPI_CLK

IDA[2:0]
ICsOn, ICs1n

IDD

Tdsw

A

Tas

Tisp

Tah

IDiOwn

Trs

A4

A

\ 4

IOrdy

136/401

N/

4

STR720 - ATAPI-IDE INTERFACE

Table 35. Timing descriptions for PIO Read/Write Cycles

SYMBOL DESCRIPTION MIN MAX UNIT
Tret :\ggw:r:trlz’gggd between successive IDiOrn/ 1 14 TATAPLCLK
Tdsr Data setup to end of IDiOrn 10
Tdhr Data hold after IDiOrn 5 ns
Tdsw Data setup to end of IDiOwn 3
Tdhw Data hold after IDiOwn 1
Tas Address setup to start of IDiOrn / IDiOwn 2 4
Tah Address hold from end of IDiOrn / IDiown 2 TaTaPI_GLK
Tisp IDiOrn / IDiOwn strobe width 3 11

Trs IOrdy sample active to IDiOrn / IDiOwn end 1 2
‘ﬁ 137/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

13 RESET AND CLOCK CONTROL UNIT (RCCU)

13.1 Introduction

Reset and Clock Control Unit (RCCU) is responsible of the control and distribution of the
reset and the clock signals of the STR720.

13.2 Main Features
m Three reset inputs: Watchdog reset, Hardware reset and Software reset
s Two clock inputs: CLK and CLK_AF

m Three clock outputs: AHB clock (AHB_CLK), APB clock (APB_CLK) and ATAPI clock
(ATAPI_CLK)

s PLL control including:
e PLL operation mode (POFF output) and multiplication/division (MX and DX Output)
control

* PLL reference (PLLREFCLK) clock selectable between CLK and CLK/2

m Four clock domains:
e AHB clock can be:

CLK clock,

CLK clock divided by 2, 32, 64

CLK (or CLK/2) clock multiplied by the PLL

External low frequency clock (CLK_AF, when available)

* APB clock can be:
AHB clock divided by 2, 4, 8, 16
* ATAPI clock can be:
AHB clock divided by 2
AHB clock divided by 3
* PLLCKREF can be:
CLK clock
CLK clock divided by 2
n Four different operating modes:
Run mode
Idle mode
Slow mode
Stop mode
m Low frequency clock (CLK_AF) selection for low power consumption modes.

4

138/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

13.3 Functional Description

The Reset and Clock Control Unit fully manages all the aspects related to reset assertion,
reset release, clock generation and configuration.

TheAPB clock domain is fully asynchronous with respect to the other clock domains. There is
a fixed timing relationship between AHB clock domain and ATAPI clock domain (ATAPI clock is
aligned on AHB falling edge) thus simplifying the logic interface between these 2 domains.

13.3.1 Reset Management
The Reset Manager generates a reset when one of the following events occurs:

A Hardware reset, initiated by a low level on the Reset pin
A Software reset, forced setting a control bit inside the RCCU
A Watchdog reset

HW reset and Watchdog reset are asynchronous: as soon as one of these Reset inputs is
driven low, a Reset cycle is initiated (see Figure 16 on page 139). When the Reset input goes
high again or a Software reset is asserted, 768 CLK plus 8 AHB_CLK cycles are counted
before exiting the reset state. (this signal is not used in STR720 device)

Figure 16. Reset timing

768 CYCLES . 8CYCLES
RESET ' L

RESET internal : X !

AHB.CLK | SR AR

APB_CLK : - [] B
ATAPI_CLK l T [

4

139/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

When RESET internal is deasserted, the RCCU enters Run mode of operation (see below).
The event causing the last Reset is flagged in the CLKFLAG register: the corresponding bit is
set. A hardware initiated reset will leave all these bits reset. The hardware reset overrides all
other conditions and forces the system to the reset state. During the Reset phase, the internal
registers are set to their reset values, where these are defined.

Note On STR720 device, hardware reset pin has to be kept low for a duration longer than
the on-chip RC filter width (between 50 ns and 500 ns) in order to start the reset
sequence described above.

13.3.2 PLL Management

After reset the PLL is not enabled and it must be turned on and enabled by the software.

The CLK signal drives a programmable divide-by-two circuit. If the DIV2 control bit in CLK_
FLAG register is set, PLLREFCLK, is equal to CLK divided by two; if DIV2 is reset,
PLLREFCLK is identical to CLK. The divide- by- two circuit ensures also a 50% duty cycle
signal. When the PLL is active, it multiplies PLLREFCLK by a factor depending on the status
of the MX[5:0] bits in PLLCONF register. The multiplied clock is then divided, inside the PLL,
by a factor determined by the status of the DX[1:0] bits in PLLCONF register;

The PLL contains a frequency comparator between PLLREFCLK and the PLL clock output
that verifies if the PLL clock has stabilized (locked status). The bit LOCK in PLLCONF register
becomes 1 when this condition occurs and maintains this value as long as the PLL is locked,
going back to 0 if for some reason (noise on.input clock line, switch off of PLL, stop and restart
of PLLREFCLK and so on) looses the programmed frequency in which it was locked. It is
possible to select the PLL clock as system clock only when the LOCK bit is ’1’ (the selection is
done by clearing PLLBYP bit).

PLL LOCK status changing is monitored by two different interrupt pending bits:

e LOCK_I monitors PLL LOCK (0 to 1 transition of LOCK bit)
e ULOCK_I monitors PLL UNLOCK (1 to 0 transition of LOCK bit)

System clock switching activity is monitored by DIV2_F, PLLBYP_F, IDLE_F, SLOW_F flags
inside CLKFLAG register.

In order to activate PLL to generate system clock, the following procedure is recommended:

1. Set multiplication/division factors in PLLCONF register, while PLL is still switched off.
2. Switch on PLL by resetting PLLOFF bit in PLLCONF register.

3. Wait for LOCK bit in PLL CONF register to become ‘1’ (or use related interrupt event).
4. Switch system clock to PLL output, by resetting PLLBYP bit in PLLCONF register.

Alternatively, if exact system clock frequency is not required during system set-up phase,
PLLBYP bit can be reset also immediately after resetting PLLOFF bit in PLLCONF register
(but not in the same instruction). In this way system clock is switched immediately to PLL
output, even if it has not yet settled to its final value.

140/401 ﬁ

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

If LOCK bit return to’0’ and AUTOBYP_EN bit is set to ’1’, the system clock switches back to
PLLREFCLK disregarding PLLBYP bit value. Otherwise (i.e. AUTOBYP_EN ='0’) the
software has to handle the system clock switching, by monitoring PLL lock and by writing a
proper bit in CLKCTL register. AUTOBYP feature can be used to avoid polling LOCK bit (or
enabling the related interrupt) during system start-up phase to automatically switch to PLL
clock once LOCK condition has been achieved.

Note Care must be taken in using AUTOBYP feature during normal system operation,
since the sudden change of system clock frequency can lead to serial interfaces
problem. It is recommended to use this feature with particular care and keeping
LOCK related interrupts active, so to be notified about the clock change event.

When PLL block needs to be switched off, for example to reduce current consumption upon
entering a power save mode, a special sequence is required to avoid blocking the system:

1. gﬁtKPLLBYP bit at 1’ in PLLCONF register, so to switch back system clock to PLLREF-

2. Wait for PLLBYP_F bit in CLKFLAG register to be read back as ‘1’, to confirm that system
clock switch is completed.

3. Set PLLOFF bit at ‘1’ in PLLCONF register to safely switch off PLL block.

In case PLLOFF is set to ’1’ without observing the sequence above, system clock stops being
generated and the device hangs up to the next hardware reset event.

Whenever PLL multiplication/division factor needs to be changed, a switch-off/switch-on cycle
must be performed, following the procedures detailed in the paragraphs above.

WARNING A wrong clock selection may cause the system to stop indefinitely. In this case the
only way to start again is a hardware reset.

13.3.3 Mode of Operation

Four modes of operation are provided

13.3.3.1 Run mode

Run mode is entered when Software reset or a Hardware reset input is asserted (low) or a
Watchdog/External reset event occurs, and the entire system asynchronously enter the reset
state. RCCU reset exit status is the following:

PLL is OFF, bypassed and MX = “000111” and DX = “11”
CLK is selected as AHB clock

CLK/16 is selected as APB clock

CLK/2 is selected as ATAPI clock

4

141/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

13.3.3.2 Idle mode

If SLOW bit in CLKCTL register is '0’, then a low frequency internal clock, (PLLREFCLK/32),
could be used, setting IDLE bit to ’1’, as source clock for AHB clock and APB, ATAPI
prescalers reference clock. IDLE mode can be used when a low power consumption is
needed, but no CLK_AF is available as external low frequency clock source.

13.3.3.3 SLOW mode

When active (SLOW bit =’1’) the external CLK_AF low frequency clock source is selected as
system clock. (refer also to Idle mode)

13.3.3.4 STOP mode

A STOP mode is provided, where all clocks are stopped, while power supply is maintained to
the whole chip. STOP mode is entered only if STOP_EN bit inside MSKCTL register has been
written to ’1’. In this case STOP input driven active (high) causes the RCCU to stretch all
system clocks.

Normal operation may be resumed by an external event, connected to STOP input (refer to
WIU specification). After wake-up, operations resume from previous state without any loss of
information.

WARNING: All low power modes are completely under software control via the proper
configuration of the RCCU registers.

Figure 17. Clock Control unit programming

1/2,1/13 —»
> 1/32
ATAPI_CLK
CLK vz : PLL >
—» Clock Multiplier AHB_CLK
0/ PLLCLKREF: [Divider Unit
CLK_AF Div2
(32 kHz)
Ll - 1/2, 1/4
CLK_AF 18,116 [>
APB_CLK
142/401 Y77

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

13.4 Register description
PLL CONFiguration register (PLLCONF)

Address Offset: 00h
Reset value: 03C7h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LOCK AUTOB Reserved PLLOFF|PLLBYP DX[1:0] MX[5:0]
YP_EN
r rw - 'w 'w rw rw 'w w w rw 'w 'w

This register is write protected and can be unlocked using REG_PROT bit in SYSPROT
register.

Bit 15 = LOCK: PLL locked in

This bit is read only.

0: The PLL is not locked or turned OFF and cannot be selected as system clock source
1: The PLL is locked

Bit 14 = AUTOBYP_EN: auto-bypass enable

This bit enables the auto-bypass mode. In auto-bypass mode when the LOCK bit return to ’0’
the system clock switches back to PLLCLKREF even if the PLLBYP bit is ’0’.

0: auto-bypass mode off

1: auto-bypass mode on

Bit 13:10 = Reserved. Give ‘0’ when read and must be written to ‘0.

Bit 9 = PLLOFF: PLL switch OFF
0: PLL is switched on
1: PLL is switched off

Bit 8 = PLLBYP: PLL bypass bit (see also AUTOBYP_EN bit)
0: PLL provides the system clock
1: PLL is bypassed and PLLCLKREF is used as system clock

Note If PLLBYP changes from ‘1’ to ‘0’, but PLLOFF bit is ‘1, no clock switch occurs since
PLL is switched on again and a stable clock is available, but PLL may be not yet
locked.

Bit 7:6 = DX[1:0]: PLL output clock divider factor.
This bit field selects the divider factor used on the PLL output clock. Refer to Table 36 for PLL
divider setting.

Table 36. PLL divider settings

DX1 DXO0 CK
0 0 PLLCLKREF/1
0 1 PLLCLKREF/2

4

143/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

Table 36. PLL divider settings
1 0 PLLCLKREF/4
1 1 PLLCLKREF/8

Bit 5:0 = MX[5:0]: PLL Muiltiplication Factor.
This bit field selects the multiplier factor used to generate PLL output clock from its input
reference clock. Refer to Table 37 for multiplier settings

Table 37. PLL multiplication factors

mxs | wmxa | wmx3 | mx2 | mMx1 | MXo Multiply factor

0to7 N/A

0 0 0 1 1 1 8

0 0 1 0 0 0 9

0 0 1 0 0 1 10

0 0 1 1 1 1 16

0 1 0 0 0 0 17

0 1 1 1 1 1 32

1 0 0 0 0 0 33

1 1 1 1 1 1 64

WARNING Not all clock selections are possible and setting the system clock to any
unsupported frequency may cause the system to malfunction. In this case the only way to
start again is a hardware reset. For the allowed values, refer to section 25 on page 364.

4

144/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

DIViders CONFiguration register (DIVCONF)

Address Offset: 04h
Reset value: 001Fh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Reserved ALPEPLL APB_DIV[1:0]
rw rw rw rw rw

This register is write protected and can be unlocked using REG_PROT bit in SYSPROT
register.

Bit 15:5 = Reserved. Give ‘0’ when read and must be written to ‘0’.
Bit 4:3 = Reserved.

Bit 2 = ATAPI_SEL: ATAPI clock select
0: select AHB_CLK/2 as ATAPI clock
1: select AHB_CLK/3 as ATAPI clock

Bit 1:0 = APB_DIV[1:0]: APB output clock divider factor.
This bit field configures the A-APB clock generation. Refer to Table 38 for A-APB divider

settings.
Table 38. APB divider settings

APB_DIV1 APB_DIVO APB_CK
0 0 AHB_CLK/2
0 1 AHB_CLK/4
1 0 AHB_CLK/8
1 1 AHB_CLK/16

4

145/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

CLocK FLAG register (CLKFLAG)

Address Offset: 08h

Reset value: 0020h after Hardware reset
Reset value: 0021h after Software reset
Reset value: 0022h after Watchdog reset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LOCK_I ULSCK Reserved DIV2_F P:;I:'B;Y IDLE_F SL?:W* Res. Vél.?.ﬁ:R SV{EST

rc rc - r r r r - r r

Bit 15 = LOCK_LI: lock changing interrupt bit

This bit indicates a 0 to 1 transition on the PLL LOCK signal. Only RCCU block can set it to ‘1’
when PLL reaches the lock condition. Application software writing ‘1’ on this bit will clear its
value; writing ‘0’ has no effect.

0: No lock interrupt request is provided

1: lock interrupt request is active

Bit 14 = ULOCK_I: unlock changing interrupt bit

This bit indicates a 1 to 0 transition on the PLL LOCK signal. Only RCCU block can set it to ‘1’
when PLL loses the lock condition. Application software writing ‘1’ on this bit will clear its
value; writing ‘0’ has no effect.

0: No unlock interrupt request is provided

1: unlock interrupt request is active

Bit 13:7 = Reserved. Give ‘0’ when read and must be written to ‘0’.

Bit 6 = DIV2_F: DIV2 mux status flag

This bit is read only. It indicates the actual status of the PLLCLKREF clock
0: indicates that PLLCLKREF is CLK

1: indicates that PLLCLKREF is CLK/2

Bit 5 = PLLBYP_F: PLL mux status flag

This bit is read only. It indicates that the PLLCLK clock is actually selected.
0: indicates that PLLCLK is selected

1: indicates that PLLCLK is not selected

Bit 4 = IDLE_F: IDLE mux status flag

This bit is read only. It indicates that the IDLE clock (PLLCLKREF/32) is actually selected.
0: indicates that IDLE clock is not selected

1: indicates that IDLE clock is selected

Bit 3 = SLOW_F: SLOW mux status flag

This bit is read only. It indicates that the CLK_AF clock is actually selected.
0: indicates that CLK_AF clock is not selected

1: indicates that CLK_AF clock is selected

4

146/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

Bit 2 = Reserved. Give ‘0’ when read and must be written to ‘0’.

Bit 1 = WDGRST_F: watchdog reset status flag
This bit is read only.

0: No Watchdog reset occurred.

1: Watchdog reset occurred.

Bit 0 = SWRST_F: software reset status flag
This bit is read only.

0: No software reset occurred.

1: Software reset occurred.

CLocK ConTrolL register (CLKCTL)

Address Offset: 0Ch
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved SV\.1.RS DIvV2 IDLE | SLOW
w rw w 'w

This register is write protected and can be unlocked using REG_PROT bit in SYSPROT
register.

Bit 15:4 = Reserved. Give ‘0’ when read and must be written to ‘0’.

Bit 3 = SWRST: software reset bit
0: No software reset occurs.
1: Software reset occurs.

Bit 2 = DIV2: DIV2 select
0: Select CLK as PLLCLKREF
1: Select CLK/2 as PLLCLKREF

Bit 1 = IDLE: IDLE mode select bit
0: IDLE mode not selected
1: Select IDLE mode

Bit 0 = SLOW: Slow mode select bit
0: SLOW mode not selected
1: Select SLOW mode

4

147/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

MaSK ConTrolL register (MSKCTL)

Address Offset: 10h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LOCK_I{uLOCK STOP_
_EN | _LLEN Reserved i
rw rw - w

Bit 15 = LOCK_I_EN: Lock interrupt masking bit
0: No interrupt requests on PLL LOCK are provided by RCCU
1: The RCCU can request a LOCK interrupt

Bit 14 = ULOCK_I_EN: UnLock interrupt masking bit
0: No interrupt requests on PLL UnLOCK are provided by RCCU
1: The RCCU can request a UnLOCK interrupt

Bit 13:1 = Reserved. Give ‘0’ when read and must be written to ‘0’.

Bit 0 = STOP_EN: STOP mode enable bit
0: STOP mode is not enabled.
1: STOP mode enabled.

SYStem PROTection register (SYSPROT)

Address Offset: 14h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REG_P

Reserved ROT

rw

Bit 15:1 = Reserved. Give ‘0’ when read and must be written to ‘0’.

Bit 0 = REG_PROT: Register write protection bit

This bit is set and cleared by software. It is cleared by hardware after every write access to
PLLCONF, DIVCONF and CLKCTL registers. This bit enables the PLLCONF, DIVCONF and
CLKCTL registers writing.

0: write access to PLLCONF, DIVCONF and CLKCTL registers is disabled

1: write access to PLLCONF, DIVCONF and CLKCTL registers is enabled

4

148/401

STR720 - RESET AND CLOCK CONTROL UNIT (RCCU)

13.4.1 Register map
Table 39. RCCU Register Map

Addr. | Register
Offset| Name 15 14 | 13 12 11 10 9 8 7 6 5 4 3 2 1 0
AUTOB PLLOF | PLLB- . .
00 PLLCONF | LOCK YP_EN Reserved F YP DX[1:0] MX[5:0]
04 DIVCONF Reserved Reserved ATS-/EPLL APB_DIV[1:0]
LOCK_ |ULOCK PLLBY SLOW WDGR | SWRS
08 CLKFLAG | 0 Reserved DIV2_F PF IDLE_F F Res. ST F TF
oC CLKCTL Reserved SV_erS DIV2 | IDLE | SLOW
LOCK_ |ULOCK STOP_
10 MSKCTL LEN | LEN Reserved EN
14 SYSPROT Reserved Rgg?P

Refer to Table 21 on page 50 for the base address.

vww.DataSheet4U.com

4

149/401

STR720 - REAL TIME CLOCK (RTC)

14 REAL TIME CLOCK (RTC)

14.1 Introduction

The RTC provides a set of continuously running counters which can be used, with suitable
software, to provide a clock-calendar function. The counters values can be written to set the
current time/date of the system.

The RTC includes an APB slave interface, to provide access by word to internal 48-bit
registers. this interface is properly disconnected by the APB bus when the main power supply
is removed.

14.2 Main Features
m 48-bit programmable counter for long term measurement
m External clock input, CLK_AF, defining RTC ticks (must be at least 4 times slower than APB
clock) driven by two different sources:
* 32 kHz crystal oscillator connected to OSCIN and OSCOUT
* External clock generator connected to OSCIN
s Separate power supply
m 2 dedicated maskable interrupt lines:
e alarm interrupt, to generate a software programmable alarm interrupt (up to 1 s)
* periodic interrupt, to generate a software programmable periodic interrupt (up to 32 s)

14.3 Functional Description

14.3.1 Overview

The RTC consists of two main units (see Figure 18 on page 151), the first one (S-APB
Interface) is used to interface with the APB bus. This unit also contains a set of 16-bit
registers, synchronous to the S-APB clock and accessible from the APB bus in read or write
mode (for more details refer to Register description section). The APB interface is clocked by
S-APB clock in order to interface with APB bus.

The other unit (RTC Core) consists of three programmable registers. The first is made of a
48-bit programmable counter that may be initialized to the current system time. The system
time is incremented at CLK_AF rate and compared with a programmable date (stored in the
second 48-bit register, RTCA) in order to generate an alarm via an interrupt (Alarm), if
enabled in the RTCCR control register. The third register is the 20-bit RTCP register that is

4

150/401

STR720 - REAL TIME CLOCK (RTC)

loaded with the value of the desired period to create a periodic interrupt of a programmable

value.

Figure 18. RTC simplified block diagram

S-APB bus

{

S-APB interface

RTC Core %

RTCA
RTC_AlarmiT
N §CRST
> CLK_AF
v 3
RTCCNT RTCP
48-bit Programmable
Counter
RTC_PerIT
\ 4 v
RTCCR

Alarm Perint

4

151/401

STR720 - REAL TIME CLOCK (RTC)

14.3.2 Reset procedure

All system registers are asynchronously reset by either an external Reset event (RSTIN
device input pin, forced low) or an internal Reset event (WDG or Software Reset), except
RTCA, RTCP, RTCCNT registers. To reset them, the RTCRST device input pin has to be
forced low: RTCA, RTCP and RTCCNT registers are reset to FFFF_FFFF_FFFFh, 0_8000h
and 0000_0000_0000h respectively.

14.3.3 Free-running mode

After reset the peripheral will enter in free-running mode. In this operating mode the RTC
programmable counter starts counting. Interrupt flags are activated too but, since interrupt
signals are masked, there is no interrupt generation. Interrupt signals must be enabled by
setting the appropriate bits in RTCCR register. In order to avoid spurious interrupt generation
it is recommended to clear old interrupt requests before enabling them.

14.3.4 Configuration mode

To write to the RTCCNT, RTCP and RTCA registers, the peripheral must enter Configuration
mode. This is obtained writing CNF bit at ‘1°.

In addition, the writing operation is only enabled if the previous writing operation is finished. To
enable software to detect this situation the status bit RTOFF is provided in the RTCCR control
register to indicate that an update of the registers is in progress. A new value must not be
written to the RTC counters until the status bit value is ‘0’ since as long as RTOFF bit is ‘0’ all
attempts to write any RTC register will fail.

A special case of configuration mode is entered also as soon as RTCCR register is written
with CNF at ‘0’. In this case RTOFF becomes ‘0’ immediately and it remains as such for 1 or 2
CLK_AF cycles, preventing any subsequent modification until its normal state is restored.
During this special configuration mode, only RTCCR contents are updated, while RTCCNT,
RTCP and RTCA registers remain unaffected.

14.4 Register description

The RTC registers can only be accessed by word. The reserved bits can not be written and
they are always read at ‘0’, unless otherwise specified.

4

152/401

STR720 - REAL TIME CLOCK (RTC)

RTCCR: RTC Control Register

Address Offset: 00h
Reset value: 0020h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved PEREN| AEN Res. Reserved RTOFF| CNF Res. | PERIR AIR Res.
rw rw - - r rw - rc rc

The functions of the RTC are controlled by this control register. It is not possible to write this
register while the peripheral is completing a previous write operation (flagged by RTOFF=0
(see “Configuration mode” on page 152).

Bit 15:11 = Reserved. These bits must always be written to ‘0.

Bit 10 = PEREN: PERiodic interrupt ENable
0: Periodic interrupt is masked.
1: Periodic interrupt is enabled.

Bit 9 = AEN: Alarm interrupt ENable
0: Alarm interrupt is masked.
1: Alarm interrupt is enabled.

Bit 8 = Reserved. This bits must always be-written to ‘0’

The above listed bits are used to mask interrupt requests. Note that at reset all interrupts are
disabled, so it is possible to write the RTC registers so that no interrupt requests are pending
after initialization.

Bits 7:6 = Reserved. These bits must always be written to ‘0.

Bit 5 = RTOFF: RTc operation OFF

With this bit RTC reports the status of the last write operation performed on its registers,
indicating if it has been completed or not. If its value is ‘0’ then it is not possible to write any
RTC register. This bit can only be read by software.

0: Last write operation on RTC registers is still active.

1: Last write operation on RTC registers terminated.

Note A read operation on RTC registers with RTOFF=0 returns anyway their current value.

Bit 4 = CNF: CoNfiguration Flag

This bit must be set at ‘1’ by software in order to enter the configuration mode thus allowing to
write new values in RTCCNT, RTCA, RTCP registers. The writing operation is really executed
when the CNF bit after being set, is reset again by software.

0: Exit configuration mode (start update of RTC registers).

1: Enter configuration mode.

Bit 3 = Reserved. This bits must always be written to ‘0’, but it will be read back as ‘1’

‘ﬁ 153/401

STR720 - REAL TIME CLOCK (RTC)

Bit 2 = PERIR: PERiodic Interrupt Request

This bit stores the status of periodic interrupt request signal (RTC_PerlT) generated by the
20 bit programmable counter when the threshold set in RTCP register is reached. When this
bit is at ‘1’, the corresponding interrupt will be generated only if PEREN bit is set to ‘1. PERIR
bit can be set at ‘1’ only by hardware and can be cleared only by software, while writing ‘1’ will
left it unchanged.

0: Periodic interrupt condition not met.

1: Periodic interrupt request pending.

Bit 1 = AIR: Alarm Interrupt Request

This bit contains the status of periodic interrupt request signal (RTC_AlarmiT) generated by
the 48 bit programmable counter when the threshold set in RTCA register is reached. When
this bit is at ‘1’, the corresponding interrupt will be generated only if AEN bit is set to ‘1’. AIR bit
can be set at ‘1’ only by hardware and can be cleared only by software, while writing ‘1’ will left
it unchanged.

0: Alarm interrupt condition not met.

1: Alarm interrupt request pending.

Note The alarm event generated during the standby mode (and so with the device kept
under Reset by external RSTIN forced low) does not set the AIR bit.

Note Any alarm event generated during STOP mode occurs after 1s regardless of the
value programmed in the RTCA register.

Bit 0 = Reserved. This bits must always be written to ‘0’, but it will be read back as ‘1°.

Any interrupt request remains pending until the appropriate RTCCR request bit is reset by
software, notifying that the interrupt request has been granted.

RTCCNT: RTC Counter registers

The RTC counter has three 16 bit programmable counters; their count rate is based on the
CLK_AF time reference. RTCCNT registers keep the counting value of these counters. They
are write protected by bit RTOFF of RTCCR register, write operation is allowed if RTOFF
value is ‘1’. A write operation on any of the three registers (CNT_H, CNT_M or CNT_L) loads
directly the corresponding programmable counter. When reading, the current value in the
counter (system date) is returned. The counters keep on running while the external clock
oscillator is working even if the system is powered down.

4

154/401

STR720 - REAL TIME CLOCK (RTC)

RTCCNT_L

Address Offset: 04h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCCNT[15:0]

'w

Bit 15:0 = RTCCNT[15:0]: RTC CouNTer Low

Reading RTCCNT_L register, the current value of the lower part of RTC Counter register is
returned. To write this register it is required to enter into configuration mode (see RTOFF bit of
RTCCR reqgister).

RTCCNT_M

Address Offset: 08h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCCNT[31:16]

w

Bit 15:0 = RTCCNT[31:16]: RTC CouNTer Middle

Reading RTCCNT_M register, the current value of the middle part of RTC Counter register is
returned. To write this register it is required to enter into configuration mode (see RTOFF bit of
RTCCR reqgister).

RTCCNT_H

Address Offset: 0Ch
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCCNT[47:32]

w

Bit 15:0 = RTCCNT[47:32]: RTC CouNTer High

Reading RTCCNT_H register, the current value of the high part of RTC Counter register is
returned. To write this register it is required to enter into configuration mode (see RTOFF bit of
RTCCR register).

‘ﬁ 155/401

STR720 - REAL TIME CLOCK (RTC)

RTCA: RTC Alarm registers

When the programmable counter RTCCNT reaches the 48 bit value stored into RTCA
registers an alarm is triggered and the interrupt request RTC_alarmIT is generated. This
register is write protected by bit RTOFF of RTCCR register, write operation is allowed if
RTOFF value is “1°.

RTCA_L

Address Offset: 10h
Reset value: FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCA[15:0]

rw

Bit 15:0 = RTCA[15:0]: RTC Alarm Low
Reading RTCA_L register, the lower part of alarm time is returned. To write this register it is
required to enter into configuration mode (see RTOFF bit of RTCCR register).

RTCA_M

Address Offset: 14h
Reset value: FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCA[31:16]

rw

Bit 15:0 = RTCA[31:16]: RTC Alarm Middle
Reading RTCA_M register, the middle part of alarm time is returned. To write this register it is
required to enter into configuration mode (see RTOFF bit of RTCCR register).

RTCA_H

Address Offset: 18h
Reset value: FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCA[47:32]

w

4

156/401

STR720 - REAL TIME CLOCK (RTC)

Bit 15:0 = RTCA[47:32]: RTC Alarm High
Reading RTCA_H register, the high part of alarm time is returned. To write this register it is
required to enter into configuration mode (see RTOFF bit of RTCCR register).

RTCP: RTC Periodic value registers

These registers keep the period counting value of the RTC periodic tick. It is write protected
by bit RTOFF of RTCCR register, write operation is allowed if RTOFF value is ‘1’. They are
used to strobe a periodic interrupt signal, RTC_PerlIT, each time the counter counts down from
the RTCP value. When it reaches this threshold it resets itself and begins again. This signal is
independent of the other system interrupts in terms of alignment. The reset value sets the
register signal period to 1 second. When reading, the current value in the counter elapsing the
period of the programmable tick is returned.

Note If the RTCP registers are loaded with the value 00000000h then the periodic
interrupt will always be high until the register is loaded with a different periodic value.

RTCP_L

Address Offset: 1Ch
Reset value: 8000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCP[15:0]

rw

Bit 15:0 = RTCP[15:0]: RTC Periodic Low
Reading RTCP_L register, the low part of current RTCP counter value is returned. To write
this register it is required to enter into configuration mode (see RTOFF bit of RTCCR register).

RTCP_H

Address Offset: 20h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved RTCP[19:16]

rw

Bit 15:4 = Reserved. These bits must always be written to ‘0.

Bit 3:0 = RTCP[19:16]: RTC Periodic High
Reading RTCP_H register, the high part of current RTCP counter value is returned. To write
this register it is required to enter into configuration mode (see RTOFF bit of RTCCR register).

ﬁ 157/401

STR720 - REAL TIME CLOCK (RTC)

14.4.1 Register map

RTC registers are mapped as 16 bit addressable registers as described in the table below:
Table 40. RTC Register Map

o | RegisterName| 15 | 14 | 13 |12 |11 |10 | 9 | 8 [7 | 6 | 5 | 4 |3 | 2| 1]0
0 RTCCR Reserved GEN |PEREN| AEN Res.. Reserved RT OFF| CNF GIR | PERIR | AIR Res..
4 | RTCCNT_L CNT_L
8 | RTCCNT_M CNT_M
C | RTCCNT_H CNTH
10 RTCA_L ALARM_L
14 RTCA_M ALARM_M
18 RTCA_H ALARM_H
1c RTCP_L PERIOD_L
20 RTCP_H Reserved PERIOD_H

Refer to Table 21 on page 50 for the base address.

14.5 Programming considerations
RTC configuration procedure can be described by the following steps:

Reading RTOFF until its value is ‘1.

Writing CNF control bit at “1°.

Writing one or more RTC registers.

Writing CNF control bit at ‘0’, along with any other required RTCCR change.
Read back updated register for confirmation.

oMM~

The writing operation actually takes effect only when CNF bit is written back to ‘0’ and it needs
at least 2 cycles of CLK_AF to be terminated. During those 2 CLK_AF cycles, all RTC
registers are updated simultaneously, so the sequence used to write them during the
configuration phase is not relevant. There are no particular constraints about the total length
of configuration procedure, as the actual update of the registers happens only when CNF bit is
reset to ‘0’.

Note The configuration procedure described above should be executed by a routine
located in internal RAM so to avoid any possible interaction between RTC register
update and the board noise induced by external memory access, especially when
the code is executed from external SDRAM memory. RTC register update sequence
is quite sensitive to noise induced on the clock oscillator, and unexpected reset of
RTOFF bit could occur if such interaction happens. In this case resetting RTC block
by using RTCRST pin will restore normal RTC operations.

It is important to consider that once CNF bit is reset to ‘0’ and the actual update begins, none
of the RTC registers can be modified, RTCCR included, until the update terminates (RTOFF
becomes ‘1’ again). Since this period of time is quite long in terms of CPU clock periods (it is

158/401 ﬁ

STR720 - REAL TIME CLOCK (RTC)

at least one CLK_AF period, i.e. about 30 us using 32 kHz crystal oscillator), it is important to
consider it when RTC register update occurs within an interrupt response routine, since also
interrupt pending bits, located in RTCCR, can be cleared only when RTOFF is ‘1. As a
consequence it is recommended to clear IRQ pending bits before or during the same
configuration procedure used to update other RTC registers.

4

159/401

STR720 - ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

15 ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

15.1 Introduction

In order to reduce power consumption, it is possible to use different clock domains depending
on the performances of each block. Typically, the core will run with a fast clock, whereas a
slower clock can be sufficient for most peripherals. Nevertheless, in low power mode, the core
can also be clocked by a slower clock in order just to manage with peripherals requests. The
asynchronous AHB/APB bridge enables to connect completely asynchronous AHB with APB
buses. It implements a synchronization stage that enables to re-synchronize the AHB with the
APB.

The AHB/APB clocks ratio could be typically around 1/10. As a consequence, an APB read
access will need more than 20 AHB cycle to be done.

15.2 Main Features
= asynchronous AHB/APB clock domains
m access to up to 13 peripherals with 4 kBytes memory space each.
s Programmabile registers for:
— AHB/APB bridge status
— transaction configuration
— peripherals clock gating

15.3 Functional Description

The asynchronous AHB/APB bridge functionality can be illustrated by Figure 19 on page 161}

4

160/401

STR720 - ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

Figure 19. AHB/APB bridge block diagram

| EHB
AHB Slave I:I
[1
[1
[]

configuration and
status registers

error management

resynchronization

stage
APB master per_clock[:] per_resetn][:]
| APB |

This AHB/APB bridge is capable of addressing 13 peripherals. Each peripheral is connected
through an APB slave port to the APB bus and data size can be different from one peripheral
to the other. The APB memory mapping provides 4 kBytes memory space for each peripheral.

The Bridge is able to detect some errors while accessing to a peripheral:

= an out of memory condition on the APB bus, when the address does not refer to a valid
peripheral. This could arise if the set of all peripheral’s memory spaces does not cover the
whole AHB mapping space

m an access on the APB bus to a peripheral whose clock has been switched-off
m an access on the APB bus to a peripheral which is currently under reset.

If one of the first 3 conditions occurs, the bridge does not start an APB transaction and reports
on the AHB bus an ERROR condition (if enabled). The type of error will be saved in the Bridge
Status Register and the address which has generated the error condition will be reported in

ﬁ 161/401

STR720 - ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

the Peripheral Address Error Register. This should allow the user to retrieve the event which
generated the error.

15.3.1 Peripherals clock gating

The AHB/APB bridge enables to configure the peripherals’ clocks to be switched-on/off. The
32-bits Peripheral Clock Gating registers (PCGn) enables to switch-off/on any of the 13
peripherals directly. This enables to centralize the management of all the clock on this APB
bus.

When a peripheral’s clock is switched-off, any access to this peripheral will return an error on
the AHB bus. The Bus Status Register will contain the error status, the Peripheral Address
Error Register will provide the address who generated the error.

In order to help debugging real-time application, register EMU_PCGn has been introduced.
The status of this register is used to force the gating of the corresponding clock line when the
system enter into debug mode, based upon the following definition:

0 -> Peripheral clock switched off in debug mode.

1 -> Peripheral clock status depends on PCGn bit also in debug mode.

15.3.2 Peripherals reset control

The AHB/APB bridge has a unique reset pin that enables resetting the AHB/APB bridge as
well as all peripherals. As the reset removal is aligned with AHB clock, the AHB/APB bridge
provides a re-synchronization mechanism to generate the peripherals reset. The reset is
asserted asynchronously and then released synchronously with the APB clock.

Moreover, the AHB/APB bridge enables to configure the peripherals’ reset in order to reset
independently any of the peripherals. The 32-bits Peripheral Reset Control registers (PRCn)
enables to reset any of the 13 peripherals directly. This allows to centralize the management
of all the reset on this APB bus.

When a peripheral is under reset, any access to this peripheral will return an error on the AHB
bus. The Bus Status Register will contain the error status, the Peripheral Address Error
Register will provide the address which generated the error.

15.4 Register description

The AHB/APB bridge provides a set of registers to configure peripherals clock gating, access
control and monitor the AHB/APB bridge status. These registers are mapped as peripheral #0
in the AHB/APB bridge mapping.

4

162/401

STR720 - ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

Bridge Status Register (BSR)
Address Offset: 00h

Reset value: 0x0000_0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved PUR PCO Reserved OUTM reserved ERROR

r r r r r r r rc rc - rc - rc

This register stores the status of the AHB/APB allowing the application software to determine
the reason of the last failed peripheral access which resulted in an ERROR response to the
corresponding AHB transaction.

Bits 31:9 = Reserved. These bits should be always written to and read back as ‘0.

Bit 8 = PUR: Peripheral Under Reset.
An access to a peripheral under reset has been attempted.

Bit 7 = PCO: Peripheral Clock Off.
An access to a not-clocked peripheral has been attempted.

Bit 6:5 = Reserved. These bits should be always written to and read back as ‘0’.

Bit 4 = OUTM: Out of memory.
An access out of memory has been attempted.

Bits 3:1 = Reserved. These bits must be always written to and read back as ‘0.

Bit 0 = ERROR: Error.
a previous access has been aborted because it generates an error. The type of error is
reported on bit 4 to 8.

4

163/401

STR720 - ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

Peripherals Address Error Register (PAER)
Address Offset: 08h

Reset value: 0x0000_0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved nRW Peripheral Address (23:16)

r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Peripheral Address (15:0)

r r r r r r r r r r r r r r r r

Bit 31:25 = Reserved. These bits must be always written to and read back as ‘0’.

Bit 24= nRW: access type.
It returns the type of access that generate the error conditions: read(0) or write(1)

Bit 23:0 = Peripheral Address.

The Bridge is able to detect some errors while accessing to a peripherals. If an error occurs,
the bridge ends the APB transaction and reports on the AHB bus an ERROR condition (if
enabled). The address of slave generating the errorccondition is reported in the PERIPHERAL
ADDRESS field. Depending of the size of the AHB addressing space, the MSB can be filled
with 0.

4

164/401

STR720 - ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

Peripheral Clock Gating register 0 (PCGO0)
Address Offset: 60h

Reset value: 0000 1003h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved 1 P(xx)CO 1 1

r rw rw rw rw rw rw rw rw w rw r r

Bits 31:13 = Reserved, always read as 0.

Bits 12:0 = PxxCO: Peripheral xx Clock Off with 0<xx<12
When set, the PxxCO bit specifies the peripheral xx is clocked.
0 : Peripheral xx is gated off.

1 : Peripheral xx is clocked.

Note Bits 0, 1 and 12 correspond to the AHB/APB bridge, the A-APB Global Control
Register and the watchdog (WDG) respectively and are forced to 1 by hardware.

4

165/401

STR720 - ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

Peripheral Under Reset register 0 (PURO)
Address Offset: 80h

Reset value: 0000 1003h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved 1 P(xx)CO 1 1

r rw rw rw rw rw rw rw rw w rw r r

Bits 31:13 = Reserved, always read as 0.

Bit 12:0 = PxxUR: Peripheral xx Under Reset with 0<xx<12

When set, the PxxUR bit specifies the peripheral xx is not under reset.
0 : Peripheral xx reset line is active.

1 : Peripheral xx reset line is not active.

Note Bits 0, 1 and 12 correspond to the AHB/APB bridge, the A-APB Global Control
Register and the watchdog (WDG) respectively and are forced to 1 by hardware.

166/401

4

STR720 - ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

Emulator Peripheral Clock Gating register 0 (EMU_PCGO)
Address Offset: AOh

Reset value: FFFF FFFFh
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved EPxxCO 1

rw rw rw rw rw rw rw rw rw rw rw rw r

This register configures the status of clock gating for each of the peripherals controlled by the
bridge, while the application program execution is stopped due to a debug request. Each
peripheral can be configured to stop working as the user code reaches a breakpoint.

Bits 31:13 = Reserved, always read as 0.

Bits 12:0 = EPxxCO: Emulator Peripheral xx Clock Off with 0<xx<12

0: Peripheral xx clock is gated off at a debug request, regardless of the state of the
corresponding PxxCO bit in PCGO register.

1: Peripheral xx clock gating status is unaffected by debug requests, and it is always
determined by its corresponding PxxCO bit in PCGO register.

Table 41 shows how the status of peripheral clock depends on PCG, EMU_PCG and
ARM720 debug-mode:

Table 41. Clock Gating
PCGO EMU_PCGO ARM720 debug Periph. clock
0 on

on
off
off
off
off
on
off

= 2| of o| o] of =] —

ol ol o] of =] | | 4]|!
ol o 4|l o -l of =

Note Bit EPCGO[0] corresponds to the AHB/APB bridge itself and is forced to 1 by
hardware.

4

167/401

STR720 - ASYNCHRONOUS AHB-APB BRIDGE (A3BRG)

15.4.1

Register map
Table 42. AHB/APB bridge Register Map

Addr.” TRegister [3][3]2]2]2]2]2 21ITI(I(I1I1I]I71I[1I[T
orser | wame [ofoalrlols| ¢ [2[2[21[o[os7[o[slalsla[slolo[@ [7 [o [s [+ [3 2]] o
00 BSR Reserved PUR | PCO Reserved |OUTM reserved ERROR
04 Reserved

08 PAER reserved | NRW ‘ Peripheral Address (23:0)

0C

- Reserved

5C

60 PCGO Reserved ‘1| PxxCO | 1 | 1
64

- Reserved

7C

80 PURO ‘1| PxxUR | 1 | 1
8%

B Reserved

9C

I Reserved ‘ EPXxCO | 1

Refer to Table 20 on page 49 for the base address.

168/401

4

STR720 - UART

16 UART

16.1 Introduction

The UART interface, also referred to as the Asynchronous Serial Controller (ASC), provides
serial communication between STR720 and other microcontrollers, microprocessors or
external peripherals.

The ASC supports full-duplex asynchronous communication. Eight or nine bit data transfer,
parity generation, and the number of stop bits are programmable. Parity, framing, and overrun
error detection are provided to increase the reliability of data transfers. Transmission and
reception of data can simply be double-buffered, or 16-deep fifos may be used. For
multiprocessor communications, a mechanism to distinguish the address from the data bytes
is included. Testing is supported by a loop-back option. A 16-bit baud rate generator provides
the ASC with a separate serial clock signal.

16.2 Main Features

s Full-duplex asynchronous communication

s Two internal FIFOs (16 words deep) for transmit and receive data
16-bit baud rate generator

» Data frames both 8 and 9 bit long
Parity bit (even or odd) and stop bit

s Multiprocessor communication support

16.3 Functional Description

The ASC supports full-duplex asynchronous communication, where both the transmitter and
the receiver use the same data frame format and the same baud rate. Data is transmitted on
the TXD pin and received on the RXD pin.

16.3.1 Data frames
Eight-bit data frames (see Figure 20) either consist of:

* eight data bits D0-7 (by setting the Mode bit field to 001);

* seven data bits D0-6 plus an automatically generated parity bit (by setting the Mode bit
field to 011).

Parity may be odd or even, depending on the ParityOdd bit in the ASCControl register. An
even parity bit will be set, if the modulo-2-sum of the seven data bits is 1. An odd parity bit will
be cleared in this case.}

4

169/401

STR720 - UART

Figure 20. 8-bit data frames

stgrt DO| pt| p2| D3| Da| D5 | D6 8t_h 1st| 2nd
bit | LSB bit |stop| stop)
bit bit
- Data bit (D7)

- Parity bit

Nine bit data frames (see Figure 21) either consist of:

* nine data bits D0-8 (by setting the Mode bit field to 100);

* eight data bits DO-7 plus an automatically generated parity bit (by setting the Mode bit
field to 111);

* eight data bits D0-7 plus a wake-up bit (by setting the Mode bit field to 101).
Figure 21. 9-bit data frames

star DO | by | p2| D3| D4 | D5 | D6 | D7 | 9th| 1st|2nd
bit | LSB| bit |stop| stop

bit bit

- Data bit (D8)
- Parity bit
- Wake-up bit

Parity may be odd or even, depending on the ParityOdd bit in the ASCControl register. An
even parity bit will be set, if the modulo-2-sum of the eight data bits is 1. An odd parity bit will
be cleared in this case.

In wake-up mode, received frames are only transferred to the receive buffer register if the
ninth bit (the wake-up bit) is 1. If this bit is 0, no receive interrupt request will be activated and
no data will be transferred.

This feature may be used to control communication in multi-processor systems. When the
master processor wants to transmit a block of data to one of several slaves, it first sends out
an address byte which identifies the target slave. An address byte differs from a data byte in
that the additional ninth bit is a 1 for an address byte and a O for a data byte, so no slave will
be interrupted by a data byte. An address byte will interrupt all slaves (operating in 8-bit data
+ wake-up bit mode), so each slave can examine the 8 least significant bits (LSBs) of the
received character (the address). The addressed slave will switch to 9-bit data mode, which
enables it to receive the data bytes that will be coming (with the wake-up bit cleared). The
slaves that are not being addressed remain in 8-bit data + wake-up bit mode, ignoring the
following data bytes.

4

170/401

STR720 - UART

16.3.2 Transmission

Values to be transmitted are written to the transmit fifo, txfifo, by writing to ASCTxBuffer. The
txfifo is implemented as a 16 deep array of 9 bit vectors.

If the fifos are enabled (the ASCControl(FifoEnable) is set), the txfifo is considered full
(ASCStatus(TxFull) is set) when it contains 16 characters. Further writes to ASCTxBuffer in
this situation will fail to overwrite the most recent entry in the txfifo. If the fifos are disabled, the
txfifo is considered full (ASCStatus(TxFull) is set) when it contains 1 character, and a write to
ASCTxBuffer in this situation will overwrite the contents.

If the fifos are enabled, ASCStatus(TxHalfEmpty) is set when the txfifo contains 8 or fewer
characters. If the fifos are disabled, it's set when the txfifo is empty.

Writing anything to ASCTxReset empties the txfifo.

Values are shifted out of the bottom of the txfifo into a 9-bit txshift register in order to be
transmitted. If the transmitter is idle (the txshift register is empty) and something is written to
the ASCTx-Buffer so that the txfifo becomes non-empty, the txshift register is immediately
loaded from the txfifo and transmission of the data in the txshift register begins at the next
baud rate tick.

At the time the transmitter is just about to transmit the stop bits, then if the txfifo is non-empty,
the txshift register will be immediately loaded from the txfifo, and transmission of this new data
will begin as soon as the current stop bit period is over (i.e. the next start bit will be transmitted
immediately following the current stop bit period). Thus back-to-back transmission of data can
take place. If instead the txfifo is empty at this point, then the txshift register will become
empty. ASC-Status(TxEmpty) indicates whether the txshift register is empty.

After changing the fifoenable bit, it is important to reset the fifo to empty (by writing to the
ASCTxReset register), since the state of the fifo pointer may be garbage.

The loop-back option (selected by the ASCControl(LoopBack) bit) internally connects the
output of the transmitter shift register to the input of the receiver shift register. This may be
used to test serial communication routines at an early stage without having to provide an
external network.

4

171/401

STR720 - UART

16.3.3 Reception

Reception is initiated by a falling edge on the data input pin (RXD), provided that the
ASCControl(Run) and ASCControl(RxEnable) bits are set. The RXD pin is sampled at 16
times the rate of the selected baud rate. A majority decision of the first, second and third
samples of the start bit determines the effective bit value. This avoids erroneous results that
may be caused by noise.

If the detected value is not a 0 when the start bit is sampled, the receive circuit is reset and
waits for the next falling edge transition at the RXD pin. If the start bit is valid, the receive
circuit continues sampling and shifts the incoming data frame into the receive shift register.
For subsequent data and parity bits, the majority decision of the seventh, eighth and ninth
samples in each bit time is used to determine the effective bit value.

Note If reception is initiated when data input pin (RXD) is being stretched at ‘0’ a frame
error indication is reported, since reception stage samples the initial value as a falling
edge.

For 0.5 stop bits, the majority decision of the third, fourth, and fifth samples during the stop bit
is used to determine the effective stop bit value.

For 1 and 2 stop bits, the majority decision of the seventh, eighth, and ninth samples during
the stop bits is used to determine the effective stop bit values.

For 1.5 stop bits, the majority decision of the fifteenth, sixteenth, and seventeenth samples
during the stop bits is used to determine the effective stop bit value.

The effective values received on the RXD pin are shifted into a 10-bit rxshift register.

The receive fifo, rxfifo, is implemented as a 16 deep array of 10-bit vectors (each 9 down to 0).
If the rxfifo is empty, ASCstatus(RxBufNotEmpty) is set to ‘0’. If the rxfifo is not empty, a read
from ASCRx-Buffer will get the oldest entry in the rxfifo. If fifos are disabled, the rxfifo is
considered full when it contains one character. ASCStatus(RxHalfFull) is set when the rxfifo
contains more than 8 characters. Writing anything to ASCRxReset empties the rxfifo.

As soon as the effective value of the last stop bit has been determined, the content of the
rxshift register is transferred to the rxfifo (unless we’re in wake-up mode, in which case this
happens only if the wake-up bit, bit8, is a ‘1’). The receive circuit then waits for the next start
bit (falling edge transition) at the RXD pin.

ASCStatus(OverrunError) is set when the rxfifo is full and a character is loaded from the
rxshift register into the rxfifo. It is cleared when the ASCRxBuffer register is read.

The most significant bit of each rxfifo entry (rxfifo[x][9]) records whether or not there was a
frame error when that entry was received (i.e. one of the effective stop bit values was ’0’).
ASCStatus(FrameError) is set when at least one of the valid entries in the rxfifo has its MSB
set.

4

172/401

STR720 - UART

If the mode is one where a parity bit is expected, then the bit rxfifo[x][8] (if 8 bit data + parity
mode is selected) or the bit rxfifo[x][7] (if 7 bit data + parity mode is selected) records whether
there was a parity error when that entry was received. Note, it does not contain the parity bit
that was received. ASCStatus(ParityError) is set when at least one of the valid entries in the
rxfifo has bit 8 set (if 8 bit data + parity mode is selected) or bit 7 set (if 7 bit data + parity mode
is selected).

After changing the fifoenable bit, it is important to reset the fifo to empty (by writing to the
ASCRxReset register), since the state of the fifo pointers may be garbage.

Reception is stopped by clearing the ASCControl(RxEnable) bit. A currently received frame
is completed including the generation of the receive status flags. Start bits that follow this
frame will not be recognized.

16.3.4 Timeout mechanism

The ASC contains an 8-bit timeout counter. This reloads from ASCTimeout whenever one or
more of the following is true

¢ ASCRXxBuffer is read
¢ The ASCstarts to receive a character

e ASCTimeout is written to
If none of these conditions hold, the counter decrements towards 0 at every baud rate tick.

ASCStatus(TimeoutNotEmpty) is 1’ exactly whenever the rxfifo is not empty and the
timeout counter is zero.

ASCStatus(Timeoutldle) is ‘1’ exactly whenever the rxfifo is empty and the timeout counter is
zero.

The effect of this is that whenever the rxfifo has got something in it, the timeout counter will
decrement until something happens to the rxfifo. If nothing happens, and the timeout counter
reaches zero, the ASCStatus(TimeoutNotEmpty) flag will be set.

When the software has emptied the rxfifo, the timeout counter will reset and start
decrementing. If no more characters arrive, when the counter reaches zero the
ASCStatus(Timeoutldle) flag will be set.

4

173/401

STR720 - UART

16.3.5 Baud rate generation

The baud rate generator provides a clock at 16 times the baud rate, called the oversampling
clock. This clock only ticks if ASCControl(Run) is set to’1’. Setting this bit to 0 will
immediately freeze the state of the ASCs transmitter and receiver. This should only be done
when the ASC is idle.

The baud rate and the required reload value for a given baud rate can be determined by the
following formulae:

Baudrate = faopg / (16 * <ASCBaudRate>)
<ASCBaudRate> = fopg / (16 * Baudrate)

where: <ASCBaudRate> represents the content of the ASCBaudRate register, taken as
unsigned 16-bit integer, and fapg is the clock frequency of the APB sub-system to which
UART block is connected.

The following tables list various commonly used baud rates together with the required reload
values and the deviation errors for various different APB clock frequencies..

Table 43. Baud rates with fypg = 16 MHz

Reload value Reload value Reload value
Baud rate Deviation error
(exact) (integer) (hex)
625K 1.6 2 0002 20%
38.4K 26.042 26 001a 0.160%
19.2K 52.083 52 0034 0.160%
9600 104.167 104 0068 0.160%
4800 208.333 208 00D0 0.160%
2400 416.667 417 01A1 0.080%
1200 833.333 833 0341 0.040%
600 1666.667 1667 0683 0.020%
300 3333.333 3333 0D05 0.010%
75 13333.333 13333 3415 0.003%

Table 44. Baud rates with fppg = 20 MHz

Reload value Reload value Reload value
Baud rate Deviation error
(exact) (integer) (hex)

625K 2 2 0002 0%
38.4K 32.552 33 0021 1.358%
19.2K 65.104 65 0041 0.160%
9600 130.208 130 0082 0.160%
4800 260.417 260 0104 0.160%
2400 520.833 521 0209 0.032%
1200 1041.667 1042 0412 0.032%

600 2083.333 2083 0823 0.016%

174/401 ﬁ

STR720 - UART

Table 44. Baud rates with fypg = 20 MHz

Reload value

Reload value

Reload value

Baud rate . Deviation error
(exact) (integer) (hex)
300 4166.667 4167 1047 0.008%
75 16666.667 16667 411B 0.002%
16.3.6 Interrupt control

The ASC has a single interrupt coming out of it, called ASC_interrupt. The status bits in the
ASC-Status register determine the cause of the interrupt. ASC_interrupt will go high when a
status bit is 1 (high) and the corresponding bit in the ASCIntEnable register is 1 (see

Figure 22).

Note: The ASCStatus register is read only. The Status bits can only be cleared by operating
on the FIFOs. The RxFIFO and TxFIFO can be reset by writing to the ASCRxReset and
ASCTxReset registers.

Figure 22. UART interrupt request

RxBufNotEmpty IE |- \/\
RxBufNotEmpty |—>
TxEmpty IE [

TxEmpty |—>>
TxHalfEmpty I[E |-]

TxHalfEmpty [>
ParityError IE |—>

ParityError

[

FrameError IE

FrameError |—>
OverrunError |IE |—>
OverrunError |—>
TimeoutNotEmpty |E |—>
TimeoutNotEmpty |—>>
Timeoutldie IE ||
Timeoutldle |—>>
RxHalfFull IE |-
RxHalfFull [)

> —— ASC_interrupt
.+>%
)

4

175/401

STR720 - UART

16.3.7 Using the ASC interrupts when fifos are disabled

When fifos are disabled, the ASC provides three interrupt requests to control data exchange
via the serial channel:

* TxHalfEmpty is activated when data is moved from ASCTxBuffer to the txshift register.
* TXEmpty is activated before the stop bit is transmitted.
* RxBufNotEmpty is activated when the received frame is moved to ASCRxBuffer.

For single transfers it is sufficient to use the transmitter interrupt (TXEmpty), which indicates
that the previously loaded data has been transmitted, except for the stop bit.

For multiple back-to-back transfers using TXEmpty would leave just one stop bit time for the
handler to respond to the interrupt and initiate another transmission. Using the transmit buffer
interrupt (TxHalfEmpty) to reload transmit data allows the time to transmit a complete frame
for the service routine, as ASCTxBuffer may be reloaded while the previous data is still being
transmitted.

TxHalfEmpty is an early trigger for the reload routine, while TxEmpty indicates the
completed transmission of the data field of the frame. Therefore, software using handshake
should rely on TXEmpty at the end of a data block to make sure that all data has really been
transmitted.

16.3.8 Using the ASC interrupts when fifos are enabled

To transmit a large number of characters back to back, the driver routine would write 16
characters to ASCTxBuffer, then every time a TxHalfEmpty interrupt fired, it would write 8
more. When it had nothing more to send, a TxEmpty interrupt would tell it when everything
has been transmitted.

When receiving, the driver could use RxBufNotEmpty to interrupt every time a character
came in. Alternatively, if data is coming in back-to-back, it could use RxHalfFull to interrupt it
when there was at least 8 characters in the rxfifo to read. It would have as long as it takes to
receive 8 characters to respond to this interrupt before data would overrun. If less than eight
character streamed in, and no more were received for at least a timeout period, the driver
could be woken up by one of the two timeout interrupts, TimeoutNotEmpty or Timeoutidle.

4

176/401

STR720 - UART

16.4 Register description
ASCBaudRate

Address Offset: 00h
Reset value: 0001h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ASCBaudRate
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

The ASCBaudRate register is the dual-function baud rate generator/reload register.

A read from this register returns the content of the timer, writing to it updates the reload
register.

An auto-reload of the timer with the content of the reload register is performed each time the
ASCBaudRate register is written to. However, if the Run bit of the ASCControl register is 0 at
the time the write operation to the ASCBaudRate register is performed, the timer will not be
reloaded until the first CPU clock cycle after the Run bit is 1.

Bit 15:0 = ASCBaudRate
Write function: 16-bit reload value
Read function: 16-bit count value

4

177/401

STR720 - UART

ASCTxBuffer

Address Offset: 04h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED TX8] | TX(7] | TX(6] | TX[5] | TX[4] | T3] | TX@2] | TX(1] | TX(o]
w w w w w w w w w w w w w w w w

Writing to the transmit buffer register starts data transmission.

Bit 15:9 = Reserved.
Write O

Bit 8 = TX[8]: Transmit buffer data D8.
Transmit buffer data D8, or parity bit, or wake-up bit or undefined - dependent on the operating
mode (the setting of the Mode field in ASCControl register).

Note If the Mode field selects an 8 bit frame then this bit should be written as 0.

Note If the Mode field selects a frame with parity bit, then the TX[8] bit will contain the
parity bit (automatically generated by the UART). A user writing at ‘0’ or ‘1’ of such a
bit will have no effect on the transmitted frame.

Bit 7 = TX[7]: Transmit buffer data D7.
Transmit buffer data D7 or parity bit - dependent on the operating mode (the setting of the
Mode field in ASCControl register).

Note If the Mode field selects a frame with parity bit, then the TX[7] bit will contain the
parity bit (automatically generated by the UART). A user writing at ‘0’ or ‘1’ of such a
bit will have no effect on the transmitted frame.

Bit 6:0 = TX[6:0]: Transmit buffer data D(6:0)

4

178/401

STR720 - UART

ASCRxBuffer

Address Offset: 08h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED RX[9] | RX[8] | RX(71 | RXi6] | RX[5] | RX[4] | RX[3] | RX[2] | RX[1] | RX[0]

r r r r r r r r r r r r r r r r

The received data and, if provided by the selected operating mode, the received parity bit can
be read from the receive buffer register.

Bit 15:10 = Reserved.
Will read back O

Bit 9 = RX[9]: Frame error.
If set, it indicates a frame error occurred on data stored in RX[8:0] (i.e. one of the effective
stop bit values was ‘0’ when the data was received).

Bit 8 = RX[8]: Receive buffer data D8.
Receive buffer data D8, or parity error, or wake-up bit - dependent on the operating mode (the
setting of the Mode field in the ASCControl register).

Note If the Mode field selects a 7- or-8-bit frame then this bit is undefined. Software should
ignore this bit when reading 7- or 8-bit frames.

Bit 7 = RX[7]: Receive buffer data D7.
Receive buffer data D7, or parity error - dependent on the operating mode (the setting of the
Mode field in the ASCControl register).

Bit 6:0 = RX[6:0]: Receive buffer data D(6:0).

4

179/401

STR720 - UART

ASCControl

Address Offset: 0Ch
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
FifoEna| RESER |RxEnabl LoopBa | ParityO .
RESERVED ble VED o Run ok dd Stop Bits Mode
rw w rw rw rw w rw rw w rw rw rw w rw rw

This register controls the operating mode of the ASC and contains control bits for mode and

error check selection, and status flags for error identification.

Note Programming the mode control field (Mode) to one of the reserved combinations

may result in unpredictable behavior.

Note Serial data transmission or reception is only possible when the baud rate generator
run bit (Run) is set to 1. When the Run bit is set to 0, TXD will be 1. Setting the Run
bit to 0 will immediately freeze the state of the transmitter and receiver. This should

only be done when the ASC is idle.

Bit 15:11= Reserved.
Write O will read back 0

Bit 10 = FifoEnable: FIFO Enable
0: FIFO mode disabled
1: FIFO mode enabled

Bit 9 = Reserved.
Write O will read back O

Bit 8 = RxEnable: Receiver Enable
0: Receiver disabled
1: Receiver enabled

Bit 7 = Run: Baudrate generator Run bit
0: Baud rate generator disabled (ASC inactive)
1: Baud rate generator enabled

Bit 6 = LoopBack: LoopBack mode enable
0: Standard transmit/receive mode
1: Loopback mode enabled

Note This bit may be modified only when the ASC is inactive.

Bit 5 = ParityOdd: Parity selection
0: Even parity (parity bit set on odd number of ‘1’s in data)
1: Odd parity (parity bit set on even number of ‘1’s in data)

180/401

4

STR720 - UART

Bit 4:3 = Stop Bits: Number of stop bits selection
These bits select the number of stop bits

00: 0.5 stop bits

01: 1 stop bit

10: 1.5 stop bits

11: 2 stop bits

Bit 2:0 = Mode: ASC Mode control
000: reserved

001: 8 bit data

010: reserved

011: 7 bit data + parity

100: 9 bit data

101: 8 bit data + wake up bit

110: reserved

111: 8 bit data + parity

4

181/401

STR720 - UART

ASCIntEnable
Address Offset: 10h

Reset value 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED ASCIntEnable

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

The ASCIntEnable register enables a source of interrupt.

Interrupts will occur when a status bit in the ASCStatus register is 1, and the corresponding
bit in the ASCIntEnable register is 1.

Bit 15:9 = Reserved.
Write 0, will read back 0.

Bit 8 = ASCIntEnable[8]= RxHalfFulllE: Receiver buffer Half Full Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

Bit 7 = ASCIntEnable[7]=TimeoutldlelE: Timeout Idle Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

Bit 6 = ASCIntEnable[6]=TimeoutNotEmpty IE: Timeout Not Empty Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

Bit 5 = ASCIntEnable[5]=OverrunErrorlE: Overrun Error Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

Bit 4 = ASCIntEnable[4]=FrameErrorlE: Framing Error Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

Bit 3 = ASCIntEnable[3]=ParityErrorlE: Parity Error Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

Bit 2 = ASCIntEnable[2]=TxHalfEmptylE: Transmitter buffer Half Empty Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

Bit 1 = ASCIntEnable[1]=TxEmptylE: Transmitter Empty Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

4

182/401

STR720 - UART

Bit 0 = ASCIntEnable[0]=RxBufNotEmptylE: Receiver Buffer Not Empty Interrupt Enable
0: interrupt disabled.
1: interrupt enabled.

ASCStatus

Address Offset: 14h
Reset value: 0006h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED ASCStatus

r r r r r r r r r r r r r r r r

The ASCStatus register determines the cause of an interrupt.

Bit 15:10 = Reserved.
Read back 0.

Bit 9 = ASCStatus[9]: TxFull.
Set when the txfifo contains 16 characters.

Bit 8 = ASCStatus[8]: RxHalfFull.
Set when the rxfifo contains at least 8 characters.

Bit 7 = ASCStatus[7]: Timeoutldle.
Set when there’s a timeout and the rxfifo is empty

Bit 6 = ASCStatus[6]: TimeoutNotEmpty.
Set when there’s a timeout and the rxfifo is not empty

Bit 5 = ASCStatus[5]: OverrunError.
Set when data is received and the rxfifo is full.

Bit 4 = ASCStatus[4]: FrameError.
Set when the rxfifo contains something received with a frame error

Bit 3 = ASCStatus[3]: ParityError.
Set when the rxfifo contains something received with a parity error

Bit 2 = ASCStatus[2]: TxHalfEmpty.
Set when txfifo at least half empty

Bit 1 = ASCStatus[1]: TxEmpty.
Set when transmit shift register is empty

Bit 0 = ASCStatus[0]: RxBufNotEmpty.
Set when rxfifo not empty (rxfifo contains at least one entry)

‘ﬁ 183/401

STR720 - UART

ASCTimeout
Address Offset: 1Ch
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED ASCTimeout
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

This register is to have a timeout system to be sure that not too much time pass between two

successive received characters.

Bit 15:8 = Reserved.
Write 0, will read back 0.

Bit 7:0 = ASCTimeout: Timeout.
Timeout period in baud rate ticks.

ASCTxReset

Address Offset: 20h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED

wWoowoowow W W W W W W W W W W W W

A write to this register empties the txfifo.

ASCRxReset

Address Offset: 24h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RESERVED

wWoowoowow oW W W W W W W W W W W W

A write to this register empties the rxfifo.

184/401

4

STR720 - UART

16.4.1

Register map

The following table summarizes the registers implemented in the UART macrocell.
Table 45. UART Peripheral Register Map

Addr.
Offset

Register
Name

15

14

13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0

ASC
Baud
Rate

ASCBaudRate

ASC
TxBuffer

RESERVED ASCTxBuffer

ASC
RxBuffer

RESERVED ASCRxBuffer

ASC
Control

] RE- .
RESERVED FifoEn- SERVE RxEn- Run Loop- | Parity- Stop

able able Back | Odd Bits Mode

ASC
IntEnable

RESERVED ASCIntEnable

ASC
Status

RESERVED ASCStatus

1C

ASC
Timeout

RESERVED ASCTimeout

20

ASC
TxReset

ASCTxReset

24

ASC
RxReset

ASCRxReset

Refer to Table 20 on page 49 for the base address.

4

vww.DataSheet4U.com

185/401

STR720 - BUFFERED SPI (BSPI)

17 BUFFERED SPI (BSPI)

17.1 Introduction

The BSPI block is a standard 4-pin Serial Peripheral Interface for serial control
communication. It interfaces on one side to the SPI bus and on the other has a standard
register data and interrupt interface.

The BSPI contains two 16-word x 16-bit FIFO’s one for receive and the other for transmit. The
BSPI can directly operate with words 8 and 16 bit long and can generates interrupts or DMA
requests separately for receive and transmit events.

17.2 Main Features

» Programmable depth receive FIFO.
s Maximum 16 word Receive FIFO.

s Programmable depth transmit FIFO.
s Maximum 16 word Transmit FIFO.

s Master and Slave modes supported.
= Internal clock prescaler.

m Programmable DMA interface

17.3 Functional Description

The processor views the BSPI as a memory mapped peripheral, which may be used by
standard polling, interrupt programming techniques or DMA controlled access.
Memory-mapping means processor communication can be achieved using standard
instructions and addressing modes.

When an SPI transfer occurs data is transmitted and received simultaneously. A serial clock
line synchronizes shifting and sampling of the information on the two serial data lines. A slave
select line allows individual selection of a slave device. The central elements in the BSPI
system are the 16-bit shift register and the read data buffer which is 16 words x 16-bit.A
BSPI-DMA interface is also present to allow for data to be transferred to/from memory using
the DMA.A block diagram of the BSPI is shown in Figure 23 on page 187.

4

186/401

STR720 - BUFFERED SPI (BSPI)

Figure 23. BSPI Block Diagram

DATA BUS 16 WORD TRANSMIT
FIFO
(16 bits)
16
»
Ll
9 &16 < MISO >
— SHIFTREGISTER |4 s MOSI
7'y /—> M e
16
g M SCK
. P s «—>
h 4
SS
16 16 WORD RECEIVE PIN CONTROL |4
< FIFO LOGIC
16 bits
. ()
<P BSPCLK
LCLK
\ 4
p s
BSPI CONTROL LOGIC M
A
16
P BSPCSRI v v
16
<P BspPcsR2
16 DMA INTERFACE
<P Bsecsrs | ——— P

17.3.

1 BSPI Pin Description

The BSPI is a four wire, bi-directional bus. The data path is determined by the mode of
operation selected. A master and a slave mode are provided together with the associated pad
control signals to control pad direction. These pins are described in Table 46 on page 187.

Table 46. BSPI pins

Pin Name Description
SCK The bit clock for all data transfers. When the BSPI is a master the SCK is output from the chip.
When configured as a slave the SCK is input from the external source.
MISO Master Input/Slave Output serial data line.
Master Output/Slave Input serial data line.

MOSI

SS

Slave Select. The SS input pin is used to select a slave device. Must be pulled low after the
SCK is stable and held low for the duration of the data transfer. The SS on the master must be
deasserted high.This signal can be masked when in master mode-see register description of
CSR Reg3 bit 0

4

187/401

STR720 - BUFFERED SPI (BSPI)

17.3.2 BSPI Operation

During a BSPI transfer (see Figure 24 on page 188), data is shifted out and shifted in
(transmitted and received) simultaneously. The SCK line synchronizes the shifting and
sampling of the information. It is an output when the BSPI is configured as a master and an
input when the BSPI is configured as a slave. Selection of an individual slave BSPI device is
performed on the slave select line and slave devices that are not selected do not interfere with
the BSPI buses.

Figure 24. BSPI Bus Transfer

SCK

8 bits 8 bits
MOSI/MISO A DATAO >< DATA1 %

ss | |

The CPOL (clock polarity) and CPHA (clock phase) bits of the BSPCSR1 are used to select
any of the four combinations of serial clock (see, Figure 25 on page 189, Figure 26 on
page 189, Figure 27 on page 190 and Figure 28 on page 190). These bits must be the same
for both the master and slave BSPI devices. The clock polarity bit selects either an active high
or active low clock but does not affect transfer format. The clock phase bit selects the transfer
format.

There is a 16-bit shift register which interfaces directly to the BSPI bus lines. As transmit data
goes out from the register, received data fills the register.

Note When BSPI cell is configured in Slave mode, SCLK_IN clock must be divided by a
factor of 8 or more compared with the configured peripheral clock (APB clock).

In case a clock polarity change is required when BSPI macrocell is configured in master
mode, the following sequence should be followed in order to avoid spurious clock edges
generation:

1. Write ‘0’ into both MSTR and BSPE bit in BSPCSR1 register, so to safely disable BSPI
macrocell.

2. tChange CPOL and CPHA bits in BSPCSR1 register according to the required polarity set-
ing.

3. Write ‘1’ into BSPE bit of BSPCSR1 register to enable again BSPI macrocell.
4. Write ‘1’ into MSTR bit of BSPCSR1 register to configure the master mode again.

It must be noticed that the above sequence should be executed as reported, without merging
in a single instruction any of the steps.

188/401 ﬁ

STR720 - BUFFERED SPI (BSPI)

Figure 25. BSPI Clocking Scheme (CPOL=0, CPHA=0)

CPOL=0, CPHA=0 MASTER SIGNALS

SCK (out) A B B
MOSI (out) OO X5 X5 X e X5 X2 X Y X0000—

Data captured on MISO (in) | | | I | I | I

Internal Strobe for Data Capture on positive edge of SCK

SLAVE SIGNALS

SCK (in) T
s [

MISO (out) OO X o X5 W= X5 X2 W X X0000—

Data captured on MOSI (in) | | | | | | | |

Internal Strobe for Data Capture on positive edge of SCK

Figure 26. BSPI Clocking Scheme (CPOL=0, CPHA=1)

CPOL=0, CPHA=1 MASTER SIGNALS

SCK (out) I T O O o O A T O
MOSI (out) CCCCCiMSBX s X s X« X s X 2 Y XLSBW

Data captured on MISO (in) | | | | | I | |

Internal Strobe for Data Capture on negative edge of SCK

SLAVE SIGNALS
SCK (in) L
s B
MISO (out) CCCCC(MSBX 5 >< 5 >< p >< 3 >< 2 >< 1 XLSBW

Data captured on MOSI (in) | | | | | | |

Internal Strobe for Data Capture on negative edge of SCK

4

189/401

STR720 - BUFFERED SPI (BSPI)

Figure 27. BSPI Clocking Scheme (CPOL=1, CPHA=0)

CPOL=1, CPHA=0 MASTER SIGNALS

SCK (ou o
MOSI (out) CCCCC(MSBX X s X« X s X 2 X XLSBW

Data captured on MISO (in) | | | | | | | I

Internal Strobe for Data Capture on negative edge of SCK

SLAVE SIGNALS

SCK (in) EREEEEEEEEEEEE N
53 B

MISO (out)

A L D G G I G D) G 10

Data captured on MOSI (in) | | | | | | | |

Internal Strobe for Data Capture on negative edge of SCK

Figure 28. BSPI Clocking Scheme (CPOL=1, CPHA=1)

CPOL=1, CPHA=1 MASTER SIGNALS

SCK (ou) A A O
MOSI (out) OO s X s W s X« e X2 W Y s X0

Data captured on MISO (in) | | | I | | | I

Internal Strobe for Data Capture on positive edge of SCK

SLAVE SIGNALS

SCK () EpEREREREREEEEEEEE
s N
MISO (out) OO s Yo Y5 X e X X2 X7 X e X000~

Data captured on MOSI (in) | | | | | | | |

Internal Strobe for Data Capture on positive edge of SCK

190/401

4

STR720 - BUFFERED SPI (BSPI)

17.3.3 Transmit FIFO

The transmit FIFO consists of a 16 by 16 bit register bank which can operate in 8/16 bit modes
as configured by the word length (WL[1:0]) control bits of BSPCSR1. Data is left justified
indicating that only the most significant portion of the word is transmitted if using 8 bit mode.
After a transmission is completed the next data word is loaded from the transmit FIFO.

The user can set the depth of the FIFO from the default one location up to a maximum of
sixteen locations. This can be set dynamically but will only take effect after the completion of
the current transmission. Status flags report if the FIFO is full (TFF), the FIFO is not empty
(TFNE), the FIFO is empty (TFE) and the transmit buffer has under flown (TUFL), this last one
being generated only when macrocell is configured in master mode. The transmit interrupt
enable (TIE[1:0]) control bits of BSPCSR2 determine the source of the transmit interrupt. If
the interrupt source is enabled then an active high interrupt will be asserted to the processor.

If BSPI is configured in master mode and the TUFL flag is asserted then a subsequent write
to the transmit FIFO will clear the flag. If interrupts are enabled the interrupt will be
de-asserted. Regardless of the selected BSPI mode, TFF and TFENE flags are updated at the
end of the processor write cycle and at the end of each transmission.

Note Data should be written in the fifo only if the macro is enabled (see BSPI System
Enable bit of BSPI Control Register). If one data word is written in the trasmit fifo
before enabling the BSPI no data will be transmitted.

Note When it is necessary to be notified about the end of last word transmission, TUFL
event can be used for the purpose, provided BSPI is configured in master mode. In
case this notification is required also when BSPI is configured as a slave, the end of
transmission cannot be detected and a suitable wait loop must be implemented.

17.3.4 Receive FIFO

The BSPI Receive FIFO is a 16 word by 16-bit FIFO used to buffer the data words received
from the BSPI bus.

The FIFO can operate in 8-bit and 16-bit modes as configured by the WL[1:0] bits of the
BSPCSR1 register. Irrelevant of the word depth in the FIFO, if operating in 8-bit mode, the
data will occupy both the Most Significant and the Least Significant Bytes of each location of
the FIFO (data can be used either as left or right justified).

The receive FIFO enable bits RFE[3:0] declare how many words deep the FIFO is for all
transfers. The FIFO defaults to one word deep. Whenever there is at least one block of data in
the FIFO the RFNE bit is set in the BSPCSR2 register, i.e there is data in at least one location.
The RFF flag does not get set until all locations of the FIFO contain data, i.e. RFF is set when
the depth of FIFO is filled and nothing has been read out.

If the FIFO is one word deep then the RFNE and RFF flags are set once data is written to it.
When the data is read then both flags are cleared. A write to and a read from the FIFO can
happen independent of each once RFF is not set, if RFF is set a read must occur before the
next write or an overflow (ROFL) will occur.

ﬁ 191/401

STR720 - BUFFERED SPI (BSPI)

17.3.5 Start-up Status

If the BSPI is to operate in Master mode, it must first be enabled, then the MSTR bit must be
set high. The TFE flag will be set, signalling that the Transmit FIFO is empty, if the TIE is set,
a TFE interrupt will be generated. The data to be transferred must be written to the Transmit
Data Register, the TFE interrupt will be cleared and then the BSPI clock will be generated
according to the value of the BSPCLK register. The Transfer of data then begins. A second
TFE interrupt occurs so that the peripheral has a full data transfer time to request the data
before the next transfer is to begin.

If the BSPI is to operate in slave mode, once again the device must be enabled. The SS line
must only be asserted low after the SCK from the master is stable. The TFE flag will be set,
depending on the BSPI being enabled, signalling that the Transmit Data register is empty and
will be cleared by a write to the Transmit Data register. The second TFE interrupt occurs to
request data for the following transfer.

17.3.6 Clocking problems and clearing of the shift-register

Should a problem arise on the clock which results in a misalignment of data in the shift
register of the BSPI, it may be cleared by disabling the BSPI enable. This has the effect of
setting the TFE which requests data to be written to the Transmit Register for the next transfer.
Clearing the BSPI enable will also reset the counter of bits received. The next block of data
received will be written to the next location in the FIFO continuing on from the last good
transfer. If the FIFO was just one word deep. it will be written to the only location available.

17.3.7 Interrupt control

The BSPI generates one interrupt based upon the status bits monitoring the transmit and
receive logic. The interrupt is acknowledged or cleared by subsequent read or write
operations which remove the error or status update condition. It is the responsibility of the
programmer to ascertain the source of the interrupt and then remove the error condition or
alter the state of the BSPI. In the case of multiple errors the interrupt will remain active until all
interrupt sources have been cleared.

For example, in the case of TFE, whenever the last word has been transferred to the transmit
buffer, the TFE flag is asserted. If interrupts are enabled then an interrupt will be asserted to
the processor. To clear the interrupt the user must write at least one data word into the FIFO,
or disable the interrupts if this condition is valid.

4

192/401

STR720 - BUFFERED SPI (BSPI)

17.3.8 DMA Interface

The DMA interface is a feature of the BSPI that allows data to be transferred to or from system
memory using a DMA controller instead of main CPU. Data can be transferred in single data
accesses or in burst mode, the amount of words being selectable by the programmer, thus
making efficient more use of system bus. The BSPI DMA interface has the following features:

1) The DMA interface can be totally disabled using a bit in BSPCSRS3 register.
2) User programmable burst size: 1, 4, 8 or 16 words can be transferred at a time.

3) Two request lines to the DMA are generated: one dedicated to the BSPI operating in
transmit mode and another dedicated to the BSPI operating in receive mode. These signals
are generated in independently from each other inside the BSPI.

4) Received 8-bit data, being sent from the BSPI to the memory, is arranged in a format which
is compatible both with little and big endian convention, replicating the received data on both
high and low byte in BSPRXR register.

The DMA interface makes use of pointers inside both the transmit and receive fifo (these
being independent of one another) in order for it to decide when a DMA request to transmit or
receive data can be made. The choice of burst size should match the one configured in the
corresponding DMA channel.

Note There is a restriction on the burst capability of DMA interface during reception. The
total number of words to be transferred to' system memory via DMA must be an
integer multiple of the programmed Burst Length size, since DMA interface is not
capable of handling incomplete received burst transfers. For example if Burst Length
size is set to 4 and at the end of received data transfer BSPI FIFO has only 3 spaces,
no request would be issued. On the contrary, with an even divide, the last chunk of
received data will always be equal to the programmed size of the burst length.

4

193/401

STR720 - BUFFERED SPI (BSPI)

17.4 Register description
BSPI Control/Status Register 1 (BSPCSR1)

Address Offset: 08h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RFE[3:0] WL[1:0] CPHA | CPOL | BEIE Reserved REIE RIE[1:0] MSTR | BSPE
w rw rw rw w - w rw w rw

Bits 15:12 = RFE[3:0]: Receive FIFO Enable.

The receive FIFO can be programmed to operate with a word depth up to 16. The receive
FIFO enable bits declare how many words deep the FIFO is for all transfers. The FIFO
defaults to one word deep, i.e. similar to a single data register. Table below shows how the
FIFO is controlled.

RFE[3:0] Depth of FIFO
0000 1st word enabled
0001 1st & 2nd words enabled
0010 1-3 words enabled
0011 1-4 words enabled
0100 1-5words enabled
0101 1-6 words enabled
0110 1-7 words enabled
0111 1-8 words enabled
1000 1-9 words enabled
1001 1-10 words enabled
1010 1-11 words enabled
1011 1-12 words enabled
1100 1-13 words enabled
1101 1-14 words enabled
1110 1-15 words enabled
1111 1-16 words enabled

Bit 11:10 = WL[1:0]: Word Length.
These two bits configure the word length operation of the Receive FIFO and transmit data
registers as shown below:

WL[1:0] Word Length
00 8-bit
01 16-bit
10 Reserved
11 Reserved

4

194/401

STR720 - BUFFERED SPI (BSPI)

Bit 9 = CPHA: Clock Phase Select.

Used with the CPOL bit to define the master-slave clock relationship. When CPHA=0, as soon
as the SS goes low the first data sample is captured on the first edge of SCK. When CPHA=1,
the data is captured on the second edge.

Bit 8 = CPOL: Clock Polarity Select.

When this bit is cleared and data is not being transferred, a stable low value is present on the
SCK pin. If the bit is set the SCK pin will idle high. This bit is used with the CPHA bit to define
the master-slave clock relationship.

0 = Active high clocks selected; SCK idles low.

1 = Active low clocks selected; SCK idles high.

Bit 7 = BEIE: Bus Error Interrupt Enable.
When this bit is set to ‘1’, an interrupt will be asserted to the processor whenever a Bus Error
condition occurs.

Bit 6 = Reserved.
To be left at 0 level (reset status).

Bit 5 = Reserved.
To be left at 0 level (reset status).

Bit 4 = REIE: Receive Error Interrupt Enable.
When this bit is set to ‘1’ and the Receiver Overflow error condition occurs, a Receive Error
Interrupt will be asserted to the processor.

Bits 3:2 = RIE[1:0]: BSPI Receive Interrupt Enables.
The RIE1:0 bits are interrupt enables which configure when the processor will be interrupted
on received data. The following configurations are possible.

RIE1 RIEO Interrupted on
0 0 Disabled
0 1 Receive FIFO Not Empty
1 0 Reserved
1 1 Receive FIFO Full

Bit 1 = MSTR: Master/Slave Select.
1: BSPI is configured as a master
0: BSPI is configured as a slave

Bit 0 = BSPE: BSPI System Enable.
1: BSPI system is enabled
0: BSPI system is disabled

Note The peripheral should be enabled before selecting the interrupts. In this way the
application software can avoid unexpected behaviours of interrupt request signal.

4

195/401

STR720 - BUFFERED SPI (BSPI)

BSPI Control/Status Register 2 (BSPCSR2)
Address Offset: 0Ch

Reset value: 0040h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIE[1:0] TFE[3:0] TFNE | TFF | TUFL | TFE | ROFL [RFF | RFNE | BERR | Res. | DFIFO

rw rw r r r r r r r r - w

Bits 15:14 = TIE[1:0]: BSPI Transmit Interrupt Enable.
These bits control the source of the transmit interrupt.

TIE1 TIEO Interrupted on
0 0 Disabled
0 1 Transmit FIFO Empty
1 0 Transmit underflow (only in Master mode)
1 1 Transmit FIFO Full

Bits 13:10 = TFE[3:0]: Transmit FIFO Enable.
These bits control the depth of the transmit FIFO. The table below indicates all valid settings.

TFE[3:0] Depth of FIFO
0000 1st word enabled
0001 1st & 2nd words enabled
0010 1-3 words enabled
0011 1-4 words enabled
0100 1-5 words enabled
0101 1-6 words enabled
0110 1-7 words enabled
0111 1-8 words enabled
1000 1-9 words enabled
1001 1-10 words enabled
1010 1-11words enabled
1011 1-12words enabled
1100 1-13words enabled
1101 1-14words enabled
1110 1-15words enabled
1111 1-16words enabled

Bit 9 = TFNE: Transmit FIFO Not Empty.
This bit is set whenever the FIFO contains at least one data word.

Bit 8 = TFF: Transmit FIFO Full.
TFF is set whenever the number of words written to the transmit FIFO is equal to the number

196/401 172

STR720 - BUFFERED SPI (BSPI)

of FIFO locations enabled by TFE[3:0]. The flag is set immediately after the data write is
complete.

Bit 7 = TUFL: Transmit Underflow.

This status bit gets set only when BSPI is configured in master mode, when the TFE bit is set
and, by the time the Transmit Data Register contents are to be transferred to the shift register
for the next transmission, the processor has not yet put the data for transmission into the
Transmit Data Register.

TUFL is set on the first edge of the clock when CPHA = 1 and when CPHA = 0 on the
assertion of SS. If TIE[1:0] bits are set to “10” then, when TUFL gets set, an interrupt will be
asserted to the processor.

Note From an application point of view, it is important to be aware that the first word
available after an underflow event has occurred should be ignored, as this data was
loaded into the shift register before the underflow condition was flagged.

Bit 6 = TFE: Transmit FIFO Empty.

This bit gets set whenever the Transmit FIFO has transferred its last data word to the transmit
buffer. If interrupts are enabled then an interrupt will be asserted whenever the last word has
been transferred to the transmit buffer.

Bit 5 = ROFL: Receiver Overflow.

This bit gets set if the Receive FIFO is full and has not been read by the processor by the time
another received word arrives. If the REIE bit is set then, when this bit gets set an interrupt will
be asserted to the processor. This bit is cleared when a read takes place of the CSR register
and the FIFO.

Bit 4 = RFF: Receive FIFO Full.

This status bit indicates that the number of FIFO locations, as defined by the RFE[3:0] bits,
are all full, i.e. if the FIFO is 4 deep then all data has been received to all four locations.

If the RIE[1:0] bits are configured as ‘11’ then, when this status bit gets set, an interrupt will be
asserted to the processor. This bit is cleared when at least one data word has been read.

Bit 3 = RFNE: Receive FIFO Not Empty.

This status bit indicates that there is data in the Receive FIFO. It is set whenever there is at
least one block of data in the FIFO i.e. for 8-bit mode 8 bits and for 16-bit mode 16 bits. If the
RIE[1:0] bits are configured to ‘01’ then whenever this bit gets set an interrupt will be asserted
to the processor. This bit is cleared when all valid data has been read out of the FIFO.

Bit 2 = BERR: Bus Error.

This status bit indicates that a Bus Error condition has occurred, i.e. that more than one
device has acted as a Master simultaneously on the BSPI bus. A Bus Error condition is
defined as a condition where the Slave Select line goes active low when the module is
configured as a Master, provided that MASK_SS bit in BSPCSR3 register is not set. This
indicates contention in that more than one node on the BSPI bus is attempting to function as
a Master. This bit is cleared when the Slave Select line is deasserted, MASK_SS bit is set or
Slave mode is selected.

ﬁ 197/401

STR720 - BUFFERED SPI (BSPI)

Bit 1 = Reserved.
To be left at O level (reset status).

Bit 0 = DFIFO: Disable for the FIFO.

When this bit is enabled, the FIFO pointers are all reset to zero, the RFE bits are set to zero
and therefore the BSPI is set to one location. The data within the FIFO is lost. This bit is reset
to zero after a clock cycle.

BSPI Control/Status Register 3 (BSPCSR3)
Address Offset: 14h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved RREQ | TREQ | RBURST_LEN | TBURST_LEN | DMA | MASK
_EN | _EN [1:0] [1:0] _EN | _ss
rw rw rw rw rw rw

This register is used to control the BSPI DMA interface. When the BSPI is receiving da-
ta, it will be the source of DMA transfer and system memory will act as destination.
Conversely, when the BSPI is in transmit mode, it is sending data to an external source
and it will act as DMA destination while system memory will be the source.

Bits 15:8 = Reserved. These bits must be always written to ‘0’.

Bit 7 = RREQ_EN: Receive REQuest ENable

This is the enable bit for the reception DMA request and it flags the DMA controller that an
amount of data corresponding at least to the configured reception burst length is available in
the BSPI receive FIFO to be transferred.

0 = Receive DMA requests are disabled.

1 = Receive DMA requests are enabled.

Bit 6 = TREQ_EN: Transmit REQuest ENable

This is the enable bit for the transmission DMA request and it flags the DMA controller that in
the BSPI transmit FIFO there is an amount of free locations corresponding at least to the
configured transmission burst length.

0 = Transmit DMA requests are disabled.

1 = Transmit DMA requests are enabled.

Bits 5:4 = RBURST_LEN[1:0]: Receive BURST LENgth

These bits configure the burst length when the BSPI receives data. This programmable length
is used to set the number of data words the DMA controller is expected to retrieve upon a
receive request; this value is used in the DMA interface to determine when the BSPI is ready
to send a data burst to the DMA. A word can be 16 bit or 8 bit wide according to the
configuration set in WL bits inside BSPCSR1 register.

4

198/401

STR720 - BUFFERED SPI (BSPI)

RBURST

LEN[1:0] BURST LENGTH
00 1 word transferred
01 4 words transferred
10 8 words transferred
11 16 words transferred

Note The value set in RBURST_LEN field should match with the configured burst length
set in the corresponding DMA channel (SoBurst field in DMA control register).

Bits 3:2 = TBURST_LEN [1:0]: Transmit BURST LENgth

These bits configure the burst length when the BSPI transmits data. This programmable
length is used to set the number of data words the DMA controller is expected to send upon a
transmit request; this value is used in the DMA interface to determine when the BSPI is ready
to receive a data burst from the DMA. A word can be 16 bit or 8 bit wide according to the
configuration set in WL bits inside BSPCSR1 register.

TBURST

LEN[1:0] BURST LENGTH
00 1 word transferred
01 4 words transferred
10 8 words transferred
11 16 words transferred

Note The value set in TBURST_LEN field should match with the configured burst length
set in the corresponding DMA channel (SoBurst field in DMA control register).

Bit 1 = DMA_EN: DMA interface ENable

This bit is a general enable switch for the DMA interface. When BSPI DMA interface is
disabled no request line will be activated and data transfer can occur through interrupt
notification only.

0 = DMA interface is disabled.

1 = DMA interface is enabled.

Bit 0 = MASK_SS: MASK Slave Select

This bit can be used to mask the status of Slave Select pin when BSPI is in master mode and
the pad corresponding to SS pin is not available. When this bit is set to ‘1’, the Bus Error
interrupt condition cannot be detected since internally the related signal is always considered
high regardless from the actual pad status.

0 = Slave Select pin is used.

1 = Slave Select pin is masked.

4

199/401

STR720 - BUFFERED SPI (BSPI)

BSPI Master Clock Divider Register (BSPCLK)
Address Offset: 10h

Reset value: 0006h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved DIV[7:0]

w

Bits 15:8 = Reserved.
To be left at O level (reset status).

Bits 7:0 = DIV[7:0]: Divide factor bits.

These bits are used to control the frequency of the BSPI serial clock with relation to the device
clock APB_CLK. In master mode this number must be an even number greater than five, i.e.
six is the lowest divide factor. In slave mode this number must be an even number greater
than seven, i.e. eight is the lowest divide factor.

These bits must be set before the BSPE or MSTR bits, i.e. before the BSPI is configured into
master mode.

BSPI Transmit Register (BSPTXR)
Address Offset: 04h

Reset value: n/a
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 bit Transmission TX[15:0]

8 bit Transmission TX[7:0] Not Used

Bits 15:0 = TX[15:0]: Transmit data.

This register is used to write data for transmission into the BSPI. If the FIFO is enabled then
data written to this register will be transferred to the FIFO before transmission. If the FIFO is
disabled then the register contents are transferred directly to the shift register for
transmission. In sixteen bit mode all of the register bits are used. In eight bit mode only the
upper eight bits of the register are used while lower eight bits are ignored. In both case the
data is left justified, i.e. Bit[15] = MSB, Bit[0] / Bit[8] = LSB depending on the operating mode.

4

200/401

STR720 - BUFFERED SPI (BSPI)

BSPI Receive Register (BSPRXR)
Address Offset: 00h

Reset value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 bit Reception RX[15:0]

8 bit Reception RX[7:0] RX[7:0]

Bits 15:0 = RX[15:0]: Received data.

This register contains the data received from the BSPI bus. If the FIFO is disabled then the
data from the shift register is placed into the receive register directly. If the FIFO is enabled
then the received data is transferred into the FIFO. In sixteen bit mode all the register bits are
utilized. In eight bit reception mode the received data is replicated on the upper and lower
eight bits of the register so to support both little and big endian memory systems.

17.4.1 Register map

A summary overview of the BSPI registers is given in the following table.
Table 47. BSPI Register Map

gff':;'t Rﬁgi::' 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0 | BSPRXR RX[15:0] (*)

04 | BSPTXR TX[15:0] (*)

08 | BSPCSR1 RFE[3:0] WL[1:0] CPHA | CPOL | BEIE | Reserved | REIE RIE[:0] | MSTR | BSPE
0C | BSPCSR2 TIE[:0] TFE[3:0] TENE | TFF | TUFL | TFE | ROFL | RFF | RFNE | BERR | Res. | DFIFO
10 BSPCLK Reserved DIV[7:0]

14 | BSPCSR3 Reserved R}ENQ TREQ_ RLEl’EL,{,F[‘f:’gf T_?zmﬂ)]’ 'fg",‘j‘ M_gSSK

(*)Data is justified depending on transmission mode, Bit 15 = MSB.

Refer to Table 20 on page 49 for the base address.

4

201/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18 CONTROLLER AREA NETWORK (CAN)

18.1 Introduction

The CAN Peripheral consists of the CAN Core, Message RAM, Message Handler, Control
Registers and Module Interface (Refer to Figure 29).

The CAN Core performs communication according to the CAN protocol version 2.0 part A and
B. The bit rate can be programmed to values up to 1MBit/s. For the connection to the physical
layer, additional transceiver hardware is required.

For communication on a CAN network, individual Message Objects are configured. The
Message Objects and Identifier Masks for acceptance filtering of received messages are
stored in the Message RAM.

All functions concerning the handling of messages are implemented in the Message Handler.
These functions include acceptance filtering, the transfer of messages between the CAN Core
and the Message RAM, and the handling of transmission requests as well as the generation
of the module interrupt.

The register set of the CAN Peripheral can be accessed directly by the CPU through the
module interface. These registers are used to control/configure the CAN Core and the
Message Handler and to access the Message RAM.

18.2 Main Features

e Supports CAN protocol version 2.0 part A and B.

* Bit rates up to 1 MBit/s.

* 32 Message Objects.

e Each Message Object has its own identifier mask.

* Programmable FIFO mode (concatenation of Message Objects).
* Maskable interrupt.

e Disabled Automatic Re-transmission mode for Time Triggered CAN applications.
* Programmable loop-back mode for self-test operation.

e 8-bit non-multiplex Motorola HC08 compatible module interface.
* Two 16-bit module interfaces to the AMBA APB bus.

4

202/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.3 Block Diagram

The CAN Peripheral interfaces with the AMBA APB bus. Figure 29 shows the block diagram of
the CAN Peripheral.

CAN Core

CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of messages.
Message RAM

Stores Message Objects and Identifier Masks.

Registers

All registers used to control and to configure the CAN Peripheral.

Message Handler

State Machine that controls the data transfer between the Rx/Tx Shift Register of the CAN
Core and the Message RAM as well as the generation of interrupts as programmed in the
Control and Configuration Registers.

Module Interface

CAN Peripheral interfaces to the AMBA APB 16-bit bus from ARM.

Figure 29. Block Diagram of the CAN Peripheral

CAN_TX CAN_RX

b
CAN Peripheral |

oc

CAN CORE < U

[m]

=

<

T

U :

0]

— Message RAM - 5
i

=

— REGISTERS -

N

':\

S

L —> MODULE INTERFACE 2
<

(&)

Clock —Jpme
Reset —Jpm-
Interrupt g

Control
DatalN
DataOUT

Address(7:0)

4

203/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.4 Functional Description

18.4.1 Software Initialization

The software initialization is started by setting the Init bit in the CAN Control Register, either
by a software or a hardware reset, or by going to Bus_Off state.

While the Init bit is set, all message transfers to and from the CAN bus are stopped and the
status of the CAN_TX output pin is recessive (HIGH). The Error Management Logic (EML)
counters are unchanged. Setting the Init bit does not change any configuration register.

To initialize the CAN Controller, software has to set up the Bit Timing Register and each
Message Object. If a Message Object is not required, the corresponding MsgVal bit should be
cleared. Otherwise, the entire Message Object has to be initialized.

Access to the Bit Timing Register and to the BAud Rate Prescaler (BRP) Extension Register
for configuring bit timing is enabled when the Init and Configuration Change Enable (CCE) bits
in the CAN Control Register are both set.

Resetting the Init bit (by CPU only) finishes the software initialization. Later, the Bit Stream
Processor (BSP) (see Section 18.7.10: Configuring the Bit Timing on page 249)
synchronizes itself to the data transfer on the CAN bus by waiting for the occurrence of a
sequence of 11 consecutive recessive bits (= Bus Idle) before it can take part in bus activities
and start the message transfer.

The initialization of the Message Objects is independent of Init and can be done on the fly, but
the Message Obijects should all be configured to particular identifiers or set to not valid before
the BSP starts the message transfer.

To change the configuration of a Message Object during normal operation, software has to
start by resetting the corresponding MsgVal bit. When the configuration is completed, MsgVal
is set again.

18.4.2 CAN Message Transfer

Once the CAN Peripheral is initialized and Init bit is cleared, the CAN Peripheral Core
synchronizes itself to the CAN bus and starts the message transfer.

Received messages are stored in their appropriate Message Objects if they pass the
Message Handler’'s acceptance filtering. The whole message including all arbitration bits,
DLC and eight data bytes are stored in the Message Object. If the Identifier Mask is used, the
arbitration bits which are masked to “don’t care” may be overwritten in the Message Object.

Software can read or write each message any time through the Interface Registers and the
Message Handler guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the application software. If a permanent Message
Object (arbitration and control bits are set during configuration) exists for the message, only
the data bytes are updated and the TxRgst bit with NewDat bit are set to start the

204/401 172

STR720 - CONTROLLER AREA NETWORK (CAN)

transmission. If several transmit messages are assigned to the same Message Object (when
the number of Message Objects is not sufficient), the whole Message Object has to be
configured before the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time.
Message objects are transmitted subsequently according to their internal priority. Messages
may be updated or set to not valid any time, even when their requested transmission is still
pending. The old data will be discarded when a message is updated before its pending
transmission has started.

Depending on the configuration of the Message Object, the transmission of a message may
be requested autonomously by the reception of a remote frame with a matching identifier.

18.4.3 Disabled Automatic Re-Transmission Mode

In accordance with the CAN Specification (see ISO11898, 6.3.3 Recovery Management), the
CAN Peripheral provides means for automatic re-transmission of frames that have lost
arbitration or have been disturbed by errors during transmission. The frame transmission
service will not be confirmed to the user before the transmission is successfully completed.
This means that, by default, automatic retransmission is enabled. It can be disabled to enable
the CAN Peripheral to work within a Time Triggered CAN (TTCAN, see 1SO11898-1)
environment.

Disabled Automatic Retransmission mode is enabled by setting the Disable Automatic
Retransmission (DAR) bit in the CAN Control Register. In this operation mode, the
programmer has to consider the different behaviour of bits TxRgst and NewDat in the Control
Registers of the Message Buffers:

* When a transmission starts, bit TxRgst of the respective Message Buffer is cleared, while
bit NewDat remains set.

* When the transmission completed successfully, bit NewDat is cleared.

* When a transmission fails (lost arbitration or error), bit NewDat remains set.

To restart the transmission, the CPU should set the bit TxRgst again.

18.4.4 Test Mode

Test Mode is entered by setting the Test bit in the CAN Control Register. In Test Mode, bits
Tx1, Tx0, LBack, Silent and Basic in the Test Register are writeable. Bit Rx monitors the state
of the CAN_RX pin and therefore is only readable. All Test Register functions are disabled
when the Test bit is cleared.

4

205/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.4.5 Silent Mode

The CAN Core can be set in Silent Mode by programming the Silent bit in the Test Register to
one.

In Silent Mode, the CAN Peripheral is able to receive valid data frames and valid remote
frames, but it sends only recessive bits on the CAN bus and it cannot start a transmission. If
the CAN Core is required to send a dominant bit (ACK bit, Error Frames), the bit is rerouted
internally so that the CAN Core monitors this dominant bit, although the CAN bus may remain
in recessive state. The Silent Mode can be used to analyse the traffic on a CAN bus without
affecting it by the transmission of dominant bits. Figure 30 shows the connection of signals
CAN_TX and CAN_RX to the CAN Core in Silent Mode.

Figure 30. CAN Core in Silent Mode

CAN_TX CAN_RX

CAN Peripheral | L

Tx Rx
CAN Core

In ISO 11898-1, Silent Mode is called Bus Monitoring Mode.

18.4.6 Loop Back Mode

The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBack to
one. In Loop Back Mode, the CAN Core treats its own transmitted messages as received
messages and stores them in a Receive Buffer (if they pass acceptance filtering). Figure 31
shows the connection of signals, CAN_TX and CAN_RX, to the CAN Core in Loop Back
Mode.

4

206/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Figure 31. CAN Core in Loop Back Mode

CAN_TX CAN_RX

CAN Peripheral i

1

Tx Rx
CAN Core

This mode is provided for self-test functions. To be independent from external stimulation, the
CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/
remote frame) in Loop Back Mode. In this mode, the CAN Core performs an internal feedback
from its Tx output to its Rx input. The actual value of the CAN_RX input pin is disregarded by
the CAN Core. The transmitted messages can be monitored on the CAN_TX pin.

18.4.7 Loop Back Combined with Silent Mode

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBack
and Silent to one at the same time. This-mode can be used for a “Hot Selftest”, which means
that CAN Peripheral can be tested without affecting a running CAN system connected to the
CAN_TX and CAN_RX pins. In this mode, the CAN_RX pin is disconnected from the CAN
Core and the CAN_TX pin is held recessive. Figure 32 shows the connection of signals
CAN_TX and CAN_RX to the CAN Core in case of the combination of Loop Back Mode with
Silent Mode.

Figure 32. CAN Core in Loop Back Mode Combined with Silent Mode

CAN_TX CAN_RX

CAN Peripheral ‘ L
=1

Tx Rx
CAN Core

4

207/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.4.8 Basic Mode

The CAN Core can be set in Basic Mode by programming the Test Register bit Basic to one.
In this mode, the CAN Peripheral runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1
Registers are requested by writing the Busy bit of the IF1 Command Request Register to one.
The IF1 Registers are locked while the Busy bit is set. The Busy bit indicates that the
transmission is pending.

As soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN
Core and the transmission is started. When the transmission has been completed, the Busy
bit is reset and the locked IF1 Registers are released.

A pending transmission can be aborted at any time by resetting the Busy bit in the IF1
Command Request Register while the IF1 Registers are locked. If the CPU has reset the
Busy bit, a possible retransmission in case of lost arbitration or in case of an error is disabled.

The IF2 Registers are used as a Receive Buffer. After the reception of a message the
contents of the shift register is stored into the IF2 Registers, without any acceptance filtering.

Additionally, the actual contents of the shift register can be monitored during the message
transfer. Each time a read Message Object is initiated by writing the Busy bit of the IF2
Command Request Register to one, the contents of the shift register are stored in the IF2
Registers.

In Basic Mode, the evaluation of all Message Object related control and status bits and the
control bits of the IFn Command Mask Registers are turned off. The message number of the
Command request registers is not evaluated. The NewDat and MsgLst bits in the IF2
Message Control Register retain their function, DLC3-0 indicate the received DLC, and the
other control bits are read as ‘0.

18.4.9 Software Control of CAN_TX Pin

Four output functions are available for the CAN transmit pin, CAN_TX. In addition to its default
function (serial data output), the CAN transmit pin can drive the CAN Sample Point signal to
monitor CAN_Core’s bit timing and it can drive constant dominant or recessive values. The
latter two functions, combined with the readable CAN receive pin CAN_RX, can be used to
check the physical layer of the CAN bus.

The output mode for the CAN_TX pin is selected by programming the Tx1 and TxO0 bits of the
CAN Test Register.

The three test functions of the CAN_TX pin interfere with all CAN protocol functions. CAN_TX
must be left in its default function when CAN message transfer or any of the test modes (Loop
Back Mode, Silent Mode, or Basic Mode) are selected.

4

208/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.5 Register Description

The CAN Peripheral allocates an address space of 256 bytes. The registers are organized as

16-bit registers.

The two sets of interface registers (IF1 and IF2) control the CPU access to the Message RAM.
They buffer the data to be transferred to and from the RAM, avoiding conflicts between CPU

accesses and message reception/transmission.

In this section, the following abbreviations are used:

read/write (rw)

The software can read and write to these bits.

read-only (r)

The software can only read these bits.

write-only (w)

The software should only write to these bits.

The CAN registers are listed in Table 48.
Table 48. CAN Registers

Register Name Address Offset Reset Value

CAN Control Register (CAN_CR) 00h 0001h

Status Register (CAN_SR) 04h 0000h

Error Counter (CAN_ERR) 08h 0000h

Bit Timing Register (CAN_BTR) 0Ch 2301h

Test Register (CAN_TESTR) 14h 0000 0000 R000

0000 b

BRP Extension Register (CAN_BRPR) 18h 0000h

IFn Command Request Registers (CAN_IFn_CRR) 20h (CAN_IF1_CRR),
80h (CAN_IF2_CRR)

IFn Command Mask Registers (CAN_IFn_CMR) 24h (CAN_IF1_CMR), 0000h
84h (CAN_IF2_CMR)

IFn Mask 1 Register (CAN_IFn_M1R) 28h (CAN_IF1_M1R), FFFFh
88h (CAN_IF2_M1R)

IFn Mask 2 Register (CAN_IFn_M2R) 2Ch (CAN_IF1_M2R), FFFFh
8Ch (CAN_IF2_M2R)

IFn Message Arbitration 1 Register (CAN_IFn_A1R) 30h (CAN_IF1_A1R),90h | 0000h
(CAN_IF2_A1R)

IFn Message Arbitration 2 Register (CAN_IFn_A2R) 34h (CAN_IF1_A2R), 94h | 0000h
(CAN_IF2_A2R)

IFn Message Control Registers (CAN_IFn_MCR) 38h (CAN_IF1_MCR), 0000h
98h (CAN_IF2_MCR)

IFn Data A/B Registers (CAN_IFn_DAnR and CAN_IFn_DBnR)

Interrupt Identifier Register (CAN_IDR) 10h 0000h

Transmission Request Registers 1 & 2 (CAN_TxRnR) 100h (CAN_TxR1R), 0000 0000h
104h (CAN_TxR2R)

New Data Registers 1 & 2 (CAN_NDnR) 120h (CAN_ND1R), 124h | 0000 0000h
(CAN_ND2R)

[71 209/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Table 48. CAN Registers

Register Name Address Offset Reset Value
Interrupt Pending Registers 1 & 2 (CAN_IPnR) 140h (CAN_IP1R), 144h | 0000 0000h
(CAN_IP2R)
Message Valid Registers 1 & 2 (CAN_MVnR) 160h (CAN_MV1R), 164h | 0000 0000h
(CAN_MV2R)

18.5.1 CAN Interface Reset State

After the hardware reset, the CAN Peripheral registers hold the reset values given in the

register descriptions below.

Additionally the busoff state is reset and the output CAN_TX is set to recessive (HIGH). The
value 0x0001 (Init = 1’) in the CAN Control Register enables the software initialization. The
CAN Peripheral does not influence the CAN bus until the CPU resets the Init bit to ‘0’.

The data stored in the Message RAM is not affected by a hardware reset. After powering on,

the contents of the Message RAM are undefined.

18.5.2 CAN Protocol Related Registers

These registers are related to the CAN protocol controller in the CAN Core. They control the
operating modes and the configuration of the CAN bit timing and provide status information.

210/401

4

STR720 - CONTROLLER AREA NETWORK (CAN)

CAN Control Register (CAN_CR)

Address Offset: 00h
Reset value: 0001h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
@ ul x w w .
Reserved 2 8 <D(res O 5 IE Init
Bits 15:8 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’.
Bit 7 Test: Test Mode Enable
0: Normal Operation.
1: Test Mode.
Bit 6 CCE: Configuration Change Enable
0: No write access to the Bit Timing Register.
1: Write access to the Bit Timing Register allowed (while bit Init=1).
Bit 5 DAR: Disable Automatic Re-transmission
0: Automatic Retransmission of disturbed messages enabled.
1: Automatic Retransmission disabled.
Bit 4 Reserved
This is a reserved bit. This bit is always read as ‘0’ and must always be
written with ‘0’.
Bit 3 EIE: Error Interrupt Enable
0: Disabled - No Error Status Interrupt will be generated.
1: Enabled - A change in the bits BOff or EWarn in the Status Register will
generate an interrupt.
Bit 2

4

SIE: Status Change Interrupt Enable

0: Disabled - No Status Change Interrupt will be generated.

1: Enabled - An interrupt will be generated when a message transfer is
successfully completed or a CAN bus error is detected.

211/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Bit 1 IE: Module Interrupt Enable
0: Disabled.
1: Enabled.

Bit O Init Initialization

0: Normal Operation.
1: Initialization is started.

Note The busoff recovery sequence (see CAN Specification Rev. 2.0) cannot be
shortened by setting or resetting the Init bit. If the device goes in the busoff state, it
will set Init of its own accord, stopping all bus activities. Once Init has been cleared
by the CPU, the device will then wait for 129 occurrences of Bus Idle (129 * 11
consecutive recessive bits) before resuming normal operations. At the end of the
busoff recovery sequence, the Error Management Counters will be reset.

During the waiting time after resetting Init, each time a sequence of 11 recessive bits has
been monitored, a BitOError code is written to the Status Register, enabling the CPU to readily
check up whether the CAN bus is stuck at dominant or continuously disturbed and to monitor
the proceeding of the busoff recovery sequence.

4

212/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Status Register (CAN_SR)

Address Offset: 04h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
a c S o] @)
Reserved 8 E & X X LEC
r r r rw w rw
Bit 15:8 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’.
Bit 7 BOff: Busoff Status
0: The CAN module is not in busoff state.
1: The CAN module is in busoff state.
Bit 6 EWarn: Warning Status
0: Both error counters are below the error warning limit of 96.
1: At least one of the error counters in the EML has reached the error
warning limit of 96.
Bit 5 EPass: Error Passive
0: The CAN Core is error active.
1: The CAN Core is in the error passive state as defined in the CAN
Specification.
Bit 4 RxOk: Received a Message Successfully
0: No message has been successfully received since this bit was last reset
by the CPU. This bit is never reset by the CAN Core.
1: A message has been successfully received since this bit was last reset
by the CPU (independent of the result of acceptance filtering).
Bit 3 TxOk: Transmitted a Message Successfully

4

0: Since this bit was reset by the CPU, no message has been successfully
transmitted. This bit is never reset by the CAN Core.

1: Since this bit was last reset by the CPU, a message has been
successfully (error free and acknowledged by at least one other node)
transmitted.

213/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Bits 2:0

LECI[2:0]: Last Error Code (Type of the last error to occur on the CAN bus)
The LEC field holds a code, which indicates the type of the last error to
occur on the CAN bus. This field will be cleared to ‘0’ when a message has
been transferred (reception or transmission) without error. The unused code
‘7’ may be written by the CPU to check for updates. Table 49 describes the
error codes.

Table 49. Error Codes

Error Code

Meaning

No Error

Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a
received message where this is not allowed.

Form Error: A fixed format part of a received frame has the wrong format.

AckError: The message this CAN Core transmitted was not acknowledged by
another node.

Bit1Error: During the transmission of a message (with the exception of the arbitra-
tion field), the device wanted to send a recessive level (bit of logical value ‘1’), but
the monitored bus value was, dominant.

BitOError: During the transmission of a message (or acknowledge bit, or active
error flag, or overload flag), though the device wanted to send a dominant level
(data or identifier bit logical value ‘0’), but the monitored Bus value was recessive.
During busoff recovery, this status is set each time a sequence of 11 recessive bits
has been monitored. This enables the CPU to monitor the proceedings of the
busoff recovery sequence (indicating the bus is not stuck at dominant or continu-
ously disturbed).

CRCError: The CRC check sum was incorrect in the message received, the CRC
received for an incoming message does not match with the calculated CRC for the
received data.

Unused: When the LEC shows the value ‘7, no CAN bus event was detected since
the CPU wrote this value to the LEC.

214/401

4

STR720 - CONTROLLER AREA NETWORK (CAN)

Status Interrupts

A Status Interrupt is generated by bits BOff and EWarn (Error Interrupt) or by RxOk, TxOK,
and LEC (Status Change Interrupt) assuming that the corresponding enable bits in the CAN
Control Register are set. A change of bit EPass or a write to RxOk, TxOk, or LEC will never
generate a Status Interrupt.

Reading the Status Register will clear the Status Interrupt value (8000h) in the Interrupt
Register, if it is pending.

Error Counter (CAN_ERR)

Address Offset: 08h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RP REC[6:0] TEC[7:0]
r r r

Bit 15 RP: Receive Error Passive

0: The Receive Error Counter is below the error passive level.
1: The Receive Error Counter has reached the error passive level as
defined in the CAN Specification.

Bits 14:8 REC[6:0]: Receive Error Counter
Actual state of the Receive Error Counter. Values between 0 and 127.

Bits 7:0 TECI[7:0]: Transmit Error Counter
Actual state of the Transmit Error Counter. Values between 0 and 255.

4

215/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Bit Timing Register (CAN_BTR)

Address Offset: 0Ch

Reset value: 2301h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
res TSeg2 TSegl SIW BRP

Bit 15 Reserved
This is a reserved bit. This bit is always read as ‘0’ and must always be
written with ‘0’

Bits 14:12 TSeg2: Time segment after sample point
0x0-0x7: Valid values for TSeg2 are [0 ... 7]. The actual interpretation by
the hardware of this value is such that one more than the value
programmed here is used.

Bits 11:8 TSeg1: Time segment before the sample point minus Sync_Seg
0x01-0xOF: valid values for TSeg1 are [1 ... 15]. The actual interpretation
by the hardware of this value is such that one more than the value
programmed is used.

Bits 7:6 SJW: (Re)Synchronization Jump Width
0x0-0x3: Valid programmed values are [O ... 3]. The actual interpretation
by the hardware of this value is such that one more than the value
programmed here is used.

Bits 5:0 BRP: Baud Rate Prescaler

0x01-0x3F: The value by which the oscillator frequency is divided for
generating the bit time quanta. The bit time is built up from a multiple of this
quanta. Valid values for the Baud Rate Prescalerare [0 ... 63]. The actual
interpretation by the hardware of this value is such that one more than the
value programmed here is used.

Note With a module clock APB_CLK of 8 MHz, the reset value of 0x2301 configures the
CAN Peripheral for a bit rate of 500 kBit/s. The registers are only writable if bits CCE
and Init in the CAN Control Register are set.

216/401

4

STR720 - CONTROLLER AREA NETWORK (CAN)

Test Register (CAN_TESTR)

Address Offset: 14h
Reset value: 0000 0000 RO00 0000 b (R:current value of RX pin)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved & g g g g Res
Bits 15:8 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’.
Bit 7 Rx: Current value of CAN_RX Pin
0: The CAN bus is dominant (CAN_RX = ‘0’).
1: The CAN bus is recessive (CAN_RX = ‘1’).
Bit 6:5 Tx[1:0]: CAN_TX pin control
00: Reset value, CAN_TX is controlled by the CAN Core
01: Sample Point can be monitored at CAN_TX pin
10: CAN_TX pin drives a dominant (‘0’) value.
11: CAN_TX pin drives a recessive (‘1’) value.
Bit 4 LBack: Loop Back Mode
0: Loop Back Mode is disabled.
1: Loop Back Mode is enabled.
Bit 3 Silent: Silent Mode
0: Normal operation.
1: The module is in Silent Mode.
Bit 2 Basic: Basic Mode
0: Basic Mode disabled.
1: IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer.
Bits 1:0 Reserved.

These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’.

Write access to the Test Register is enabled by setting the Test bit in the CAN Control
Register. The different test functions may be combined, but Tx1-0 = “00” disturbs message

transfer.

(574

217/401

STR720 - CONTROLLER AREA NETWORK (CAN)

BRP Extension Register (CAN_BRPR)

Address Offset: 18h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved BRPE
rw

Bits 15:4 Reserved
These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’.

Bits 3:0 BRPE: Baud Rate Prescaler Extension
0x00-0xOF: By programming BRPE, the Baud Rate Prescaler can be
extended to values up to 1023. The actual interpretation by the hardware is
that one more than the value programmed by BRPE (MSBs) and BRP
(LSBs) is used.

218/401 KYI

STR720 - CONTROLLER AREA NETWORK (CAN)

18.5.3 Message Interface Register Sets

There are two sets of Interface Registers, which are used to control the CPU access to the
Message RAM. The Interface Registers avoid conflict between the CPU access to the
Message RAM and CAN message reception and transmission by buffering the data to be
transferred. A complete Message Object (see Section 18.5.3.2) or parts of the Message
Object may be transferred between the Message RAM and the IFn Message Buffer registers
(see Section 18.5.3.1) in one single transfer.

The function of the two interface register sets is identical except for the Basic test mode. They
can be used the way one set of registers is used for data transfer to the Message RAM while
the other set of registers is used for the data transfer from the Message RAM, allowing both
processes to be interrupted by each other. Table 50 IF1 and IF2 Message Interface Register
Set on page 219 provides an overview of the two Interface Register sets.

Each set of Interface Registers consists of Message Buffer Registers controlled by their own
Command Registers. The Command Mask Register specifies the direction of the data transfer
and which parts of a Message Object will be transferred. The Command Request Register is
used to select a Message Object in the Message RAM as target or source for the transfer and
to start the action specified in the Command Mask Register.

Table 50. IF1 and IF2 Message Interface Register Set

Address

IF1 Register Set

Address

IF2 Register Set

CAN Base + 0x20

IF1 Command Request

CAN Base + 0x80

IF2 Command Request

CAN Base + 0x24

IF1 Command Mask

CAN Base + 0x84

IF2 Command Mask

CAN Base + 0x28

IF1 Mask 1

CAN Base + 0x88

IF2 Mask 1

CAN Base + 0x2C

IF1 Mask 2

CAN Base + 0x8C

IF2 Mask 2

CAN Base + 0x30

IF1 Arbitration 1

CAN Base + 0x90

IF2 Arbitration 1

CAN Base + 0x34

IF1 Arbitration 2

CAN Base + 0x94

IF2 Arbitration 2

CAN Base + 0x38

IF1 Message Control

CAN Base + 0x98

IF2 Message Control

CAN Base + 0x3C IF1 Data A 1 CAN Base + 0x9C IF2 Data A 1
CAN Base + 0x40 IF1 Data A 2 CAN Base + 0xA0 IF2 Data A 2
CAN Base + 0x44 IF1 Data B 1 CAN Base + 0xA4 IF2 Data B 1
CAN Base + 0x48 IF1 DataB 2 CAN Base + 0xA8 IF2 Data B 2

4

219/401

STR720 - CONTROLLER AREA NETWORK (CAN)

IFn Command Request Registers (CAN_IFn_CRR)

Address offset: 20h (CAN_IF1_CRR), 80h (CAN_IF2_CRR)
Reset Value: 0001h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Busy Reserved Message Number

A message transfer is started as soon as the application software has written the message
number to the Command Request Register. With this write operation, the Busy bit is
automatically set to notify the CPU that a transfer is in progress. After a waiting time of 3 to 6
APB_CLK periods, the transfer between the Interface Register and the Message RAM is
completed. The Busy bit is cleared.

Bit 15 Busy: Busy Flag
0: Read/write action has finished.
1: Writing to the IFn Command Request Register is in progress.

This bit can only be read by the software.
Bits 14:6 Reserved

These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’.

Bits 5:0 Message Number
0x01-0x20: Valid Message Number, the Message Object in the Message
RAM is selected for data transfer.
0x00: Not a valid Message Number, interpreted as 0x20.
0x21-0x3F: Not a valid Message Number, interpreted as 0x071-Ox1F.

Note When a Message Number that is not valid is written into the Command Request
Register, the Message Number will be transformed into a valid value and that
Message Object will be transferred.

4

220/401

STR720 - CONTROLLER AREA NETWORK (CAN)

IFn Command Mask Registers (CAN_IFn_CMR)

Address offset: 24h (CAN_IF1_CMR), 84h (CAN_IF2_CMR)
Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
e}
[a)] c 23 < m
x I = o &
Reserved & 8 z g = g8 = kS
= Q = < @ I <
= o o - Z o a
rw rw rw w rw rw rw rw

The control bits of the IFn Command Mask Register specify the transfer direction and select
which of the IFn Message Buffer Registers are source or target of the data transfer.

Bits 15:8 Reserved

These are reserved bits. These bits are always read as ‘0’ and must always
be written with ‘0’

Bit 7 WR/RD: Write / Read
0: Read: Transfer data from the Message Object addressed by the
Command Request Register into the selected Message Buffer Registers.
1: Write: Transfer data from the selected Message Buffer Registers to the
Message Object addressed by the Command Request Register.

4

221/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Bits 6:0

222/401

These bits of IFn Command Mask Register have different functions
depending on the transfer direction:

Direction = Write

Bit 6 = Mask Access Mask Bits
0: Mask bits unchanged.
1: transfer Identifier Mask + MDir + MXtd to Message Object.

Bit 5 = Arb Access Arbitration Bits
0: Arbitration bits unchanged.
1: Transfer Identifier + Dir + Xtd + MsgVal to Message Object.

Bit 4 = Control Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to Message Object.

Bit 3 = ClrIntPnd Clear Interrupt Pending Bit
When writing to a Message Obiject, this bit is ignored.

Bit 2 = TxRqgst/NewDat Access Transmission Request Bit
0: TxRgst bit unchanged.
1: Set TxRgst bit.

If a transmission is requested by programming bit TxRgst/NewDat in the IFn
Command Mask Register, bit TxRgst in the IFn Message Control Register
will be ignored.

Bit 1 = Data A Access Data Bytes 3:0
0: Data Bytes 3:0 unchanged.
1: Transfer Data Bytes 3:0 to Message Object.

Bit 0 = Data B Access Data Bytes 7:4
0: Data Bytes 7:4 unchanged.
1: Transfer Data Bytes 7:4 to Message Object.

4

STR720 - CONTROLLER AREA NETWORK (CAN)

Bits 6:0

4

Direction = Read

Bit 6 = Mask: Access Mask Bits
0: Mask bits unchanged.
1: Transfer Identifier Mask + MDir + MXtd to IFn Message Buffer Register.

Bit 5 = Arb: Access Arbitration Bits
0: Arbitration bits unchanged.
1: Transfer Identifier + Dir + Xtd + MsgVal to IFn Message Buffer Register.

Bit 4 = Control: Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to IFn Message Buffer Register.

Bit 3 = ClrIntPnd: Clear Interrupt Pending Bit
0: IntPnd bit remains unchanged.
1: Clear IntPnd bit in the Message Object.

Bit 2 = TxRqgst/NewDat: Access Transmission Request Bit
0: NewDat bit remains unchanged.
1: Clear NewDat bit in the Message Object.

Note A read access to a Message Object can be combined with the
reset of the control bits IntPnd and NewDat. The values of these
bits transferred'to-the“IFh Message Control Register always reflect
the status before resetting these bits.

Bit 1 = Data A Access Data Bytes 3:0
0: Data Bytes 3:0 unchanged.
1: Transfer Data Bytes 3:0 to IFn Message Buffer Register.

Bit 0 = Data B Access Data Bytes 7:4
0: Data Bytes 7:4 unchanged.
1: Transfer Data Bytes 7:4 to IFn Message Buffer Register.

223/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.5.3.1 IFn Message Buffer Registers

The bits of the Message Buffer registers mirror the Message Objects in the Message RAM.
The function of the Message Objects bits is described in Section 18.5.3.2: Message Object in
the Message Memory on page 227.

IFn Mask 1 Register (CAN_IFn_M1R)

Address offset: 28h (CAN_IF1_M1R), 88h (CAN_IF2_M1R)
Reset Value: FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Msk([15:0]

The function of the Msk bits is described in Section 18.5.3.2: Message Object in the Message
Memory on page 227.

IFn Mask 2 Register (CAN_IFn_M2R)

Address offset: 2Ch (CAN_IF1_M2R), 8Ch (CAN_IF2_M2R)
Reset Value: FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MXtd MDir Res Msk[28:16]

The function of the Message Objects bits is described in the Section 18.5.3.2: Message
Object in the Message Memory on page 227.

224/401

4

STR720 - CONTROLLER AREA NETWORK (CAN)

IFn Message Arbitration 1 Register (CAN_IFn_A1R)

Address offset: 30h (CAN_IF1_A1R), 90h (CAN_IF2_A1R)
Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID[15:0]

The function of the Message Objects bits is described in the Section 18.5.3.2: Message
Object in the Message Memory on page 227.

IFn Message Arbitration 2 Register (CAN_IFn_A2R)

Address offset: 34h (CAN_IF1_A2R), 94h (CAN_IF2_A2R)
Reset Value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MsgVal Xtd Dir ID[28:16]
w w w rw

The function of the Message Objects bits is described in the Section 18.5.3.2: Message
Object in the Message Memory on page 227.

IFn Message Control Registers (CAN_IFn_MCR)

Address offset: 38h (CAN_IF1_MCR), 98h (CAN_IF2_MCR)
Reset Value: 0000h

-

© k7 o < c @

(o - c] w w | j=d o0

2 > o g = < E X o Reserved DLC[3:0]
: g = = & = i

z = =] 14 =

w w w w w w w w w

The function of the Message Objects bits is described in the Section 18.5.3.2: Message
Object in the Message Memory on page 227.

(574

225/401

STR720 - CONTROLLER AREA NETWORK (CAN)

IFn Data A/B Registers (CAN_IFn_DAnR and CAN_IFn_DBnR)

The data bytes of CAN messages are stored in the IFn Message Buffer Registers in the
following order:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IFl(l;Ac?;;aS%eoligg Al Data(1) Data(0)
IF1 (Zgjf:sg;eo?(igz; A2 Data(3) Data(2)
i sage et oaay Daac
IFl(l\;Igjrs;gSeOE))(itga; B2 Data(7) Data(6)
IFZ(I;Ac?;rseaS%eoligg Al Data(1) Data(0)
Feessae Da 2 oaa(y Dae(d
" essage e oaay Daach
IFZ(I;/I(;%;;&\SgSeOBzg B2 Data(7) Data(6)
w w

In a CAN Data Frame, Data(0) is the first, Data(7) is the last byte to be transmitted or received.
In CAN’s serial bit stream, the MSB of each byte will be transmitted first.

vww.DataSheet4U.com

226/401 172

STR720 - CONTROLLER AREA NETWORK (CAN)

18.5.3.2 Message Object in the Message Memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between CPU access
to the Message RAM and CAN message reception and transmission, the CPU cannot directly
access the Message Objects, these accesses are handled through the IFn Interface
Registers.

Table 51 provides an overview of the structures of a Message Object.

Table 51. Structure of a Message Object in the Message Memory

Message Object
M Ms
UMa Msk M RxI | TxI Int Rmt TxRq
sk | 280 ﬁt pir | E°B | NewDat gts E | E | Pnd| En st
Msg 1D28- Xt Dir DLC Dat | Dat Dat Dat | Dat Dat Data Data 7
Val 0 d 3-0 ao al az a3 ad ab 6

The Arbitration Registers 1D28-0, Xtd, and Dir are used to define the identifier and type of
outgoing messages and are used (together with the mask registers Msk28-0, MXtd, and MDir)
for acceptance filtering of incoming messages. A received message is stored in the valid
Message Object with matching identifier and direction set to receive (Data Frame) or transmit
(Remote Frame). Extended frames can be ‘stored‘only in Message Objects with Xtd set,
standard frames in Message Objects with Xtd clear. If a received message (Data Frame or
Remote Frame) matches more than one valid Message Object, it is stored into that with the
lowest message number. For details see Section “Acceptance Filtering of Received
Messages”.

MsgVal Message Valid

1: The Message Object is configured and should be considered by the
Message Handler.

0: The Message Object is ignored by the Message Handler.

Note The application software must reset the MsgVal bit of all unused
Messages Objects during the initialization before it resets bit Init
in the CAN Control Register. This bit must also be reset before the
identifier 1d28-0, the control bits Xtd, Dir, or the Data Length Code
DLC3-0 are modified, or if the Messages Object is no longer
required.

4

227/401

STR720 - CONTROLLER AREA NETWORK (CAN)

UMask

ID28-0

Msk28-0

Xtd

MXtd

228/401

Use Acceptance Mask
1: Use Mask (Msk28-0, MXtd, and MDir) for acceptance filtering.
0: Mask ignored.

Note If the UMask bit is set to one, the Message Object’'s mask bits
have to be programmed during initialization of the Message
Object before MsgVal is set to one.

Message Identifier

ID28 - IDO, 29-bit Identifier (“Extended Frame”)

ID28 - ID18, 11-bit Identifier (“Standard Frame”)

Identifier Mask

1: The corresponding identifier bit is used for acceptance filtering.

0: The corresponding bit in the identifier of the message object cannot
inhibit the match in the acceptance filtering.

Extended Identifier

1: The 29-bit (“extended”).Identifier will be used for this Message
Object.

0: The 11-bit (“standard”) Identifier will be used for this Message Object.
Mask Extended Identifier
1: The extended identifier bit (IDE) is used for acceptance filtering.

0: The extended identifier bit (IDE) has no effect on the acceptance
filtering.

Note When 11-bit (“standard”) Identifiers are used for a Message
Object, the identifiers of received Data Frames are written into
bits 1D28 to ID18. For acceptance filtering, only these bits
together with mask bits Msk28 to Msk18 are considered.

4

STR720 - CONTROLLER AREA NETWORK (CAN)

Dir Message Direction

1: Direction = transmit: On TxRqgst, the respective Message Object is
transmitted as a Data Frame. On reception of a Remote Frame with
matching identifier, the TxRqgst bit of this Message Object is set (if RmtEn =
one).

0: Direction = receive: On TxRgst, a Remote Frame with the identifier of
this Message Obiject is transmitted. On reception of a Data Frame with
matching identifier, that message is stored in this Message Object.

MDir Mask Message Direction
1: The message direction bit (Dir) is used for acceptance filtering.

0: The message direction bit (Dir) has no effect on the acceptance filtering.

EoB End of Buffer
1: Single Message Object or last Message Object of a FIFO Buffer.

0: Message Object belongs to a FIFO Buffer and is not the last
Message Object of that FIFO Buffer.

Note This bit is used to concatenate two or more Message Objects (up
to 32) to build a FIFO Buffer. For single Message Objects (not
belonging to a FIFO Buffer), this bit must always be set to one.
For details on the concatenation of Message Objects see Section
“Configuring a FIFO Buffer”.

NewDat New Data

1: The Message Handler or the application software has written new data
into the data portion of this Message Object.

0: No new data has been written into the data portion of this Message
Object by the Message Handler since last time this flag was cleared by the
application software.

MsgLst Message Lost (only valid for Message Objects with direction = receive)

1: The Message Handler stored a new message into this object when
NewDat was still set, the CPU has lost a message.

0: No message lost since last time this bit was reset by the CPU.

4

229/401

STR720 - CONTROLLER AREA NETWORK (CAN)

RxIE

TxIE

IntPnd

RmtEn

TxRgst

230/401

Receive Interrupt Enable
1: IntPnd will be set after a successful reception of a frame.

0: IntPnd will be left unchanged after a successful reception of a
frame.

Transmit Interrupt Enable
1: IntPnd will be set after a successful transmission of a frame.

0: IntPnd will be left unchanged after the successful transmission of a
frame.

Interrupt Pending

1: This message object is the source of an interrupt. The Interrupt Identifier
in the Interrupt Register will point to this message object if there is no other
interrupt source with higher priority.

0:This message object is not the source of an interrupt.

Remote Enable

1: At the reception of a Remote Frame, TxRgst is set.

0: At the reception of a Remote Frame, TxRgst is left unchanged.
Transmit Request

1: The transmission of this Message Object is requested and is not yet
done.

0: This Message Object is not waiting for transmission.

4

STR720 - CONTROLLER AREA NETWORK (CAN)

DLC3-0 Data Length Code
0-8: Data Frame has 0-8 data bytes.
9-15: Data Frame has 8 data bytes

Note The Data Length Code of a Message Object must be defined the
same as in all the corresponding objects with the same identifier
at other nodes. When the Message Handler stores a data frame, it
will write the DLC to the value given by the received message.

Data 0: 1st data byte of a CAN Data Frame
Data 1: 2nd data byte of a CAN Data Frame
Data 2: 3rd data byte of a CAN Data Frame
Data 3: 4th data byte of a CAN Data Frame
Data 4: 5th data byte of a CAN Data Frame
Data 5: 6th data byte of a CAN Data Frame
Data 6: 7th data byte of a CAN Data Frame
Data 7 : 8th data byte of a CAN Data Frame

Note The Data 0 Byte is the first data byte shifted into the shift register
of the CAN Core during a reception while the Data 7 byte is the
last. When the Message Handler stores a Data Frame, it will write
all the eight data bytes into a Message Object. If the Data Length
Code is less than 8, the remaining bytes of the Message Object
will be overwritten by unspecified values.

4

231/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.5.4 Message Handler Registers

All Message Handler registers are read-only. Their contents, TxRqst, NewDat, IntPnd, and
MsgVal bits of each Message Object and the Interrupt Identifier is status information provided
by the Message Handler FSM.

Interrupt Identifier Register (CAN_IDR)

Address Offset: 10h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Intld[15:0]
r
Bits 15:0 Intld15:0 Interrupt Identifier (Table 52 indicates the source of the interrupt)

If several interrupts are pending, the CAN Interrupt Register will point to the
pending interrupt with the highest priority, disregarding their chronological
order. An interrupt remains pending until the application software has
cleared it. If Intld is different from 0x0000 and IE is set, the IRQ interrupt
signal to the EIC is active. The interrupt remains active until Intld is back to
value 0x0000 (the cause of the interrupt is reset) or until IE is reset.

The Status Interrupt has the highest priority. Among the message
interrupts, the Message Object’ s interrupt priority decreases with
increasing message number.

A message interrupt is cleared by clearing the Message Object’s IntPnd
bit. The Status Interrupt is cleared by reading the Status Register.

Table 52. Source of Interrupts

0x0000 No Interrupt is Pending

0x0001-0x0020

Number of Message Object which caused the interrupt.

0x0001-0x0020

Number of Message Object which caused the interrupt.

0x0021-0x7FFF

unused

0x8000

Status Interrupt

0x8001-0xFFFF

unused

232/401

4

STR720 - CONTROLLER AREA NETWORK (CAN)

Transmission Request Registers 1 & 2 (CAN_TxRnR)

Address Offset: 100h (CAN_TxR1R), 104h (CAN_TxR2R)
Reset Value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TXRQst[32:17]

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxRqst[16:1]

r

These registers hold the TxRgst bits of the 32 Message Objects. By reading the TxRgst bits,
the CPU can check which Message Object in a Transmission Request is pending. The TxRqgst
bit of a specific Message Object can be set/reset by the application software through the IFn
Message Interface Registers or by the Message Handler after reception of a Remote Frame
or after a successful transmission.

Bits 31:16 TxRqst32-17 Transmission Request Bits (of all Message Objects)
0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

These bits are read only.

Bits 15:0 TxRqgst16-1 Transmission Request Bits (of all Message Objects)
0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

These bits are read only.

4

233/401

STR720 - CONTROLLER AREA NETWORK (CAN)

New Data Registers 1 & 2 (CAN_NDnR)

Address Offset: 120h (CAN_ND1R), 124h (CAN_ND2R)
Reset Value: 0000 0000h

31 30

28 27 26 25 24 23 22 21 20 19 18 17 16

NewDat[32:17]

15 14

12 11 10 9 8 7 6 5 4 3 2 1 0

NewDat[16:1]

These registers hold the NewDat bits of the 32 Message Objects. By reading out the NewDat
bits, the CPU can check for which Message Object the data portion was updated. The
NewDat bit of a specific Message Object can be set/reset by the CPU through the IFn
Message Interface Registers or by the Message Handler after reception of a Data Frame or
after a successful transmission.

Bits 31:16

Bits 15:0

234/401

NewDat32-17 New Data Bits (of all Message Objects)

0: No new data has been written into the data portion of this Message
Object by the Message Handler since the last time this flag was cleared by
the application software.

1: The Message Handler or the application software has written new data
into the data portion of this Message Object.

NewDat16-1 New Data Bits (of all Message Objects)

0: No new data has been written into the data portion of this Message
Object by the Message Handler since the last time this flag was cleared by
the application software.

1: The Message Handler or the application software has written new data
into the data portion of this Message Object.

4

STR720 - CONTROLLER AREA NETWORK (CAN)

Interrupt Pending Registers 1 & 2 (CAN_IPnR)

Address Offset: 140h (CAN_IP1R), 144h (CAN_IP2R)
Reset Value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IntPnd[32:17]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntPnd[16:1]

These registers contain the IntPnd bits of the 32 Message Objects. By reading the IntPnd
bits, the CPU can check for which Message Object an interrupt is pending. The IntPnd bit of a
specific Message Object can be set/reset by the application software through the IFn
Message Interface Registers or by the Message Handler after reception or after a successful
transmission of a frame. This will also affect the value of Intld in the Interrupt Register.

Bits 31:16 IntPnd32-17 Interrupt Pending Bits (of all Message Objects)
0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

Bits 15:0 IntPnd16-1 Interrupt Pending Bits (of all Message Objects)
0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

4

235/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Message Valid Registers 1 & 2 (CAN_MVnR)

Address Offset: 160h (CAN_MV1R), 164h (CAN_MV2R)
Reset Value: 0000 0000h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MsgVal[32:17]
r
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MsgVal[16:1]

These registers hold the MsgVal bits of the 32 Message Objects. By reading the MsgVal bits,
the application software can check which Message Object is valid. The MsgVal bit of a specific
Message Object can be set/reset by the application software via the IFn Message Interface

Registers.
Bits 31:16 MsgVal32-17 Message Valid Bits (of all Message Objects)
0: This Message Object is ignored by the Message Handler.
1: This Message Object is configured and should be considered by the
Message Handler.
Bits 15:0 MsgVal16-1 Message Valid Bits (of all Message Obijects)
0: This Message Object is ignored by the Message Handler.
1: This Message Object is configured and should be considered by the
Message Handler.
236/401

4

STR720 - CONTROLLER AREA NETWORK (CAN)

18.6 Register Map

Table 53. CAN Register Map

Addr) 1 1 1 1 1 1
offset Register Name : p 3 > 1 o 9 8 7 6 5 4 3 2 1 0
b 1] @
00h CAN_CR Reserved 3 <| ' g Wi e | it
[o a s w 2
= = 7 X x
04h CAN_SR Reserved o) g & Q Q LEC
@ w [} a4 =
o8h CAN_ERR E REC6-0 TEC7-0
och CAN_BTR f TSeg2 TSegl Saw BRP
10h CAN_IDR Intld15-8 Intld7-0
— o 5 € L
14h CAN_TESTR Reserved & X X & ° a Reserved
= (7] m
18h CAN_BRPR Reserved BRPE
B
20h CAN_IF1_CRR u Reserved Message Number
sy
2l #| 2| 2| &| B| | ¢
24h CAN_IF1_CMR Reserved & 3 S 5 Z g| £ g
= = o 5 = la) a
28h CAN_IF1_M1R Msk15-0
M M re
2Ch CAN_IF1_M2R | Xt | Di S Msk28-16
d r
30h CAN_IF1_A1IR ID15-0
M
S | xt | bi
34h CAN_IF1_A2R g p . 1D28-16
v
al

4

vww.DataSheet4U.com

237/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Table 53. CAN Register Map

Addr) 1 1 1 1 1 1
offset Register Name 5 2 3 > 1 0 9 8 7 6 5 4 3 2 1 0
T i e X W W 5 @ o
38h CAN_IF1_MCR g §v a g = < £ g 8 Reserved DLC3-0
Ll S| E| 5| 7| | 2| £
3ch CAN—'E—DM Data(1) Data(0)
40h CANIFLDAZ Data(3) Data(2)
44h CAN—'E—DBl Data(5) Data(4)
48h CAN—'E—DBZ Data(7) Data(6)
80h CAN_IF2_CRR u Reserved Message Number
sy
gl 2| o| 2| E| B| <] =
84h | CAN_IF2_CMR Reserved g| 8| 2| 5| 2| €| & g
= = o 5 & la) a
8sh CAN_IF2_M1R Msk15-0
M M re
8Ch CAN_IF2_M2R Xt | Di s Msk28-16
d r
90h CAN_IF2_A1R ID15-0
M
S | xt | bi
94h CAN_IF2_A2R g ID28-16
d r
v
al
8 E 2 é w w | g om
98h CAN_IF2_MCR = 2 Q = = < € 14 S Reserved DLC3-0
2 = £ 5 = & 4 [
ach CAN—';Z—DM Data(1) Data(0)

vww.DataSheet4U.com

238/401 172

STR720 - CONTROLLER AREA NETWORK (CAN)

Table 53. CAN Register Map

Addr . 1 1 1 1 1 1
offset Register Name 5 2 3 > 1 0 8 7 4 3 2 1 0
AOh CAN—';Z—DAZ Data(3) Data(2)
Adh CAN—'EZ—DBl Data(5) Data(4)
Agh CAN—';Z—DBZ Data(7) Data(6)
100h CAN_TxR1R TxRqst16-1
104h CAN_TxR2R TxRqst32-17
120h CAN_NDI1R NewDat16-1
124h CAN_ND2R NewDat32-17
140h CAN_IP1R IntPnd16-1
144h CAN_IP2R IntPnd32-17
160h CAN_MVIR MsgVall6-1
164h CAN_MV2R MsgVal32-17
Note Reserved bits are read as 0’ except for IFn Mask 2 Register where they are read as

4

1.

vww.DataSheet4U.com

239/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7 CAN Communications

18.7.1 Managing Message Objects

The configuration of the Message Objects in the Message RAM (with the exception of the bits
MsgVal, NewDat, IntPnd, and TxRqgst) will not be affected by resetting the chip. All the
Message Objects must be initialized by the application software or they must be “not valid”
(MsgVal = ‘0’) and the bit timing must be configured before the application software clears the
Init bit in the CAN Control Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control
and Data fields of one of the two interface registers to the desired values. By writing to the
corresponding IFn Command Request Register, the IFn Message Buffer Registers are loaded
into the addressed Message Object in the Message RAM.

When the Init bit in the CAN Control Register is cleared, the CAN Protocol Controller state
machine of the CAN_Core and state machine of the Message Handler control the internal
data flow of the CAN Peripheral. Received messages that pass the acceptance filtering are
stored in the Message RAM, messages with pending transmission request are loaded into the
CAN_Core’s Shift Register and are transmitted through the CAN bus.

The application software reads received messages and updates messages to be transmitted
through the IFn Interface Registers. Depending on the configuration, the CPU is interrupted
on certain CAN message and CAN error events.

18.7.2 Message Handler State Machine

The Message Handler controls the data transfer between the Rx/Tx Shift Register of the CAN
Core, the Message RAM and the IFn Registers.

The Message Handler FSM controls the following functions:

* Data Transfer from IFn Registers to the Message RAM

* Data Transfer from Message RAM to the IFn Registers

e Data Transfer from Shift Register to the Message RAM

* Data Transfer from Message RAM to Shift Register

* Data Transfer from Shift Register to the Acceptance Filtering unit
e Scanning of Message RAM for a matching Message Object

* Handling of TxRgst flags

* Handling of interrupts.

4

240/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7.2.1 Data Transfer from/to Message RAM

When the CPU initiates a data transfer between the IFn Registers and Message RAM, the
Message Handler sets the Busy bit in the respective Command Request Register
(CAN_IFn_CRR). After the transfer has completed, the Busy bit is again cleared (see Figure
33).

The respective Command Mask Register specifies whether a complete Message Object or
only parts of it will be transferred. Due to the structure of the Message RAM, it is not possible
to write single bits/bytes of one Message Object. It is always necessary to write a complete
Message Object into the Message RAM. Therefore, the data transfer from the IFn Registers to
the Message RAM requires a read-modify-write cycle. First, those parts of the Message
Object that are not to be changed are read from the Message RAM and then the complete
contents of the Message Buffer Registers are written into the Message Object.

Figure 33. Data transfer between IF n Registers and Message RAM

No

Write Command Request Register

Busy = 1
CAN_WAIT_B=0

Read Message Object to IFn

Read Message Object to IFn +

Write IFn to Message RAM

Y

Busy =0
CAN_WAIT_B=1

4

241/401

STR720 - CONTROLLER AREA NETWORK (CAN)

After a partial write of a Message Object, the Message Buffer Registers that are not selected
in the Command Mask Register will set the actual contents of the selected Message Object.

After a partial read of a Message Object, the Message Buffer Registers that are not selected
in the Command Mask Register will be left unchanged.

18.7.2.2 Message Transmission

If the shift register of the CAN Core cell is ready for loading and if there is no data transfer
between the IFn Registers and Message RAM, the MsgVal bits in the Message Valid Register
and TxRgst bits in the Transmission Request Register are evaluated. The valid Message
Object with the highest priority pending transmission request is loaded into the shift register
by the Message Handler and the transmission is started. The NewDat bit of the Message
Object is reset.

After a successful transmission and also if no new data was written to the Message Object
(NewDat = ‘0’) since the start of the transmission, the TxRgst bit of the Message Control
register (CAN_IFn_MCR) will be reset. If TxIE bit of the Message Control register
(CAN_IFn_MCR) is set, IntPnd bit of the Interrupt Identifier register (CAN_IDR) will be set
after a successful transmission. If the CAN Peripheral has lost the arbitration or if an error
occurred during the transmission, the message will be retransmitted as soon as the CAN bus
is free again. Meanwhile, if the transmission of a message with higher priority has been
requested, the messages will be transmitted in the order of their priority.

18.7.2.3 Acceptance Filtering of Received Messages

When the arbitration and control field (Identifier + IDE + RTR + DLC) of an incoming message
is completely shifted into the Rx/Tx Shift Register of the CAN Core, the Message Handler
FSM starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is
loaded with the arbitration bits from the CAN Core shift register. The arbitration and mask
fields (including MsgVal, UMask, NewDat, and EoB) of Message Object 1 are then loaded into
the Acceptance Filtering unit and compared with the arbitration field from the shift register.
This is repeated with each following Message Object until a matching Message Obiject is
found or until the end of the Message RAM is reached.

If a match occurs, the scan is stopped and the Message Handler FSM proceeds depending on
the type of frame (Data Frame or Remote Frame) received.

4

242/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Reception of Data Frame

The Message Handler FSM stores the message from the CAN Core shift register into the
respective Message Object in the Message RAM. Not only the data bytes, but all arbitration
bits and the Data Length Code are stored in the corresponding Message Obiject. This is done
to keep the data bytes connected with the identifier even if arbitration mask registers are used.

The NewDat bit is set to indicate that new data (not yet seen by the CPU) has been received.
The application software should reset NewDat bit when the Message Object has been read. If
at the time of reception, the NewDat bit was already set, MsgLst is set to indicate that the
previous data (supposedly not seen by the CPU) is lost. If the RxIE bit is set, the IntPnd bit is
set, causing the Interrupt Register to point to this Message Object.

The TxRgst bit of this Message Obiject is reset to prevent the transmission of a Remote
Frame, while the requested Data Frame has just been received.

Reception of Remote Frame

When a Remote Frame is received, three different configurations of the matching Message
Object have to be considered:

1) Dir = ‘1’ (direction = transmit), RmtEn = ‘1’, UMask = ‘1’ or'(0’
At the reception of a matching Remote Frame, the TxRgst bit of this Message Object is set.
The rest of the Message Object remains unchanged.

2) Dir = ‘1’ (direction = transmit), RmtEn =0, UMask ="0’
At the reception of a matching Remote Frame, the TxRgst bit of this Message Object remains
unchanged; the Remote Frame is ignored.

3) Dir = ‘1’ (direction = transmit), RmtEn = ‘0’, UMask =1’

At the reception of a matching Remote Frame, the TxRgst bit of this Message Object is reset.
The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register is stored
in the Message Object of the Message RAM and the NewDat bit of this Message Object is set.
The data field of the Message Object remains unchanged; the Remote Frame is treated
similar to a received Data Frame.

18.7.2.4 Receive/Transmit Priority

The receive/transmit priority for the Message Objects is attached to the message number.
Message Object 1 has the highest priority, while Message Object 32 has the lowest priority. If
more than one transmission request is pending, they are serviced due to the priority of the
corresponding Message Obiject.

4

243/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7.3 Configuring a Transmit Object

Table 54 shows how a Transmit Object should be initialized.

Table 54. Initialization of a Transmit Object

S| e g 2 |z | s| S| 2|e| ¢« |8 €& |&
jo2 = X X

< [a] = e
g [a) S w g é’ a4 ~ i= & ﬁ
1 appl. appl. appl. 1 1 0 0 0 appl. 0 appl. 0

The Arbitration Register values (ID28-0 and Xtd bit) are provided by the application. They
define the identifier and type of the outgoing message. If an 11-bit Identifier (“Standard
Frame”) is used, it is programmed to ID28 - ID18. The ID17 - ID0O can then be disregarded.

If the TXIE bit is set, the IntPnd bit will be set after a successful transmission of the Message
Object.

If the RmtEn bit is set, a matching received Remote Frame will cause the TxRgst bit to be set;
the Remote Frame will autonomously be answered by a Data Frame.

The Data Register values (DLC3-0, Data0-7) are provided by the application, TxRqgst and
RmtEn may not be set before the data is valid.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask="1") to
allow groups of Remote Frames with similar identifiers to set the TxRqgst bit. The Dir bit should
not be masked.

18.7.4 Updating a Transmit Object

The CPU may update the data bytes of a Transmit Object any time through the IFn Interface
registers, neither MsgVal nor TxRqgst have to be reset before the update. Even if only a part of
the data bytes are to be updated, all four bytes of the corresponding IFn Data A Register or
IFn Data B Register have to be valid before the contents of that register are transferred to the
Message Obiject. Either the CPU has to write all four bytes into the IFn Data Register or the
Message Obiject is transferred to the IFn Data Register before the CPU writes the new data
bytes.

When only the (eight) data bytes are updated, first 0x0087 is written to the Command Mask
Register and then the number of the Message Object is written to the Command Request
Register, concurrently updating the data bytes and setting TxRgst.

To prevent the reset of TxRqgst at the end of a transmission that may already be in progress
while the data is updated, NewDat has to be set together with TxRgst. For details see Section
18.7.2.2: Message Transmission on page 242.

When NewDat is set together with TxRqgst, NewDat will be reset as soon as the new
transmission has started.

244/401 ﬁ

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7.5 Configuring a Receive Object

Table 55 shows how a Receive Object should be initialized.

Table 55. Initialization of a Receive Object

S e | g &2 | 8| s || 3| ¢ |e| &%) ¢
< w &) 7} o x = £

g 8 . g | £ & | F g | & | E

1 appl. appl. appl. 1 0 0 0 appl. 0 0 0 0

The Arbitration Registers values (ID28-0 and Xtd bit) are provided by the application. They
define the identifier and type of accepted received messages. If an 11-bit Identifier (“Standard
Frame”) is used, it is programmed to ID28 - ID18. Then ID17 - IDO can be disregarded. When
a Data Frame with an 11-bit Identifier is received, ID17 - IDO will be set to ‘0’.

If the RxIE bit is set, the IntPnd bit will be set when a received Data Frame is accepted and
stored in the Message Object.

The Data Length Code (DLCS-0) is provided by the application. When the Message Handler
stores a Data Frame in the Message Object, it will store the received Data Length Code and
eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message
Object will be overwritten by unspecified values.

The Mask Registers (Msk28-0, UMask, MXtd, and MDir bits) may be used (UMask='1") to
allow groups of Data Frames with similar identifiers to be accepted. The Dir bit should not be
masked in typical applications.

18.7.6 Handling Received Messages

The CPU may read a received message any time via the IFn Interface registers. The data
consistency is guaranteed by the Message Handler state machine.

Typically, the CPU will write first 0x007F to the Command Mask Register and then the number
of the Message Obiject to the Command Request Register. This combination will transfer the
whole received message from the Message RAM into the Message Buffer Register.
Additionally, the bits NewDat and IntPnd are cleared in the Message RAM (not in the Message
Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits shows which of
the matching messages have been received.

The actual value of NewDat shows whether a new message has been received since the last
time this Message Object was read. The actual value of MsgLst shows whether more than
one message has been received since the last time this Message Object was read. MsgLst
will not be automatically reset.

ﬁ 245/401

STR720 - CONTROLLER AREA NETWORK (CAN)

By means of a Remote Frame, the CPU may request another CAN node to provide new data
for a receive object. Setting the TxRgst bit of a receive object will cause the transmission of a
Remote Frame with the receive object’s identifier. This Remote Frame triggers the other CAN
node to start the transmission of the matching Data Frame. If the matching Data Frame is
received before the Remote Frame could be transmitted, the TxRqgst bit is automatically reset.

18.7.7 Configuring a FIFO Buffer

With the exception of the EoB bit, the configuration of Receive Objects belonging to a FIFO
Buffer is the same as the configuration of a (single) Receive Object, see Section 18.7.5:
Configuring a Receive Object on page 245.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks (if
used) of these Message Objects have to be programmed to matching values. Due to the
implicit priority of the Message Objects, the Message Object with the lowest number will be
the first Message Object of the FIFO Buffer. The EoB bit of all Message Objects of a FIFO
Buffer except the last have to be programmed to zero. The EoB bits of the last Message
Object of a FIFO Buffer is set to one, configuring it as the End of the Block.

18.7.8 Receiving Messages with FIFO Buffers

Received messages with identifiers matching to a FIFO Buffer are stored in a Message Object
of this FIFO Buffer starting with the Message Object with the lowest message number.

When a message is stored in a Message Object of a FIFO Buffer, the NewDat bit of this
Message Obiject is set. By setting NewDat while EoB is zero, the Message Object is locked for
further write access by the Message Handler until the application software has written the
NewDat bit back to zero.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is
reached. If none of the preceding Message Objects is released by writing NewDat to zero, all
further messages for this FIFO Buffer will be written into the last Message Object of the FIFO
Buffer and therefore overwrite previous messages.

18.7.8.1 Reading from a FIFO Buffer

When the CPU transfers the contents of a Message Object to the IFn Message Buffer register
by writing its number to the IFn Command Request Register, the corresponding Command
Mask Register should be programmed in such a way that bits NewDat and IntPnd are reset to
zero (TxRgst/NewDat = ‘1’ and ClrIntPnd = ‘1’). The values of these bits in the Message
Control Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read the Message Objects
starting at the FIFO Object with the lowest message number.

Figure 34 shows how a set of Message Objects which are concatenated to a FIFO Buffer can
be handled by the CPU.

246/401 ﬁ

STR720 - CONTROLLER AREA NETWORK (CAN)

Figure 34. CPU Handling of a FIFO Buffer

Message Interrupt

Read Interrupt Pointer

v

case Interrupt Pointer
0x8000h else 0x0000h

Status Change
Interrupt Handling

MessageNum = Interrupt Pointer

-~

Write MessageNum to IFn Command Request

(Read Message to IFn Registers,
Reset NewDat = 0,
Reset IntPnd = 0)

v

Read IFn Message Control

No

Yes

Read Data from IFn Data A,B

Yes

EoB =1

No

MessageNum = MessageNum + 1

I

247/401

4

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7.9 Handling Interrupts

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt
with the highest priority, disregarding their chronological order. An interrupt remains pending
until the application software has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, interrupt priority
of the Message Object decreases with increasing message number.

A message interrupt is cleared by clearing the IntPnd bit of the Message Object. The Status
Interrupt is cleared by reading the Status Register.

The interrupt identifier, Intld, in the Interrupt Register, indicates the cause of the interrupt.
When no interrupt is pending, the register will hold the value zero. If the value of the Interrupt
Register is different from zero, then there is an interrupt pending and, if IE is set, the IRQ
interrupt signal to the EIC is active. The interrupt remains active until the Interrupt Register is
back to value zero (the cause of the interrupt is reset) or until IE is reset.

The value 0x8000 indicates that an interrupt is pending because the CAN Core has updated
(not necessarily changed) the Status Register (Error Interrupt or Status Interrupt). This
interrupt has the highest priority. The CPU can update (reset) the status bits RxOk, TxOk and
LEC, but a write access of the CPU to the Status Register can never generate or reset an
interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects. Intld
points to the pending message interrupt with the highest interrupt priority.

The CPU controls whether a change of the Status Register may cause an interrupt (bits EIE
and SIE in the CAN Control Register) and whether the interrupt line becomes active when the
Interrupt Register is different from zero (bit IE in the CAN Control Register). The Interrupt
Register will be updated even when IE is reset.

The CPU has two possibilities to follow the source of a message interrupt. First, it can follow
the Intld in the Interrupt Register and second it can poll the Interrupt Pending Register (see
See “Interrupt Pending Registers 1 & 2 (CAN_IPnR)” on page 235.).

An interrupt service routine that is reading the message that is the source of the interrupt may
read the message and reset the Message Object’s IntPnd at the same time (bit ClrintPnd in
the Command Mask Register). When IntPnd is cleared, the Interrupt Register will point to the
next Message Object with a pending interrupt.

4

248/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7.10 Configuring the Bit Timing

Even if minor errors in the configuration of the CAN bit timing do not result in immediate
failure, the performance of a CAN network can be reduced significantly.

In many cases, the CAN bit synchronization will amend a faulty configuration of the CAN bit
timing to such a degree that only occasionally an error frame is generated. However, in the
case of arbitration, when two or more CAN nodes simultaneously try to transmit a frame, a
misplaced sample point may cause one of the transmitters to become error passive.

The analysis of such sporadic errors requires a detailed knowledge of the CAN bit
synchronization inside a CAN node and interaction of the CAN nodes on the CAN bus.

18.7.10.1 Bit Time and Bit Rate

CAN supports bit rates in the range of lower than 1 kBit/s up to 1000 kBit/s. Each member of
the CAN network has its own clock generator, usually a quartz oscillator. The timing
parameter of the bit time (i.e. the reciprocal of the bit rate) can be configured individually for
each CAN node, creating a common bit rate even though the oscillator periods of the CAN
nodes (fosc) Mmay be different.

The frequencies of these oscillators are not absolutely stable, small variations are caused by
changes in temperature or voltage and by deteriorating components. As long as the variations
remain inside a specific oscillator tolerance range (df), the CAN nodes are able to
compensate for the different bit rates by -re-synchronizing to the bit stream.

According to the CAN specification, the bit time is divided into four segments (see Figure 35).
The Synchronization Segment, the Propagation Time Segment, the Phase Buffer Segment 1
and the Phase Buffer Segment 2. Each segment consists of a specific, programmable number
of time quanta (see Table 56). The length of the time quantum (ty), which is the basic time unit
of the bit time, is defined by the CAN controller’s system clock fapg and the BRP bit of the Bit
Timing Register (CAN_BTR): t; = BRP / fopp.

The Synchronization Segment, Sync_Seg, is that part of the bit time where edges of the CAN
bus level are expected to occur. The distance between an edge, that occurs outside of
Sync_Seg, and the Sync_Seg is called the phase error of that edge. The Propagation Time
Segment, Prop_Seg, is intended to compensate for the physical delay times within the CAN
network. The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample
Point. The (Re-)Synchronization Jump Width (SJW) defines how far a re-synchronization may
move the Sample Point inside the limits defined by the Phase Buffer Segments to compensate
for edge phase errors.

4

249/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Figure 35. Bit Timing

’4

Nominal CAN Bit Time —»‘

Sync_
Seg

Prop_Seg Phase_Seg1 Phase_Seg?2

IIQ?JIIIIIIII

1 Time Quantum

(tq) Sample Point

Table 56. CAN Bit Time Parameters

Parameter Range Remark
BRP [1..32] defines the length of the time quantum t
Sync_Seg 1 fixed length, synchronization of bus input to system clock
Prop_Seg [1..8]tq compensates for the physical delay times
Phase_Seg1 [1..8] g may be lengthened temporarily by synchronization
Phase_Seg2 [1..8lq may be shortened temporarily by synchronization
SJW [1..4]tq may not be longer than either Phase Buffer Segment

This table describes the minimum programmable ranges required by the CAN protocol

A given bit rate may be met by different bit time configurations, but for the proper function of
the CAN network the physical delay times and the oscillator’'s tolerance range have to be

considered.

250/401

4

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7.10.2 Propagation Time Segment

This part of the bit time is used to compensate physical delay times within the network. These
delay times consist of the signal propagation time on the bus and the internal delay time of the
CAN nodes.

Any CAN node synchronized to the bit stream on the CAN bus will be out of phase with the
transmitter of that bit stream, caused by the signal propagation time between the two nodes.
The CAN protocol’'s non-destructive bitwise arbitration and the dominant acknowledge bit
provided by receivers of CAN messages requires that a CAN node transmitting a bit stream
must also be able to receive dominant bits transmitted by other CAN nodes that are
synchronized to that bit stream. The example in Figure 36 shows the phase shift and
propagation times between two CAN nodes.

Figure 36. Propagation Time Segment

Hl Sync_Seg [Prop_Seg [] Phase_Seg1 [Phase_Seg2

Node A

Delay A_to_B >= node output delay(A) + bus line delay(A—B) + node input delay(B)
Prop_Seg >= Delay A_to_B + Delay B_to_A

Prop_Seg >= 2 * [max(node output delay+ bus line delay + node input delay)]

In this example, both nodes A and B are transmitters, performing an arbitration for the CAN
bus. Node A has sent its Start of Frame bit less than one bit time earlier than node B, therefore
node B has synchronized itself to the received edge from recessive to dominant. Since node
B has received this edge delay (A_to_B) after it has been transmitted, B’s bit timing segments
are shifted with respect to A. Node B sends an identifier with higher priority and so it will win
the arbitration at a specific identifier bit when it transmits a dominant bit while node A
transmits a recessive bit. The dominant bit transmitted by node B will arrive at node A after the
delay (B_to_A).

Due to oscillator tolerances, the actual position of node A’'s Sample Point can be anywhere
inside the nominal range of node A’s Phase Buffer Segments, so the bit transmitted by node B

vww.DataSheet4U.com

ﬁ 251/401

STR720 - CONTROLLER AREA NETWORK (CAN)

must arrive at node A before the start of Phase_Seg1. This condition defines the length of
Prop_Seg.

If the edge from recessive to dominant transmitted by node B arrives at node A after the start
of Phase_Seg1, it can happen that node A samples a recessive bit instead of a dominant bit,
resulting in a bit error and the destruction of the current frame by an error flag.

The error occurs only when two nodes arbitrate for the CAN bus that have oscillators of
opposite ends of the tolerance range and that are separated by a long bus line. This is an
example of a minor error in the bit timing configuration (Prop_Seg to short) that causes
sporadic bus errors.

Some CAN implementations provide an optional 3 Sample Mode but the CAN Peripheral does
not. In this mode, the CAN bus input signal passes a digital low-pass filter, using three
samples and a majority logic to determine the valid bit value. This results in an additional input
delay of 1 ty, requiring a longer Prop_Seg.

18.7.10.3 Phase Buffer Segments and Synchronization

The Phase Buffer Segments (Phase_Seg1 and Phase_Seg?2) and the Synchronization Jump
Width (SJW) are used to compensate for the oscillator tolerance. The Phase Buffer Segments
may be lengthened or shortened by synchronization.

Synchronizations occur on edges from recessive to dominant, their purpose is to control the
distance between edges and Sample Points.

Edges are detected by sampling the actual bus level in each time quantum and comparing it
with the bus level at the previous Sample Point. A synchronization may be done only if a
recessive bit was sampled at the previous Sample Point and if the bus level at the actual time
quantum is dominant.

An edge is synchronous if it occurs inside of Sync_Seg, otherwise the distance between edge
and the end of Sync_Seg is the edge phase error, measured in time quanta. If the edge
occurs before Sync_Seg, the phase error is negative, else it is positive.

Two types of synchronization exist, Hard Synchronization and Re-synchronization.

A Hard Synchronization is done once at the start of a frame and inside a frame only when
Re-synchronizations occur.

e Hard Synchronization
After a hard synchronization, the bit time is restarted with the end of Sync_Seg,
regardless of the edge phase error. Thus hard synchronization forces the edge, which has
caused the hard synchronization to lie within the synchronization segment of the restarted
bit time.

* Bit Re-synchronization
Re-synchronization leads to a shortening or lengthening of the bit time such that the
position of the sample point is shifted with regard to the edge.

252/401 172

STR720 - CONTROLLER AREA NETWORK (CAN)

When the phase error of the edge which causes Re-synchronization is positive,
Phase_Seg1 is lengthened. If the magnitude of the phase error is less than SJW,
Phase_Seg1 is lengthened by the magnitude of the phase error, else it is lengthened by
SJW.

When the phase error of the edge, which causes Re-synchronization is negative,
Phase_Seg2 is shortened. If the magnitude of the phase error is less than SJW,
Phase_Seg2 is shortened by the magnitude of the phase error, else it is shortened by
SJW.

When the magnitude of the phase error of the edge is less than or equal to the programmed
value of SJW, the results of Hard Synchronization and Re-synchronization are the same. If the
magnitude of the phase error is larger than SJW, the Re-synchronization cannot compensate
the phase error completely, an error (phase error - SUW) remains.

Only one synchronization may be done between two Sample Points. The Synchronizations
maintain a minimum distance between edges and Sample Points, giving the bus level time to
stabilize and filtering out spikes that are shorter than (Prop_Seg + Phase_Seg1).

Apart from noise spikes, most synchronizations are caused by arbitration. All nodes
synchronize “hard” on the edge transmitted by the “leading” transceiver that started
transmitting first, but due to propagation delay times, they cannot become ideally
synchronized. The “leading” transmitter does not necessarily win the arbitration, therefore the
receivers have to synchronize themselves to different transmitters that subsequently “take the
lead” and that are differently synchronized to the previously “leading” transmitter. The same
happens at the acknowledge field, where the transmitter and some of the receivers will have
to synchronize to that receiver that “takes the lead” in the transmission of the dominant
acknowledge bit.

Synchronizations after the end of the arbitration will be caused by oscillator tolerance, when
the differences in the oscillator’s clock periods of transmitter and receivers sum up during the
time between synchronizations (at most ten bits). These summarized differences may not be
longer than the SJW, limiting the oscillator’s tolerance range.

The examples in Figure 37 show how the Phase Buffer Segments are used to compensate for
phase errors. There are three drawings of each two consecutive bit timings. The upper
drawing shows the synchronization on a “late” edge, the lower drawing shows the
synchronization on an “early” edge, and the middle drawing is the reference without
synchronization.

4

253/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Figure 37. Synchronization on “late” and “early” Edges

recessive

Rx-Input ‘late” Edge | dominant

v v
N - |

Sample-Point Sample-Point
e n
Sample-Point Sample-Point
Sample-Point Sample-Point
_ L A
W R recessive
Rx-Input | “early” Edge dominant

Il Sync_Seg WM Prop_Seg [Phase_Seg1 [Phase_Seg2

In the first example, an edge from recessive to dominant occurs at the end of Prop_Seg. The
edge is “late” since it occurs after the Sync_Seg. Reacting to the “late” edge, Phase_Seg1 is
lengthened so that the distance from the edge to the Sample Point is the same as it would
have been from the Sync_Seg to the Sample Point if no edge had occurred. The phase error
of this “late” edge is less than SJW, so it is fully compensated and the edge from dominant to
recessive at the end of the bit, which is one nominal bit time long, occurs in the Sync_Seg.

In the second example, an edge from recessive to dominant occurs during Phase_Seg2. The
edge is “early” since it occurs before a Sync_Seg. Reacting to the “early” edge, Phase_Seg2
is shortened and Sync_Seg is omitted, so that the distance from the edge to the Sample Point
is the same as it would have been from an Sync_Seg to the Sample Point if no edge had
occurred. As in the previous example, the magnitude of phase error of this “early” edge’s is
less than SJW, so it is fully compensated.

The Phase Buffer Segments are lengthened or shortened temporarily only; at the next bit
time, the segments return to their nominal programmed values.

In these examples, the bit timing is seen from the point of view of the CAN state machine,
where the bit time starts and ends at the Sample Points. The state machine omits Sync_Seg
when synchronizing on an “early” edge, because it cannot subsequently redefine that time
quantum of Phase_Seg2 where the edge occurs to be the Sync_Seg.

vww.DataSheet4U.com

254/401 ﬁ

STR720 - CONTROLLER AREA NETWORK (CAN)

The examples in Figure 38 show how short dominant noise spikes are filtered by
synchronizations. In both examples the spike starts at the end of Prop_Seg and has the
length of “Prop_Seg + Phase_Seg1”.

Figure 38. Filtering of Short Dominant Spikes

. recessive
Rx-Input Spike dominant
[
| |
—p Sample-Point Sample-Point

SJW > Phase Error

. recessive
Rx-Input Spike dominant
|
1 1 ‘
| |
+—p Sample-Point Sample-Point

SJW < Phase Error

Il Sync_Seg [Prop_Seg " [1 Phase_Segl [Phase_Seg2

In the first example, the Synchronization Jump Width is greater than or equal to the phase
error of the spike’s edge from recessive to dominant. Therefore the Sample Point is shifted
after the end of the spike; a recessive bus level is sampled.

In the second example, SJW is shorter than the phase error, so the Sample Point cannot be
shifted far enough; the dominant spike is sampled as actual bus level.

vww.DataSheet4U.com

4

255/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7.10.4 Oscillator Tolerance Range

The oscillator tolerance range was increased when the CAN protocol was developed from
version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to
synchronize on edges from dominant to recessive became obsolete, only edges from
recessive to dominant are considered for synchronization. The only CAN controllers to
implement protocol version 1.1 have been Intel 82526 and Philips 82C200, both are
superseded by successor products. The protocol update to version 2.0 (A and B) had no
influence on the oscillator tolerance.

The tolerance range df for an oscillator frequency fys. around the nominal frequency fon, is:
(1-dfyef <f . <(1+df)ef

nom — "0SC —

It depends on the proportions of Phase_Seg1, Phase_Seg2, SJW, and the bit time. The
maximum tolerance df is the defined by two conditions (both shall be met):

min(Phase Segl, Phase Seg?)

[df< ——
2 - (13- bit_time — Phase_Seg2)

SJW
: cOIW
I Ohc_20-bit_time
It has to be considered that SUW may-not belarger .than the smaller of the Phase Buffer
Segments and that the Propagation Time Segment limits that part of the bit time that may be
used for the Phase Buffer Segments.

The combination Prop_Seg=1 and Phase_Seg1 = Phase_Seg2 = SJW =4 allows the
largest possible oscillator tolerance of 1.58%. This combination with a Propagation Time
Segment of only 10% of the bit time is not suitable for short bit times; it can be used for bit
rates of up to 125 kBit/s (bit time = 8 us) with a bus length of 40 m.

4

256/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7.10.5 Configuring the CAN Protocol Controller

In most CAN implementations and also in the CAN Peripheral, the bit timing configuration is
programmed in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSEG1) is
combined with Phase_Seg2 (as TSEG2) in one byte, SUW and BRP are combined in the
other byte (see Figure 39 on page 257).

In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to be
programmed to a numerical value that is one less than its functional value. Therefore, instead
of values in the range of [1..n], values in the range of [0..n-1] are programmed. That way, e.g.
SJW (functional range of [1..4]) is represented by only two bits.

Therefore the length of the bit time is (programmed values) [TSEG1 + TSEG2 + 3] t; or
(functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg?2] t,.

Figure 39. Structure of the CAN Core’s CAN Protocol Controller

@ Configuration (BRP)
System CBCH Baudrate_ _ Scaled_Clock (tq) -
Prescaler v Control
. 5 <
Sample_Point 2 Status
F— A 8 >
Sampled_Bit 9: 09_
Receive_Data i
L Bit Eync_Mode : %
Timing . -E -
Logic MQA\ = Received_Data_Bit
Transmit_Data Bus Off .
4_7. 1
— - Send_Message
Control\l/ {}
Next_Data BTt Shift-Register I

Received_Message
Configuration (TSEG1, TSEG2, SJ

The data in the bit timing registers is the configuration input of the CAN protocol controller.
The Baud Rate Prescaler (configured by BRP) defines the length of the time quantum, the
basic time unit of the bit time; the Bit Timing Logic (configured by TSEG1, TSEG2, and SJW)
defines the number of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and
occasional synchronizations are controlled by the BTL state machine, which is evaluated once

ﬁ 257/401

STR720 - CONTROLLER AREA NETWORK (CAN)

each time quantum. The rest of the CAN protocol controller, the BSP state machine is
evaluated once each bit time, at the Sample Point.

The Shift Register sends the messages serially and receives the messages parallely. Its
loading and shifting is controlled by the BSP.

The BSP translates messages into frames and vice versa. It generates and discards the
enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC
code, performs the error management, and decides which type of synchronization is to be
used. It is evaluated at the Sample Point and processes the sampled bus input bit. The time
that is needed to calculate the next bit to be sent after the Sample point(e.g. data bit, CRC bit,
stuff bit, error flag, or idle) is called the Information Processing Time (IPT).

The IPT is application specific but may not be longer than 2 ty; the IPT for the CAN Peripheral
is 0 ty. Its length is the lower limit of the programmed length of Phase_Seg2. In case of a
synchronization, Phase_Seg2 may be shortened to a value less than IPT, which does not
affect bus timing.

18.7.10.6 Calculating Bit Timing Parameters

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time.
The resulting bit time (1/bit rate) must be an integer multiple of the system clock period.

The bit time may consist of 4 to 25 time quanta, the length of the time quantum t, is defined by
the Baud Rate Prescaler with t, = (Baud-Rate Prescaler)/fss. Several combinations may lead
to the desired bit time, allowing iterations of the following steps.

First part of the bit time to be defined is the Prop_Seg. Its length depends on the delay times
measured in the system. A maximum bus length as well as a maximum node delay has to be
defined for expandible CAN bus systems. The resulting time for Prop_Seg is converted into
time quanta (rounded up to the nearest integer multiple of ty).

The Sync_Seg is 1 t, long (fixed), leaving (bit time — Prop_Seg — 1) t,, for the two Phase Buffer
Segments. If the number of remaining tq is even, the Phase Buffer Segments have the same
length, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.

The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may
not be shorter than the IPT of the CAN controller, which, depending on the actual
implementation, is in the range of [0..2] t,,.

The length of the Synchronization Jump Width is set to its maximum value, which is the
minimum of 4 and Phase_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the
formulas given in Section 18.7.10.4: Oscillator Tolerance Range on page 256

If more than one configuration is possible, that configuration allowing the highest oscillator
tolerance range should be chosen.

258/401 ﬁ

STR720 - CONTROLLER AREA NETWORK (CAN)

CAN nodes with different system clocks require different configurations to come to the same
bit rate. The calculation of the propagation time in the CAN network, based on the nodes with
the longest delay times, is done once for the whole network.

The oscillator tolerance range of the CAN systems is limited by that node with the lowest
tolerance range.

The calculation may show that bus length or bit rate have to be decreased or that the stability
of the oscillator frequency has to be increased in order to find a protocol compliant
configuration of the CAN bit timing.

The resulting configuration is written into the Bit Timing Register:
(Phase_Seg2-1)&(Phase_Seg1+Prop_Seg-1)&
(SynchronisationdumpWidth-1)&(Prescaler-1)

Example for Bit Timing at High Baudrate
In this example, the frequency of APB_CLK is 10 MHz, BRP is 0, the bit rate is 1 MBit/s.

tq 100 ns =taPB_CLK

delay of bus driver 50 ns

delay of receiver circuit 30 ns

delay of bus line (40m) 220 ns

trop 600 ns =6-et

tsyw 100 ns =1°1,

tTsegf 700 ns = tprop + tsyw

trsege 200 ns = Information Processing Time + 1 ¢ t,
tsync-Seg 100 ns =1e1,

bit time 1000 ns = tsync-Seg * tTsegt + trseg2
tolerance for APB_CLK 0.39 %

min(PB1, PB2)
2x(13x(bit time — PB2))

0.1us
2X(13x(1us-0.2us))

4

259/401

STR720 - CONTROLLER AREA NETWORK (CAN)

In this example, the concatenated bit time parameters are (2-1)3&(7-1)4&(1-1),&(1-1)g, the Bit
Timing Register is programmed to= 0x1600.

Example for Bit Timing at Low Baudrate
In this example, the frequency of APB_CLK is 2 MHz, BRP is 1, the bit rate is 100 KBit/s.

tq 1 ps =2 *tApB_CLK

delay of bus driver 200 ns

delay of receiver circuit 80 ns

delay of bus line (40m) 220 ns

tprop 1 us =1ty

tsuw 4 us =41,

trsegt 5 us = tprop + tsuw

trsege 4 us = Information Processing Time + 3 ¢ t,
tsync-Seg 1 us =1e1,

bit time 10 us = tsync-seg * trsegt + trseg2
tolerance for APB_CLK 1.58 %

min(PB1, PB2)
2x(13x(bit time — PB2))

dps
2x(13x(10ps - 4pus))

In this example, the concatenated bit time parameters are (4-1)3&(5-1)4&(4-1),&(2-1)e, the Bit
Timing Register is programmed to= 0x34C1.

4

260/401

STR720 - CONTROLLER AREA NETWORK (CAN)

18.7.11 Register Map
A summary of the CAN Peripheral registers is given in the following table.

Refer to Table 20 on page 49 for the base address..
Table 57. CAN Register Map

Addr Register Name 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset
k7] w c w w .

00h CAN_CR Reserved ° 8 <Dn: res O o IE Init
= < @ = X

04h CAN_SR Reserved S|l S| & & ¢ LEC
@ w [} o =

08h CAN_ERR RP REC6-0 TEC7-0

0Ch CAN_BTR res TSeg2 TSeg1 SJW BRP

10h CAN_IDR Intld15-8 Intld7-0
« - o S = 2

14h CAN_TESTR Reserved g X X S 2o e Reserved

=} n oM

18h CAN_BRPR Reserved BRPE

20h CAN_IF1_CRR | Busy Reserved Message Number
2l 5| o| 2| E]| 38| 5|

24h CAN_IF1_CMR Reserved z| 8| 2| 5| E| €| £ g
z | = S| 5| | o | o

28h CAN_IF1_M1R Msk15-0

2Ch CAN_IF1_M2R | MXtd | MDir | res Msk28-16

30h CAN_IF1_A1R ID15-0

34h CAN_IF1_A2R “\"/Z? xtd | Dir ID28-16

© ? ° x w w 5 @
sh | cAFiMCR | S| Bl 2| S| X| x| E| €| 8 Reserved DLC3-0
2| =|E| S| ||| &

3Ch CAN_IF1_DA1R Data(1) Data(0)

40h CAN_IF1_DA2R Data(3) Data(2)

44h CAN_IF1_DB1R Data(5) Data(4)

48h CAN_IF1_DB2R Data(7) Data(6)

80h CAN_IF2_CRR | Busy Reserved Message Number

vww.DataSheet4U.com

4

261/401

STR720 - CONTROLLER AREA NETWORK (CAN)

Table 57. CAN Register Map

Sf‘gt RegisterName | 15 | 14 | 13 [12 | 11 |10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 1 0
84h | CAN_IF2_CMR Reserved % E: Z Eﬁ g :‘% % g
= | = 3 = a o

88h | CAN_IF2_M1R Msk15-0
8Ch | CAN_IF2_M2R | MXtd | MDir | res Msk28-16
90h CAN_IF2_A1R ID15-0
94h CAN_IF2_A2R “\"/Z? Xtd | Dir ID28-16
98h | CAN_IF2_MCR § % £ g A= % g Reserved DLC3-0

|l 2| E| S| F ||| 2™
9Ch | CAN_IF2_DAIR Data(1) Data(0)
AOh | CAN_IF2_DA2R Data(3) Data(2)
A4h | CAN_IF2_DBIR Data(5) Data(4)
Ash | CAN_IF2_DB2R Data(7) Data(6)
100h CAN_TxR1R TXRgst16-1
104h CAN_TxR2R TxRgst32-17
120h CAN_ND1R NewDat16-1
124h CAN_ND2R NewDat32-17
140h CAN_IP1R IntPnd16-1
144h CAN_IP2R IntPnd32-17
160h CAN_MV1R MsgVal16-1
164h CAN_MV2R MsgVal32-17

www.DataSheet4U.com

262/401 ﬁ

STR720 - USB SLAVE INTERFACE (USB)

19 USB SLAVE INTERFACE (USB)

19.1 Introduction

The USB Peripheral implements an interface between a full-speed USB 2.0 bus and the APB
bus.

USB suspend/resume are supported which allows to stop the device clocks for low power
consumption.

19.2 Main Features
* Configurable number of endpoints from 1 to 8.

* Cyclic Redundancy Check (CRC) generation/checking, Non-Return-to-Zero Inverted
(NRZI) encoding/decoding and bit-stuffing.

* Isochronous transfers support.
e Double-buffered bulk endpoint support.
e USB Suspend/Resume operations.

* Frame locked clock pulse generation.

19.3 Block Diagram
Figure 40 shows the block diagram of the USB Peripheral.

4

263/401

STR720 - USB SLAVE INTERFACE (USB)

Figure 40. USB Peripheral Block Diagram

¢D+ ¢D-
Analog [] USB Clock
Transceiver [] PCLK
usB
Clock ~&—% Control
RX-TX »-| registers & logic
Suspend | _ Recovery
Timer Control ,
EndeInt P Interrupt
S.|.E. Selection »| registers & logic
Packet <—+ | | |
Buffer Endpoint Endpoint
Interface &% Registers [| Registers
- A A
Y y Y ¥ Y
At gi:‘:flc(aert Register Interrupt
rbiter <>
Memory Mapper Mapper
APB wrapper
APB Interface

TPCLK ¢ APB bus IRQs to Ele

264/401

STR720 - USB SLAVE INTERFACE (USB)

19.4 Functional Description

The USB Peripheral provides an USB compliant connection between the host PC and the
function implemented by the microcontroller. Data transfer between the host PC and the
system memory occurs through a dedicated packet buffer memory accessed directly by the
USB Peripheral. The size of this dedicated buffer memory must be according to the number of
endpoints used and the maximum packet size. In this implementation, the dedicated memory
of 512 Byte and up to 8 endpoints can be used. The USB Peripheral interfaces with the USB
host, detecting token packets, handling data transmission/reception, and processing
handshake packets as required by the USB standard. Transaction formatting is performed by
the hardware, including CRC generation and checking.

Each endpoint is associated with a buffer description block indicating where the endpoint
related memory area is located, how large it is or how many bytes must be transmitted. When
a token for a valid function/endpoint pair is recognized by the USB Peripheral, the related data
transfer (if required and if the endpoint is configured) takes place. The data buffered by the
USB Peripheral is loaded in an internal 16 bit register and memory access to the dedicated
buffer is performed. When all the data has been transferred, if needed, the proper handshake
packet over the USB is generated or expected according to the direction of the transfer.

At the end of the transaction, an endpoint-specific interrupt is generated, reading status
registers and/or using different interrupt response routines. The microcontroller can
determine:

* which endpoint has to be served

* which type of transaction took place, if errors occurred (bit stuffing, format, CRC, protocol,
missing ACK, over/underrun, etc).

Two interrupt lines are generated by the USB Peripheral : one IRQ collecting high priority
endpoint interrupts (isochronous and double-buffered bulk) and another IRQ collecting all
other interrupt sources (check the IRQ interrupt vector table for detailed interrupt source

mapping).

Special support is offered to Isochronous transfers and high throughput bulk transfers,
implementing a double buffer usage, which allows to always have an available buffer for the
USB Peripheral while the microcontroller uses the other one.

The unit can be placed in low-power mode (SUSPEND mode), by writing in the control
register, whenever required. At this time, all static power dissipation is avoided, and the USB
clock can be slowed down or stopped. The detection of activity at the USB inputs, while in
low-power mode, wakes the device up asynchronously. A special interrupt source can be
connected directly to a wake-up line to allow the system to immediately restart the normal
clock generation and/or support direct clock start/stop.

4

265/401

STR720 - USB SLAVE INTERFACE (USB)

19.4.1 Description of USB Blocks

The USB Peripheral implements all the features related to USB interfacing, which include the
following blocks:

Serial Interface Engine (SIE): The functions of this block include: synchronization pattern
recognition, bit-stuffing, CRC generation and checking, PID verification/generation, and
handshake evaluation. It must interface with the USB transceivers and uses the virtual
buffers provided by the packet buffer interface for local data storage,. This unit also
generates signals according to USB Peripheral events, such as Start of Frame (SOF),
USB_Reset, Data errors etc. and to Endpoint related events like end of transmission or
correct reception of a packet; these signals are then used to generate interrupts.

Suspend Timer: This block generates the frame locked clock pulse for any external device
requiring Start-of-Frame synchronization and it detects a global suspend (from the host)
when no traffic has been received for 3 mS.

Packet Buffer Interface: This block manages the local memory implementing a set of
buffers in a flexible way, both for transmission and reception. It can choose the proper
buffer according to requests coming from the SIE and locate them in the memory
addresses pointed by the Endpoint registers. It increments the address after each
exchanged word until the end of packet, keeping track of the number of exchanged bytes
and preventing the buffer to overrun the maximum capacity.

Endpoint-Related Registers: Each endpoint has an associated register containing the
endpoint type and its current status. For mono-directional/single-buffer endpoints, a single
register can be used to implement two distinct endpoints. In this implementation, the
number of registers is 8, allowing up to 8 double-buffer endpoints or up to 16
mono-directional/single-buffer ones in any combination.

Control Registers: These are the registers containing information about the status of the
whole USB Peripheral and used to force some USB events, such as resume and
power-down.

Interrupt Registers: These contain the Interrupt masks and a record of the events. They
can be used to inquire an interrupt reason, the interrupt status or to clear the status of a
pending interrupt.

The USB Peripheral is connected to the APB bus through an APB interface, containing the
following blocks:

Packet Memory: This is the local memory that physically contains the Packet Buffers. It
can be used by the Packet Buffer interface, which creates the data structure and can be
accessed directly by the application software. The size of the Packet Memory is 512
Bytes, structured as 256 words by 16 bits.

Arbiter: This block accepts memory requests coming from the APB bus and from the USB
interface. It resolves the conflicts by giving priority to APB accesses, while always
reserving half of the memory bandwidth to complete all USB transfers. This time-duplex

266/401 172

STR720 - USB SLAVE INTERFACE (USB)

scheme implements a virtual dual-port RAM that allows memory access, while an USB
transaction is happening. Multi-word APB transfers of any length are also allowed by this
scheme.

* Register Mapper: This block collects the various byte-wide and bit-wide registers of the
USB Peripheral in a structured 16-bit wide word set addressed by the APB.

* Interrupt Mapper: This block is used to select how the possible USB events can generate
interrupts and map them to IRQ lines of the EIC.

* APB Wrapper: This provides an interface to the APB for the memory and register. It also
maps the whole USB Peripheral in the APB address space.

19.5 Programming Considerations

In the following sections, the expected interactions between the USB Peripheral and the
application program are described, in order to ease application software development.

19.5.1 Generic USB Device Programming

This part describes the main tasks required of the application software in order to obtain USB
compliant behaviour. The actions related to the most general USB events are taken into
account and paragraphs are dedicated to the special cases of double-buffered endpoints and
Isochronous transfers. Apart from system reset, action is always initiated by the USB
Peripheral, driven by one of the USB events described below.

19.5.2 System and Power-On Reset

Upon system and power-on reset, the first operation the application software should perform
is to provide all required clock signals to the USB Peripheral and subsequently de-assert its
reset signal so to be able to access its registers. The whole initialization sequence is hereafter
described.

As a first step application software needs to activate register macrocell clock and de-assert
macrocell specific reset signal using related control bits provided by device clock
management logic.

After that the analog part of the device related to the USB transceiver must be switched on
using the PDWN bit in CNTR register which requires a special handling. This bit is intended to
switch on the internal voltage references supplying the port transceiver . Since this circuits
have a defined start-up time, during which the behaviour of USB transceiver is not defined, it
is necessary to wait this time, after having set the PDWN bit in CNTR register, then the reset
condition on the USB part can be removed (clearing of FRES bit in CNTR register) and the
ISTR register can be cleared, removing any spurious pending interrupt, before enabling any
other macrocell operation.

As a last step the USB specific 48 MHz clock needs to be activated, using the related control
bits provided by device clock management logic, where applicable.

ﬁ 267/401

STR720 - USB SLAVE INTERFACE (USB)

At system reset, the microcontroller must initialize all required registers and the packet buffer
description table, to make the USB Peripheral able to properly generate interrupts and data
transfers. All registers not specific to any endpoint must be initialized according to the needs
of application software (choice of enabled interrupts, chosen address of packet buffers, etc.).
Then the process continues as for the USB reset case (see further paragraph).

19.5.2.1 USB Reset (RESET Interrupt)

When this event occurs, the USB Peripheral is put in the same conditions it is left by the
system reset after the initialization described in the previous paragraph: the USB_DADDR
register is reset, and communication is disabled in all endpoint registers (the USB Peripheral
will not respond to any packet). As a response to the USB reset event, the USB function must
be enabled, having as USB address 0, implementing only the default control endpoint
(endpoint address is 0 too). This is accomplished by setting the Enable Function (EF) bit of
the USB_DADDR register and initializing the EPOR register and its related packet buffers
accordingly. During USB enumeration process, the host assigns a unique address to this
device, which must be written in the ADD[6:0] bits of the USB_DADDR register, and
configures any other necessary endpoint.

When a RESET interrupt is received, the application software is responsible to enable again
the default endpoint of USB function 0 within 10mS from the end of reset sequence which
triggered the interrupt.

19.5.2.2 Structure and Usage of Packet Buffers

Each bidirectional endpoint may receive or transmit data from/to the host. The received data
is stored in a dedicated memory buffer reserved for that endpoint, while another memory
buffer contains the data to be transmitted by the endpoint. Access to this memory is
performed by the packet buffer interface block, which delivers a memory access request and
waits for its acknowledgement. Since the packet buffer memory has to be accessed by the
microcontroller also, an arbitration logic takes care of the access conflicts, using half APB
cycle for microcontroller access and the remaining half for the USB Peripheral access. In this
way, both the agents can operate as if the packet memory is a dual-port RAM, without being
aware of any conflict even when the microcontroller is performing back-to-back accesses. The
USB Peripheral logic uses a dedicated clock. The frequency of this dedicated clock is fixed by
the requirements of the USB standard at 48 MHz, and this can be different from the clock
used for the interface to the APB bus. Different clock configurations are possible where the
APB clock frequency can be higher or lower than the USB Peripheral one. However, due to
USB data rate and packet memory interface requirements, the APB clock frequency must be
greater than 8 MHz to avoid data overrun/underrun problems.

Each endpoint is associated with two packet buffers (usually one for transmission and the
other one for reception). The size of the buffer can be upto 512 words each. Buffers can be
placed anywhere inside the packet memory because their location and size is specified in a
buffer description table, which is also located in the packet memory at the address indicated
by the USB_BTABLE register. Each table entry is associated to an endpoint register and it is
composed of four 16-bit words so that table start address must always be aligned to an 8-byte

268/401 ﬁ

STR720 - USB SLAVE INTERFACE (USB)

boundary (the lowest three bits of USB_BTABLE register are always “000”). Buffer descriptor
table entries are described in the Section “Buffer Descriptor Table”. If an endpoint is
unidirectional and it is neither an Isochronous nor a double-buffered bulk, only one packet
buffer is required (the one related to the supported transfer direction). Other table locations
related to unsupported transfer directions or unused endpoints, are available to the user.
isochronous and double-buffered bulk endpoints have special handling of packet buffers
(Refer to “Isochronous Transfers” and “Double-Buffered Endpoints” respectively). The
relationship between buffer description table entries and packet buffer areas is depicted in
Figure 41.

Figure 41. Packet Buffer Areas and Buffer Description Table Locations

0001_1010 (1A) COUNTS_TX
0001_1000 (18) ADDR3_TX Transmission
buffer for
0001_0110 (16) COUNT2_RX Endpoint 1
0001_0100 (14) ADDR2_RX
0001_0010 (12) COUNT2_TX
0001_0000 (10) ADDR2_TX
0000_1110 (OE) COUNT1_RX
0000_1100 (0C) ADDR1_RX
0000 _1010 (OA) COUNT1_TX Reception buffer
for
0000_1000 (08) ADDR1_TX Endpoint 0
0000_0110 (06) COUNTO_RX
0000_0100 (04) ADDRO_RX —
Transmission
0000_0010 (02) | COUNTO_TX buffer for
Endpoint 0
0000_0000 (00) ADDRO_TX]
Buffer description table locations Packet buffers

4

STR720 - USB SLAVE INTERFACE (USB)

Each packet buffer is used either during reception or transmission starting from the bottom.
The USB Peripheral will never change the contents of memory locations adjacent to the
allocated memory buffers; if a packet bigger than the allocated buffer length is received (buffer
overrun condition) the data will be copied to the memory only up to the last available location.

19.5.2.3 Endpoint Initialization

The first step to initialize an endpoint is to write appropriate values to the ADDRn_TX/
ADDRN_RX registers so that the USB Peripheral finds the data to be transmitted already
available and the data to be received can be buffered. The EP_TYPE bits in the USB_EPnR
register must be set according to the endpoint type, eventually using the EP_KIND bit to
enable any special required feature. On the transmit side, the endpoint must be enabled using
the STAT_TX bits in the USB_EPnR register and COUNTNn_TX must be initialized. For
reception, STAT_RX bits must be set to enable reception and COUNTn_RX must be written
with the allocated buffer size using the BL_SIZE and NUM_BLOCK fields. Unidirectional
endpoints, except Isochronous and double-buffered bulk endpoints, need to initialize only bits
and registers related to the supported direction. Once the transmission and/or reception are
enabled, register USB_EPnR and locations ADDRn_TX/ADDRn_RX, COUNTn_TX/
COUNTN_RX (respectively), should not be modified by the application software, as the
hardware can change their value on the fly. When the data transfer operation is completed,
notified by a CTR interrupt event, they can be accessed again to re-enable a new operation.

19.5.2.4 IN Packets (Data Transmission)

When receiving an IN token packet, if the received address matches a configured and valid
endpoint one, the USB Peripheral accesses the contents of ADDRn_TX and COUNTNn_TX
locations inside buffer descriptor table entry related to the addressed endpoint. The content of
these locations is stored in its internal 16 bit registers ADDR and COUNT (not accessible by
software). The packet memory is accessed again to read the first word to be transmitted
(Refer to Section “Structure and Usage of Packet Buffers”) and starts sending a DATAOQ or
DATA1 PID according to USB_EPnR bit DTOG_TX. When the PID is completed, the first byte
from the word, read from buffer memory, is loaded into the output shift register to be
transmitted on the USB bus. After the last data byte is transmitted, the computed CRC is sent.
If the addressed endpoint is not valid, a NAK or STALL handshake packet is sent instead of
the data packet, according to STAT_TX bits in the USB_EPnR register.

The ADDR internal register is used as a pointer to the current buffer memory location while
COUNT is used to count the number of remaining bytes to be transmitted. Each word read
from the packet buffer memory is transmitted over the USB bus starting from the least
significant byte. Transmission buffer memory is read starting from the address pointed by
ADDRN_TX for COUNTN_TX/2 words. If a transmitted packet is composed of an odd number
of bytes, only the lower half of the last word accessed will be used.

On receiving the ACK receipt by the host, the USB_EPnR register is updated in the following
way: DTOG_TX bit is toggled, the endpoint is made invalid by setting STAT_TX=10 (NAK) and
bit CTR_TX is set. The application software must first identify the endpoint, which is

270/401 ﬁ

STR720 - USB SLAVE INTERFACE (USB)

requesting microcontroller attention by examining the EP_ID and DIR bits in the USB_ISTR
register. Servicing of the CTR_TX event starts clearing the interrupt bit; the application
software then prepares another buffer full of data to be sent, updates the COUNTn_TX table
location with the number of byte to be transmitted during the next transfer, and finally sets
STAT_TX to ‘11’ (VALID) to re-enable transmissions. While the STAT_TX bits are equal to ‘10’
(NAK), any IN request addressed to that endpoint is NAKed, indicating a flow control
condition: the USB host will retry the transaction until it succeeds. It is mandatory to execute
the sequence of operations in the above mentioned order to avoid losing the notification of a
second IN transaction addressed to the same endpoint immediately following the one which
triggered the CTR interrupt.

19.5.2.5 OUT and SETUP Packets (Data Reception)

These two tokens are handled by the USB Peripheral more or less in the same way; the
differences in the handling of SETUP packets are detailed in the following paragraph about
control transfers. When receiving an OUT/SETUP PID, if the address matches a valid
endpoint, the USB Peripheral accesses the contents of the ADDRn_RX and COUNTn_RX
locations inside the buffer descriptor table entry related to the addressed endpoint. The
content of the ADDRn_RX is stored directly in its internal register ADDR. While COUNT is
now reset and the values of BL_SIZE and NUM_BLOCK bit fields, which are read within
COUNTnN_RX content are used to initialize BUF_COUNT, an internal 16 bit counter, which is
used to check the buffer overrun condition (all these internal registers are not accessible by
software). Data bytes subsequently received by the USB Peripheral are packed in words (the
first byte received is stored as least significant byte) and then transferred to the packet buffer
starting from the address contained in the internal ADDR register while BUF_COUNT is
decremented and COUNT is incremented at each byte transfer. When the end of DATA packet
is detected, the correctness of the received CRC is tested and only if no errors occurred
during the reception, an ACK handshake packet is sent back to the transmitting host. In case
of wrong CRC or other kinds of errors (bit-stuff violations, frame errors, etc.), data bytes are
anyways copied in the packet memory buffer, at least until the error detection point, but ACK
packet is not sent and the ERR bit in USB_ISTR register is set. However, there is usually no
software action required in this case: the USB Peripheral recovers from reception errors and
remains ready for the next transaction to come. If the addressed endpoint is not valid, a NAK
or STALL handshake packet is sent instead of the ACK, according to bits STAT_RX in the
USB_EPnNR register and no data is written in the reception memory buffers.

Reception memory buffer locations are written starting from the address contained in the
ADDRN_RX for a number of bytes corresponding to the received data packet length, CRC
included (i.e. data payload length + 2), or up to the last allocated memory location, as defined
by BL_SIZE and NUM_BLOCK, whichever comes first. In this way, the USB Peripheral never
writes beyond the end of the allocated reception memory buffer area. If the length of the data
packet payload (actual number of bytes used by the application) is greater than the allocated
buffer, the USB Peripheral detects a buffer overrun condition. in this case, a STALL
handshake is sent instead of the usual ACK to notify the problem to the host, no interrupt is
generated and the transaction is considered failed.

ﬁ 271/401

STR720 - USB SLAVE INTERFACE (USB)

When the transaction is completed correctly, by sending the ACK handshake packet, the
internal COUNT register is copied back in the COUNTn_RX location inside the buffer
description table entry, leaving unaffected BL_SIZE and NUM_BLOCK fields, which normally
do not require to be re-written, and the USB_EPnR register is updated in the following way:
DTOG_RX bit is toggled, the endpoint is made invalid by setting STAT_RX = ‘10’ (NAK) and bit
CTR_RX is set. If the transaction has failed due to errors or buffer overrun condition, none of
the previously listed actions take place. The application software must first identify the
endpoint, which is requesting microcontroller attention by examining the EP_ID and DIR bits
in the USB_ISTR register. The CTR_RX event is serviced by first determining the transaction
type (SETUP bit in the USB_EPnR register); the application software must clear the interrupt
flag bit and get the number of received bytes reading the COUNTn_RX location inside the
buffer description table entry related to the endpoint being processed. After the received data
is processed, the application software should set the STAT_RX bits to ‘11’ (Valid) in the
USB_EPnR, enabling further transactions. While the STAT_RX bits are equal to ‘10’ (NAK),
any OUT request addressed to that endpoint is NAKed, indicating a flow control condition: the
USB host will retry the transaction until it succeeds. It is mandatory to execute the sequence
of operations in the above mentioned order to avoid losing the notification of a second OUT
transaction addressed to the same endpoint following immediately the one which triggered
the CTR interrupt.

19.5.2.6 Control Transfers

Control transfers are made of a SETUP transaction, followed by zero or more data stages, all
of the same direction, followed by a status stage (a zero-byte transfer in the opposite
direction). SETUP transactions are handled by control endpoints only and are very similar to
OUT ones (data reception) except that the values of DTOG_TX and DTOG_RX bits of the
addressed endpoint registers are set to 1 and 0 respectively, to initialize the control transfer,
and both STAT_TX and STAT_RX are set to ‘10’ (NAK) to let software decide if subsequent
transactions must be IN or OUT depending on the SETUP contents. A control endpoint must
check SETUP bit in the USB_EPnR register at each CTR_RX event to distinguish normal
OUT transactions from SETUP ones. A USB device can determine the number and direction
of data stages by interpreting the data transferred in the SETUP stage, and is required to
STALL the transaction in the case of errors. To do so, at all data stages before the last, the
unused direction should be set to STALL, so that, if the host reverses the transfer direction too
soon, it gets a STALL as a status stage. While enabling the last data stage, the opposite
direction should be set to NAK, so that, if the host reverses the transfer direction (to perform
the status stage) immediately, it is kept waiting for the completion of the control operation. If
the control operation completes successfully, the software will change NAK to VALID,
otherwise to STALL. At the same time, if the status stage will be an OUT, the STATUS_OUT
(EP_KIND in the USB_EPnR register) bit should be set, so that an error is generated if a
status transaction is performed with not-zero data. When the status transaction is serviced,
the application clears the STATUS_OUT bit and sets STAT_RX to VALID (to accept a new
command) and STAT_TX to NAK (to delay a possible status stage immediately following the
next setup).

272/401 <72

STR720 - USB SLAVE INTERFACE (USB)

Since the USB specification states that a SETUP packet cannot be answered with a
handshake different from ACK, eventually aborting a previously issued command to start the
new one, the USB logic doesn’t allow a control endpoint to answer with a NAK or STALL
packet to a SETUP token received from the host.

When the STAT_RX bits are set to ‘01’ (STALL) or ‘10’ (NAK) and a SETUP token is received,
the USB accepts the data, performing the required data transfers and sends back an ACK
handshake. If that endpoint has a previously issued CTR_RX request not yet acknowledged
by the application (i.e. CTR_RX bit is still set from a previously completed reception), the USB
discards the SETUP transaction and does not answer with any handshake packet regardless
of its state, simulating a reception error and forcing the host to send the SETUP token again.
This is done to avoid losing the notification of a SETUP transaction addressed to the same
endpoint immediately following the transaction, which triggered the CTR_RX interrupt.

19.5.3 Double-Buffered Endpoints

All different endpoint types defined by the USB standard represent different traffic models,
and describe the typical requirements of different kind of data transfer operations. When large
portions of data are to be transferred between the host PC and the USB function, the bulk
endpoint type is the most suited model. This is because the host schedules bulk transactions
so as to fill all the available bandwidth in the frame, maximizing the actual transfer rate as long
as the USB function is ready to handle a bulk transaction addressed to it. If the USB function
is still busy with the previous transaction when the next one arrives, it will answer with a NAK
handshake and the host PC will issue the same!transaction again until the USB function is
ready to handle it, reducing the actual transfer rate due to the bandwidth occupied by
re-transmissions. For this reason, a dedicated feature called ‘double-buffering’ can be used
with bulk endpoints.

When ‘double-buffering’ is activated, data toggle sequencing is used to select, which buffer is
to be used by the USB Peripheral to perform the required data transfers, using both
‘transmission’ and ‘reception’ packet memory areas to manage buffer swapping on each
successful transaction in order to always have a complete buffer to be used by the application,
while the USB Peripheral fills the other one. For example, during an OUT transaction directed
to a ‘reception’ double-buffered bulk endpoint, while one buffer is being filled with new data
coming from the USB host, the other one is available for the microcontroller software usage
(the same would happen with a ‘transmission’ double-buffered bulk endpoint and an IN
transaction).

Since the swapped buffer management requires the usage of all 4 buffer description table
locations hosting the address pointer and the length of the allocated memory buffers, the
USB_EPnR registers used to implement double-buffered bulk endpoints are forced to be used
as uni-directional ones. Therefore, only one STAT bit pair must be set at a value different from
‘00’ (Disabled): STAT_RX if the double-buffered bulk endpoint is enabled for reception,
STAT_TX if the double-buffered bulk endpoint is enabled for transmission. In case it is
required to have double-buffered bulk endpoints enabled both for reception and transmission,
two USB_EPnR registers must be used.

‘ﬁ 273/401

STR720 - USB SLAVE INTERFACE (USB)

To exploit the double-buffering feature and reach the highest possible transfer rate, the
endpoint flow control structure, described in previous chapters, has to be modified, in order to
switch the endpoint status to NAK only when a buffer conflict occurs between the USB
Peripheral and application software, instead of doing it at the end of each successful
transaction. The memory buffer which is currently being used by the USB Peripheral is
defined by the DTOG bit related to the endpoint direction: DTOG_RX (bit 14 of USB_EPnR
register) for ‘reception’ double-buffered bulk endpoints or DTOG_TX (bit 6 of USB_EPnR
register) for ‘transmission’ double-buffered bulk endpoints. To implement the new flow control
scheme, the USB Peripheral should know which packet buffer is currently in use by the
application software, so to be aware of any conflict. Since in the USB_EPnR register, there
are two DTOG bits but only one is used by USB Peripheral for data and buffer sequencing
(due to the uni-directional constraint required by double-buffering feature) the other one can
be used by the application software to show which buffer it is currently using. This new buffer
flag is called SW_BUF. In the following table the correspondence between USB_EPnR
register bits and DTOG/SW_BUF definition is explained, for the cases of ‘transmission’ and
‘reception’ double-buffered bulk endpoints.

Table 58. Double-Buffering Buffer Flag Definition

Buffer “Transmission’ ‘Reception’
flag endpoint endpoint
DTOG DTOG_TX (USB_EPnR bit 6) DTOG_RX (USB_EPnR bit 14)
SW_BUF USB_EPNR bit 14 USB_EPnR bit 6

The memory buffer which is currently being used by the USB Peripheral is defined by DTOG
buffer flag, while the buffer currently in use by application software is identified by SW_BUF
buffer flag. The relationship between the buffer flag value and the used packet buffer is the
same in both cases, and it is listed in the following table.

Table 59. Double-Buffering Memory Buffers Usage

Packet buffer used by

DTOG or SW_BUF USB Peripheral (DTOG) or

bit val
It value application software (SW_BUF)
0 ADDRN_TX/COUNTN_TX
buffer description table locations.
1 ADDRNn_RX / COUNTn_RX

buffer description table locations.

4

274/401

STR720 - USB SLAVE INTERFACE (USB)

Double-buffering feature for a bulk endpoint is activated by:

e writing EP_TYPE bit field at ‘00’ in its USB_EPnR register, to define the endpoint as a
bulk, and

* setting EP_KIND bit at ‘1’ (DBL_BUF), in the same register.

The application software is responsible for DTOG and SW_BUF bits initialization according to
the first buffer to be used; this has to be done considering the special toggle-only property that
these two bits have. The end of the first transaction occurring after having set DBL_BUF,
triggers the special flow control of double-buffered bulk endpoints, which is used for all other
transactions addressed to this endpoint until DBL_BUF remain set. At the end of each
transaction the CTR_RX or CTR_TX bit of the addressed endpoint USB_EPnR register is set,
depending on the enabled direction. At the same time, the affected DTOG bit in the
USB_EPnR register is hardware toggled making the USB Peripheral buffer swapping
completely software independent. Unlike common transactions, and the first one after
DBL_BUF setting, STAT bit pair is not affected by the transaction termination and its value
remains ‘11’ (Valid). However, as the token packet of a new transaction is received, the actual
endpoint status will be masked as ‘10’ (NAK) when a buffer conflict between the USB
Peripheral and the application software is detected (this condition is identified by DTOG and
SW_BUF having the same value). The application software responds to the CTR event
notification by clearing the interrupt flag and starting any required handling of the completed
transaction. When the application packet buffer usage is over, the software toggles the
SW_BUF bit, writing ‘1’ to it, to notify the USB Peripheral about the availability of that buffer. In
this way, the number of NAKed transactions is limited only by the application elaboration time
of a transaction data: if the elaboration time is shorter than the time required to complete a
transaction on the USB bus, no re-transmissions due to flow control will take place and the
actual transfer rate will be limited only by the host PC.

The application software can always override the special flow control implemented for
double-buffered bulk endpoints, writing an explicit status different from ‘11’ (Valid) into the
STAT bit pair of the related USB_EPnR register. In this case, the USB Peripheral will always
use the programmed endpoint status, regardless of the buffer usage condition.

4

275/401

STR720 - USB SLAVE INTERFACE (USB)

19.5.4 Isochronous Transfers

The USB standard supports full speed peripherals requiring a fixed and accurate data
production/consume frequency, defining this kind of traffic as ‘Isochronous’. Typical examples
of this data are: audio samples, compressed video streams, and in general any sort of
sampled data having strict requirements for the accuracy of delivered frequency. When an
endpoint is defined to be ‘isochronous’ during the enumeration phase, the host allocates in
the frame the required bandwidth and delivers exactly one IN or OUT packet each frame,
depending on endpoint direction. To limit the bandwidth requirements, no re-transmission of
failed transactions is possible for Isochronous traffic; this leads to the fact that an isochronous
transaction does not have a handshake phase and no ACK packet is expected or sent after
the data packet. For the same reason, Isochronous transfers do not support data toggle
sequencing and always use DATAO PID to start any data packet.

The Isochronous behaviour for an endpoint is selected by setting the EP_TYPE bits at ‘10’ in
its USB_EPnR register; since there is no handshake phase the only legal values for the
STAT_RX/STAT_TX bit pairs are ‘00’ (Disabled) and ‘11’ (Valid), any other value will produce
results not compliant to USB standard. Isochronous endpoints implement double-buffering to
ease application software development, using both ‘transmission’ and ‘reception’ packet
memory areas to manage buffer swapping on each successful transaction in order to have
always a complete buffer to be used by the application, while the USB Peripheral fills the
other.

The memory buffer which is currently used.-by the USB Peripheral is defined by the DTOG bit
related to the endpoint direction (DTOG_RX for ‘reception’ isochronous endpoints, DTOG_TX
for ‘transmission’ isochronous endpoints, both in the related USB_EPnR register) according
to Table 60.

Table 60. Isochronous Memory Buffers Usage

DTOG bit value

DMA buffer used by
USB Peripheral

DMA buffer used by
application software

ADDRN_TX/COUNTN_TX
buffer description table
locations.

ADDRn_RX/COUNTn_RX
buffer description table
locations.

ADDRn_RX/COUNTN_RX
buffer description table
locations.

ADDRn_TX /COUNTNn_TX
buffer description table
locations.

As it happens with

double-buffered bulk endpoints, the USB_EPnR registers used to

implement Isochronous endpoints are forced to be used as uni-directional ones. In case it is
required to have Isochronous endpoints enabled both for reception and transmission, two
USB_EPnNR registers must be used.

The application software is responsible for the DTOG bit initialization according to the first
buffer to be used; this has to be done considering the special toggle-only property that these

276/401 ﬁ

STR720 - USB SLAVE INTERFACE (USB)

two bits have. At the end of each transaction, the CTR_RX or CTR_TX bit of the addressed
endpoint USB_EPnR register is set, depending on the enabled direction. At the same time,
the affected DTOG bit in the USB_EPNR register is hardware toggled making buffer swapping
completely software independent. STAT bit pair is not affected by transaction completion;
since no flow control is possible for Isochronous transfers due to the lack of handshake phase,
the endpoint remains always ‘11’ (Valid). CRC errors or buffer-overrun conditions occurring
during Isochronous OUT transfers are anyway considered as correct transactions and they
always trigger an CTR_RX event. However, CRC errors will anyway set the ERR bit in the
USB_ISTR register to notify the software of the possible data corruption.

19.5.5 Suspend/Resume Events

The USB standard defines a special peripheral state, called SUSPEND, in which the average
current drawn from the USB bus must not be greater than 500 pA. This requirement is of
fundamental importance for bus-powered devices, while self-powered devices are not
required to comply to this strict power consumption constraint. In suspend mode, the host PC
sends the notification to not send any traffic on the USB bus for more than 3mS: since a SOF
packet must be sent every mS during normal operations, the USB Peripheral detects the lack
of 3 consecutive SOF packets as a suspend request from the host PC and set the SUSP bit to
‘1’ in USB_ISTR register, causing an interrupt if enabled. Once the device is suspended, its
normal operation can be restored by a so called RESUME sequence, which can be started
from the host PC or directly from the peripheral itself, but it is always terminated by the host
PC. The suspended USB Peripheral must be anyway able to detect a RESET sequence,
reacting to this event as a normal USB reset event.

The actual procedure used to suspend the USB peripheral is device dependent since
according to the device composition, different actions may be required to reduce the total
consumption.

A brief description of a typical suspend procedure is provided below, focused on the USB-
related aspects of the application software routine responding to the SUSP notification of the
USB Peripheral:

1. Set the FSUSP bit in the USB_CNTR register to 1. This action activates the suspend
mode within the USB Peripheral. As soon as the suspend mode is activated, the check on
SOF reception is disabled to avoid any further SUSP interrupts being issued while the
USB is suspended.

2. Remove or reduce any static power consumption in blocks different from the USB Periph-
eral.

3. Set LP_MODE bit in USB_CNTR register to 1 to remove static power consumption in the
analog USB transceivers but keeping them able to detect resume activity.

4. Optionally turn off external oscillator and device PLL to stop any activity inside the device.

When an USB event occurs while the device is in SUSPEND mode, the RESUME procedure
must be invoked to restore nominal clocks and regain normal USB behaviour. Particular care
must be taken to insure that this process does not take more than 10mS when the wakening

172 277/401

STR720 - USB SLAVE INTERFACE (USB)

event is an USB reset sequence (See “Universal Serial Bus Specification” for more details).
The start of a resume or reset sequence, while the USB Peripheral is suspended, clears the
LP_MODE bit in USB_CNTR register asynchronously. Even if this event can trigger an
WKUP interrupt if enabled, the use of an interrupt response routine must be carefully
evaluated because of the long latency due to system clock restart; to have the shorter latency
before re-activating the nominal clock it is suggested to put the resume procedure just after
the end of the suspend one, so its code is immediately executed as soon as the system clock
restarts. To prevent ESD discharges or any other kind of noise from waking-up the system
(the exit from suspend mode is an asynchronous event), a suitable analog filter on data line
status is activated during suspend; the filter width is about 70nS.

The following is a list of actions a resume procedure should address:

1. Optionally turn on external oscillator and device PLL.

2. Clear FSUSP bit of USB_CNTR register.

3. If the resume triggering event has to be identified, bits RXDP and RXDM in the USB_FNR
register can be used according to Table 61, which also lists the intended software action
in all the cases. If required, the end of resume or reset sequence can be detected moni-
toring the status of the above mentioned bits by checking when they reach the “10” config-
uration, which represent the Idle bus state; moreover at the end of a reset sequence the
RESET bit in USB_ISTR register is set to 1, issuing an interrupt if enabled, which should
be handled as usual.

Table 61. Resume Event Detection

[RXDP,RXDM] Wake-up event Required resume software action
Status
“00” Root reset None
“10” None Go back in Suspend mode
(noise on bus)
“01” Root resume None
“11” Not Allowed Go back in Suspend mode
(noise on bus)

A device may require to exit from suspend mode as an answer to particular events not directly
related to the USB protocol (e.g. a mouse movement wakes up the whole system). In this
case, the resume sequence can be started by setting the RESUME bit in the USB_CNTR
register to ‘1’ and resetting it to 0 after an interval between 1mS and 15mS (this interval can
be timed using ESOF interrupts, occurring with a 1mS period when the system clock is
running at nominal frequency). Once the RESUME bit is clear, the resume sequence will be
completed by the host PC and its end can be monitored again using the RXDP and RXDM
bits in the USB_FNR register.

Note The RESUME bit must be anyway used only after the USB Peripheral has been put
in suspend mode, setting the FSUSP bit in USB_CNTR register to 1.

278/401 ﬁ

STR720 - USB SLAVE INTERFACE (USB)

19.6 Register Description
The USB Peripheral registers can be divided into the following groups:

e Common Registers: Interrupt and Control registers
* Endpoint Registers: Endpoint configuration and status

e Buffer Descriptor Table: Location of packet memory used to locate data buffers

All register addresses are expressed as offsets with respect to the USB Peripheral registers
base address 0xC000 8000, except the buffer descriptor table locations, which starts at the
address specified by the USB_BTABLE register. Due to the common limitation of APB bridges
on word addressability, all register addresses are aligned to 32-bit word boundaries although
they are 16-bit wide. The same address alignment is used to access packet buffer memory
locations, which are located starting from OxC000 8800. In this section, the following
abbreviations are used:

read/write (rw) The software can read and write to these bits.

read-only (r) The software can only read these bits.

write-only (w) The software can only write to these bits.

Read-clear (rc) The software can only read or clear this bit.

Toggle (1) The software can only toggle this bit by writing “1’. Writing ‘0’
has no effect.

4

279/401

STR720 - USB SLAVE INTERFACE (USB)

19.6.1 Common Registers

These registers affect the general behaviour of the USB Peripheral defining operating mode,
interrupt handling, device address and giving access to the current frame number updated by

the host PC.

USB Control Register (USB_CNTR)
Address Offset: 40h

Reset Value: 0000 0000 0000 0011 (0003h)

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
w

s Z s z 2 = = 2 b= & wl oz 0

o > o > 7} o ol o} Reserved 2 > e8| 2 u

= 3 @ 2 9 7 o) 3 ol 2 a 2

O a u 2 ® o 0 it IhI:J o = o l-l-

rw rw w w w w w rw w w w w w

Bit 15 CTRM: Correct Transfer Interrupt Mask
0: Correct Transfer (CTR) Interrupt disa

bled.

1: CTR Interrupt enabled, an interrupt request is generated

corresponding bit in the USB_ISTR register is set.
Bit 14 DOVRM: DMA over / underrun Interrupt Mask

0: DOVR Interrupt disabled.

1: DOVR Interrupt enabled, an interrupt request is generated

corresponding bit in the USB_ISTR register is set.

Bit 13 ERRM: Error Interrupt Mask
0: ERR Interrupt disabled.

1: ERR Interrupt enabled, an interrupt request is generated

corresponding bit in the USB_ISTR register is set.

Bit 12 WKUPM: Wake-up Interrupt Mask
0: WKUP Interrupt disabled.

1: WKUP Interrupt enabled, an interrupt request is generated

corresponding bit in the USB_ISTR register is set.

Bit 11 SUSPM: Suspend mode Interrupt Mask
0: Suspend Mode Request (SUSP) Interrupt disabled.
1: SUSP Interrupt enabled, an interrupt request is generated

corresponding bit in the USB_ISTR register is set.

280/401

when

when

when

when

when

the

the

the

the

the

4

STR720 - USB SLAVE INTERFACE (USB)

Bit 10

Bit 9

Bit 8

Bits 7:5

Bit 4

Bit 3

Bit 2

4

RESETM: USB Reset Interrupt Mask

0: RESET Interrupt disabled.

1: RESET Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

SOFM: Start Of Frame Interrupt Mask

0: SOF Interrupt disabled.

1: SOF Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

ESOFM: Expected Start Of Frame Interrupt Mask

0: Expected Start of Frame (ESOF) Interrupt disabled.

1: ESOF Interrupt enabled, an interrupt request is generated when the
corresponding bit in the USB_ISTR register is set.

Reserved
These are reserved bits. These bits are always read as ‘0’ and must always be
written with ‘0’.

RESUME: Resume request

The microcontroller can set this bit to send a Resume signal to the host. It must
be activated, according to USB specifications, for no less than 1mS and no
more than 15mS after which the Host PC is ready to drive the resume
sequence up to its end.

FSUSP: Force suspend

Software must set this bit when the SUSP interrupt is received, which is issued
when no traffic is received by the USB Peripheral for 3 mS.

0: No effect.

1: Enter suspend mode. Clocks and static power dissipation in the analog
transceiver are left unaffected. If suspend power consumption is a requirement
(bus-powered device), the application software should set the LP_MODE bit
after FSUSP as explained below.

LP_MODE: Low-power mode

This mode is used when the suspend-mode power constraints require that all
static power dissipation is avoided, except the one required to supply the
external pull-up resistor. This condition should be entered when the application
is ready to stop all system clocks, or reduce their frequency in order to meet the
power consumption requirements of the USB suspend condition. The USB
activity during the suspend mode (WKUP event) asynchronously resets this bit
(it can also be reset by software).

0: No Low Power Mode.

1: Enter Low Power mode.

281/401

STR720 - USB SLAVE INTERFACE (USB)

Bit 1

Bit 0

282/401

PDWN: Power down

This bit is used to completely switch off all USB-related analog parts if it is
required to completely disable the USB Peripheral for any reason. When this bit
is set, the USB Peripheral is disconnected from the transceivers and it cannot
be used.

0: Exit Power Down.

1: Enter Power down mode.

FRES: Force USB Reset

0: Clear USB reset.

1: Force a reset of the USB Peripheral, exactly like a RESET signalling on the
USB. The USB Peripheral is held in RESET state until software clears this bit. A
“USB-RESET” interrupt is generated, if enabled.

4

STR720 - USB SLAVE INTERFACE (USB)

USB Interrupt Status Register (USB_ISTR)
Address Offset: 44h
Reset Value: 0000 0000 0000 0000 (0000h)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x o o m L
o g o 5 & w w o} o
= 4 <) 0 Q) Reserved 3 EP_ID[3:0]
O 8 w = 7] E n i a]
r rc rc rc rc rc rc rc r r

This register contains the status of all the interrupt sources allowing application software to
determine, which events caused an interrupt request.

The upper part of this register contains single bits, each of them representing a specific event.
These bits are set by the hardware when the related event occurs; if the corresponding bit in
the USB_CNTR register is set, a generic interrupt request is generated. The interrupt routine,
examining each bit, will perform all necessary actions, and finally it will clear the serviced bits.
If any of them is not cleared, the interrupt is considered to be still pending, and the interrupt
line will be kept high again. If several bits are set simultaneously, only a single interrupt will be
generated.

Endpoint transaction completion can be handled in a different way to reduce interrupt
response latency. The CTR bit is set by the hardware as soon as an endpoint successfully
completes a transaction, generating a generic interrupt request if the corresponding bit in
USB_CNTR is set. An endpoint dedicated interrupt condition is activated independently from
the CTRM bit in the USB_CNTR register. Both interrupt conditions remain active until
software clears the pending bit in the corresponding USB_EPnR register (the CTR bit is
actually a read only bit). The USB Peripheral has two interrupt request lines:

e Higher priority USB IRQ: The pending requests for endpoints, which have transactions
with a higher priority (isochronous and double-buffered bulk) and they cannot be masked.

* Lower priority USB IRQ: All other interrupt conditions, which can either be non-maskable
pending requests related to the lower priority transactions and all other maskable events
flagged by the USB_ISTR high bytes.

For endpoint-related interrupts, the software can use the Direction of Transaction (DIR) and
EP_ID read-only bits to identify, which endpoint made the last interrupt request and called the
corresponding interrupt service routine.

The user can choose the relative priority of simultaneously pending USB_ISTR events by
specifying the order in which software checks USB_ISTR bits in an interrupt service routine.

‘ﬁ 283/401

STR720 - USB SLAVE INTERFACE (USB)

Only the bits related to events, which are serviced, are cleared. At the end of the service
routine, another interrupt will be requested, to service the remaining conditions.

To avoid spurious clearing of some bits, it is recommended to clear them with a load
instruction where all bits which must not be altered are written with 1, and all bits to be cleared
are written with ‘0’ (these bits can only be cleared by software). Read-modify-write cycles
should be avoided because between the read and the write operations another bit could be
set by the hardware and the next write will clear it before the microprocessor has the time to
serve the event.

The following describes each bit in detail:

Bit 15 CTR: Correct Transfer
This bit is set by the hardware to indicate that an endpoint has successfully
completed a transaction; using DIR and EP_ID bits software can determine
which endpoint requested the interrupt. This bit is read-only.

Bit 14 DOVR: DMA over / underrun

This bit is set if the microcontroller has not been able to respond in time to an
USB memory request. The USB Peripheral handles this event in the following
way: During reception an ACK handshake packet is not sent, during
transmission a bit-stuff error is forced on the transmitted stream; in both cases
the host will retry the transaction. The DOVR interrupt should never occur
during normal operations. Since the failed transaction is retried by the host, the
application software has the chance to speed-up device operations during this
interrupt handling, to be ready for the next transaction retry; however this does
not happen during Isochronous transfers (no isochronous transaction is anyway
retried) leading to a loss of data in this case. This bit is read/write but only ‘0’
can be written and writing ‘1’ has no effect.

4

284/401

STR720 - USB SLAVE INTERFACE (USB)

Bit 13 ERR: Error
This flag is set whenever one of the errors listed below has occurred:
NANS: No ANSwer. The timeout for a host response has expired.
CRC: Cyclic Redundancy Check error. One of the received CRCs, either in the
token or in the data, was wrong.
BST: Bit Stuffing error. A bit stuffing error was detected anywhere in the PID,
data, and/or CRC.
FVIO: Framing format Violation. A non-standard frame was received (EOP not
in the right place, wrong token sequence, etc.).
The USB software can usually ignore errors, since the USB Peripheral and the
PC host manage retransmission in case of errors in a fully transparent way. This
interrupt can be useful during the software development phase, or to monitor
the quality of transmission over the USB bus, to flag possible problems to the
user (e.g. loose connector, too noisy environment, broken conductor in the USB
cable and so on). This bit is read/write but only ‘0’ can be written and writing ‘1’
has no effect.

Bit 12 WKUP: Wake up
This bit is set to 1 by the hardware when, during suspend mode, activity is
detected that wakes up the USB Peripheral. This event asynchronously clears
the LP_MODE bit in the CTLR register and activates the USB_WAKEUP line,
which can be used to notify the rest of the device (e.g. wake-up unit) about the
start of the resume process: This bit'is read/write but only ‘0’ can be written and
writing ‘1" has no effect.

Bit 11 SUSP Suspend mode request
This bit is set by the hardware when no traffic has been received for 3mS,
indicating a suspend mode request from the USB bus. The suspend condition
check is enabled immediately after any USB reset and it is disabled by the
hardware when the suspend mode is active (FSUSP=1) until the end of resume
sequence. This bit is read/write but only ‘O’ can be written and writing ‘1’ has no
effect.

Bit 10 RESET: USB RESET request

Set when the USB Peripheral detects an active USB RESET signal at its inputs.
The USB Peripheral, in response to a RESET, just resets its internal protocol
state machine, generating an interrupt if RESETM enable bit in the USB_CNTR
register is set. Reception and transmission are disabled until the RESET bit is
cleared. All configuration registers do not reset: the microcontroller must
explicitly clear these registers (this is to ensure that the RESET interrupt can be
safely delivered, and any transaction immediately followed by a RESET can be
completed). The function address and endpoint registers are reset by an USB
reset event.

This bit is read/write but only ‘O’ can be written and writing ‘1’ has no effect.

4

285/401

STR720 - USB SLAVE INTERFACE (USB)

Bit 9

Bit 8

Bits 7:5

Bit 4

286/401

SOF: Start Of Frame

This bit signals the beginning of a new USB frame and it is set when a SOF
packet arrives through the USB bus. The interrupt service routine may monitor
the SOF events to have a 1mS synchronization event to the USB host and to
safely read the USB_FNR register which is updated at the SOF packet
reception (this could be useful for isochronous applications). This bit is read/
write but only ‘0’ can be written and writing ‘1’ has no effect.

ESOF: Expected Start Of Frame

This bit is set by the hardware when an SOF packet is expected but not
received. The host sends an SOF packet each mS, but if the hub does not
receive it properly, the Suspend Timer issues this interrupt. If three consecutive
ESOF interrupts are generated (i.e. three SOF packets are lost) without any
traffic occurring in between, a SUSP interrupt is generated. This bit is set even
when the missing SOF packets occur while the Suspend Timer is not yet locked.
This bit is read/write but only ‘O’ can be written and writing ‘1’ has no effect.

Reserved.
These are reserved bits. These bits are always read as ‘0’ and must always be
written with ‘0’

DIR: Direction of transaction.

This bit is written by the hardware according to the direction of the successful
transaction, which generated the interrupt request.

If DIR bit=0, CTR_TX bit is set in the USB_EPnR register related to the
interrupting endpoint. The interrupting transaction is of IN type (data transmitted
by the USB Peripheral to the host PC).

If DIR bit=1, CTR_RX bit or both CTR_TX/CTR_RX are set in the USB_EPnR
register related to the interrupting endpoint. The interrupting transaction is of
OUT type (data received by the USB Peripheral from the host PC) or two
pending transactions are waiting to be processed.

This information can be used by the application software to access the
USB_EPnR bits related to the triggering transaction since it represents the
direction having the interrupt pending. This bit is read-only.

4

STR720 - USB SLAVE INTERFACE (USB)

Bits 3:0

4

EP_ID[3:0]: Endpoint Identifier.

These bits are written by the hardware according to the endpoint number, which
generated the interrupt request. If several endpoint transactions are pending,
the hardware writes the endpoint identifier related to the endpoint having the
highest priority defined in the following way: Two endpoint sets are defined, in
order of priority: Isochronous and double-buffered bulk endpoints are
considered first and then the other endpoints are examined. If more than one
endpoint from the same set is requesting an interrupt, the EP_ID bits in
USB_ISTR register are assigned according to the lowest requesting endpoint
register, EPOR having the highest priority followed by EP1R and so on. The
application software can assign a register to each endpoint according to this
priority scheme, so as to order the concurring endpoint requests in a suitable
way. These bits are read only.

287/401

STR720 - USB SLAVE INTERFACE (USB)

USB Frame Number Register (USB_FNR)

Address Offset: 48h

Reset Value:

0000 Oxxx xxxx Xxxx (0Oxxxh)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8 3 X : .

g g S LSOF[1:0] FN[10:0]

14 1 d

r r r r r

Bit 15 RXDP Receive Data + Line Status
This bit can be used to observe the status of received data plus upstream
port data line. It can be used during end-of-suspend routines to help
determining the wake-up event.

Bit 14 RXDM. Receive Data - Line Status
This bit can be used to observe the status of received data minus
upstream port data line. It can be used during end-of-suspend routines to
help determining the wake-up event.

Bit 13 LCK: Locked
This bit is set by the hardware when at least two consecutive SOF packets
have been received after the end of an USB reset condition or after the
end of an USB resume sequence. Once locked, the frame timer remains
in this state until an USB reset or USB suspend event occurs.

Bits12:11 LSOF[1:0]: Lost SOF
These bits are written by the hardware when an ESOF interrupt is
generated, counting the number of consecutive SOF packets lost. At the
reception of an SOF packet, these bits are cleared.

Bits 10:0 FN[10:0]: Frame Number
This bit field contains the 11-bits frame number contained in the last
received SOF packet. The frame number is incremented for every frame
sent by the host and it is useful for Isochronous transfers. This bit field is
updated on the generation of an SOF interrupt.

288/401 KYI

STR720 - USB SLAVE INTERFACE (USB)

USB Device Address (USB_DADDR)
Address Offset: 4Ch
Reset Value: 0000 0000 0000 0000 (0000h)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved EF ADDI6:0]
w w

This register is also reset when a USB reset is received from the USB bus or forced through
bit FRES in the USB_CNTR register.

Bits 15:8 Reserved

These are reserved bits. These bits are always read as ‘0’ and must
always be written with ‘0’.

Bit 7 EF: Enable Function

This bit is set by the software to enable the USB device. The address of
this device is contained in the following ADD[6:0] bits. If this bit is at ‘0’ no
transactions are handled, irrespective of the settings of USB_EPnR
registers.

Bits 6:0 ADD[6:0]: Device Address
These bits contain the USB function address assigned by the host PC
during the enumeration process. Both this field and the Endpoint Address
(EA) field in the associated USB_EPnR register must match with the
information contained in a USB token in order to handle a transaction to
the required endpoint.

4

289/401

STR720 - USB SLAVE INTERFACE (USB)

Buffer Table Address (USB_BTABLE)

Address Offset: 50h
Reset Value: 0000 0000 0000 0000 (0000h)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTABLE[15:3] Reserved

Bits 15:3 BTABLE[15:3]: Buffer Table.
These bits contain the start address of the buffer allocation table inside the
dedicated packet memory. This table describes each endpoint buffer
location and size and it must be aligned to an 8 byte boundary (the 3 least
significant bits are always ‘0’). At the beginning of every transaction
addressed to this device, the USP peripheral reads the element of this
table related to the addressed endpoint, to get its buffer start location and
the buffer size (Refer to Section “Structure and Usage of Packet Buffers”).

Bits 2:0 Reserved.

These are reserved bits. These bits are always read as ‘0’ and must
always be written with ‘0’.

4

290/401

STR720 - USB SLAVE INTERFACE (USB)

19.6.2 Endpoint-Specific Registers

The number of these registers varies according to the number of endpoints that the USB
Peripheral is designed to handle. The USB Peripheral supports up to 8 endpoints. Each USB
device must support a control endpoint whose address (EA bits) must be set to 0. The USB
Peripheral behaves in an undefined way if multiple endpoints are enabled having the same
endpoint number value. For each endpoint, an USB_EPnR register is available to store the
endpoint specific information.

USB Endpoint n Register (USB_EPnR)
Address Offset: 00h to 2Ch
Reset value: 0000 0000 0000 0000b (0000h)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
x x

% [a o) x =

o, ! STAT o) EP Z = ! STAT

@ O} = X @ Q EA[3:0]

x o) RX[L:0] w TYPE[L:0] ! = o TX[L:0]

(8} 5 7] a 1) B

1
o
-
-
-
2
2
-
(o]
-
-
2

They are also reset when an USB reset is received from the USB bus or forced through bit
FRES in the CTLR register, except the CTR_RX and CTR_TX bits, which are kept unchanged
to avoid missing a correct packet notification immediately followed by an USB reset event.
Each endpoint has its USB_EPnR register where n is the endpoint identifier.

Read-modify-write cycles on these registers should be avoided because between the read
and the write operations some bits could be set by the hardware and the next write would
modify them before the microprocessor has the time to detect the change. For this purpose,
all bits affected by this problem have an ‘invariant’ value that must be used whenever their
modification is not required. It is recommended to modify these registers with a load
instruction where all the bits, which can be modified only by the hardware, are written with
their ‘invariant’ value.

4

291/401

STR720 - USB SLAVE INTERFACE (USB)

Bit 15

Bit 14

292/401

CTR_RX: Correct Transfer for reception

This bit is set by the hardware when an OUT/SETUP transaction is
successfully completed on this endpoint; the software can only clear this bit. If
the CTRM bit in USB_CNTR register is set accordingly, a generic interrupt
condition is generated together with the endpoint related interrupt condition,
which is always activated. The type of occurred transaction, OUT or SETUP,
can be determined from the SETUP bit described below.

A transaction ended with a NAK or STALL handshake does not set this bit,
since no data is actually transferred, as in the case of protocol errors or data
toggle mismatches.

This bit is read/write but only ‘0’ can be written, writing 1 has no effect.

DTOG_RX: Data Toggle, for reception transfers

If the endpoint is not Isochronous, this bit contains the expected value of the
data toggle bit (0=DATAO, 1=DATA1) for the next data packet to be received.
Hardware toggles this bit, when the ACK handshake is sent to the USB host,
following a data packet reception having a matching data PID value; if the
endpoint is defined as a control one, hardware clears this bit at the reception
of a SETUP PID addressed to this endpoint.

If the endpoint is using the double-buffering feature this bit is used to support
packet buffer swapping too (Refer to Section “Double-Buffered Endpoints”).

If the endpoint is Isochronous, this bit is used only to support packet buffer
swapping since no data toggling is used for this sort of endpoints and only
DATAO packet are transmitted (Refer to Section “Isochronous Transfers”).
Hardware toggles this bit just after the end of data packet reception, since no
handshake is used for isochronous transfers.

This bit can also be toggled by the software to initialize its value (mandatory
when the endpoint is not a control one) or to force specific data toggle/packet
buffer usage. When the application software writes ‘0’, the value of DTOG_RX
remains unchanged, while writing ‘1’ makes the bit value toggle. This bit is
read/write but it can be only toggled by writing 1.

4

STR720 - USB SLAVE INTERFACE (USB)

Bits STAT_RX [1:0] Status bits, for reception transfers

13:12 These bits contain information about the endpoint status, which are listed in
Table 62, “Reception Status Encoding,” on page 296.These bits can be
toggled by software to initialize their value. When the application software
writes ‘0’, the value remains unchanged, while writing ‘1’ makes the bit value
toggle. Hardware sets the STAT_RX bits to NAK when a correct transfer has
occurred (CTR_RX=1) corresponding to a OUT or SETUP (control only)
transaction addressed to this endpoint, so the software has the time to
elaborate the received data before it acknowledge a new transaction
Double-buffered bulk endpoints implement a special transaction flow control,
which control the status based upon buffer availability condition (Refer to
Section “Double-Buffered Endpoints”).
If the endpoint is defined as Isochronous, its status can be only “VALID” or
“DISABLED?”, so that the hardware cannot change the status of the endpoint
after a successful transaction. If the software sets the STAT_RX bits to ‘STALL
or ‘NAK’ for an Isochronous endpoint, the USB Peripheral behaviour is not
defined. These bits are read/write but they can be only toggled by writing ‘1°.

Bit 11 SETUP: Setup transaction completed
This bit is read-only and it is set by the hardware when the last completed
transaction is a SETUP. This bit changes its value only for control endpoints. It
must be examined, in the case of a successful receive transaction (CTR_RX
event), to determine the 'type of transaction occurred. To protect the interrupt
service routine from the changes in SETUP bits due to next incoming tokens,
this bit is kept frozen while CTR_RX bit is at 1; its state changes when
CTR_RX is at 0. This bit is read-only.

Bits 10:9 EP_TYPE[1:0]: Endpoint type
These bits configure the behaviour of this endpoint as described in Table 63,
“Endpoint Type Encoding,” on page 296. Endpoint 0 must always be a control
endpoint and each USB function must have at least one control endpoint
which has address 0, but there may be other control endpoints if required.
Only control endpoints handle SETUP transactions, which are ignored by
endpoints of other kinds. SETUP transactions cannot be answered with NAK
or STALL. If a control endpoint is defined as NAK, the USB Peripheral will not
answer, simulating a receive error, in the receive direction when a SETUP
transaction is received. If the control endpoint is defined as STALL in the
receive direction, then the SETUP packet will be accepted anyway,
transferring data and issuing the CTR interrupt. The reception of OUT
transactions is handled in the normal way, even if the endpoint is a control
one.
Bulk and interrupt endpoints have very similar behaviour and they differ only in
the special feature available using the EP_KIND configuration bit.
The usage of Isochronous endpoints is explained in “Isochronous Transfers”

4

293/401

STR720 - USB SLAVE INTERFACE (USB)

Bit 8

Bit 7

294/401

EP_KIND: Endpoint Kind
The meaning of this bit depends on the endpoint type configured by the
EP_TYPE bits. Table 64 summarizes the different meanings.

DBL_BUF: This bit is set by the software to enable the double-buffering
feature for this bulk endpoint. The usage of double-buffered bulk endpoints is
explained in “Double-Buffered Endpoints”.

STATUS_OUT: This bit is set by the software to indicate that a status out
transaction is expected: in this case all OUT transactions containing more
than zero data bytes are answered ‘STALL instead of ‘ACK’. This bit may be
used to improve the robustness of the application to protocol errors during
control transfers and its usage is intended for control endpoints only. When
STATUS_OUT is reset, OUT transactions can have any number of bytes, as
required.

CTR_TX: Correct Transfer for transmission

This bit is set by the hardware when an IN transaction is successfully
completed on this endpoint; the software can only clear this bit. If the CTRM
bit in the USB_CNTR register is set accordingly, a generic interrupt condition
is generated together with the endpoint related interrupt condition, which is
always activated.

Note A transaction ended with a NAK or STALL handshake does not set
this bit, since no data is actually transferred, as in the case of
protocol errors or data toggle mismatches.

This bit is read/write but only ‘0’ can be written.

4

STR720 - USB SLAVE INTERFACE (USB)

Bit 6 DTOG_TX: Data Toggle, for transmission transfers
If the endpoint is non-isochronous, this bit contains the required value of the
data toggle bit (0=DATAO, 1=DATA1) for the next data packet to be transmitted.
Hardware toggles this bit when the ACK handshake is received from the USB
host, following a data packet transmission. If the endpoint is defined as a
control one, hardware sets this bit to 1 at the reception of a SETUP PID
addressed to this endpoint.
If the endpoint is using the double buffer feature, this bit is used to support
packet buffer swapping too (Refer to Section “Double-Buffered Endpoints”)
If the endpoint is Isochronous, this bit is used to support packet buffer
swapping since no data toggling is used for this sort of endpoints and only
DATAO packet are transmitted (Refer to section “Isochronous Transfers”).
Hardware toggles this bit just after the end of data packet transmission, since
no handshake is used for Isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory
when the endpoint is not a control one) or to force a specific data toggle/
packet buffer usage. When the application software writes ‘0’, the value of
DTOG_TX remains unchanged, while writing ‘1’ makes the bit value toggle.
This bit is read/write but it can only be toggled by writing 1.

Bit 5:4 STAT_TX [1:0] Status bits, for transmission transfers
These bits contain the information about the endpoint status, listed in Table
65. These bits can be toggled by the 'software to initialize their value. When
the application software writes ‘0’, the value remains unchanged, while writing
‘1’ makes the bit value toggle. Hardware sets the STAT_TX bits to NAK, when
a correct transfer has occurred (CTR_TX=1) corresponding to a IN or SETUP
(control only) transaction addressed to this endpoint. It then waits for the
software to prepare the next set of data to be transmitted.
Double-buffered bulk endpoints implement a special transaction flow control,
which controls the status based on buffer availability condition (Refer to
Section “Double-Buffered Endpoints”).
If the endpoint is defined as Isochronous, its status can only be “VALID” or
“DISABLED”. Therefore, the hardware cannot change the status of the
endpoint after a successful transaction. If the software sets the STAT_TX bits
to ‘STALL or ‘NAK’ for an lIsochronous endpoint, the USB Peripheral
behaviour is not defined. These bits are read/write but they can be only
toggled by writing ‘1°.

Bit 3:0 EA[3:0] Endpoint Address.
Software must write in this field the 4-bit address used to identify the
transactions directed to this endpoint. A value must be written before enabling
the corresponding endpoint.

4

295/401

STR720 - USB SLAVE INTERFACE (USB)

Table 62. Reception Status Encoding

STAT_RX[1:0]

Meaning

00 DISABLED: all reception requests addressed to this endpoint are ignored.

01 STALL: the endpoint is stalled and all reception requests result in a STALL hand-
shake.

10 NAK: the endpoint is naked and all reception requests result in a NAK hand-
shake.

11 VALID: this endpoint is enabled for reception.

Table 63. Endpoint Type Encoding

EP_TYPE[1:0] Meaning
00 BULK
01 CONTROL
10 ISO
11 INTERRUPT
Table 64. Endpoint Kind Meaning
EP_TYPE[1:0] EP_KIND Meaning
00 BULK DBL_BUF
01 CONTROL STATUS_OUT
10 ISO Not used
11 INTERRUPT Not used
Table 65. Transmission Status Encoding
STAT_TX[1:0] Meaning

00 DISABLED: all transmission requests addressed to this endpoint are ignored.
01 STALL: the endpoint is stalled and all transmission requests result in a STALL handshake.
10 NAK: the endpoint is naked and all transmission requests result in a NAK handshake.

11

VALID: this endpoint is enabled for transmission.

296/401

4

STR720 - USB SLAVE INTERFACE (USB)

19.6.3 Buffer Descriptor Table

Although this table is located inside packet buffer memory, its entries can be considered as
additional registers used to configure the location and size of packet buffers used to exchange
data between USB and the STR720. Due to the common APB bridge limitation on word
addressability, all packet memory locations are accessed by the APB using 32-bit aligned
addresses, instead of the actual memory location addresses utilized by the USB Peripheral for
the USB_BTABLE register and buffer description table locations. In the following pages two
location addresses are reported: the one to be used by application software while accessing
the packet memory, and the local one relative to USB Peripheral access. To obtain the correct
STR720 memory address value to be used in the application software while accessing the
packet memory, the actual memory location address must be multiplied by two. The first
packet memory location is located at 0OxC000 8800.

The buffer description table entry associated with the USB_EPnR registers is described
below. A thorough explanation of packet buffers and buffer descriptor table usage can be
found in the Section “Structure and Usage of Packet Buffers”.

Transmission Buffer Address n (USB_ADDRN_TX)

Address Offset: [USB_BTABLE] + n*16 USB local Address: [USB_BTABLE] + n*8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRN_TX[15:1]

Bits 15:1 ADDRN_TX[15:1]. Transmission Buffer Address
These bits point to the starting address of the packet buffer containing data
to be transmitted by the endpoint associated with the USB_EPnR register
at the next IN token addressed to it.

Bit 0 Must always be written as ‘0’ since packet memory is word-wide and all
packet buffers must be word-aligned.

4

297/401

STR720 - USB SLAVE INTERFACE (USB)

Transmission Byte Count n (USB_COUNTN_TX)

Address Offset: [USB_BTABLE] + n*16 + 4 USB local Address: [USB_BTABLE] + n*8 + 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
COUNTn_TX[9:0]

Bits 15:10 These bits are not used since packet size is limited by USB specifications
to 1023 bytes. Their value is not considered by the USB Peripheral.

Bits 9:0 COUNTN_TX[9:0]. Transmission Byte Count
These bits contain the number of bytes to be transmitted by the endpoint
associated with the USB_EPnR register at the next IN token addressed to
it.

298/401 IS77

STR720 - USB SLAVE INTERFACE (USB)

Reception Buffer Address n (USB_ADDRnN_RX)

Address Offset: [USB_BTABLE] + n*16 + 8 USB local Address: [USB_BTABLE] + "8 + 4

15 14 12 11 10 9 8 7 6 5 4 3 2 1 0
ADDRn_RX[15:1]
Bits 15:1 ADDRnN_RX[15:1]. Reception Buffer Address
These bits point to the starting address of the packet buffer, which will
contain the data received by the endpoint associated with the USB_EPnR
register at the next OUT/SETUP token addressed to it.
Bit 0 This bit must always be written as ‘0’ since packet memory is word-wide

4

and all packet buffers must be word-aligned.

299/401

STR720 - USB SLAVE INTERFACE (USB)

Reception Byte Count n (USB_COUNTN_RX)

Address Offset: [USB_BTABLE] + n*16 + 12 USB local Address: [USB_BTABLE] + n*8 + 6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N

? NUM_BLOCK([4:0] COUNTN_RX[9:0]

om

rw w r

This table location is used to store two different values, both required during packet reception.
The most significant bits contains the definition of allocated buffer size, to allow buffer overflow
detection, while the least significant part of this location is written back by the USB Peripheral
at the end of reception to give the actual number of received bytes. Due to the restrictions on
the number of available bits, buffer size is represented using the number of allocated memory
blocks, where block size can be selected to choose the trade-off between fine-granularity/
small-buffer and coarse-granularity/large-buffer. The size of allocated buffer is a part of the
endpoint descriptor and it is normally defined during the enumeration process according to its
maxPacketSize parameter value (See “Universal Serial Bus Specification”).

Bit 15 BL_SIZE: BLock SIZE.

This bit selects the size of memory block used to define the allocated buffer
area.

e If BL_SIZE=0, the memory block is 2 byte large, which is the minimum
block allowed in a word-wide memory. With this block size the allocated
buffer size ranges from 2 to 62 bytes.

e If BL_SIZE=1, the memory block is 32 byte large, which allows to reach
the maximum packet length defined by USB specifications. With this
block size the allocated buffer size ranges from 32 to 1024 bytes, which
is the longest packet size allowed by USB standard specifications.

Bits 14:10 NUM_BLOCK]4:0]: Number of blocks.

These bits define the number of memory blocks allocated to this packet
buffer. The actual amount of allocated memory depends on the BL_SIZE
value as illustrated in Table 66.

Bits 9:0 COUNTN_RX[9:0]. These bits contain the number of bytes received by the
endpoint associated with the USB_EPnR register during the last OUT/
SETUP transaction addressed to it.

300/401 ﬁ

STR720 - USB SLAVE INTERFACE (USB)

Table 66. Definition of Allocated Buffer Memory

Value of Memory allocated Memory allocated
NUM_BLOCK]4:0] when BL_SIZE=0 when BL_SIZE=1

0 (‘00000) Not allowed 32 bytes

1 (‘000017) 2 bytes 64 bytes

2 (‘00010) 4 bytes 96 bytes

3 (‘00011") 6 bytes 128 bytes

15 (‘0111717) 30 bytes 512 bytes

16 (‘10000) 32 bytes 544 bytes

17 (‘100071’) 34 bytes 576 bytes

18 (10010 36 bytes 608 bytes

30 (‘11110)) 60 bytes 992 bytes

31 (‘11111) 62 bytes 1024 bytes

4

301/401

STR720 - USB SLAVE INTERFACE (USB)

19.6.4 Register Map

A summary of the USB Peripheral registers is given in the following table.

Refer to Table 20 on page 49 for the base address..

Table 67. USB Peripheral Register Page Mapping

Offset Register 1514 | 13 | 12 | 11 10 9 8 7 6 5 4 3 2 1 0
x x
= [o [=] > =
o [STAT S EP Z = [STAT
| (0] < [G] .
0x00 USB_EPOR £l o mxto E TYPE[10] | o | E S | ™0 EA3:0]
(@)) w S [a)
x x
P o o a < [
o [STAT S EP Z = [STAT
'l o [= < 10) .
0x04 USB_EP1R T o RX[1:0] wo| TYPE[1:0] | o = e TX[1:0] EALS:0]
©1l a w| ©| B
x x
x [o a < [
o [STAT S EP Z = ! STAT
| (0] < (6] .
0x08 USB_EP2R | 6| Rxpo | TyPEro] | o | E| ©| Txito EA3:0]
O = »n &o 0 =
a [a]
x x
x o o a < [
o [STAT S EP Z = [STAT
| 10} < O] :
0xoC USB_EP3R e o RX[1:0] E TYPE[1:0] | o = o TX[1:0] EAS:0]
o) w o N
x x
% [o a < [
o [STAT S EP Z = [STAT
| o < 0] .
0x10 USB_EP4R £l o RX[1:0] W | TYPE[1:0] 2! El o TX[1:0] EA3:0]
O = n & 0 =
a o
x x
x o o] < [
o [STAT S EP Z = ! STAT
| 0} < O] :
Ox14 USB_EPSR e o RX[1:0] E TYPE[1:0] | o = o TX[1:0] EAS:0]
o) w o N
x x
% [o a < [
o [STAT S EP Z = ! STAT
! 0] [< o .
0x18 USB_EP6R T o RX[1:0] wo| TYPE[10] | o = o TX[1:0] EA3:0]
(@]) L o N
x x
x o o a < [
o [STAT) EP Z = [STAT
| o} < o .
ox1C USB_EP7R T o RX[1:0] E TYPE[1:0] | o/ g o TX[1:0] EAS:0]
o w
[a] o
s s s = = u o
s| 2| =| & E| = = Z| o
0x40 USB_CNTR Elz| B 2 & | u S S Reserved 2 2| g | 4
o| 9| w S|l a| el o) @ w @ g | =
i o o I w
r|l s | S| o W| 5| o fos)
0x44 USB_ISTR 5 g i § 2 E@ o] ? Reserved = EP_ID[3:0]
8| 3| ¥
0x48 USB_FNR 21 Q1| & | LSoFt0] FN[10:0]
[T -
0x4C USB_DADDR Reserved EF ADD[6:0]
0x50 USB_BTABLE BTABLE[15:3] Reserved
302/401 IYI

STR720 - WATCHDOG TIMER (WDG)

20 WATCHDOG TIMER (WDG)

20.1 Introduction

The Watchdog Timer peripheral can be used as free-running timer or as Watchdog to resolve
STR720 microcontroller malfunctions due to hardware or software failures.

20.2 Main Features

m 16-bit down Counter

m 8-bit clock Prescaler

s Safe Reload Sequence

m Free-running Timer mode

» End of Counting interrupt generation

s Second clock source (4 kHz derived from 32 kHz RTC clock

20.3 Functional Description

Figure 42 shows the functional blocks of the Watchdog Timer module. The module can work
as Watchdog or as Free-running Timer. In both working modes the 16-bit Counter value can
be accessed through a reading of the WDTCNT register.

20.3.1 Free-running Timer mode

If the WE bit of WDTCR register is not written to ‘1’ by software, the peripheral enter in
Free-running Timer mode. When in this operating mode as the SC bit of WDTCR register is
written to ‘1’ the WDTVR value is loaded in the Counter and the Counter starts counting down.

Figure 42. Watchdog Timer Functional Block

EE SC
APB_CLK =¢ vy | WDTPR Register
—1 8-bit Prescaler
CLK_AF/8 .
WE v v
IRQ/
|—> 16-bit Counter EC, EC ECM >
SYS RST
WDTVR Regist;‘

4

303/401

STR720 - WATCHDOG TIMER (WDG)

When it reaches the end of count value (0000h) an End of Count interrupt is generated (EC)
and the WDTVR value is automatically re-loaded. The Counter runs until the SC bit is cleared.
Setting SC bit again, both the Counter and the Prescaler are re-loaded with the values
contained in registers WDTVR and WDTPR respectively, so it does not restart from where it
was eventually stopped, but from a defined situation without need to reset and re-program the
module. It is clear that, on the other hand, it is not possible to change on fly the prescaling
factor since it will only effect the counter after a restart command (SC bit setting which
generates a re-load operation).

The clock input signal can be either the APB_CLK or an alternate clock signal, having at least
a period four times longer than the period of the APB clock. This can allow for example to
generate time basis independent from the APB clock which could dynamically change
according to the system mode setting (run mode, low power mode, etc.). This alternate clock
signal is derived from the RTC clock and is equal to CLK_AF divided by 8.

20.3.2 Watchdog mode

If WE bit of WDTCR register is written to ‘1’ by software, the peripheral enter in Watchdog
mode. This operating mode can not be changed by software (the SC bit has no effect and WE
bit cannot be cleared).

As the peripheral enters in this operating mode, the WDTVR value is loaded in the Counter
and the Counter starts counting down. When it reaches the end of count value (0000h) a
system reset signal is generated (SYS RST).

If the sequence of two consecutive values A55Ah, 5AA5h is written in the WDTKR register
see Section 20.4, the WDTVR value is re-loaded in the Counter, so the end of count can be
avoided.

4

304/401

STR720 - WATCHDOG TIMER (WDG)

20.4 Register description

The Watchdog Timer registers can not be accessed by byte.
The reserved bits can not be written and they are always read at ‘0’.

WDT Control Register (WDTCR)

Address Offset: 00h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved EE SC WE
rw rw rw

Bit 15:3 = Reserved.

Bit 2 = EE: EXT_CK Enable bit.

1: EXT_CK signal, (CLK_AF/8 is used as counting clock, its period must be at least 4 times
the APB_CLK period.

0: APB_CLK is used as counting clock.

This bit can be written as long as Watchdog mode is not entered (WE bit = 0). Once WE bit is
set to ‘1’, the value of EE cannot be changed anymore.

Bit 1 = SC: Start Counting bit.

1: the Prescaler loads the Prescaler pre-load value (WDTPR), the Counter loads the Timer
pre-load value (WDTVR) and starts counting

0: the Counter is stopped. To restart it, SC setting will generate a re-loading of the Prescaler
pre-load value and Timer pre-load value. These functionalities are permitted only in Timer
Mode (WE bit = 0).

Bit 0 = WE: Watchdog Enable bit.

1: Watchdog Mode is enabled

0: Timer Mode is enabled

This bit can’t be reset by software.

If the external WDGEN signal is high the WE bit is written to ‘1’ by hardware as soon the reset
has elapsed else can write to ‘1’ by software but cannot be cleared.

When WE bit is high, SC bit has no effect.

4

305/401

STR720 - WATCHDOG TIMER (WDG)

WDT Prescaler Register (WDTPR)

Address Offset: 04h
Reset value: 00FFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved PR7 | PR6 | PR5 | PR4 | PR3 | PR2 PR1 PRO
rw rw rw rw rw rw rw rw

Bit 15:8 = Reserved.

Bit 7:0 = PR[7:0]: Prescaler value.

The clock to Timer Counter is divided by PR[7:0]+1.

This value takes effect when Watchdog mode is enabled (WE bit is put to ‘1’) or the re-load
sequence occurs or the Counter starts (SC) bit is put to ‘1’ in Timer mode.

WDT pre-load Value Register (WDTVR)

Address Offset: 08h
Reset value: FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TV15 | TV14 | TV13 | Tvi2 | TV11 | TV10 [TV9 TV8 TV7 TV6 TV5 TV4 TV3 TV2 TV1 TVO

rw 'w w rw rw 'w rw rw w rw 'w 'w w rw w rw

Bit 15:0 = TV[15:0]: Timer Pre-load Value

This value is loaded in the Timer Counter when it starts counting or a re-load sequence
occurs or an End of Count is reached. The time (us) need to reach the end of count is given
by:

(PR[7:0]+1)*(TV[15:0]+1)*Tck/1000 (us)

where Tck is the Watchdog clock period measured in ns.
l.e. if Fcx = 20MHz the default timeout set after the system reset is 256*65536*50/1000 =
838861ps.

4

306/401

STR720 - WATCHDOG TIMER (WDG)

WDT Counter Register (WDTCNT)

Address Offset: 0Ch
Reset value: FFFFh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT15[CNT14|CNT13|CNT12[CNT11|CNT10| CNT9 | CNT8 | CNT7 | CNT6 | CNT5 | CNT4 | CNT3 | CNT2 | CNT1 | CNTO

r r r r r r r r r r r r r r r r

Bit 15:0 = CNT[15:0]: Timer Counter Value.
The current counting value of the 16-bit Counter is available reading this register.

WDT Status Register (WDTSR)

Address Offset: 10h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved EC

rc

Bit 15:1 = Reserved.

Bit 0 = EC: End of Count pending bit.

1: the End of Count has occurred

0: no End of Count has occurred

In Watchdog Mode (WE = 1) this bit has no effect.

This bit can be set only by hardware and must be reset by software.

WDT Mask Register (WDTMR)

Address Offset: 14h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ECM

rw

Bit15:1 = Reserved.

Bit 0 = ECM: End of Count Mask bit.
1: End of Count interrupt request is enabled
0: End of Count interrupt request is disabled

‘ﬁ 307/401

STR720 - WATCHDOG TIMER (WDG)

WDT Key Register (WDTKR)

Address Offset: 18h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1

KO

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15:0 = K[15:0]: Key Value.

rw

When Watchdog Mode is enabled, writing in this register the two consecutive values (A55Ah,
5AA5h) the Counter is initialized to TV[15:0] value and the Prescaler value in WTDPR register

take effect. Any number of instructions can be executed between the two writes.
If Watchdog Mode is disabled (WE = 0) a writing in this register has no effect.
The reading value of this register is 0000h.

20.4.1 Register Map

A summary of the WDG registers is given in the following table.

Table 68. Watchdog Timer Peripheral Register Map

gff':;'t Rﬁgﬁfr 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0 WDTCR reserved EE SC WE
4 WDTPR reserved ‘ PR(7:0)
8 WDTVR TV(15:0)
C | WDTCNT CNT(15:0)
10 WDTSR reserved EC
14 WDTMR reserved MEC
18 | WDTKR K[15:0]

Refer to Table 20 on page 49 for the base address.

308/401

4

STR720 - EXTENDED FUNCTION TIMER (EFT)

21 EXTENDED FUNCTION TIMER (EFT)

21.1 Introduction

The timer consists of a 16-bit counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two
input signals (input capture) or generation of up to two output waveforms (output compare and
PWM).

Pulse lengths and waveform periods can be modulated from a very wide range using the timer
prescaler.

Note The two EFT instances available in STR720 device do not implement all the features
described in this chapter. Please refer to Section 5.16: Extended Function Timer
(EFT) on page 43.

21.2 Main Features
m Programmable prescaler: fpppg divided from 1 to 256, Prescaler register (0 to 255) value +1.

n Overflow status flag and maskable interrupts
m External clock input (must be at least 4 times slower than the CPU clock speed) with the
choice of active edge
s Output compare functions with
— 2 dedicated 16-bit registers
— 2 dedicated programmable signals
— 2 dedicated status flags
— 2 dedicated interrupt flags.
» Input capture functions with
— 2 dedicated 16-bit registers
— 2 dedicated active edge selection signals
— 2 dedicated status flags
— 2 dedicated interrupt flags.
m Pulse width modulation mode (PWM)
m One pulse mode (OPM)
s PWM input mode
= Timer global interrupt (5 internally ORed or separated sources, depending on device)
—ICIA: Timer Input capture A interrupt
—ICIB: Timer Input capture B interrupt
— OCIA: Timer Output compare A interrupt
— OCIB: Timer Output compare B interrupt
—TOI: Timer Overflow interrupt.

The Block Diagram is shown in Figure 43.

ﬁ 309/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

21.3 Functional Description

21.3.1 Counter

The principal block of the Programmable Timer is a 16-bit counter and its associated 16-bit
registers.

Writing in the Counter Register (CNTR) resets the counter to the FFFCh value.

The timer clock source can be either internal or external selecting ECKEN bit of CR1 register.
When ECKEN = 0, the frequency depends on the prescaler division bits (CC7-CCO0) of the
CR2 register.

An overflow occurs when the counter rolls over from FFFFh to 0000h then the TOF bit of the
SR register is set. An interrupt is generated if TOIE bit of the CR2 register is set; if this
condition is false, the interrupt remains pending to be issued as soon as it becomes true.

Clearing the overflow interrupt request is done by a write access to the SR register while the
TOF bit is set with the data bus 13-bit at ‘0’, while all the other bits shall be written to ‘1’ (the
SR register is clear only, so writing a ‘1’ in a bit has no effect: this makes possible to clear a
pending bit without risking to clear a new coming interrupt request from another source).

4

310/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Figure 43. Timer Block Diagram

| AMBA APB BUS |
CPU CLOCK | ¢
— PERIPHERAL INTERFACE ‘
A A
16 16 16 16 16
EXEDG
16 BIT OUTPUT || OUTPUT INPUT INPUT
L COMPARE | | COMPARE CAPTURE CAPTURE
vee =¥ COUNTER REGISTER REGISTER REGISTER REGISTER
__>
A B A B
™ ALTERNATE %
% REGISTER 16 T 16
16
CC04:6 i
| TIMER INTERNAL BUS |
ECKEN v 116 i 16)
O
OVERFLOW
EXTCLK OUTPUT COMPARE EDGE DETECT
DETECT <«—O ICAPA
CIRCUIT CIRCUIT A
CIRCUIT
A —
6
EDGE DETECT
i ClRcuTs [€ O lcapB
A v Vv
>
ICFA |OCFA| TOF | ICFB |OCFB ; LATCH A —»O ocmpa
SR
'
p| LATCH B —»(O OCMPB
ICAIEJOCAIE|TOIE|ICBIH OCBIH CC7 | CC6|CC5|Ccc4a|cc3 |(ccz|ceca| ceco
CR2
| [| [|
EN FOLVBFOLVAOLVLBOLVLA[OCAE|OCBE| OPM |PWM | IEDGB |IEDGA|JEXEDGIECKEN
To@IE |C%ICAIEIC%ICBIEOC ROAE O crie CR1
‘ 1
f
TOI v ICAI# ICBI OCA? OCBIv EFTI
[71 311/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

21.3.2 External Clock
The external clock (where available) is selected if ECKEN = 1 in CR1 register.

The status of the EXEDG bit determines the type of level transition on the external clock pin
EXTCLK that will trigger the counter.

The counter is synchronized with the rising edge of the internal clock coming from the APB
block.

At least four rising edges of the APB_CLK must occur between two consecutive active edges
of the external clock; thus the external clock frequency must be less than a quarter of the APB
clock frequency.

Figure 44. Counter Timing Diagram, internal clock divided by 2

APB_CLK | |

INTERNAL RESET —I
mverstrose: | L LT LT LT LT LTI

COUNTER REGIsTER | FFFD) FFFE) FFFF) 0000 { 0001 {0002 {0003)|

OVERFLOW FLAG TOF

Figure 45. Counter Timing Diagram, internal clock divided by 4

APB_CLK ﬂm
INTERNAL RESET 1
TIMER STROBE] L []
COUNTER REGISTER FFFC FFFD 0000 0001
OVERFLOW FLAG TOF /

4

312/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Figure 46. Counter Timing Diagram, internal clock divided by n

woox (UUUULUUUUUUL THUUULL

INTERNAL RESET -‘

TIMER STROBE l_

COUNTER REGISTER FFFC FFFD //:> 0000

OVERFLOW FLAG TOF

According to particular device implementation, the external clock can be available on a
general purpose I/O pin as alternate function, this allows the Timer to count events
independently by the system clock (which could be prescaled or multiplied according to the
different run and low-power modes), generating regular time basis.

21.3.3 Input Capture

In this section, the index “/”, may be A or B.

The two input capture 16-bit registers (ICAR ‘and 1CBR) are used to latch the value of the
counter after a transition detected by the ICAP/ pin (see Figure 47).

IC/R register are read-only registers.

The active transition is software programmable through the IEDGi bit of the Control Register
(CR1).

Timing resolution is one/two count of the counter: (fopg/(CC7+CCO0+1)).

4

313/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

21.3.3.1 Procedure
To use the input capture function select the following in the CR1 and CR2 registers:

— Select the timer clock source (ECKEN).

— Select the timer clock division factor (CC7+CCO) if internal clock is used.

— Select the edge of the active transition on the ICAPA pin with the IEDGA bit, if ICAPA is ac-
tive.

— Select the edge of the active transition on the ICAPB pin with the IEDGB bit, if ICAPB is ac-
tive.

— Set ICAIE (or ICBIE) when ICAPA (or ICAPB) is active, to generate an interrupt after an input
capture.

When an input capture occurs:

— ICFibit is set.

— The ICIR register contains the value of the counter on the active transition on the ICAP/ pin
(see Figure 48).

— A timer interrupt is generated if ICAIE is set (if only ICAPA is active) or ICBIE is set (if only
ICAPB is active); otherwise, the interrupt remains pending until concerned enable bits are
set.

Clearing the Input Capture interrupt request is done by:

1. A write access to the SR register while the ICFi bit is cleared, 15-bit at ‘0’ for ICAPA and
12-bit at ‘0’ for ICAPB.

Figure 47. Input Capture Block Diagram

ICAPA é]
v v

ICAPB EDGE DETECT EDGE DETECT
i _: CIRCUIT B CIRCUIT A
(Status Register) SR high byte
ICBR | ‘ ICAR | ICFA ICFB
s ¥ 5
I — | .
16-BIT (Control Register 1) CR1 low byte
16-BIT COUNTER IEDG2|IEDG1 FCKEN
CC7-CCO $ *

from CR2

4

314/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Figure 48. Input Capture Timing Diagram

APB_CLK
EXTCLK
COUNTER REGISTER FFo1 X FFO02 FFO03 X FF04
ICAPi PIN /
ICAPi FLAG [
ICAPi REGISTER X X FFO3
Capture
Window
Note: Active edge is rising edge.

21.3.4 Output Compare

“i”

In this section, the index “i*, may be A or B.

This function can be used to control an output waveform or indicating when a period of time
has elapsed.

When a match is found between the Output Compare register and the counter, the output
compare function:

— Assigns pins with a programmable value if the OCIE bit is set
— Sets a flag in the status register
— Generates an interrupt if enabled

Two 16-bit registers Output Compare Register A (OCAR) and Output Compare Register B
(OCBR) contain the value to be compared to the counter each timer clock cycle.

These registers are readable and writable and are not affected by the timer hardware. A reset
event changes the OCIR value to 8000h.

Timing resolution is one count of the counter: (faopg/(CC7+CCO0+1)).

4

315/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

21.3.4.1 Procedure
To use the output compare function, select the following in the CR1/CR2 registers:

— Set the OCIE bit if an output is needed then the OCMP; pin is dedicated to the output com-
pare i function.

— Select the timer clock (ECKGEN) and the prescaler division factor (CC7+CCO0).
Select the following in the CR1/CR2 registers:

— Select the OLVLi bit to applied to the OCMPi pins after the match occurs.
— Set OCAIE (OCBIE) if only compare A (compare B) needs to generate an interrupt.

When match is found:

— OCFi/ bit is set.
— The OCMP;/ pin takes OLVL/ bit value (OCMPi pin latch is forced low during reset and stays
low until valid compares change it to OLVLi level).

— A timer interrupt is generated if the OCAIE (or OCBIE) bit in CR2 register is set, the OCAR
(or OCBR) matches the timer counter (i.e. OCFA or OCFB is set).

Clearing the output compare interrupt request is done by a write access to the SR register
while the OCFi bit is cleared, 14-bit at ‘0’ for OCAR and 12-bit at ‘0’ for OCBR.

If the OCIE bit is not set, the OCMPi pin is at ‘0’ and the OLVL/ bit will not appear when match
is found.

The value in the 16-bit OCIR register and the OLVL/ bit should be changed after each
successful comparison in order to control an output waveform or establish a new elapsed
timeout.

The OCIR register value required for a specific timing application can be calculated using the
following formula:

At - fapg
AOCR= ~ge7.ccom)
Where:
At = Desired output compare period (in seconds)
fapB = APB clock frequency

CC7+-CCO0 = Timer clock prescaler

4

316/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Figure 49. Output Compare Block Diagram

CC7-CCo

+ from CR2 + |
16 BIT COUNTER OCBE|OCAE ECKEN
16-bit ‘ ‘ (Control Register 1) CR1 low byte

A 4

(Control Register 1) CR1 high byte

OUTPUT COMPARE o aen [
CIRCUIT OLVLBIOLVLA >a}\° { OCMPA
g
v T e —0 ocmPs
16-bit 16-bit y y T
OCAR ‘ ‘ OCBR OCFA OCFB

(Control Register 2) CR2 high byte

Figure 50. Output Compare Timing Diagram, APB_CLK Divided by 2

APB_CLK

TIMER STROBE

COUNTER

OUTPUT COMPARE REGISTER
COMPARE REGISTER SIGNAL

OCFi AND OCMPi PIN (OLVLi=1)

R .
FFFCXFFFD X FFFD>§< FFFE FFFFX 0000 X:

CPU writes FFFF X FFFF

[]]

4

317/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

21.3.5 Forced Compare Mode

13t
I

In this section the index “/” may represent A or B.

Bits 11:8 of CR1 register and bits 7:0 of CR2 are used (Refer to Section 21.4 for detailed
Register Description).

When the FOLVA bit is set, the OLVLA bit is copied to the OCMPA pin if PWM and OPM are
both cleared. When FOLVB bit is set, the OLVLB bit is copied to the OCMPB pin.

The OLVL/ bit has to be toggled in order to toggle the OCMP/ pin when it is enabled (OCI/E
bit=1).

Note

— When FOLViis set, no interrupt request is generated.

— Nevertheless the OCFi bit can be set if OC/R = Counter, an interrupt can be generated if
enabled.

— Input capture function works in Forced Compare mode.

21.3.6 One Pulse Mode

One Pulse mode enables the generation of a pulse when an external event occurs. This mode
is selected via the OPM bit in the CR1 register.

The one pulse mode uses the Input Capture A“function (trigger event) and the Output
Compare A function.

21.3.6.1 Procedure
To use one pulse mode, select the following in the CR1 register:

— Using the OLVLA bit, select the level to be applied to the OCMPA pin after the pulse.
— Using the OLVLB bit, select the level to be applied to the OCMPA pin during the pulse.
— Select the edge of the active transition on the ICAPA pin with the IEDGA bit.

— Set the OCAE bit, the OCMPA pin is then dedicated to the Output Compare A function.
— Set the OPM bit.

— Select the timer clock (ECKGEN) and the prescaler division factor (CC7-CCO0).

Load the OCAR register with the value corresponding to the length of the pulse (see the
formula in next Section 21.3.7.1).

4

318/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Figure 51. One Pulse Mode Cycle

Counter is

When initialized
event occurs [{OI ||:|:I|§Ch
on ICAPA *

OCMPA = OLVLB

When

Counter | I OCMPA = OLVLA

Then, on a valid event on the ICAPA pin, the counter is initialized to FFFCh and OLVLB bit is
loaded on the OCMPA pin after four clock period. When the value of the counter is equal to the
value of the contents of the OCAR register, the OLVLA bit is output on the OCMPA pin (See
Figure 52).

Note

— The OCFA bit cannot be set by hardware in one pulse mode but the OCFB bit can generate
an Output Compare interrupt.

— The ICFA bit is set when an active edge occurs and can generate an interrupt if the ICAIE
bit is set. The ICAR register will have the value FFFCh.

— When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set with
FOLVA= 1, the OPM mode is the only active one, otherwise the PWM mode is the only active
one.

— Forced Compare B mode works in OPM

— Input Capture B function works in OPM

— When OCAR = FFFBh in OPM, then a pulse of width FFFFh is generated

— If event occurs on ICAPA again before the Counter reaches the value of OCAR, then the
Counter will be reset again and the pulse generated might be longer than expected as in
Figure 52.

— If a write operation is performed on the counter register before the Counter reaches the value
of OCAR, then the Counter will be reset again and the pulse generated might be longer than
expected.

— If a write operation is performed on the counter register after the Counter reaches the value
of OCAR, then there will have no effect on the waveform.

ﬁ 319/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Figure 52. One Pulse Mode Timing

COUNTER ... FFFCXFFFDXFFFEX:: :XzEDOXZEmXQEDQXD FFFCY FFFD
ICAPA] 2EDe T

4 clock period

OCMPA OLVLB OLVLA OLVLB
compare A

Note: IEDGA=1, OCAR=2EDOh, OLVLA=0, OLVLB=1

COUNTER ... FFFCXFFFDYFFFEX ~ X010 XFFFC; X2EDOX2ED1><2ED2>$) XFFFCX(FFFD
2ED3
ICAPA [

OCMPA OLVLB OoLVLB OLVLA
compare A

Note: IEDGA=1, OCAR=2EDOh, OLVLA=0, OLVLB=1

21.3.7 Pulse Width Modulation Mode

Pulse Width Modulation mode enables the generation of a signal with a frequency and pulse
length determined by the value of the OCAR and OCBR registers.

The pulse width modulation mode uses the complete Output Compare A function plus the
OCBR register.

21.3.7.1 Procedure
To use pulse width modulation mode select the following in the CR1 register:

— Using the OLVLA bit, select the level to be applied to the OCMPA pin after a successful com-
parison with OCAR register.

— Using the OLVLB bit, select the level to be applied to the OCMPA pin after a successful com-
parison with OCBR register.

— Set OCAE bit: the OCMPA pin is then dedicated to the output compare A function.
— Set the PWM bit.
— Select the timer clock (ECKGEN) and the prescaler division factor (CC7-CCO0).

Load the OCBR register with the value corresponding to the period of the signal.

Load the OCAR register with the value corresponding to the length of the pulse if (OLVLA=0
and OLVLB=1).

320/401 ﬁ

STR720 - EXTENDED FUNCTION TIMER (EFT)

If OLVLA=1 and OLVLB=0 the length of the pulse is the difference between the OCBR and
OCAR registers.

The OCIR register value required for a specific timing application can be calculated using the
following formula:

t-faps .5
OCMR Value = FRESC
Where:
t = Desired output compare period (seconds)
fapB = APB clock frequency (Hertz)
tprESC = Timer clock prescaler ((CC7..CC0)+1)

The Output Compare B event causes the counter to be initialized to FFFCh (See Figure 54).
Figure 53. Pulse Width Modulation Mode Cycle

Ty

When
Counter | OCMPA = OLVLA
= OCAR

Y

Counter
= OCBR V

Counter is reset
to FFFCh

Note

— The OCFA bit cannot be set by hardware in PWM mode, but OCFB is set every time counter
matches OCBR.

— The Input Capture function is available in PWM mode.

— When Counter = OCBR, then OCFB bit will be set. This can generate an interrupt if OCBIE
is set. This interrupt will help any application where pulse-width or period needs to be
changed interactively.

— When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set with
FOLVA = 0, the PWM mode is the only active one, otherwise the OPM mode is the only ac-
tive one.

— The value loaded in OCBR must always be greater than that in OCAR to produce mean-
ingful waveforms. Note that 0000h is considered to be greater than FFFCh or FFFDh or
FFFEh or FFFFh.

— When OCAR > OCBR, no waveform will be generated.

172 321/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

— When OCBR = OCAR, a square waveform with 50% duty cycle will be generated as in
Figure 54.

—When OCBR and OCAR are loaded with FFFC (the counter reset value) then a square wave-
form will be generated & the counter will remain stuck at FFFC. The period will be calculated
using the following formula:

Period = top, - (PRESC +1)-(OCBR +1)

— When OCAR is loaded with FFFC (the counter reset value) then the waveform will be gen-
erated as in Figure 54.

— When FOLVA bit is set and PWM bit is set, then PWM mode is the active one. But if FOLVB
bit is set then the OLVLB bit will appear on OCMPB (when OCBE bit = 1).

— When a write is performed on CNTR register in PWM mode, then the Counter will be reset
and the pulse-width/period of the waveform generated may not be as desired.

4

322/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Figure 54. Pulse Width Modulation Mode Timing

COUNTER 34E2 XFFFCXFFFDXFFFEX:: :XzEDo)(zEm)(zEDz)(Xa4E2 XFFFC
/

LVLB
OCMPA) o OLVLA OLVLB

compare B compare A compare B

Note: OCAR = 2EDOh, OCBR = 34E2, OLVLA =0, OLVLB = 1

OCMPA [owva | o, oLVLA

Note: OCAR = OCBR = 0010h, OLVLA =1, OLVLB =0

COUNTER ; :XOOOF Xoo10 >§<FFFC><

COUNTER X 0003) 0004)(FFFC><:// :Xooos Xoo04 XFFFCY
OCMPA OLVLA /OL/VL " ﬁ /

OLVLB OLVLB

Note: OCAR = FFFCh, OCBR = 0004h, OLVLA =1, OLVLB =0

4

323/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

21.3.8 Pulse Width Modulation Input

The PWM Input functionality enables the measurement of the period and the pulse width of an
external waveform. The initial edge is programmable.

It uses the two Input Capture registers and the Input signal of the Input Capture A module.

21.3.8.1 Procedure

The CR2 register must be programmed as needed for Interrupts and DMAs. To use pulse
width modulation mode select the following in the CR1 register:

— set the PWMI bit

— Select the first edge in IEDGA

— Select the second edge IEDGB as the negated of IEDGA
— Program the clock source and prescaler as needed

— Enable the counter setting the EN bit.

To have a coherent measure the interrupt/DMA should be linked to the Input Capture A
Interrupt, reading in ICAR the period value and in ICBR the pulse width.

To obtain the time values:

ICAR «f
Period = A
terESC
ICBR « f
Puse= —— APB_
terESC
Where:
faPB = APB clock frequency
tpPRESC = Timer clock prescaler: (CC7..CC0)+1

The Input Capture A event causes the counter to be initialized to 0000h, allowing a new
measure to start. The first Input Capture on ICAPA do not generate the corresponding
interrupt request.

4

324/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Figure 55. Pulse Width Modulation Input Mode Timing

/
COUNTER 34E2 %0000 Y0001 XOOOZX:// :XZEDOXZED1X2ED2>< J4E2)0000"
/ —

ICAPA
* .
PERIOD = ICAPA

PULSE LENGTH = ICAPB

capture A capture B capture A
Capture B,
ggﬁég ‘;";,”gé surement pulse width measurement
reset counter
Interrupt

Note All formulas in this chapter assume that APB_CLK is the clock driving the EFT. If
External clock (FexT) is selected, replace (Fapg/ Tpresc) by Fext, where Tpresc =

(CC7..CCO + 1).

21.4 Register Description

Each Timer is associated with two control and one status registers, and with six pairs of data
registers (16-bit values) relating to the two input captures, the two output compares, the
counter. Every register can have only an access by 16 bits, that means is not possible to read
or write only a byte.

Input Capture A Register (ICAR)

Address Offset: 00h
Reset value: xxxxh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

This is a 16-bit read only register that contains the counter value transferred by the Input
Capture A event.

4

325/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Input Capture B Register (ICBR)

Address Offset: 04h
Reset value: xxxxh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

This is a 16-bit read only register that contains the counter value transferred by the Input
Capture B event.

Output Compare A Register (OCAR)

Address Offset: 08h
Reset value: 8000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB LSB
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

This is a 16-bit register that contains the value to be compared to the CNTR register and
signalled on OCMPA output.

Output Compare B Register (OCBR)

Address Offset: 0Ch
Reset value: 8000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSB LSB
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

This is a 16-bit register that contains the value to be compared to the CNTR register and
signalled on OCMPB output.

4

326/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Counter Register (CNTR)

Address Offset: 10h
Reset value: FFFCh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSB LSB

This is a 16-bit register that contains the counter value.

Control Register 1 (CR1)

Address Offset: 14h
Reset value: 0000h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EN | PWMI Reserved FOLVB | FOLVA | OLVLB | OLVLA | OCBE | OCAE | OPM | PWM | IEDGB | [EDGA | EXEDG | ECKEN
rw rw - rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 = EN: Timer Count Enable
0: Timer counter is stopped.
1: Timer counter is enabled.

Bit 14 = PWMI: Pulse Width Modulation Input
0: PWM Input is not active.
1: PWM Input is active.

Bit 13:12 = Reserved. These bits must be always written to 0.

Bit 11 = FOLVB: Forced Output Compare B
0: No effect.
1: Forces OLVLB to be copied to the OCMPB pin.

Bit 10 = FOLVA: Forced Output Compare A
0: No effect.
1: Forces OLVLA to be copied to the OCMPA pin.

Bit 9 = OLVLB: Output Level B

This bit is copied to the OCMPB pin whenever a successful comparison occurs with the
OCBR register and OCBE is set in the CR2 register. This value is copied to the OCMPA pin in
One Pulse Mode and Pulse Width Modulation mode.

Bit 8= OLVLA: Output Level A
The OLVLA bit is copied to the OCMPA pin whenever a successful comparison occurs with
the OCAR register and the OCAE bit is set in the CR2 register.

ﬁ 327/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Bit 7= OCBE: Output Compare B Enable

0: Output Compare B function is enabled, but the OCMPB pin is a general 1/O.

1: Output Compare B function is enabled, the OCMPB pin is dedicated to the Output Compare
B capability of the timer.

Bit 6= OCAE: Output Compare A Enable

0: Output Compare A function is enabled, but the OCMPA pin is a general I/O.

1: Output Compare A function is enabled, the OCMPA pin is dedicated to the Output Compare
A capability of the timer.

Bit 5 = OPM: One Pulse Mode

0: One Pulse Mode is not active.

1: One Pulse Mode is active, the ICAPA pin can be used to trigger one pulse on the OCMPA
pin; the active transition is given by the IEDGA bit. The length of the generated pulse depends
on the contents of the OCAR register.

Bit 4 = PWM: Pulse Width Modulation

0: PWM mode is not active.

1: PWM mode is active, the OCMPA pin outputs a programmable cyclic signal; the length of
the pulse depends on the value of OCAR register; the period depends on the value of OCBR
register.

Bit 3 = IEDGB: Input Edge B

This bit determines which type of level transition on the ICAPB pin will trigger the capture.
0: A falling edge triggers the capture.

1: A rising edge triggers the capture.

Bit 2 = IEDGA: Input Edge A

This bit determines which type of level transition on the ICAPA pin will trigger the capture.
0: A falling edge triggers the capture.

1: A rising edge triggers the capture.

Bit 1 = EXEDG: External Clock Edge

This bit determines which type of level transition on the external clock pin (or internal signal)
EXTCLK will trigger the counter.

0: A falling edge triggers the counter.

1: A rising edge triggers the counter.

Bit 0 = ECKEN: External Clock Enable
0: Internal clock, divided by prescaler division factor, is used to feed timer clock.
1: External source is used for timer clock.

4

328/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Control Register 2 (CR2)

Address Offset: 18h
Reset value: 0001h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ICAIE | OCAIE | TOE | ICBIE | OCBIE reserved CC7 | CCé6 | CC5 | CC4 | CC3 | cC2 | CCt CCco
rw rw rw rw rw - rw rw rw rw rw rw rw rw

Bit 15 = ICAIE: Input Capture A Interrupt Enable
0: No interrupt on input capture A.
1: Generate interrupt if ICFA flag is set.

Bit 14 = OCAIE: Output Compare A Interrupt Enable
0: No interrupt on OCFA set.
1: Generate interrupt if OCFA flag is set.

Bit 13 = TOIE: Timer Overflow Interrupt Enable
0: Interrupt is inhibited.
1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.

Bit 12= ICBIE: Input Capture B Interrupt Enable
0: No interrupt on input capture B.
1: Generate interrupt if ICFB flag is set.

Bit 11 = OCBIE: Output Compare B Interrupt Enable
0: No interrupt on OCFB set.
1: Generate interrupt if OCFB flag is set.

Bit 10:8 = Reserved. These bits must be always written to 0.

Bit 7:0 = CC7-CCO: Prescaler division factor
This 7-bit string is the factor used by the prescaler to divide the internal clock. Timer clock will
be equal to fypg / CC7+CCO.

4

329/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

Status Register (SR)

Address Offset: 1Ch
Reset value: 0001h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ICFA | OCFA | TOF ICFB | OCFB reserved
rc rc rc rc rc

Bit 15= ICFA: Input Capture Flag A

0: No input capture (reset value).

1: An input capture has occurred. To clear this bit, write the SR register, with a ‘0’ on the bit 15
(and ‘1’ in all the other bit, just to avoid an unwanted clearing of another pending bit).

Bit 14= OCFA: Output Compare Flag A

0: No match (reset value).

1: The content of the counter has matched the content of the OCAR register. This bit is not set
in the PWM mode even if counter matches OCAR. To clear this bit, write the SR register, with
a ‘0’ on the bit 14 (and ‘1’ in all the other bit, just to avoid an unwanted clearing of another
pending bit).

Bit 13= TOF: Timer Overflow

0: No timer overflow (reset value).

1:The counter rolled over from FFFFh to 0000h. To clear this bit, write the SR register, with a
‘0’ on the bit 13 (and ‘1’ in all the other bit, just to avoid an unwanted clearing of another
pending bit).

Bit 12= ICFB: Input Capture Flag B

0: No input capture (reset value).

1: An input capture has occurred.To clear this bit, write the SR register, with a ‘0’ on the bit 12
(and ‘1’ in all the other bit, just to avoid an unwanted clearing of another pending bit).

Bit 11= OCFB: Output Compare Flag B

0: No match (reset value).

1: The content of the counter has matched the content of the OCBR register. It is set in PWM
mode too. To clear this bit, write the SR register, with a ‘0’ on the bit 11 (and ‘1’ in all the other
bit, just to avoid an unwanted clearing of another pending bit).

4

330/401

STR720 - EXTENDED FUNCTION TIMER (EFT)

21.4.1 Register Map

A summary of the EFT registers is given in the following table.

Table 69. Extended Function Timer Register Map

gf‘::;'t Rﬁgi::' 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 ICAR Input Capture A
4 ICBR Input Capture B
8 OCAR Output Compare A
C OCBR Output Compare B
10 CNTR Counter Value
14 CR1 EN PWMI reserved FOLVB FOLVA|OLVLB|OLVLA OCBE | OCAE | OPM | PWM | IEDGB | IEDGA | EXEDG |ECKEN
18 CR2 ICAIE | OCAIE| TOE | ICBIE | OCBIE reserved CcCc7 CC6 CC5 CC4 CC3 Ccc2 CCit Ccco
1C SR ICFA | OCFA | TOF | ICFB | OCFB reserved

Refer to Table 20 on page 49 for the base address.

vwww.DataSheetdU.com

4

331/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

22 3-A ANALOG/DIGITAL CONVERTER (ADC)

22.1 Introduction

The ADC is used in STR720 to measure signal strength and other slowly-changing signals.
Four input channels are supported, which can be converted in single channel or round robin
mode.

22.2 Main Features

e 11.5 bits ENOB resolution (Effective Number Of Bits)

* 0to 2.5V input range

* 4 input channels

* Oversampling Clock (Fpop) 4 MHz max.

* |nput Bandwidth 977 Hz max.

* Input Sampling Frequency (Fg) 1953 Hz max.

* Conversion time (Ts) = 1/ (Fyyop/512)

22.3 Functional Description

The ADC consists of a four-channel single-bit:Sigma-Delta modulator with a 512-sample
Sinc® digital filter and a bandgap voltage reference. A block diagram of the converter is shown
below in Figure 56.

Figure 56. Sigma-Delta Block Diagram

Slow_mod VCM VRef Registers
Input!t ——» ‘ % % —»| ChO Data —
Input2 —» Sinc®
g A — P Chi Data |— Output
Input3 —p»| Modulator Filter Data
Inputd ——p A A A | Ch2 Data Bus
—p»| Ch3 Data —
Control/
Status ‘ > IRQ
- \VCM Prescaler
Slow_ref —p Reference > VRef

4

332/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

22.3.1 Normal (Round-Robin) Operation of ADC

In its normal mode of operation, the converter samples each input channel for 512 cycles of
the over-sampling clock. In the first clock cycle, the -A modulator is reset and the digital filter
cleared. The remaining 1-bit samples from the modulator are filtered by the Sinc? filter and a
16 bit output sample supplied to the relevant data register after 512 clock cycles, the period
over which the Sinc? filter has filled up and settled down. The channel select will then switch to
the next input channel, the reset will again be asserted on the first clock cycle, and the filter
will again fill up over 512 cycles to produce a sample. This process will be repeated for each
of the channels continually in a round-robin fashion.

22.3.2 Single-Channel Operation

When sampling a single channel, that channel alone will be selected as input to the analog
signal to the sigma-delta modulator. The functionality of the converter will remain the same as
above in that the converter will be reset every 512 cycles, once a valid sample is produced.
However, to maintain the same output frequency of the converter, only one of these samples
will be taken out of every four, thus a valid sample for the channel will be produced every 2048
oversampling clock cycles, as in normal operations.

22.3.3 Low-rate operating mode

In case the required sample rate is particularly low, a special decimation mode can be used to
overcome the limitation of prescaler configurations. This mode is selected by setting DEC bit
of ADCSR register. In this way the oversampling factor becomes 5120 instead of 512 and a
valid sample for a given channel will be produced each 20480 oversampling clock cycles,
instead of 2048.

22.3.4 Interrupt and DMA Requests

An active-high interrupt/DMA request flag will be set depending on the mode of operation.

In round-robin channel selection mode, the interrupt flag will be set when all data available
(DA) flags in the control register are set, and all the interrupt enables (IE) are also set. In this
way the interrupt/DMA request (depending on which function is currently enabled) will be
activated when all channels have been converted and their values are stored in the
corresponding data registers. The interrupt/DMA request is deasserted when all data
registers are read, this being the typical response of a DMA controller, or when “0” is written in
all DA bits of ADCCSR register, this last case being typical of an interrupt response routine. It
must be noticed that in order to work properly in this configuration all interrupt enable bits
need to be set.

In single channel mode, the interrupt flag will be set when the data available flag and the
interrupt flag for the selected channel are set. The interrupt request is deasserted by reading
the data register associated to the selected channel (DMA response) or writing “0” in the
corresponding DA bit of ADCCSR register (interrupt response). In order to have a proper
single-channel interrupt/DMA request, besides selecting the single-channel mode and
configuring which channel is to be converted using AXT and A[1:0] bits in ADCCSR register,
the corresponding interrupt enable bit needs to be set as well.

ﬁ 333/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

22.3.5 Clock Timing

The sigma-delta modulator must run at a clock frequency (Fy.4, oversampling rate) not
greater than 4 MHz. The registers in this converter are clocked by the APB clock. Double
clocked synchronization for data crossing clock boundaries avoids any metastability issue. It
is up to the user to correctly program the prescaler, to generate the correct oversampling
frequency based on the APB frequency:

fAPB

Presc = =5 5128

where:

Presc = Value written in prescaler register (ADCCPR)
fAPB = APB bus clock frequency

Fs = sampling frequency

In case the low-rate operation mode is selected, the formula above becomes:

fAPB

Presc = =575120 8

As an example, if APB clock frequency is 33 MHz and required sampling frequency is 100 Hz,
ADCCPR register should be configured by writing 80 into it using the normal decimation
mode. The same prescaler value, using low-rate decimation mode, would produce a sampling
rate of 10 Hz.

Note If the prescaler is set to generate a sampling frequency greater than specified,
conversion performance is not guaranteed.

22.3.6 >-A Modulator

The Z-A modulator used is a single-bit design, second-order feedback architecture modulator
including two integrators, two summing junctions and a comparator. The gains m1—m4 are set
by capacitor ratios in the integrators.

Figure 57. Modulator architecture

() | 0
A A

\ J

—
v

]

4

334/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

22.3.7 The Sinc® Decimation Filter

The single-bit bitstream in output from the Z-A modulator is fed to a Sinc® digital filter which
filters the modulator bitstream output and decimates the sample rate to Fs. The Sinc®
Z-domain transfer function H(z) is:

1 1 N3
A
H(Z)=—x{ _}

N3 l—Z1

with N = 171 in the case of STR720 device. H(z) can be also conveniently represented as
the product of three functions of the kind:

H(z) = H; xH, x Hg

where H,(z) {n=0,1, 2} is given by:
N-1
-N
1-z

H,(2) = ﬁxL _1}: %x 3= L+z7 4724 7Ny
-7
n=0

H(z) is therefore the product of three low-pass filters H (z) of 171 taps each and with
N = 171 zeros evenly spread from 0 to Fy,g (modulator sampling frequency) in the
frequency domain. Since, in the discrete time domain, the impulse response h(n) inverse
z-transform of H(z) is given by the convolution:

h(n)= (h, ® h, ® hy)

the total number of taps of h(n) is 3N-2 = 511.

The normal implementation of this filter is shown below in Figure 3. The transfer function is
decomposed into IIR and FIR sections — the IIR section (consisting of 3 integrators) runs at
the full oversampling clock rate while the FIR section (with 3 differentiators) runs at the
decimated rate.

Figure 58. Sinc? Digital Filter

Single Bit ' 1 _>
1-77

ilp

—p> 1-z7N —} 1-z7N —Ppi 1-z7N —}16%

olp

4

335/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

The frequency response of the Sinc? filter is shown in Figure 59 and Figure 60 below.

Figure 59. Sinc® Frequency Response

Normalized frequency response — H(z)=[1/171 "(1—1’171

Y-z P®
T T T T T T

—-100 H —

-150 H] .

(2)l [dB]

—200 1 : s

H

—-250 - —

—300 - N

—-350 —

—400 . .
0 /4 /2 3n/4 T
Frequency [m]

Figure 60. Sinc® Frequency Response - Detail

Normalized frequency response — H(z)=[1/171*(1—2’171)/(1—271)]3
T T T T T T T T

-50

-100

-150

-200

IH(z2)! [dB]

-250

-300 - . -

-350 : -

—400 I I I I I I I I I
0 2n/171 47t/171 6r/171 8n/171 10m/171
Frequency [w]

336/401

4

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

The word lengths needed in each integrator and differentiator are given by the formula
b=3log2(N) + 1. This gives a maximum word length of 21 bits for the internal registers. As the
output is only 16 bits, the LSBs are discarded.

Note Only the 12 most significant bits out of this 16 bits are guaranteed to be accurate
according to the device specification, even if all 16 bits can be read.

Since the first zero of the decimation filter is located at

o = 2%
171

while the first replica of the spectrum of the modulator after decimation is located at:
_ 2
® = 2048

care must be taken to ensure that the Nyquist criterion is respected to avoid alias, i.e.:
Fo=Fpyq™ 2F \1ax

The description above refers to the operations in normal decimation mode. When low-rate
decimation mode is selected, the registers in the decimated section will be updated when the
count gets to 1700 instead of 170 and the world length of the registers will be 33 bits instead
of 23, the final value containing bits 33:18 of the final differentiator. The reset of the filter will
occur every 5120 cycles instead of every 512.

22.3.8 Bandgap Reference

An on-chip bandgap reference generates a 1.22 V reference. This is used to generate two
voltages used by the modulator — Vg & VRer Ve is designed to be 1.25 'V, the midpoint of
the converter’s voltage range and Vggr is the feedback reference, 1.74 V. As the bandgap
reference is not trimmed, absolute values of Vg & VRer could be inaccurate by up to+ 5%.
This will lead to gain and offset errors in the converter which can be calibrated out digitally if
necessary.

To calibrate the converter it is necessary to input the minimum and maximum inputs
supported — 0 V and 2.5 V. The digital output for a 0 V input is the offset and the gain of the
converter is given by:

- (2.5Voutput — 0Voutput)

© 2.5

The offset and gain correction factors can be stored digitally and applied to all outputs from
the converter, for all four input channels.

4

337/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

22.3.9 ADC Input Equivalent Circuit

The input equivalent circuit, due to the switching at Fy,_4 rate of the input capacitance where
the charge taken from the input signal to be measured is stored, can be represented as
follows:

Figure 61. ADC Input Equivalent Circuit

where Vg is the voltage under measurement, Ry is the output resistance of the source, vy
the voltage the will actually converted and Ry the input equivalent resistance of the ADC. Ry
is inversely proportional to the modulator oversampling clock and the constant K is equal to
540 [kQ][MHZz] +/- 20%.

22.3.10 ADC Output Coding

The X-A converter produces a digital-'sample of each analog input channel every 512
oversampling clocks (5120 when low-rate mode is selected). The digital samples in output
from the Sinc® digital filter are stored in the four ADCDATAR registers as 16-bit samples of
which only the first 12 most significant bits are meaningful. The converted value stored in
ADCDATA[n] is a signed two’s complement value and proportional to the difference (V|n-Vem),
being ideally 0 if the input voltage were V| = V. Since the gain and offset errors previously
described, before actually using the result of the conversion calibration must be performed.

Note The analog input voltage should not exceed twice the Center Voltage of the X-A
Modulator (2 *Vy) otherwise converter performances cannot be guaranteed.
Remember that the V., Voltage has an accuracy of +/- 5% which imposes a
calibration of the converter.

4

338/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

22.3.11 Power Saving Features

The analog circuitry of the ADC block is switched off when bit “ADC_OFF” in the AGCR
register is reset (see Section 24.2: A-GCR Block description on page 351), allowing the
power consumption via AVpp / AVgg pins to be minimized (< 1 pA). Due to the fact that the
analog section of ADC is used also to generate reference currents for the proper operation of
clock input pads, it is recommended to disable the ADC by software only after having switched
to a low power mode that is not using clock input pads, as SLOW or STOP mode (see Section
25: POWER REDUCTION MODES on page 364).

The digital section of ADC block can be stopped by using the ordinary clock gating features,
provided on the device.

Note that on power-up, or after switching on “ADC_OFF” bit, the common-mode feedback
circuit can take about 30 oversampling clock cycles to drive the common-mode voltage to its
correct value. For this reason, the first sample should be discarded after activating ADC block.

22.4 Register description
ADC Control/Status Register (ADCCSR)

Address Offset: 20h

Reset Value: 0000h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. DEC OR Res 1E[3:0] Res. AXT A[1:0] DA[3:0]

w Ic - rw - w 'w rc

This register controls the operating mode of the ADC, sets the interrupt enables, contains
status flags for the availability of data and error flags in the event of data being overwritten
before being read.

Bit 15 = Reserved. This bit should be written as ‘0’ and will be read always at ‘0’.

Bit 14 = DEC: DECimation factor

This bit selects the decimation mode between normal mode and low-rate mode, where same
prescaler value can be used to reach very low sampling rates.

0: Normal mode, decimation by 512.

1: Low-rate mode decimation by 5120.

Bit 13 = OR: OverRun

This read-clear bit is used to notify application software that data on one of the channels has
been overwritten before being read.

0: Normal operation. No overrun has occurred.

1: Overrun event occurred. This bit is set by hardware as soon as an overrun condition is
detected and must be cleared by software by explicitly writing it to “0”. Writing “1” into this bit
has no effect.

ﬁ 339/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

Bit 12 = Reserved. This bit should be written as ‘0’ and will be read always at ‘0’.

Bits 11:8 = IE[3:0]: Interrupt Enable

This set of bits allows to enable interrupt requests independently for each of the ADC
channels, where bit IE[n] corresponds to ADC channel n.

0: Channel n interrupt disabled.

1: Channel n interrupt enabled.

Bit 7 = Reserved. This bit should be written as ‘0’ and will be read always at ‘0’.

Bit 6 = AXT: Addressing eXTernal enable

This bit allows to enable the single-channel operation, configuring the ADC to convert
repeatedly the channel identified by A[1:0] bits of this register.

0: Round-robin addressing enabled.

1: Single-channel addressing enabled.

Bits 5:4 = A[1:0]: channel Address
These bits select the external channel to be sampled when external addressing is enabled.

Bits 3:0 = DA[3:0]: Data Available

This read-clear set of bits allows to determine on which channel data register a new sample is
ready to be read, where bit DA[n] corresponds to ADC channel n. They are set by hardware as
soon as a new sample on the corresponding channel is available and they can be cleared
explicitly by writing them to “0” or indirectly when the corresponding data register is read.
Writing “1” into these bits has no effect.

0: No sample is available on the corresponding channel.

1: New sample available on the corresponding channel.

These bits also act as interrupt flags for the corresponding channels.

4

340/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

ADC Clock Prescaler Register (ADCCPR)
Address Offset: 30h
Reset Value: 0006h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved PRESC[6:0]
w

Bits 15:7 = Reserved. These bits should be always written as ‘0.

Bits 6:0 = PRESC[6:0]: Prescaler value

The 7 bit binary value specified on the clock prescaler register determines the factor by which
the ADC input clock will be divided down in order to produce the oversampling clock of the
sigma-delta modulator, the actual factor being twice the PRESC register value as illustrated in
Table 70 on page 341. The value placed in this register must subsequently generate an
oversampling clock frequency not greater than 4 MHz from the master clock applied to the
ADC. These bits can only be written by software, any read operation on them returns Oh.

Table 70. ADC Prescaler setting

Setting Divide Factor

0 Not available (ADC frozen)
1 Not available (ADC frozen)
2 4

3 6

4 8

126 252

127 254

4

341/401

STR720 - S-D ANALOG/DIGITAL CONVERTER (ADC)

ADC Data Register n,n =0 .. 3 (ADCDATAnN)
Address Offsets: 00h, 08h, 10h, 18h

Reset Values: 0000h
15 14 13 12 11 i0O 9 8 7 6 5 4 3 2 A 0

DATA[15:0]

r

Four data registers, one for each of the analogue input channels, are available. The 12 most
significant bits will contain the result of the conversion, while the least significant bits of each
register should be ignored. Values reported in data registers are expressed in 2’s complement
notation. The data registers will be filled in numerical sequence in the round-robin channel
mode. In single channel mode, only the selected channel will be updated.

Bit 15:0 = DATA[15:0]: DATA sample
This read-only register contains the last sampled value on the corresponding channel.

22.4.1 Register map
Table 71. ADC Register Map

Addr.| Register | 45 | 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Offset Name

00 | ADCDATAO DATA[15:0]
08 | ADCDATA1 DATA[15:0]
10 | ADCDATA2 DATA[15:0]
18 | ADCDATA3 DATA[15:0]
20 ADCCSR Reserved | OR ‘ Res. I 1E[3:0] | Res. ‘ AXT | A[1:0] DA[3:0]

28 Reserved

30 ADCCPR Reserved ’ PRESC[7:0]

Refer to Table 20 on page 49 for the base address.

4

342/401

STR720 - GENERAL PURPOSE I/0 PORTS

23 GENERAL PURPOSE I/0 PORTS

23.1 Introduction

The General Purpose 10 Port are programmable by software in several conditions: input,
output, Alternate Function, open drain, push-pull, weak push-pull and high impedance. Each
Port is configured in Input (PC0=0, PC1=1, PC2=0, see Table 72 on page 344) during the
Reset phase.

Warning: being each GPIO pin configured in Input during Reset phase, the 10 pins are
released to High Impedance condition. To avoid power consumption the user has to drive the
IOs to stable levels.

23.2 Main Features

s Data Input /Output

s Alternate Function

s CMOS Input

s PUSH-PULL Output

s Open Drain Output

s Weak PUSH-PULL Output

n Full software programmability

23.3 Functional Description

The General Purpose 10 Port has three configuration registers (PC0,PC1,PC2) and one 10
Data register (PD).

All the allowed Port configurations, set by programming of the configuration registers are
summarized in Table 72 on page 344, where the index (n) is a generic 1O bit.

A writing access to the 10 Data register always loads the data in the Output Latch.The Output
Latch holds the data to be sent out while the Input Latch captures the data present on the IO

pin.

A reading access to the 10 Data register can read the Input Latch or the Output Latch
according to the Port configuration (see later).

4

343/401

STR720 - GENERAL PURPOSE I/0 PORTS

The Figure 62 on page 344 shows the basic structure of the General Purpose |0 Port bit.

Figure 62. Basic Structure of an 1/0 Port Bit

I/O PORT REGISTER

Alternate Function (IN)

Alternate Function (OUT)

5 1
<l ., 7
5

o

= CMOS
5

e
RN,
[a

'_
2l]

1/0 PIN
e—O
Push-Pull
Tristate
Open Drain

Weak Push-Pull

Table 72. Port Bit Configuration Table

PCO(n) 0 1 1 0 1 0 1

PC1(n) 0 0 1 0 0 1 1

PC2(n) 0 0 0 1 1 1 1
RE-

P(n) Configuration SERV IN INOUT | OUT ouT AF AF
ED

P(n) Output TRI TRI WP oD PP oD PP

P(n) Input - CMOS CMOS | CMOS | CMOS | CMOS | CMOS

Notes:

Hi: High impedance
AIN: Analog Input

IN: Input

OU: Output

INOUT: Bidirectional
AF: Alternate Function

OD: Open Drain
PP: Push-Pull

WP: Weak Push-Pull

TRI: Tristate

CMOS: CMOS Standard Input(*)

(*) refer to the device electrical characteristics

The configuration PCO(n)-PC1(n)-PC2(n)=000 is Reserved and the user should not use it. In this config-
uration the correspondent pin enters the High Impedance state.

The configuration PCO(n)PC1(n)PC2(n)=100 and 010 configure the correspondent pin in the same state:
Input, Tristate, CMOS.

344/401

(574

STR720 - GENERAL PURPOSE I/0 PORTS

23.3.1 Input Configuration
When the IO Port is programmed as Input:

s The Output Buffer is forced tristate

= The data present on the 10 pin is sampled into the Input Latch every clock cycle
m A reading access to the Data register gets the value in the Input Latch.

The Figure 63 on page 345 shows the Input Configuration of the 10 Port bit.
Figure 63. Input Configuration

Alternate Function (IN)

I
o e
e S o
(<2 =
2 2
oc <
< CMOS /O PIN
E | S—
<
o
i S
O =
|
Q 5 .) Tristate
x
-}
2 e

Alternate Function (OUT)

23.3.2 Bidirectional Configuration
When the 10 Port is programmed as Bidirectional:

s The Output Buffer is turned on in Weak Pull configuration (Port2)
s The Output Buffer is turned on in Weak Push configuration (Port3, Port4)
m A reading access to the |0 Data register gets the Input Latch value.

4

345/401

STR720 - GENERAL PURPOSE I/0 PORTS

The Figure 64 on page 346 and Figure 65 on page 346 show the Bidirectional Configuration
of the 10 Port.

Figure 64. Bidirectional Configuration (Port2)

Alternate Function (IN)
S
@ =
= 3 .|
2 5
0 2
> - /O PIN
= ——O
<
- I
5 5 —
o g I -
Q 5) Weak Pull
o
2
2]
Alternate Function (OUT)
Figure 65. Bidirectional Configuration (Port3, Port4)
Alternate Function (IN)
a:) 1
o =
tu! S ._/‘
2 5 <
0 Z
= - /O PIN
= e—O
<C
- I
e O
g <l 4
o 5) 4’4{ Weak Push
o
2
Alternate Function (OUT)

4

346/401

STR720 - GENERAL PURPOSE I/0 PORTS

23.3.3 Output Configuration
When the 10 Port is programmed as Output:

s The Output Buffer is turned on in Open Drain or Push-Pull configuration

» The data in the Output Latch drives the 10 pin

» A reading access to the 10 Data register gets the Output Latch value.

The Figure 66 on page 347 shows the Output Configuration of the 10 Port bit.
Figure 66. Output Configuration

Alternate Function (IN)

. 1
o« e
<
L S ,_/
o2 5
0 5
= - /O PIN
= P S
< 7
o T
= O
o < 4
Q 5) Open Drain
o Push-Pull
3 o]
e

Alternate Function (OUT)

23.3.4 Alternate Function Configuration

When the IO Port is programmed as Alternate Function:

s The Output Buffer is turned on in Open Drain or Push-Pull configuration

s The Output Buffer is driven by the signal coming from the peripheral (alternate function out)
m The data present on the 10 pin is sampled into the Input Latch every clock cycle

m A reading access to the Data register gets the value in the Input Latch.

4

347/401

STR720 - GENERAL PURPOSE I/0 PORTS

The Figure 67 on page 348 shows the Alternate Function Configuration of the 10O Port bit.

Figure 67. Alternate Function Configuration

Alternate Function (
I
| 11 j
L S
%) =
=)
O] o
L z
o« 1/O PIN
s —oO
3
o -
©) 5 2 Open Drain
= a Push-Pull
'_
3 |
Alternate Function (OUT)
23.4 Register description
The IOPORT registers can not be accessed by byte.
Port Configuration Register0 (PC0)
Address Offset: 00h
Reset value: (*)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Co015 | C014 | C013 | Co12 | CO11 C010 C09 Co8 co7 Co6 Co05 Co4 Co3

Cco02

Co1

Coo

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15:0 = C0[15:0]: Port Configuration bits
See Table 72 on page 344 to configure the 10 Port.

348/401

rw

rw

4

STR720 - GENERAL PURPOSE I/0 PORTS

Port Configuration Register1 (PC1)
Address Offset: 04h

Reset value: (*)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C115 | C114 | C113 | C112 | C111 | C110 [C19 Ci8 | C17 | C16 | Ci15 | C14 | C13 | C12 | CMH C10
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15:0 = C1[15:0]: Port Configuration bits
See Table 72 on page 344 to configure the 10 Port.

Port Configuration Register2 (PC2)
Address Offset: 08h

Reset value: (*)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
C215 | C214 | C213 | C212 | C211 | C210 [C29 Ce8 | C27 | C26 | C25 | C24 | C23 | C22 | C21 C20
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15:0 = C2[15:0]: Port Configuration bits
See Table 72 on page 344 to configure the 10 Port.

10 Data Register (PD)
Address Offset: 0Ch

Reset value: (*)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
D15 | D14 | D13 | D12 | D11 | D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 DO
rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15:0 = D[15:0]: /O Data bits

A writing access to this register always writes the data in the Output Latch.

A reading access reads the data from the Input Latch in Input and Alternate function
configurations or from the Output Latch in Output and High impedance configurations.

(*) Refer to the device 10 pin list

4

349/401

STR720 - GENERAL PURPOSE I/0 PORTS

23.4.1

Register map

The following table summarizes the registers implemented in the 10 port macrocell.

Table 73. 10-port Register Map

Addr.

Register

Offset| Name 15 114 | 13 112 | N 10 8 7 6 5 4 3 2 1 0
0 PCO CO[15:0]
4 PC1 C1[15:0]
8 pc2 C2[15:0]
c PD D[15:0]

Refer to Table 20 on page 49 and Table 21 on page 50 for the base addresses.

350/401

4

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

24 MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

24.1 Introduction

This section collects the registers setting all the aspects of STR720 which can be configured
by software. Hereafter the specification of A-GCR, S-GCR and CGC blocks can be found,
allowing application software to select between different functional options, to check the
status of relevant internal configuration signals and to control clock and reset lines of most of
internal peripherals. At the end of this section, the specification of the AHB error detection
block is reported.

24.2 A-GCR Block description

This block contains the configuration settings related to the peripherals connected to the
A-APB subsystem.

A-APB Global Configuration Register 1 (AGCR1)
Address: 0xE000_1000

Reset value: 0x0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADC_
STOP

ADC_

Reserved OFF

Res.

rw - rw

Bit 15:3 = Reserved. These bits must be always written to 0.

Bit 2 = ADC_STOP: ADC STOP mode

This bit can temporarily stop sampling operation of the Analog to Digital Converter block
without affecting the programming of its configuration registers.

0: ADC is operating normally.

1: ADC operations are stopped.

Bit 1 = Reserved. This bit must be always written to 0.

Bit 0 = ADC_OFF: ADC analog section OFF

This bit controls the activation of the whole analog section contained in the ADC module,
where also internal current references used for clock pad are generated. When this bit is set
to ‘1’ all the analog circuitry in the ADC module is switched off.

0: ADC analog section is switched on.

1: ADC analog section is switched off.

Note Be careful on setting ADC_OFF bit since it switches off the current references used
by clock pad and in this condition no clock signal can be supplied to the device
through CLK pad. If this configuration is required for extreme power reduction
purposes, STR720 must be put in SLOW mode before setting ADC_OFF bit,
otherwise the system will stop responding up to the next hardware reset event.

4

351/401

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

24.3 S-GCR Block description

This block contains the configuration settings related to the peripherals connected to the
S-APB subsystem and to the whole device.

S-APB Global Configuration Register 1 (SGCR1)

Address: 0xFO00_0CO00
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved ?ég::f Reserved §|Iq(|;5§ P7AS BRM
rw - rw rw rw

This register collects all software controllable configuration bits.
Bit 15:6 = Reserved. These bits must be always written to 0.

Bit 5 = CACHE_CONF: CACHE CONFiguration selection

This bit can configure SDRAM interface to work in “burst-access” mode and must be used
whenever cache is enabled, so to have optimal performance from the system.

0: Normal access mode, to be used when ARM720T cache is disabled.

1: Burst-access mode, to be used when ARM720T cache is enabled.

Note For further details and limitation of “burst-access” mode usage see Section 10.5:
Programming considerations on page 114,"in DRAM controller chapter.

Bit 4:3 = Reserved. These bits must be always written to 0.

Bit 2 = EIC_SRES: EIC Soft RESet

This bit triggers a synchronous reset of the internal sequential logic of Enhanced Interrupt
Controller, leaving priority registers unaffected. It can be useful to recover some tricky
situations occurring inside the EIC state machines without requiring full reconfiguration of EIC
registers (see Section 7.6: Application note on page 67).

0: EIC is operating normally.

1: EIC logic is kept under synchronous reset.

Bit 1 = P7AS: Port7 Access Selection

This bit selects which interface is using port 7 pins which can be shared between EMI and
IDE, for example to access external FLASH banks during system boot and then switch to
CD-ROM access to complete system start-up.

0: EMI interface uses port 7 pins.

1: IDE interface uses port 7 pins.

Bit 0 = BRM: Boot ReMap

This bit selects which memory area is mapped in the address range from 0x0000_0000 to
Ox1FFF_FFFF (Block 0) and it is used to conclude the boot phase when internal RAM has
been loaded with its required contents

0: Reserved ROM or EMI area is mapped on Block 0 (see EXT_BOOT bit in SGCR2 register).
1: PROG_RAM area is mapped on Block 0.

352/401 ﬁ

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

S-APB Global Configuration Register 2 (SGCR2)
Address: 0xFO00_0C04
Reset value: 0x00XX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXT_

Reserved BOOT

r

This register collects internal configuration signals status so that application software can
check them, if required. This is a read-only register.

Bit 15:1 = Reserved. These bits will be always read back as ‘0.

Bit 0 = EXT_BOOT: EXTernal BOOT

This bit reports the status of P3.8 pin at RSTIN rising edge, which is used to configure the
boot mode of the device, selecting if reset vector is fetched from EMI address space. After
reset rising edge P3.8 can change its value, according to application requirements, but boot
mode cannot be changed unless a new hardware reset is applied to the device.

0: Reserved ROM mode.

1: STR720 boots from external EMI area.

S-APB Global Configuration Register 3 (SGCR3)
Address: 0xFO00_0CO08

Reset value: 0x0000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ST3_SEL Reserved

'w

This register configures the DMA request assignment to the available DMA streams.
Bit 15:8 = Reserved. These bits must be always written to 0.

Bit 7:6 = ST3_SEL[1:0]: DMA STream3 SELection

This bit field selects which DMA-capable peripheral is associated to DMA Stream 3 request:
00: BSPI1 transmit DMA request

01: ADC sample ready request.

10: Reserved. This value should never be used.

11: Reserved. This value should never be used.

Bit 5:0= Reserved. These bits must be always written to 0.

4

353/401

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

24.4 CGC Block description

The CGC block enables to configure the AHB and S-APB peripheral clock and reset lines so
as to individually control each of them. The specific clock signals used by IDE and USB can
be controlled using dedicated registers implemented in these cell. A set 16-bit registers is
used to keep the clock gating and reset line state configuration for each of the controlled

peripherals.

CGC Peripheral Clock Gating register 1 (CGC-PCG1)
Address: 0xFO00_2C00

Reset value: 0x0023
15 14 13 12

11

10

9 8

Reserved

P11CO

P10CO

Reserved

P7CO

P6CO

P5CO

P3CO

P2CO

P1CO

POCO

rw

'w

rw

'w

rw

rw

This register configures clock gating for each of the controlled AHB/S-APB peripherals. Each
peripheral can be used only when its corresponding gating bit is cleared.

Bits 15:12, 9:8, 4 = Reserved. These bits must be always written to 0.

Bits 11:10, 7:5, 3:0 = PxCO: Peripheral x Clock Off
0: Peripheral x clock is gated off and the block is not'clocked.
1: Peripheral x is clocked.

The following table lists the correspondence between each controllable peripheral and the

CGC-PCG1 register bits along with their reset value.

Table 74. CGC-PCG1 bit assignment

CGC-PCG1 Affected Reset

Bit peripheral status
POCO EMI On
P1CO DRAMC On
P2CO DMAC Off
P3CO ATAPI Off
P5CO EIC On
P6CO GPIO-P3 Off
P7CO GPIO-P4 Off
P10CO WIU Off
P11CO RTC Off

354/401 ﬁ

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

CGC Peripheral Under Reset register 1 (CGC-PUR1)
Address: 0xFO00_2C04
Reset value: 0x0023

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved P11UR [P10UR Reserved P7UR | P6UR | P5SUR | REs. | P3UR | P2UR | P1UR | POUR
rw rw - rw rw rw - rw rw rw rw

This register configures the reset line status for each of the controlled AHB/S-APB
peripherals. Each peripheral can be used only when its corresponding reset line is not active.

Bits 15:12, 9:8, 4 = Reserved. These bits must be always written to 0.

Bits 11:10, 7:5, 3:0 = PxUR: Peripheral x Under Reset
0: Peripheral x is under reset.
1: Peripheral x is operating normally.

The following table lists the correspondence between each controllable peripheral and the
CGC-PURT1 register bits along with their reset value.

Table 75. CGC-PUR1 bit assignment

CGC-PUR1 Affected Reset
Bit peripheral status
POUR EMI Operative
P1UR DRAMC Operative
P2UR DMAC Under reset
P3UR ATAPI Under reset
P5UR EIC Operative
P6UR GPIO-P3 Under reset
P7UR GPIO-P4 Under reset
P10UR WIuU Under reset
P11UR RTC Under reset

4

355/401

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

CGC Emulation register 1 (CGC-EMU1)
Address: 0xF000_2C08
Reset value: OxOFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved P11EM | P10EM Reserved P7EM | P6EM | P5EM | Res. | P3EM | P2EM | P1EM | POEM
rw rw - rw rw rw - rw rw rw rw

This register configures the status of clock gating for each of the controlled AHB/S-APB
peripherals while the application program execution is stopped due to a debug request. Each
peripheral can be configured to stop working as the user code reaches a breakpoint.

Bits 15:12, 9:8, 4 = Reserved. These bits must be always written to 0.

Bits 11:10, 7:5, 3:0 = PXEM: Peripheral x clock during EMulation

0: Peripheral x clock is gated off at a debug request, regardless from the state of the
corresponding PxCO bit.

1: Peripheral x clock gating status is unaffected by debug requests, and it is always
determined by its corresponding PxCO bit.

The following table lists the correspondence between each controllable peripheral and the
CGC-EMUT1 register bits along with their reset value.

Table 76. CGC-EMU1 bit assignment

CGC-EMU 1 Affected Reset

Bit peripheral status
POEM EMI Not affected by debug requests.
P1EM DRAMC Not affected by debug requests.
P2EM DMAC Not affected by debug requests.
P3EM ATAPI Not affected by debug requests.
P5EM EIC Not affected by debug requests.
P6EM GPIO-P3 Not affected by debug requests.
P7EM GPIO-P4 Not affected by debug requests.
P10EM WIU Not affected by debug requests.
P11EM RTC Not affected by debug requests.

356/401 ﬁ

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

CGC Peripheral Clock Gating register 2 (CGC-PCG2)
Address: 0xFO00_2C0C
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved D2CO | D1CO Res.
rw rw

This register configures clock gating for each specific clock signal used by some blocks
requiring dedicated clocks for their operations. Each dedicated clock signal is delivered to the
related peripheral only when its corresponding gating bit is cleared.

Bits 15:3 = Reserved. These bits must be always written to 0.

Bits 2:1 = DxCO: Dedicated peripheral x Clock Off
0: Peripheral x dedicated clock is gated off and the block kernel is not clocked.
1: Peripheral x dedicated clock is delivered.

Bit 0 = Reserved. This bit must be always written to 0.

The following table lists the correspondence between each dedicated peripheral clock and the
CGC-PCG2 register bits along with their reset value.

Table 77. CGC-PCG2 bit assignment

CGC-PCG2 Affected Reset
Bit peripheral status
D1CO ATAPI-Kernel Off
D2CO USB-Kernel Off
[71 357/401

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

CGC Peripheral Under Reset register 2 (CGC-PUR2)
Address: 0xFO00_2C10
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved D1UR Res.
rw

This register configures the reset line status for each of the peripheral kernels requiring a
dedicated clock. Each peripheral can be used only when its corresponding reset line is not
active.

Bit 15:2 = Reserved. These bits must be always written to 0.

Bit 1 = D1UR: Dedicated peripheral 1 Under Reset
0: Peripheral 1 is under reset.
1: Peripheral 1 is operating normally.

Bit 0 = Reserved. This bit must be always written to 0.

The following table lists the correspondence between each controlled peripheral and the
CGC-PUR2 register bits along with their reset value.

Table 78. CGC-PUR2 bit assignment

CGC-PUR2 Affected Reset
Bit peripheral status
D1UR ATAPI-Kernel Under reset

4

358/401

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

CGC Emulation register 2 (CGC-EMU2)
Address: 0xFO00_2C14
Reset value: 0x001F

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved D2EM | D1EM Res.
rw rw

This register configures the status of clock gating for each of the peripheral kernel requiring a
dedicated clock, while the application program execution is stopped due to a debug request.
Each peripheral can be configured to stop working as the user code reaches a breakpoint.

Bits 15:3 = Reserved. These bits must be always written to 0.

Bits 2:1 = DxEM: Dedicated peripheral x clock during EMulation

0: Peripheral x dedicated clock is gated off at a debug request, regardless from the state of
the corresponding DxCO bit.

1: Peripheral x dedicated clock gating status is unaffected by debug requests, and it is always
determined by its corresponding DxCO bit.

Bit 0 = Reserved. This bit must be always written to 0.

The following table lists the correspondence between each controllable peripheral and the
CGC-EMU2 register bits along with their reset value..

Table 79. CGC-EMU2 bit assignment

CGC-EMU2 Affected Reset

Bit peripheral status
D1EM ATAPI-Kernel Not affected by debug requests.
D2EM USB-Kernel Not affected by debug requests.

4

359/401

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

24.5 AHB Error detection block description

Due to the specific implementation of ARM720T AHB interface, any AHB transfer resulting in
an error response from the addressed slave, is not detected directly by the core. Detecting
these events is particularly helpful during application software debug, when due to an
incorrect configuration some inconsistent memory access can be attempted. In order to
detected these events a specific block is implemented, which monitors AHB activity and
generates a FIQ request to the core, storing the value of the address which caused the error
response to be triggered. Here are the few registers by which this block operation can be
configured and used.

AHB Error Pending (AERR_P)
Address: 0xFO00_3000
Reset value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved AE_P

rc

This register stores the pending bit which is set by hardware at the occurrence of an AHB
error. The register is read-clear in the sense that application software can only write ‘0’ into
this bit, to acknowledge the detected error and re-enable AHB bus monitoring. Writing ‘1’ into
this register has no effect.

Bits 31:1 = Reserved. These bits must be always written to 0.

Bit 0 = AE_P: AHB Error Pending
0: No AHB error detected.
1: An AHB transfer resulted into an error response.

4

360/401

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

AHB Error Mask (AERR_M)
Address: 0xFO00_3004
Reset value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved AE_M

rw

This register allows application software to mask the FIQ interrupt generation upon the
detection of any AHB error, when such feature is not required. The block will still detect faulty

transfers on the system bus, just the interrupt generation is disabled. This register is
read-write.

Bits 31:1 = Reserved. These bits must be always written to 0.

Bit 0 = AE_M: AHB Error Mask
0: AHB error interrupts masked.
1: AHB error interrupts enabled.

4

361/401

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

AHB Error Faulty Address (AERR_FA)
Address: 0xFO00_3008
Reset value: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
AERR_FA[31:0]
r
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AERR_FA[31:0]

r

This register stores the address of the location whose access caused the AHB error response
to be generated. When an AHB error is detected, the address of the faulty location is saved
into this register and the AE_P bit in AERR_P register is set, causing a FIQ interrupt request
to be issued if AE_M bit in AERR_M register is set as well. As long as the AE_P bit is not clear
by application software, this register will keep the stored address even if further AHB error

response occur. This is a read-only register.

Bits 31:0 = AERR_FA: AHB Error Faulty Address

362/401

4

STR720 - MISCELLANEA REGISTERS (GCR - CGC - AHB_ERR)

24.5.

1 Register map

In the following tables a summary of all system configuration register and AHB error detection
block is reported.

Table 80. Configuration Register Map

Addr. i
| Redister | 45 | 14 |13 |12 |11 10| 9 | 8 | 7 |6 |5 |4 |3 |2]|1]0
E000 ADC_ ADC_
1000 AGCR1 Reserved STOP Res. OFF
F000 CACHE EIC_
0C00 SGCR1 Reserved _CONF Reserved SRES P7AS | BRM
F000 EXT_
0C04 SGCR2 Reserved BOOT
F000
0C08 SGCR3 Reserved ST3_SEL Reserved
Eggg CGC-PGC1 Reserved P11CO |P10CO| Reserved | P7CO | P6CO | P5CO | Res. | P3cO | P2co | P1CO | POCO
;ggg CGC-PUR1 Reserved P11UR|P10UR| Reserved | P7UR | P6UR | PSUR | Res. | P3UR | P2UR | P1UR | POUR
5882 CGC-EMU1 Reserved P11EM|P10EM| Reserved | P7EM | P6EM | PSEM | Res. | P3EM | P2EM | P1EM | POEM
F000
2C0C CGC-PGC2 Reserved D2CO | D1CO | Res.
F000
2C10 CGC-PUR2 Reserved D1UR | Res.
Foo0 CGC-EMU2 Reserved D2EM | D1EM | Res.
2C14
Table 81. AHB Error detector Register Map
Addr. R;gﬁ:fr 3130|2928 |27 |26 (25|24 |23]|22|21|20| 19|18 |17 |16|15[14[13]12]11]10 s|7|6|5]4 2 0
F000 AE
3000 | AERR_P Reserved A
F000 AE
3004 AERR_M Reserved M
F000 .
5003 | AERR_FA AERR_FA[31:0]
Refer also to Table 20 on page 49 and Table 21 on page 50.
[71 363/401

STR720 - POWER REDUCTION MODES

25 POWER REDUCTION MODES

The device contains a centralized clock management block (RCCU) that provides the
controlling software with a means to dynamically disable/enable the clocks to all the major
blocks in the design. The power consumption of the device may thus be tailored to the
required mode of operation.

STR720 operating modes are completely under software control via the proper configuration
of the RCCU registers. This chapter describes each of them in detail.

25.1 RUN Mode

In this operating mode STR720 can be used at its maximum performance level, since main
system clock can be programmed to reach the highest recommended frequency, either using
directly CLK input or using the on-chip PLL. In the case in which on-chip PLL is used, the
following constraints must be taken into account.

In the first place it must be considered that the range of frequencies in which PLL is able to
lock goes from 9 MHz to 27 MHz. When CLK input is driven with a signal whose frequency is
above 27 MHz, DIV2 multiplexer must be always enabled for the on-chip PLL to operate
correctly.

Besides this, another constraint comes from the maximum limit of the internal PLL VCO
frequency, which is required to be less than 1080 MHz. The value of VCO oscillation
frequency depends on the multiplication/division factors set in RCCU configuration registers
(M and D respectively) and the frequency of reference clock (CLK or CLK divided by 2 if DIV2
is enabled). The following formulas describe this relationship.

fyco
fyco = 2-frgp- M fOUT=2_D

Depending on PLL configuration. the possible system frequencies generated in RUN mode
can be summarized by the following table, calculated for a generic 16 MHz clock signal
supplied to CLK input. In composing the table, PLL configuration leading to the smaller
current consumption have been chosen.

Table 82. RUN mode system frequencies (CLK=16 MHz)
AHB / S-APB A-APB min | A-APB max

PLL Multiplier / Divider [MHz] (f/16) (12) ATAPI
PLL_OFF/BYP 16.00 1.00 8.00 8.00
PLL_BYP 16.00 1.00 8.00 8.00
10/4 40.00 2.50 20.00 20.00
21/8 42.00 2.63 21.00 21.00
11/4 44.00 2.75 22.00 22.00
23/8 46.00 2.88 23.00 23.00

4

364/401

STR720 - POWER REDUCTION MODES

Table 82. RUN mode system frequencies (CLK=16 MHz)

PLL Multiplier / Divider AH%S;?PB A"};fs;‘“" A'Az;'z)max ATAPI
29/8 58.00 3.63 29.00 29.00
15/4 60.00 3.75 30.00 30.00
31/8 62.00 3.88 31.00 31.00
8/2 64.00 4.00 32.00 32.00
33/8 66.00 413 33.00 33.00
17/ 4 68.00 4.25 34.00 22.67
35/8 70.00 4.38 35.00 23.33

After reset the RCCU is configured in RUN mode with PLL switched off, PLL_BYP enabled
and DIV2 disabled, so that the main system frequency at start-up is equal to CLK input. To
select the actual operating system frequency, the DIV2 multiplexer should be enabled first if
the input clock frequency requires it, then PLL should be switched on after having
programmed its multiplying factor. The signal generated by PLL can be selected as clock
source disabling the PLL_BYP multiplexer but this operation should be performed only when
PLL is stable (about 200 us). A LOCK status bit can be used to detect PLL status and switch
to its clock only when lock condition is reached. Any change of PLL lock condition is registered
in dedicated interrupt pending flags. If application requires to take immediate actions when
PLL lock condition is lost or achieved, an automatic PLL bypass can be enforced each time
the lock condition changes, switching to reference clock as soon as lock condition is lost and
switching back to PLL clock when lock condition is regained. This mechanism can be enabled
by setting the AUTOBYP_EN flag.

The PLL should be switched-off before changing the multiply factor, using the reference clock
during this transitory phase.

For more detail about PLL management see Section 13.3.2: PLL Management on page 140.

During RUN mode, most of STR720 peripherals clocks can be independently switched on and
off using PCG registers inside A-APB bridge, CGC block registers and a few SGCR1 register
bits. In this way only the peripherals whose functionalities are required by the system need to
be clocked, so the actual power consumption of the whole STR720 device can be adapted by
software, according to application requirements and the exact current consumption is heavily
dependent on which blocks are active and for how long. At system reset all of controlled
peripherals are kept under reset with their clock signals switched off, except EIC, EMI and
DRAMC which are required for system start-up. It is up to application software to enable the
required peripherals. The following table summarizes the peripherals whose clock and reset
lines can be controlled:

4

365/401

STR720 - POWER REDUCTION MODES

Table 83. Peripheral clock and reset gating

Clock & reset Reset Clock & reset Reset
Block . Block .
gating status gating status
CGC:
DMAC Off
ARM720 Not Available On P2CO, P2UR
Data RAM Not Available On
CGC: . CGC:
IDE block D1CO, D1UR Off IDE interface P3CO. P3UR Off
CGC: CGC:
SDRAMC P1CO, P1UR On EMI POCO, POUR On
S-APB bridge Not Available On A-APB bridge Not Available On
AGCR Not Available On SGCR Not Available On
RCCU Not Available On CGC Not Available On
CGC: CGC:
wiu P10CO, P10UR Off EIC P5CO, P5UR On
CGC: CGC:
GPIO - P3 P6CO, P6UR Off GPIO - P4 P7CO, P7UR Off
A-APB:
P11CO, P11UR A-APB:
B ’ ff ARTA1 ff
US CGC: © v P5CO, P5UR ©
D2CO
CAN A-APB: Off UART2 A-APB: off
P10CO, P10UR P6CO, P6UR
A-APB: A-APB:
EFT1 Off BSPH Off
P7CO, P7UR P3CO, P3UR
A-APB: A-APB:
EFT2 Off BSPI2 Off
P8CO, PSUR P4CO, P4UR
, A-APB:
WDG Not Available On GPIO - P2 P2CO, P2UR Off
A-APB: AGCR1:
ADC P7CO. P7UR Off ADC analog ADC_MDON Off
CGC:
RTC-APB P11CO, P11UR Off
366/401 KYI

STR720 - POWER REDUCTION MODES

25.2 IDLE Mode

In this operating mode, main system clock is derived from CLK input dividing it by 32. In this
way the whole system can still evolve, although at a very low rate, but power consumption will
be greatly reduced. Any setting for A-APB and ATAPI clock generation remains unchanged
even if proper operation of the peripheral subsystem cannot be maintained due to the reduced
operating frequency.

Application software can switch off any peripheral not required in this operating mode as
much as disabling the PLL (see Section 13.3.2: PLL Management on page 140) and any
other analog part whose functionality is not required. If for example an external clock of
16 MHz is applied to CLK input, activating this operating mode results in a system frequency
(AHB/S-APB clock) being either 250 kHz or 500 kHz, depending if DIV2 multiplexer is enabled
or not.

No particular sequence must be used to enter or exit IDLE mode since interrupt detection is
always active; only the external SDRAM banks should be put in self-refresh mode before
entering IDLE mode, otherwise their contents will be lost due to the very long refresh interval.
Once in self-refresh mode, SDRAMC clock can be switched off safely.

25.3 SLOW Mode

In this operating mode, main system clock is taken directly from OSCIN pad, where the
32 kHz oscillator used to supply RTC is connected. In this way system operations are virtually
frozen due to the extremely low rate system frequency.

As it happens in IDLE mode, any setting for A-APB and ATAPI clocks is not affected by
entering in SLOW mode, so application software is responsible for switching off any part of the
system which is not strictly required, especially the analog parts: PLL, ADC and also clock
input receivers since main clock signal detection is not required in this mode, being based on
the 32 kHz oscillator.

Note Before entering SLOW mode the A-APB clock frequency should be set to be AHB
clock divided by 2 if the watchdog is configured to use the external low frequency
clock source due to internal synchronization requirements of this clock signal which
is derived from the same 32 kHz oscillator.

It must be noticed that when main clock is switched off also at the application board level,
particular care must be observed when generating internal reset events (watchdog or
software triggered) since the absence of that external clock prevents the correct
synchronization of the internal reset signal deassertion. As a consequence when main
external clock is switched off on the board, watchdog should be disabled or used as a plain
timer and no software reset should be issued, since in both cases the exit from these reset
events would not be properly synchronized. In case a software reset is required, main board
clock should be restarted before generating it.

4

367/401

STR720 - POWER REDUCTION MODES

No other particular care must be used to enter or exit SLOW mode, although the same
consideration mentioned in IDLE mode section about external SDRAM banks and DRAMC
should be applied as well.

25.4 STOP Mode

When it is required that system configuration is preserved without feeding any clock to the
system, the STOP mode functionality can be used, where only RTC section remains clocked
and the rest of the system is completely frozen, thus reducing its consumption to the leakage
current only. Upon entering STOP mode, a specific sequence must be executed by application
software in order to leave the system in a state where consumption is minimum but it is still
possible to wake the system up without resetting it and thus altering previous data and
configuration. The code to enter STOP mode should be written according to the following
rough sequence:

1. Switch off operation of all analog sections.

2. Enter SLOW mode. As a consequence system clock is now 32 kHz.

3. Switch off PLL to remove its power consumption (see Section 13.3.2: PLL Management
on page 140).

4. Disable STOP mode, clearin% bit STOP_EN in RCCU MSKCTL register, so that system
remains alive even after WIU block rises STOP mode request.

5. Mask wake-up request from CLK clock line, c_Iearin%_bit 7 in WIU WUMR register. This is
g)_r%apsuredthat the CLK clock, which is still active at this time, cannot exit immediately from
mode.

6. Issue the STOP sequence described in WIU section (See “WAKE-UP INTERRUPT UNIT
(WIU)” on paﬁe 70.). After this sequence is completed, the STOP_REQ signal is activated
so RCCU will be ready to_stop main clock signal. External devices can be notified that
STR720 is about to enter STOP mode by using the alternate function associated to P3.7
pad, so that they can react accordingly, for example switching off CLK clock source.

7. If agBIication does not require to use the activity on CLK clock line as wake-up event,
STOP mode could be entered now, jumping to step 9. _ _)
Otherwise it is necessary to poll bit 7 in WIU WUPR register, each time clearing the bit,
until it is read as ‘0’, meaning that no more activity is present on CLK clock line.

8. The wake-u r%uest corresponding to CLK clock line can now be unmasked, setting to
‘1’ bit 7 in WIU WUMR register.

9. STOP mode can now be enabled, setting bit STOP_EN in RCCU MSKCTL register. From
now on main system clock is frozen.
Note The change of PLL lock condition, associated to interrupt/wake-up line number 6,
cannot be used as wake-up event. Selecting this input as the only wake-up source
will stuck the system so as only a reset event can restore normal operations.

WARNING: Whenever a STOP request is issued to the system, a few clock cycles are needed
to actually enter STOP mode. Hence the execution of the instruction following the setting of
STOP_EN bit in RCCU might start before entering STOP mode (consider the ARM7
three-stage pipeline as well). In order to avoid to execute any valid instruction after a correct
STOP sequence and before entering the STOP mode, it is mandatory to execute a dummy set
of few instructions after the setting of STOP_EN bit. In particular at least six dummy
instructions (e.g. MOV R1, R1) shall be added after the end of STOP sequence. Again, if

368/401 ﬁ

STR720 - POWER REDUCTION MODES

exiting from STOP mode an interrupt routine shall be serviced, another set of dummy
instructions shall be added, to take into account of the latency period: this is evaluated in at
least other three dummy instructions. This to consider that when STOP mode entered, the
pipeline content is frozen as well, and when the system restarts the first executed instruction
was fetched and decoded before entering the STOP mode itself.

Exiting STOP mode can be triggered by two different sets of events: internal events generated
on some STR720 peripheral pins (as UART reception line or USB wake-up signalling) or
external events restoring CLK clock line. All these events can be detected by WIU which will
deactivate the STOP_REQ signal as a response, thus removing the STOP condition from
RCCU block. A guideline to write the code required to exit STOP mode can be the following:

1. Upon wake-up event, WIU removes STOP_REQ signal notifying to the external devices
that STR720 is about to exit STOP mode. If the traced event is triggered by STR720
peripherals, this signal will be used by a possible external power manager to restore CLK
clock otherwise it will have been CLK clock activity, restarted autonomously by the exter-
nal power manager, which triggered STR720 wake-up.

2. ST(gP_REQ deactivation restarts RCCU operations, which awakes system clock in SLOW
mode.

3. A;IJ_pIication software should now determine which wake-u;};(source tri_gg?eljed the exit from
STOP mode, in order to take any consequent action. If CLK clock activity is not there (see
point 7 of previous sequence), a system dependent time interval must be waited so to
allow a stable CLK clock to be present on STR720 pads.

4. RCCU can now be switched back in RUN mode, the PLL enabled again and all the rest of
system operation restored.

25.5 STANDBY Mode

The minimum level of power consumption can be reached using STANDBY mode, where not
only main system clocks are stopped but also main power supply is removed from STR720
device, except the RTC section with its 32 kHz oscillator, so that time can be still traced while
most of the system is kept under reset condition. This extreme power saving mode can be
exited re-initializing the whole device using RSTIN pad, thus losing any previous state and
configuration while the real time clock counter is not affected.

Any action required by the system to enter safely STANDBY mode has to be performed by
application software, following a request arrived from an external power manager and
acknowledging the enter in STANDBY mode after having saved any required state information
into an external storage area (for example an external FLASH device). A pair of GPIO pins
can be used to implement this protocol. As a response to STR720 entering in STANDBY
mode, the external power manager should activate RSTIN pad and then remove Vpp supply,
leaving only VppRrc active.

When the external power manager requires STR720 to exit STANDBY mode, it should restore
Vpp supply to its nominal value always keeping RSTIN pad driven low so that a safe hardware
reset sequence is triggered, and only after Vpp supply is stable to its nominal value, RSTIN
pad should be raised again. STR720 will start a reset sequence, eventually restoring its
previous state using the informations saved into the external storage area, and system
operation can restart.

ﬁ 369/401

STR720 - SYSTEM RESET

26 SYSTEM RESET

26.1 RESET Input Pin

This pin is used to force a system reset which initializes the device in a predefined state.
Activating this pin does not affect in any way the operation of either Real-Time-Clock or
on-chip emulation and debug sections, which are independently initialized by dedicated pins.
To improve the noise immunity of the device, the RESET input pin (RSTIN) has a Schmitt
trigger input circuit with hysteresis and an on-chip RC filter is implemented. The filter is sized
to filter out all spikes shorter than 50 ns. On the other hand, it is recommended to provide valid
pulse on RSTIN with a duration of at least 500 ns to be sure that the asynchronous pulse is
properly latched by system. This means that all the pulses whose length is between 50 ns and
500 ns can either be filtered or recognized as valid, depending on the operating conditions
and process variations. As a recommendation, the power-up RSTIN pulse should last for
about 200 us in order to be sure that the internal current references used to supply the clock
input pad are already settled to their nominal value.

Figure 68. Recommended Signal to be applied on RSTIN pin

[

0.3 Vpp

:‘500 ns Minimum (200 us power-uja)

26.2 RTCRST Input Pin

This pin is used to initialize Real-Time-Clock section independently from the rest of the
system. To improve the noise immunity of this critical input pin, RTCRST has a Schmitt trigger
input circuit with hysteresis and an on-chip RC filter is implemented, similar to the one
described for RESET input pin. The filter is sized to filter out all spikes shorter than 50 ns and
minimum RTCRST pulse duration is recommended to be longer than 500 ns. This means that
all the pulses whose length is between 50 ns and 500 ns can either be filtered or recognized
as valid, depending on the operating conditions and process variations. As a
recommendation, the power-up RTCRST pulse should last for about 1 s in order to be sure
that 32 kHz oscillator is has completed its start-up phase and settled to its nominal oscillation
frequency and amplitude.

4

370/401

STR720 - SYSTEM RESET

26.3 JTRST Input Pin

This pin is used to initialize on-chip emulation and debug logic independently from the rest of
the system. To improve the noise immunity of this critical input pin, JTRST has a Schmitt
trigger input circuit with hysteresis and an on-chip RC filter is implemented, similar to the one
described for RESET input pin. The filter is sized to filter out all spikes shorter than 50 ns and
minimum JTRST pulse duration is recommended to be longer than 500 ns. This means that
all the pulses whose length is between 50 ns and 500 ns can either be filtered or recognized
as valid, depending on the operating conditions and process variations.

26.4 Power-on/off and Stand-by entry/exit

At power-on or Stand-by exit, it is recommended to held low RSTIN pin to guarantee a proper
initialization of STR720 system and avoid malfunctions of the RTC logic. In particular, when
Vpp and Vpp3 are still too low to allow the internal logic to work properly, the system must be
mantained under reset status, forcing a HW Reset through the RSTIN pin. In this way the
system sees a HW Reset and the flag register (CLK_FLAG in RCCU module) assumes the
corresponding configuration (all Reset flags cleared).

To avoid unpredictable current injection and power consumption, it is recommended to have
the Vpps value always greater than Vpp during the power-on phase, as illustrated in next
Figure 69 on page 371.

Figure 69. Power-on supply sequence

Vb3

Vbp /

RSTIN

Reset pin driven low

The distinction between power-on reset and hardware system reset consists in the fact that
typical hardware reset sequences do not affect Real-Time-Clock section, leaving RTC running
while rest of the system is restarted. This happens also when system enters and exit stand-by
mode. On the contrary a power-on reset will see both system and RTC section being
initialized. In order to distinguish between a power-on reset and a hardware system reset (or

ﬁ 371/401

STR720 - SYSTEM RESET

exit from stand-by mode) a check on RTC Alarm registers can be done (see RTCA registers in
Chapter 14: REAL TIME CLOCK (RTC) on page 150). These registers are reset to all-1
state, representing a time in the far future which is likely to be useless for any application
using the alarm feature. Hence application software can use these registers as a flag to detect
RTC reset events, thus distinguishing between a plain system reset (RTCA registers keep
their value) and a power-on reset (RTCA registers are initialized).

Similarly during power-off sequence or Stand-by entry, RSTIN pin should be driven low before
switching off power supply, as depicted in next Figure 70 on page 372.

Figure 70. Power-off supply sequence

Vb3

Vbp \

RSTIN

Reset pin driven low

4

372/401

STR720 - PACKAGE MECHANICAL DATA

27 PACKAGE MECHANICAL DATA
Figure 71. PQFP208 Package Outline

A
| — A2
ﬁ A1
|
156 ' 105 UH—«
HARAAR | ARARRe |y
1T} [T |
 —— 11 U 0.076mm E
- , | fo3inch i
T . T Seating Plane
- T
 —— [11 B
2 w| w E———
 —— [11
T L
EL ipENTIFICATION]
 —— ’/_ 11
- @ [T 1
——— T +—+t
208\ J 53
R i
EXACT SHAPE OF EACH e
CORNER IS OPTIONAL
)
- 0.25mm
U 0o
Gage Plane
0120082
PQFP208M K
Table 84. PQFP208 Package Mechanical Data
. mm inches . mm inches
Dim - - Dim - -
min | typ | max | min | typ | max min | typ | max | min | typ | max
A 410 0.161 | D3 25.50 1.004
A1l 0.25 0.010 e 0.50 0.020
A2 3.40 | 3.20 | 3.60 |0.134(0.126|0.142 | E 30.60 1.205
B 0.17 0.27 {0.007 0.011 | E1 28.00 1.102
(o 0.09 0.20 | 0.003 0.008 | E3 25.50 1.004
D 30.60 1.205 L 0.45 | 0.60 | 0.75 [0.018|0.024 | 0.029
D1 28.00 1.102 L1 1.30 0.051
K 0°(min), 3.5°(typ), 7°(max)
[71 373/401

STR720 - ELECTRICAL CHARACTERISTICS

28 ELECTRICAL CHARACTERISTICS

28.1 Parameter Conditions

Unless otherwise specified, all voltages are referred to Vgg.

28.1.1 Minimum and Maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at Ty = 25°C and T, = 85°C.

Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean * 30).

28.1.2 Typical values

Unless otherwise specified, typical data are based on Tp = 25°C, Vpp3=3.3V, Vpp=1.8 V.
They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a
standard diffusion lot over the full temperature range, where 95% of the devices have an error
less than or equal to the value indicated (mean + 2c).

28.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not
tested.

28.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 72.

Figure 72. Pin loading conditions

—[] STR7 PIN

4

374/401

STR720 - ELECTRICAL CHARACTERISTICS

28.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 73.

Figure 73. Pin input voltage

[] STR7 PIN

28.2 Absolute maximum ratings

This product contains devices to protect the inputs against damage due to high static
voltages, however it is advisable to take normal precautions to avoid application of any voltage
higher than the specified maximum rated voltages.

For proper operation it is recommended that V,y and Vot be higher than Vgg and lower than
Vpps- Reliability is enhanced if unused inputs are connected to an appropriate logic voltage
level (VDD’ VDDS or Vss).

Table 85. Voltage characteristics

Value Unit
Symbol Parameter .
Min Max

Vpps | Voltage on Vpps pins with respect to ground (Vgg) -0.3 +3.6 \
Vpp | Voltage on Vpp pins with respect to ground (Vgs) -0.3 +2.0 \"
Vpprte | Voltage on Vppgrte pin with respect to ground (Vgg) -0.3 +2.0 \
VpppLL | Voltage on Vppp L pin with respect to ground (Vgs) -0.3 +2.0 \
VgspLL | Voltage on Vggpi pin with respect to ground (Vgg) Vgs Vgs \
Vppap | Voltage on Vppap pin with respect to ground (Vgg) -0.3 +3.6 \
Vgsp | Voltage on Vggp pin with respect to ground (Vgg) Vss Vss \
Aypp | Voltage on Aypp pin with respect to ground (Vgs) -0.3 +3.6 \
Agnp | Voltage on Agnp pin with respect to ground (Vgs) Vgs Vgs \
ViN Voltage on any pin with respect to ground (Vgg) -0.3 Vpp3+0.3 \
lov Input current on any pin during overload condition -10 +10 mA
ltov | Absolute sum of all input currents during overload condition | 75| mA
TsT Storage temperature -55 +150 °C
ESD | ESD Susceptibility (Human Body Model) 2000 \

Stresses exceeding above listed recommended “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only and functional operation of the

‘ﬁ 375/401

STR720 - ELECTRICAL CHARACTERISTICS

device at these or any other conditions above those indicated in the operational sections of
this specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect device reliability. During overload conditions (V\\>Vpp or V|y<Vgs) the
voltage on pins with respect to ground (Vgg) must not exceed the values obtained by the
Absolute Maximum Ratings.

During Power-on and Power-off transients (including Standby entering/exiting phases), the
relationships between voltages applied to the device and the main Vpp-Vpps shall be always
respected. In particular power-on and power-off of Ay,pp shall be coherent with Vpp transient,
in order to avoid undesired current injection through the on-chip protection diodes.

Table 86. Current characteristics

Value Unit
Symbol Parameter .
Min Max
lov Input current on any pin during overload condition -10 +10 mA
ltov | Absolute sum of all input currents during overload condition - |75 mA
Table 87. Thermal characteristics
Value Unit
Symbol Parameter .
Min Max
T, Junction temperature under bias -40 +105 °C
TsT Storage temperature -55 +150 °C

28.3 Electrical sensitivity

Based on two different tests (ESD and LU) using specific measurement methods, the product
is stressed in order to determine its performance in terms of electrical sensitivity.

28.3.1 Electro-Static Discharge (ESD)

Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. Three models can be
simulated: Human Body Model, Machine Model and Charge Device Model.

Table 88. ESD maximum ratings

Symbol Ratings Conditions Max. value V) Unit
VESD(HBM) Féi‘i;r;féa;ijyd,\ijggglr)ge voltage TA=+25°C 2000 v
VESD(MM) F,\'Ae;g[;’nzt?\}l'g dd;;‘:harge voltage TA=+25°C 200 v
VESD(CDM) Féi‘g:gesgaéﬁgfmﬂgg voltage TA=+25°C 499 v

1. Data based on production characterization results, not tested in production.

4

376/401

STR720 - ELECTRICAL CHARACTERISTICS

28.3.2 Static Latch-Up (LU)

A supply overvoltage (applied to each power supply pin) and a current injection (applied to
each input, output and configurable I/O pin) are performed on each sample. After the test DC
parametric and functional testing is performed. This test conforms to the EIA/JJESD 78 IC
latch-up standard.

Table 89. Electrical sensitivity

Symbol

Parameter

Conditions

JEDEC Level

LU

Static latch-up class

TA=+25°C

A

28.4 Operating conditions

The following values are recommended to meet device functional specification.

Table 90. Recommended Operating Conditions

Symbol Parameter _ Value Unit
Min. Max

Vpps |3.3V Operating Digital Supply Voltage for the 1/0 pads. 3.0 3.6 Vv
Vbp 1.8V Operating Digital Supply Voltage for core circuitry. 1.6 2.0 \
Vpprtc | 1.8V Operating Digital Supply Voltage for RTC logic. 1.6 Vpp Vv
Vppsp | 3.3V Operating Supply Voltage for CLK input buffer.) 3.0 3.6 \Y
VpppLL | 1.8 V Operating Supply Voltage for internal PLL; 2 1.6 2.0 \Y
Avbp |Operating Analog Supply Voltage for A/D Converter. %) Vpps - 0.3 | Vpps - 0.3 Y;

fsys Operating main clock frequency (core, AHB, S-APB) - 70 MHz

fapB Operating peripheral clock frequency (A-APB) - 35 MHz
Ta Ambient temperature under bias -40 +85 °C

1. For details on operating conditions related to CLK input buffer refer to section 28.7 on page 380.

2. For details on operating conditions related to PLL refer to section 28.10 on page 387.

3. For details on operating conditions related to A/D converter refer to section 28.11 on page 389.

4

377/401

STR720 - ELECTRICAL CHARACTERISTICS

28.5 Thermal characteristics

The average chip-junction temperature, T, in degrees Celsius, may be calculated using the
following equation:

Ty=Ta+ (Ppx0yp) (1)
Where:

— Tp is the Ambient Temperature in °C,

— 0y, is the Package Junction-to-Ambient Thermal Resistance, in °C/W,

— Pp is the sum of P\n7 and Py, (Pp = PinT + PPoRT)

— P\nT is the product of Ipp and Vpp, expressed in Watt. This is the Chip Internal Power,
— PpoRT represents the Power Dissipation on Input and Output Pins; User Determined.

PpoRrT is going to be significant when the device is configured to drive continuously external
memories and/or modules, otherwise Pporr< PN @nd it might be neglected.

An approximate relationship between Pp and T (if PpogT is neglected) is given by:
Pp =K/ (T, +273°C) (2)

Therefore (solving equations 1 and 2):

K = Pp X (T + 273°C) + © 5 X Pp? (3)

Where:

— Kis a constant for the particular part, which may be determined from equation (3) by mea-
suring Pp (at equilibrium) for a known Ta. Using this value of K, the values of Pp and T
may be obtained by solving equations (1) and (2) iteratively for any value of T.

Table 91. Thermal Characteristics

L Value .

Symbol Description . Unit
y Min Max
Thermal Resistance Junction-Ambient o

©ua PQFP 208 - 28 x 28 x 3.4mm / 0.5 mm pitch 48 cw

P Power dissipation(") mW

D PQFP208 - 28 x 28 x 3.4mm / 0.5 mm pitch
T, Junction temperature® - - °C

1. The power dissipation is obtained from the formula Pp=P\\1+PpogrT Where:
P\nT is the chip internal power (IppXxVpp)
PpoRrrT is the port power dissipation determined by the user.

2. The average chip-junction temperature can be obtained from the formula Ty = Ty + Pp X Oya.

4

378/401

STR720 - ELECTRICAL CHARACTERISTICS

28.6 Supply Current Characteristics
Measurements are done in the following conditions:

— Program executed from internal RAM, CPU running with RAM access.

—In RUN mode measurement all internal peripherals are clocked but not used. A-APB clock
runs at half AHB clock frequency. In all other mode measurements all peripherals are
switched off.

— All I/O pins in input mode with a static value at Vpp3 or Vgg (no load).
— PLL switched off (for PLL current characteristics see section 28.10 on page 387).

This implies that I/O related current is not considered in these figures.

Table 92. Current consumption characteristics

. 1 Value .
Symbol Parameter Test Conditions(" i Unit
Min Typ Max

Ipb_run | Vpp RUN Mode current @70 MHz System Clock - 48 - mA

Ipp_ipLe | Vop IDLE Mode current @1.6 MHz System Clock - 1.25 - mA

Ipp_stp | Voo SLOW Mode current @32 kHz System Clock - 17 - pA

Ipp_stp | Vpp STOP Mode current @0 MHz System Clock - 16 - pA

IbpRTC VppRrrc all modes current @32 kHz RTC Clock - 3 - pA

0 V for the system and 10

st STANDBY Mode current power supply, 1.8 V for RTC - 3.5 - A

running.on 32 kHz oscillator
L) System clock frequency f be-) 0.706 fgys)
Iop(f) | Vop current function tween 10 and 25 MHz. -2.229 mA

1. Vppl(all) =1.80 V £ 10%, Vppa(all) =3.30 V + 10%, Ty =-40/ +85 °C unless otherwise specified.

2. Data based on design characterization performed on sample devices, not tested in production.

Following Figure 74 illustrates the dependency between system clock frequency in MHz and
Vpp current consumption in mA, measured in typical conditions and in the indicated range.

379/401

4

STR720 - ELECTRICAL CHARACTERISTICS

Figure 74. Supply current versus system frequency

75

Ipp(25°C)

28.7 Clock and Timing Characteristics

28.7.1

Internal clock characteristics

Application software controls STR720 internal clocks by configuring RCCU registers and
setting PLL related parameters (see Chapter 13: RESET AND CLOCK CONTROL UNIT
(RCCU) on page 138). The values hereafter reported defines the limit for internal frequencies
that must be respected by clock configuration.

Table 93. Internal clock limits

. Value .
Symbol Parameter Conditions _ Unit
Min Typ Max

CPU, AHB and
fCPU S-APB clock 50 70 MHz

frequency

A-APB clock
faps frequency fepy /16 fepy/2 MHz

380/401 IYI

STR720 - ELECTRICAL CHARACTERISTICS

28.7.2 CLK pad characteristics (External Clock Source)

These pads are used to provide clock signal to STR720 system from an external clock source.
Since their electrical characteristics are different from normal 1/O pads they are hereafter
reported in a specific table.

Table 94. DC CLK pad characteristics

.) Value .
Symbol Parameter Test Conditions _ Unit
Min Typ Max
Supply Voltage for CLK input
VoDsP |pufter. 3.14 3.30 3.47 v
Reference Voltage for CLK Viee = (V -1)*0.9
\Y REF = | °DD3P 1.87 2.1 2.2 \Y
REF input signal @) ++ 60 mV 8 8
Recommended reference Volt-
VReF R age for CLK input signal 16 i 20 v
Vigp Main CLK Clock (CLK) Input)
F 7 \Y 2 - - \Y
(CLK) | high level @ See Figure 75 Rer + 0
ViLp Main CLK Clock (CLK) Input) i i i
(CLK) low level @ See Figure 75 VReg-02| V
Table 95. AC CLK pad characteristics
4 Value \
Symbol Parameter Conditions _ Unit
Min Typ Max
Main CLK Clock (CLK) high
fw(HP) ain C (Z)C ock (CLK) highor | o Figure 75 14.29 - - ns
twLp) low time
Main CLK Clock (CLK) rise or
i’(P) " @ (CLK) See Figure 75 - - 7 ns
f(P) fall time
I CLK Input leakage current Vss <Vin < Vppap - - =1 pA
loosp R Vppsp RUN/IDLE mode cur-) 75) mA
- rent
Vppap SLOW/STOP mode))
IbbaP_s | current 10 nA
1. Vpp(all) =1.80 V £ 10%, Vppa(all) =3.30 V + 10%, T =-40/ +85 °C unless otherwise specified.
2. Data based on design guidelines and validation, not tested in production.
[71 381/401

STR720 - ELECTRICAL CHARACTERISTICS

Figure 75. Typical Application with External Clock Source

v
EXTERNAL CLOCK REF - fox
SOURCE |

CLK t

Eplipiph D — STR720

28.7.3 PLL Characteristics

STR720 implements a PLL which combines different levels of frequency dividers with a
Voltage Controlled Oscillator (VCO) working as frequency multiplier. On chip PLL is used to
generate system clock from an external reference clock signal. Its characteristics in term of
generated clock accuracy depends heavily on the input signal and power supply quality.

In the following table, jitter is intended as the difference of the Ty ax and Ty, where Tyax is
maximum time period of the PLL output clock and Ty is the minimum time period of the PLL
output clock. The value is expressed as ratio with respect to the average/nominal time period
of PLL output clock.

Jitter at the PLL output can be due to the many different reasons, the major contributors being
noise on input reference clock and noise on PLL supply (internally or externally generated).

PLL acts like a low pass filter for any jitter in the input clock. Input Clock jitter with the
frequencies within the PLL loop bandwidth is passed to the PLL output and higher frequency
jitter (frequency > PLL bandwidth) is attenuated @20dB/decade. This is the reason why,
depending on input clock noise spectral characteristics, jitter performance can be better when
PLL output is used as system clock than when PLL is bypassed.

Digital supply noise adds deterministic components to the PLL output jitter, independent on
multiplication factor. Its effects is strongly reduced thanks to particular care used in the
physical implementation and integration of the PLL module inside the device. Particular care
is thus recommended in board design for what concerns Vppp | and clock routing.

4

382/401

STR720 - ELECTRICAL CHARACTERISTICS

Table 96. PLL Characteristics

. 1 Value .
Symbol Parameter Test Conditions(" Unit
Min Typ Max
VpoppLL | Supply Voltage for PLL 1.6 1.80 2.0 \Y
foer (P2)LL Reference clock frequency 9) 57 MHz
fvco |PLL VCO clock frequency®@ - - 1080 | MHz
tLock PLL lock-in time 80 116 =200 us
g MAX'T1MI6l\2 </ Tout
e i i REF = 1.
T,ireR E:%(to-peak PLL jitter val AVLk = 400 mV) 59 35 %
fCLK =49.1 MHz
DIV2 enabled,M=11, D=4.
Standard deviation PLL jitter o(T)/ Tout) o
CJTTER | yalue® same as above. 0.5 0.7 %o
IDDPLL_R VDDPLL RUN mode current Same as above - 1.3 14 mA
IDDPLL?O VDDPLL off current - - 20 nA

1. Vpp(all) =1.80 V + 10%, Vppa(all) = 3.30 V + 10%, Tp = -40 / +85 °C unless otherwise specified.

2. Data based on design guidelines and validation, not tested in production.

3. Data based on design characterization performed on sample devices, not tested in production.

28.7.4 32 kHz Real-Time Clock Oscillator

The RTC block can be driven by a crystal oscillator. In the application, the crystal and the load
capacitors have to be placed as close as possible to the oscillator pins in order to minimize
output distortion and start-up stabilization time. Refer to the crystal manufacturer for more
details (frequency, package, accuracy, etc.). A recommended configuration is shown on
Figure 76 and detailed on Table 97 whose values have been checked using standard crystals.

Figure 76. Crystal Oscillator typical application

STR720

1 OSCOUT

I—I—a OSCIN
—l
Ex

O
2]

|||—I
|||—|

4

383/401

STR720 - ELECTRICAL CHARACTERISTICS

Table 97. Crystal oscillator recommanded characteristics

Value
Symbol Parameter Conditions - Unit
Min Typ Max
foscin Crystal Frequency - 32.678 - kHz
froL Crystal frequency tolerance -30 - +30 ppm
Rp Serial drain resistor - 220 - kQ
Rp =220 kQ
CL =9 pF R _
) Including board-stray capaci- 15 pF
Recommended load capaci- | tgnces
Cs, Cp tors versus crystal load capac-
itance gD = 125% kf;
L=120p - -
Including board-stray capaci- 22 pF
tances
The electrical characteristics of STR720 oscillator are reported in Table 98.
Table 98. Oscillator electrical characteristics
. 1 Value .
Symbol Parameter Test Conditions(") - Unit
Min Typ Max
Vbprte | Supply Voltage for PLL 1.71 1.80 1.89 Y
Im Oscillator Transconductance 14 30 44 nAN
tsgtup | Oscillator Start-up Time @) Stable Vpp 400 500 1000 ms
Vq Operating point voltage - 956 - mV
Vosc | Output voltage amplitude® | C_ = 12 pF, Rp = 220 kQ - 788 - mV(rms)
Rosc | Oscillation allowance® C_ =12 pF, Rp =220 kQ 500 - - kQ
forrser g;(azt)lc frequency deviation (AF/ C_ = 12 pF, Rp = 220 kQ) +4.0) opm

1. Vpp(all) =1.80 V £ 10%, Vppa(all) =3.30 V + 10%, Ty =-40/ +85 °C unless otherwise specified.

2. Data based on design characterization done with AEL Crystal (N. 4065), not tested in production

384/401

4

STR720 - ELECTRICAL CHARACTERISTICS

28.8 AC and DC characteristics

The parameters listed in the following tables represent the electrical characteristics of
STR720 general purpose I/O pins and external memory interfaces (EMI and SDRAM). On
Table 99 the static characteristics are reported.

Table 99. DC Electrical Characteristics

Symbol

Parameter

Test Conditions(!

Value

Unit

Min.

Typ

Max

ViH

Input high level TTL
P2(15,14,12:0), P3(12:0),
P4(4:0), P6(31:0),
P7(45,44,15:0),

JTDI, JTCK, JTMS

2.0

Input high level TTL Schmitt
Trigger (P2.13)

2.0

Vi

Input low level TTL
P2(15,14,12:0), P3(12:0),
P4(4:0), P6(31:0),
P7(45,44,15:0),

JTDI, JTCK, JTMS

0.8

Input low level TTL Schmitt
Trigger(P2.13)

0.8

Vhys

Input hysteresis TTL
Schmitt trigger
(P2.13)

0.4

Output High Level Standard
P2(15:0), P3(12:0), P4(3:0)

Push Pull, oy =2 mA

Vpps - 0.8

Output High Level:
P4(4),P7(43:0),
JTDO, JTCK

Push Pull, Iy = 4 mA

VDD3 = 0.8

Output High Level:
P6(59:47,45:0)

Push Pull, loyy = 8 mA

VDDS = 0-8

VoL

Output Low Level Standard
P2(15:0), P3(12:0), P4(3:0)

Push Pull, g =2 mA

0.4

Output Low Level:
P4(4),P7(43:0),
JTDO, JTCK

Push Pull, g =4 mA

0.4

Output Low Level:
P6(59:47,45:0)

Push Pull, I, = 8 mA

0.4

Rwpu

Weak pull-up resistor
P2(15:0)

15

kQ

Rwpp

Weak pull-down resistor
P3(12:0), P4(3:0)

15

kQ

ILEAK

Input leakage current

pA

1. Vpp(all) =1.80 V £ 10%, Vppa(all) =3.30 V + 10%, Ty = -40/ +85 °C unless otherwise specified.

In the following table the dynamic characteristics of general purpose I/O pins and external
memory interfaces (EMI and SDRAM are reported). For a description of external memory

(574

385/401

STR720 - ELECTRICAL CHARACTERISTICS

interface timing characteristics, see Section 28.12:

External Memory Bus Timing on

page 393
Table 100. AC Electrical Characteristics
S (1) Value .
Symbol Parameter Test Conditions _ Unit
Min. Typ Max
Output transition time
(10%-90% and 90%-10%) C_ =50pF - - 5 ns
P2(15:0), P3(12:0), P4(3:0)®@
Output transition time
(10%-90% and 90%-10%) B i i
TR | pa(a),P7(43.0), Ci = 50pF 25 | ns
JTDO, JTCK®)
Output transition time
(10%-90% and 90%-10%) C_ = 30pF - 1 ns

P6(59:47,45:0)@

1. Vpp(all) =1.80 V + 10%, Vppa(all) = 3.30 V + 10%, Tp = -40 / +85 °C unless otherwise specified.

2. Data based on design guidelines and validation, not tested in production.
28.9 Asynchronous Reset Input Characteristics

All reset input pins implement a low-pass glitch filter which improves their noise immunity and
prevents system from malfunctioning as it would happen if they got activated inappropriately.
The electrical characteristics of these special pins, both static and dynamic, are reported in
Table 101. It must be noted that input characteristics of RSTIN ad RTCRST are different from
standard 1/Os, due to the fact that they are supplied at 1.8 V by Vppryc and they have to
tolerate 3.3V input signals even when no such voltage is applied to STR720 device
(STANDBY mode).

Table 101. Reset pads input filter characteristics

.) Value .
Symbol Parameter Test Conditions - Unit
Min Typ Max
Input low level TTL Schmitt)) 08 Y
y trigger (JTRST) ’
IL —
Input low level Schmitt trigger
(RSTIN, RTCRST) 0.43 0.5 0.65 \
Input high level TTL Schmitt 20 i i y
v trigger (JTRST) '
H - —
Input high level Schmitt trigger
(RSTIN, RTCRST) 0.72 0.9 0.98 \%
Input hysteresis TTL Schmitt 0.4)) Y
y trigger (JTRST) '
HYS Input hysteresis Schmitt trig-))) Y
ger (RSTIN, RTCRST)
Input filtered pulse
tFRS - - 50 ns
JTRST, RSTIN, RTCRST
¢ Input not filtered pulse 500 ns
NFR | JTRST, RSTIN, RTCRST
1. Vppl(all) =1.80 V £ 10%, Vppz(all) =3.30 V £ 10%, T =-40/ +85 °C unless otherwise specified.
386/401 IYI

STR720 - ELECTRICAL CHARACTERISTICS

28.10 USB - Universal Bus Interface

In order to implement a correct USB interface, a few external components are required to be
compliant to the protocol electrical characteristics. A possible application scheme is depicted
in Figure 77 and detailed in Table 102.

Figure 77. USB typical application

VTERM
USBCLK (P2.10) ggﬁ%‘g“
Fu o | L
Rs
D+ USBDP (P2.15)
Rs
g — USBDM (P2.14
b VA P29 srRre0
Table 102. USB typical application recommendations
. Value .
Symbol Parameter Conditions . Unit
Min Typ Max
Rs Series resistor Accuracy: +5% 25.65 27 28.35 Q
Rpu Line pull-up resistor Accuracy: £5% 1.425 1.500 1.575 kQ
Vterm | Line termination voltage 3.0 3.3 3.6 \"
Vi | oo clocksignalinput high | same as p2.10.GPIO 2 . . v
Vi I%?S clock signalinputlow | g, 0 56 P2.10 GPIO - - 0.8 v
fcku | USB clock signal frequency Accuracy: + 0.25% 47.88 48.00 48.12 |MHz

Hereafter the electrical characteristics of STR720 USB interface are reported. These values
are measured with a specific setup following USB standard recommendations and summed
up in the “Test Condition” column of the table, where Rg is the series resistor value and C, the
capacitive load to GND connected to each USB pad.

Table 103. USB DC Characteristics

(1) Value .
Symbol Parameter Test Conditions . Unit
Min Typ Max
Vi Slngle-en_ded receiver)) 0.8 v
low level input voltage
Single-ended receiver
ViH high level input voltage 2.0) ’ v
Single-ended receiver
VhysT hys?eresis - 400 0 mV
Vo Differential input sensitivity IUSBDP - USBDMI 200 - - mV
Vewm ?a':;;?gr}“a' common mode 1 cludes VDI range 0.8 - 25 v
[y, 387/401

STR720 - ELECTRICAL CHARACTERISTICS

Table 103. USB DC Characteristics

.) Value .
Symbol Parameter Test Conditions _ Unit
Min Typ Max
Measured with pull-up of
VoL | Low level output voltage 1.495 kO 10 3.6 V 0.0 - 0.3 \
. Measured with pull-down of
Von | High level output voltage 14.95 kO to GND 2.8 - 3.6 \"
Vors Output signal crossover volt- | Excluding the first transition 13) 50 Y
age from Idle state
1. Vppl(all) =1.80 V £ 10%, Vppa(all) =3.30 V + 10%, Ty =-40/ +85 °C unless otherwise specified.
2. Data based on design guidelines and validation, not tested in production.
Table 104. USB Full-speed AC Characteristics
.) Value)
Symbol Parameter Test Conditions _ Unit
Min Typ Max
. . Rs=27Q, CL=50pF _
Ter Rise Time See Figure 78. 4 20 ns
. Rs=27Q, CL=50pF R
Ter Fall Time See Figure 78. 4 20 ns
T Differential rise and fall time (Ter / Tgg) excluding the first 9) 11111 5y
FRFM | matching transition from Idle state ' °
Zpry | Driver output resistance® Rg=27 Q. 28 - 44 Q

1. Vppl(all) =1.80 V £ 10%, Vppz(all) =3.30 V £ 10%, T =-40/ +85 °C unless otherwise specified.

2. Data based on design guidelines and validation, not tested in production.

Figure 78. USB Data signal rise and fall time

T\ 90%
Differential
Data Lines Crossover
points
Vcrs - iy N
10%
_ N
Vss — —

388/401

4

STR720 - ELECTRICAL CHARACTERISTICS

28.11 S-D ADC characteristics

The static electrical characteristics of A/D converter are reported in Table 105. In the
subsequent sections, parameters related to input circuit and A/D converter performance are
listed.

Table 105. ADC static characteristics

.) Value .
Symbol Parameter Test Conditions _ Unit
Min. Typ Max
Aypp | Analog supply voltage for ADC| With reference to Aygg pin 3.0 3.30 3.6 \"
App | Avpp operating mode current - 1.8 - mA
App_o | Avpp off current ADC off but CLK pad active'® - - - mA
App_s | Avpp standby/stop current ﬁi(;(g)ﬁ and CLK pad not - - 1 pA
Vain | Analog input voltage See note (3) 0 - 25 Vv
IaLeak | Analog input leakage current - - 200 nA

1. Vpp(all) =1.80 V £ 10%, Vppa(all) =3.30 V + 10%, Ty =-40/ +85 °C unless otherwise specified.

2. Aslong as CLK pad is used to provide system clock, either directly or thorugh PLL, a consumption will be observed
on Aypp pad, due to CLK pad reference current generators. Only when STR720 is put in SLOW mode (32 kHz) or
STOP mode (no clock) CLK pad reference current generators can be switched off and the minimum Ay,pp consump-
tion can be achieved.

3. VN may exceed Agnp Of Aypp up to the absolute maximum ratings. However, the conversion result in these cases
will be meaningless. Data based on design guidelines, not tested-in production.

28.11.1 ADC analog input pins

To improve the accuracy of the A/D converter, the first recommendation is to properly connect
decoupling capacitors on Aypp pin, so to reduce as much as possible the amount of noise
introduced through the analog supply voltage pin. Subsequently it is definitively necessary for
analog input pins to have low AC impedance. Connecting a capacitor with good high
frequency characteristics at the input pin of the device, can be effective: the capacitor should
be as large as possible, ideally infinite. This capacitor contributes to attenuate noise present
on the input pin; moreover, it sources charge during the sampling phase, when the analog
signal source is a high-impedance source.

On each analog input pin an anti-aliasing filter is required so to avoid that components beyond
the sampling frequency are folded back into the actual signal bandwidth. Due to the structure
of Sigma-Delta ADC, these components cannot be removed by software post-processing of
the acquired samples, so it is of fundamental importance to remove them before feeding the
signal to the analog input pin. An anti-aliasing filter can be obtained in general by using a
series resistance with a capacitor on the input pin (simple RC Filter), though other more
complex solutions with better band rejection characteristics can be used. The RC filtering may
be limited according to the value of source impedance of the transducer or circuit supplying
the analog signal to be measured.

ﬁ 389/401

STR720 - ELECTRICAL CHARACTERISTICS

Here you can find an equivalent circuit of ADC input pin modeling the behaviour during the
sampling phase.

Figure 79. ADC input pin equivalent circuit during sampling

EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
Voo
Channel Sampling
Source Filter Current Limiter Selection
Rsw Rap
—
L1

Rs Source Impedance

Rg Filter Resistance

Ce Filter Capacitance

R Current Limiter Resistance

Rsw Channel Selection Switch Impedance

Rap Sampling Switch Impedance

Cp Pin Capacitance (two contributions, Cp4 and Cp,)
Cs Sampling Capacitance

Just after the sampling phase is over, the charge on pin capacitors has to be restored by the
signal voltage source. This can be modeled as a current requested by ADC input pin
depending on the frequency with which the pin is sampled by ADC (which is not the signal
sampling frequency due to the oversampling architecture of Sigma-Delta converters).
Equivalent input circuit modeling this aspect can be depicted as illustrated in Figure 80.

Figure 80. ADC input pin equivalent circuit

EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME

Source Filter Current Limiter

Ry Equivalent input resistance
Veu Common mode voltage

390/401

4

STR720 - ELECTRICAL CHARACTERISTICS

Where Ry can be defined by the following formula.
1

Ry = K-
N Fmop

All parameters required to describe ADC input pads are reported in the following table.

Table 106. ADC Input Characteristics

.) Value .
Symbol Parameter Test Conditions _ Unit
Min. Typ Max

. . @ See Figure 79.))
Cin Analog input capacitance Ciy = Cp1+Cpp+Cs 5 pF

Modulator frequency®)
Fmop (oversampling clock) 4 MHz

See Figure 80.

K qulvalent analo(%)lnput In single channel mode value 1728 2160 2592 | kQ:-MHz
resistor constant s
must be divided by 4.
Equivalent analog See Figure 80.
Rin input resistance!® Fmop = 4 MHz, i 540 i kQ
round-robin mode.
Vem | Common mode voltage® 1.19 1.25 1.31 v

; Analog input bandwidth®
AN (Fyop/4096)

ts Conversion time Fmop =4 MHz 128 ns

FMOD =4 MHz - - 976 Hz

—_

Vpp(all) = 1.80 V £ 10%, Vppgz(all) = 3.30 V + 10%, Tp = -40 / +85 °C unless otherwise specified.
Data based on design guidelines, not tested in production.

Data based on design characterization performed on sample devices, not tested in production.

H> oD

Data based on design guidelines and validation, not tested in production.

4

391/401

STR720 - ELECTRICAL CHARACTERISTICS

28.11.2 ADC performance

In the following sections the performance figures used to represent ADC characteristics are
reported in Table 107 and briefly explained in the subsequent sections.

Table 107. ADC Performance

Value

Symbol Parameter Test Conditions(!: (@ i Unit
Min. Typ Max

SINAD | Signal/Noise and distortion 68 71 - dB

ENOB '(EF‘;f:::)'I‘l’J fi::)mber of bits 11 115 : bit
INL | Integral non-linearity® Measured on 11 bit samples. - 0.5 - LSB
DNL | Differential non-linearity™) Measured on 11 bit samples. - 0.5 - LSB
THD | Total harmonic distortion 71 79 - dB
PBR | Pass-band ripple® - - 0.1 dB

1. Vppl(all) =1.80 V £ 10%, Vppz(all) =3.30 V £ 10%, T =-40/ +85 °C unless otherwise specified.
Full range 80 Hz sine wave input, Fyyop = 2 MHz

Data based on design guidelines and validation, not tested in production.

Hp 0D

Data based on design guidelines, not tested in production.

28.11.2.1 Signal to Noise ratio and distortion (SINAD)

The acquired samples are processed to calculate their FFT, after being windowed using ‘a
four-term Blackman-Harris function so to avoid spread of the fundamental harmonic due to
the non-periodic captured components. On the FFT further processing is performed so to
calculate the ratio between the power of input sine wave fundamental component and the sum
of the noise power plus the power of all harmonic components except the fundamental. This
parameter can be also referred to as THD+N.

28.11.2.2 Effective number of bits (ENOB)

This paramer is calculated based upon the measured SINAD value, as the number of bits of
an ideal converter having an a signal-to-noise ratio equal to the SINAD of the real ADC under
measurement. The ideal signal-to-noise ratio can be expressed as:

SNR; s = 176 +6.02 - Ny

thus the effective number of bits can be determined using the following formula:

SINAD -1.76

ENOB = 6.02

392/401

4

STR720 - ELECTRICAL CHARACTERISTICS

28.11.2.3 Integral non-linearity (INL)

This parameter expresses the deviation between the actual A/D convertion characteristics
and the ideal one by evaluating the distance between the center of the actual convertion step
and the center of the bisector line, which is obtained by drawing a straight line from 1/2 LSB
before the first step of real characteristic to 1/2 LSB after its last step.

28.11.2.4 Differential non-linearity (DNL)

This parameter again expresses the deviation between actual and ideal A/D convertion
characteristics. This time the size of actual step with respect to the ideal one (1 ideal LSB) is
compared.

28.11.2.5 Total harmonic distortion (THD)

The FFT computed on the acquired samples is processed so to calculated the ratio between
the power of input sine wave fundamental component and the power of all other harmonic
components.

28.11.2.6 Pass-band ripple (PBR)

This parameter defines the characteristics of A/D converter transfer function from analog input
pin to the generated sample values.

28.12 External Memory Bus Timing

The signal composing the external memory interface are collected on Port 7 and as such all
their DC electrical characteristics are reported in Table 99. The following tables and figures
report the timing characteristics of read and write cycles.

Table 108. EMI Read cycle timing characteristics

] e 2),0) Value™ .
Symbol Parameter(!) Test Conditions'</ . Unit
Min Typ Max
Read pulse time for ERD in 8/16-bit | Depends on EMI configu-
'RPR1 | word access ration. 2Tg-x 9T¢ +x ns
Read pulse time for ECSx in 8/ Depends on EMI configu-)
'RPC1 | 16-bit word access ration. 2T - x 9 +x ns
Read pulse time for ERD in 32-bit | Depends on EMI configu-
'RPR2 | \word access ration. 4Tc-x 18T¢ +x ns
Read pulse time for ECSx in 32-bit | Depends on EMI configu-
'RPC2 | word access ration.®) 4Tg-x 18T¢ +x ns
trsp Read sampling point To-x Tc+X ns
trRDs Read data setup time ns
tRDH Read data hold time ns
tRASR Read address setup time to ERD Tc-x Tc+x ns
trasc Read address setup time to ECSx Tc-X Tc+Xx ns
tRAH Read address hold time ns

ﬁ 393/401

STR720 - ELECTRICAL CHARACTERISTICS

See Figure 81 and Figure 82 for a definition of these parameters.
Vpp(all) = 1.80 V £ 10%, Vppgz(all) = 3.30 V + 10%, Tp = -40 / +85 °C unless otherwise specified.

1
2

3. Data based on design guidelines, not tested in production.

4. Tcis CPU clock period expressed in ns. For example if CPU clock is set to run at 50 MHz, T¢ = 20 ns.
5

Actual duration is configurable. See Chapter 11: EXTERNAL MEMORY INTERFACE (EMI) on page 115.
Figure 81. EMI Read cycle timing (8-bit or 16-bit word)

EADD[21:0] l< Address 3<

_ 'masr tRPR
ERD N /

| lRasc trPc1 tRAH
ECSx \ wait cycle wait cycle = wait cycle l

EWEX tsp
L trDs ‘tRDH

EDATA[15:0] { x % Data Input

(Input)

Note: this diagram shows the timing of 3 wait-state cycle read access.

Figure 82. EMI Read cycle timing (32-bit word)

EADD[21:1] > Address ><

trrc1

EADDI0] \ / A

tRasr | trPR2

m
By
lw)
—

.

rasc trpc2 tRAH
ECSx \- wait cycle wait cycle 7(
EWEXx tsp tsp
L taps | tRDH L tros | tROH

(Input)
Note: this diagram shows the timing of 1wait-state cycle read access.

vwww.DataSheetdU.com

394/401 ﬁ

STR720 - ELECTRICAL CHARACTERISTICS

Table 109. EMI Write cycle timing characteristics

1) itions® @ Value® i
Symbol Parameter Test Conditions'<” win Typ Max Unit
Write pulse time for ECSx in 8/ | Depends on EMI configura-
WPCT | 16.bit word access tion.%) 2Tg-x 9o +x ns
Write pulse time for EWEx in 8/ | Depends on EMI configura-)
WPW1 | 16.bit word access tion.?S) Te-x 8T +x ns
Write pulse time for ECSx in Depends on EMI configura-)
WPC2 | 32 it word access tion.?s) 4T -x 18T +x ns
twoH Write Data Hold Time Tc-x T +x ns
twasc | Write address setup time to ECS To-x Te +x ns
Write address setup time to
tWASW EWEX P TC - X TC +X ns
Write address setup time to EDA-
twasd | Ta Tc- X Te +x ns
twwt WERn Turnaround Time Tc-x T +x ns
tWAH Write Address Hold Time ns

See Figure 83 and Figure 84 for a definition of these parameters.
Vpp(all) =1.80 V + 10%, Vppa(all) = 3.30 V £ 10%, Tp = -40 / +85 °C unless otherwise specified.

Data based on design guidelines, not tested in production.
T¢ is CPU clock period expressed in ns. For example if CPU clock is set to run at 50 MHz, T = 20 ns.

Actual duration is configurable. See Chapter 11: EXTERNAL MEMORY INTERFACE (EMI) on page 115.
Figure 83. EMI Write cycle timing (8-bit or 16-bit word)

o > 0 N

EADD[21:0] *{ Address 3<
ERD

 twasc twpct twan
ECSx \— wait cycle . wait cycle wait cycle _[

_ bwasw twpw1
EWEX \ /

twoH

_ twasp <
EDATA[15:0] Data Output
(Output)

Note: this diagram shows the timing of 3 wait-state cycle write access.

395/401

4

STR720 - ELECTRICAL CHARACTERISTICS

Figure 84. EMI Write cycle timing (32-bit word)

EADD[21:1] X Address *<
twpct N
EADDIO0] 7\ * A
\
ERD
twasc twecz | twaH
ECSx \ wait cycle wait cycle *
. twasw L twpwi L twwr twpw1 N
EWEX N 1 ¥ ;[
twasD twoH twoH
EDATA[15:0] Data Output Y Data Output
(Output)
Note: this diagram shows the timing of 1 wait-state cycle write access.

28.13 SDRAM Interface Timing

The signals composing SDRAM interface are collected on Port 6 and as such all their DC
electrical characteristics are reported in Table 99. The following tables and figures report the
timing characteristics of read and write cycles, both as single and burst accesses.

Table 110. SDRAM Read cycle timing characteristics

N Value®™ .
Symbol Parameter(") Test Conditions@ i Unit
Min Typ Max
tscH SDRAM clock high pulse time - 0.5T¢ - ns
tscL SDRAM clock low pulse time - 0.5T¢ - ns
SDRAM clock high to address
'scAD | yalid i i i ns
tsccs | SDRAM clock high to chip select - - - ns
tscra | SDRAM clock high to RAS - - - ns
tscca | SDRAM clock high to CAS - - - ns
tscwe | SDRAM clock high to WE - - - ns
tsps | SDRAM Data read setup®™) - - - ns
tsopy | SDRAM Data read hold® - - - ns
tscoa | SDRAM clock high to data valid - - ns
tsceL | SDRAM clock high to BLS - - - ns
tsccke | SDRAM clock high to CKEN - - - ns
tsraca | SDRAM RAS to CAS delay®® | Dependg.on SDRAM config-| : 8T¢ ns
396/401 ﬁ

STR720 - ELECTRICAL CHARACTERISTICS

Table 110. SDRAM Read cycle timing characteristics

Value®™
Symbol Parameter(") Test Conditions® Unit
Typ Max
t SDRAM CAS to data valid delay Depends on SDRAM config- i aT ns
SCADA (CAS Iatency)(a) uration. c
tSPRD | SDRAM precharge delay(s) Eg?i%?]d(s on SDRAM config- - 7Tc ns

o > 0 N

See Figure 85, Figure 86 and Figure 87 for a definition of these parameters.
Vpp(all) =1.80 V + 10%, Vpps(all) = 3.30 V £ 10%, Tp = -40 / +85 °C unless otherwise specified.

Data based on design guidelines, not tested in production.

T¢ is CPU clock period expressed in ns. For example if CPU clock is set to run at 50 MHz, T = 20 ns.
Actual duration is configurable. See Chapter 10: DRAM CONTROLLER (DRAMC) on page 101.

In the following figures the timing diagrams are represented, where also the extent of the
software configurable access timing is depicted.

Figure 85. SDRAM Single Read Access

|
Activate

Bank

[
Read

tscH | tscL
>
AR aVataWaWa¥aWalWal
MIA[13:11] Bank X
tscap
MIA[10:0] Row >< Col ><
tsces
IVe'S RAS-CAS CAS
MCSI[x] } delay latency /
tscra
_ | T |
MISA / RAS Jﬁ j \]l
tscca ‘
S — i \ i
MIAA / CAS
‘ ‘tsos‘ﬁsmi ‘
| E—
MID[32:0] [l Data l
| | |
MIWE \ \

Precharge
Bank

Note: this diagram shows the timing with RAS-CAS delay, CAS latency and precharge delay all set to 1 wait-state.

4

397/401

STR720 - ELECTRICAL CHARACTERISTICS

In figure 86 a sample of 4-beat burst read access is depicted, to show how access gets more
efficient in the case of a burst read. The timing parameters of burst read access are the same
of single read access.

Figure 86. SDRAM Burst Read Access

MICLK

AVAVAVEWAVAWEWAWAWEWEAN

MIA[13:11]

Bank

MIA[10:0]

Row X Colo X Colt X Col2 X Col3 X

MCS[x]

= -

d

RAS-CAS CAS

elay latency

MISA / RAS

MIAA / CAS

MID[32:0]

Data0

E

Data1

[
Activate
Bank

|
! |

[[
Read Read

[
Read

|

|

[
Read

Note: this diagram shows the timing with RAS-CAS delay, CAS latency set to 1 wait-state and no precharge delay.

\
[
Precharge

Bank

398/401

4

STR720 - ELECTRICAL CHARACTERISTICS

The next two figures represent the write access timing, here considered in the single write
case since burst write is performed using the same timing characteristics, and the entry in
self-refresh (power-save) mode where MICKEN signal is used.

Figure 87. SDRAM Single Write Access

MIA[13:11] X Bank X
MIA[10:0] X Row X Col X

TG RAS-CAS CAS h

MCSI[x] \ delay latency gglegyarge /

MISA / RAS | ! \ |
—— | ——
MIAA / CAS | \ ‘ / |
tscoa | |

|
MID[32:0] ‘* Data X
(output) r— ‘ \ ‘
MIBLS[3:0] *% Value X

| |

e gy i —

[[
Bank Wr‘ite Bank
Activate Precharge

Note: this diagram shows the timing with RAS-CAS delay, CAS latency and precharge delay all set to 1 wait-state.

4

399/401

STR720 - REVISION HISTORY

29 REVISION HISTORY

Date Version Comments

30 Jul 03 1.2 Preliminary distribution

22 Mar 04 2 Initial release

05 Apr 04 3 Modifed “Reset Management” on page 139

15 Apr 04 3.1 Corrected PDF links in table of contents

21 Dec 04 4.0 Revision number incremented from 3.1 to 4.0 due to Internal Document Manage-
ment System change
Modified page layout
Updated Device Summary on page 1
Removed Section 4.12 CPG1 Package Pin configuration and Section 5.20 Embed-
ded Trace Macrocell
Renamed SLEEP mode to SLOW mode
Updated ADC, CAN, USB, RTC, EFT, DMAC and ATAPI sections

400/401 [S7

STR720 - REVISION HISTORY

Notes:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia — Belgium - Brazil - Canada - China — Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

vww.DataSheet4U.com

401/401

4

